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de esta investigación, su aporte a este trabajo es invaluable, una persona que no solo me
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Abstract

This thesis aims to better understand the numerical approximation of the fluid-solid

interaction that involves large deformations and displacements of an immersed solid within

the flow field. It can be applied as an engineering tool for improving mechanical component

design that typically leads to various numerical and algorithmic challenges.

The numerical strategy in this thesis uses fixed and non-conforming mesh methods due to

their ability to solve the fluid flow in a static mesh even with considerable displacements

of internal boundaries. But several other numerical ingredients are developed in this work

to overcome instability issues that may appear in the numerical solution and to make

affordable such computation. One is the application of the Variational Multi-Scale (VMS)

framework to construct a stable discrete formulation of the incompressible flow equations.

Others have to do with non-conforming mesh methods.

The sharp interface methods implemented in this work can accurately define the boundaries

of the immersed solid, however, the moving boundary randomly cuts the cells of the

fluid mesh triggering the following two difficulties. The first is the prescription of no-slip

boundary conditions over the solid surface in the case of moving cell edges that do not

coincide with the nodes of the fluid mesh. Yet, these conditions are imposed weakly

by adding new terms to the discrete fluid flow formulation, and specifically, by using a

modified version of the Nitsche’s method to avoid user-defined parameters. The second is

the instabilities that may appear at the fluid-solid interface due to the lack of information

and the ill-conditioning of the discrete linear system of equations associated with highly-

covered fluid cells. Our strategy is to apply the Ghost Penalty method by adding some

extra terms to the Variational Multi-Scale formulation.

Also, an implicit approach is adopted to deal with the strong coupling between the

fluid and the solid solutions. With this method in hand, some numerical examples

are demonstrated, including the solution of well-known benchmark problems and some

proposed problem settings. One original application is the study of an auto-rotating seed

from a two-dimensional perspective.

Keywords – NCMM, FSI, Variational Multi-Scale, Ghost Penalty method, Nitsche

method, Triparis seed
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1 Introduction

1.1 Prologue

The study of Fluid-Solid Interaction (FSI) arises from the need of analyzing the coupled

response that can occur between a fluid flow and a deforming solid. The simultaneous

analysis becomes essential when those phenomena feedback each other, making it unsuitable

to split the analysis into isolated solid or fluid solutions. Some interesting applications such

as flapping foils or self-rotation seeds are interesting in the context of FSI problems because

the solid immersed in the flow field can experience large deformations and displacements,

which leads to several scientific challenges.

Numerical simulations have become the most efficient methodology to study these types

of FSI problems. This has been explained since computations can be easily addressed for

a wide range of problem definitions [2]. Interest in achieving accurate FSI simulations has

grown in the last few decades, mainly driven by computational fluid dynamics-assisted

design, but also to gain a better understanding of the core of the physical phenomena.

This thesis aims to better understand this phenomenon since it can be applied as an

engineering tool for improved mechanical component design, for instance in the sense of

wind turbine development. Hence, it presents a numerical methodology for solving FSI

problems that can deal with Newtonian and incompressible fluid flows interacting with

solids subjected to large displacements and/or deformations. The direct consequence of

this work has been the possibility to simulate some original and challenging engineering

FSI applications, such as the aerodynamic applications involving large trajectories of

objects immersed in fluids.

One of the scientific issues is how to ensure a stable and accurate coupled solution in both

physical domains: the fluid flow domain and the deforming solid domain. The answer

depends on the topological treatment and information sharing between the domains. Two

strategies can be chosen in this regard. Since the type of problems studied in this thesis

involve a solid domain occupying a region of the fluid domain, the first strategy completely

separates the domains by subtracting overlapped regions, while the overlapped region is

accounted in the second approach, also producing redundancy [3]. The communication

between the fluid and solid also differs for the two approaches: while it is achieved

solely through their interface for the first approach, in the case of the second it must

be performed through the whole covered region. The second strategy is the so-called

Non-Conforming Mesh Methods (NCMM) in Fixed-Mesh Methods. It has been preferred

for the immersed solid problems because there is no need of deforming the fluid domain.

