Mostrar el registro sencillo del ítem
An unsupervised clustering methodology by means of an improved dbscan algorithm for operational conditions classification in a structure
dc.contributor.advisor | Sierra Pérez, Julián | |
dc.contributor.author | Perafan López, Juan Carlos | |
dc.coverage.spatial | Seccional Medellín. Escuela de Ingenierías. Maestría en Ingenierías | spa |
dc.date.accessioned | 2018-09-20T16:07:18Z | |
dc.date.available | 2018-09-20T16:07:18Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11912/4017 | |
dc.description | 117 Páginas | spa |
dc.description.abstract | Structural Health Monitoring (SHM) is highly relevant nowadays, not only for aerospace maintenance, but for a large number of newly engineering applications. Pattern recognition has become an important part of SHM for signal processing and anomalies or damage detection, assuring structural integrity. New methods are created day by day and more researchers and engineers feel the interest to generate techniques which can make SHM become a more compacted, sophisticated and automatized system, eliminating human factors and intrinsic errors. This work evaluates the computational complexity and accuracy of a novel methodology of unsupervised clustering called FA+GA-DBSCAN which employs a combination of machine learning techniques including factor analysis for dimensionality reduction and a density clustering algorithm called DBSCAN enhanced with a genetic algorithm. In order to automatically detect a variety of structural behaviors using the novel methodology an experiment with a beam in cantilever under dynamic loads was taken in consideration. | spa |
dc.format.mimetype | application/pdf | |
dc.language.iso | spa | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Monitoreo de salud estructural | spa |
dc.subject | Reconocimiento de modelos | spa |
dc.subject | Aprendizaje automático (Inteligencia artificial) | spa |
dc.subject | Localización de fallas (Ingeniería) | spa |
dc.subject | Algoritmos genéticos | spa |
dc.subject | Análisis de datos | spa |
dc.title | An unsupervised clustering methodology by means of an improved dbscan algorithm for operational conditions classification in a structure | spa |
dc.type | masterThesis | spa |
dc.publisher.department | Escuela de Ingenierías | spa |
dc.publisher.program | Maestría en Ingeniería | spa |
dc.rights.accessRights | openAccess | spa |
dc.type.hasVersion | draft | spa |
dc.description.sectional | Medellín | spa |
dc.identifier.instname | instname:Universidad Pontificia Bolivariana | spa |
dc.identifier.reponame | reponame:Repositorio Institucional de la Universidad Pontificia Bolivariana | spa |
dc.identifier.repourl | repourl:https://repository.unab.edu.co/ | |
dc.description.degreename | Magister en Ingenierías | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis de especialización, maestría y doctorado [1855]
Tesis de especialización, maestría y doctorado