However, defining the overlapped region of the immersed solid is not trivial: the way to

describe the immersed interface demands enhanced algorithmics. Another problem has to

do with the numerical approximation of the incompressible Navier-Stokes equations, which

represents an active research topic itself in computational mechanics, and the interaction

with a deforming solid’s structure makes it even harder.
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Stabilized based FSI formulations have been recently developed to overcome these issues,

which include a great variety of numerical ingredients working in line. The Variational

Multi-Scale (VMS) [4] method has been proved to stabilize the convection-dominated fluid

flow problems or when the interpolation spaces used for pressure and velocity variables

do not satisfy the inf-sup condition. This specific framework is adopted and extended in

the present thesis to achieve stable fluid flows in Fixed-Mesh Methods for FSI problems.

Another ingredient is the weak imposition of no-slip conditions at the fluid-solid interface

through the inclusion of some penalization terms to the stabilized formulation. The cut

elements are also stabilized by using the Ghost Penalty method with a recent approach

that accounts for the orthogonal projection to the finite element space.

The developed numerical methodology has proven to be successful in evaluating engineering

problems, some of which are addressed in this document. The first set of these problems

deal with the transient analysis of a throttled flow inside a channel by the constraining

effect of different types of valves. In those cases, the fluid flow is only affected by the

displacements of the solid obstacles, which are not solved but their movement is predefined.

The second set of addressed problems involves the partial solution of the fluid-structure

coupling in the sense that the fluid effects only displace the solid, being considered as

a rigid solid. In these practical applications the aerodynamic forces are considered to

displace the immersed obstacle, which are created by the interaction of the viscous flow

past the geometric profile. Finally, the last set of problems includes the evaluation of the

Triplaris Americana auto-rotating seed by fully coupled two-dimensional FSI analysis of

different cut sections of the seed.

1.2 Literature Review

The FSI phenomena have been studied since the 1930s [5], but the interest has grown

in recent decades due to the need of understanding high-performance structures that

interact with fluid flows. Some industries such as aerospace, marine and bioengineering

require a great deal of FSI analysis in their tasks. In the aerospace field, for instance, FSI

analysis is used to test critical aircraft components and to ensure their proper performance

during flight operation [6]. FSI studies are also frequently applied to wing, helicopter

blades [7], wind turbine blades [1], and turbomachinery component design [5]. Several

engineering efforts have been committed by the maritime industry in improving the

ship structures, especially regarding the geometry and material selection of the hull

and propeller. It has also been applied to predict the performance of newly developed

materials in aerospace applications [8]. Additionally, high-speed turbomachinery exhibits

high strains and stresses in their structure [9]. Bioengineering is another area of extensive

FSI research. One of the prevailing topics in physiology is the analysis of the blood and

human body tissue interaction, and the prediction of a certain tissue responds to natural

and artificial conditions of the blood flow [10]. In other engineering fields, there has grown

a recent interest in flexible structures that interact with fluids in a non-conventional way,

such as wrapped structures like parachutes or airbags, which experience high deformation
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rates [11, 12].

FSI analysis is typically addressed rather by numerical simulation or experimental testing

[2]. The former is mostly used during the early design stages, while the latter is

implemented for assuring the final prototypes. But numerical simulations have intrinsic

advantages over experimental testing, including their relatively low cost, rapid evaluation of

different configurations, and easy data collection [13]. Unfortunately, there is not a general

FSI numerical methodology for all FSI problems [1]. Several applications may require

high accuracy, regardless of the computational cost, but in most industrial applications a

low accuracy of the numerical description is accepted [6]. Hence, the construction of the

numerical method may depend on its final application and requirements.

1.2.1 Numerical methods

Numerical methods for FSI are classified as Moving Mesh Methods and Fixed Mesh

Methods. The classification corresponds well to the information transfer strategy between

the solid and fluid domains. In this regard, Conforming Mesh Methods (CMM) and

Non-Conforming Mesh Methods (NCMM) are related directly to these definitions. In the

first approach, there is a defined interface that separates the fluid domain from the solid

domain (see Figure 1.1(a)), whereas in the second approach the interface is immersed in

the fluid mesh (see Figure 1.1(b)).

(a) Conforming mesh. Left: t=t1; Right: t=t2.

(a) (b)

Figure 1.1: Conforming mesh (a) and non-conforming mesh (b). Taken from [1]

CMM are favored in FSI numerical methods due to their easy-to-deploy and stability

properties. They have been applied in a variety of industries such as in the aerospace

industry to simulate parachute deployment [14, 15] or insect flight aerodynamics [16], as

well as in bioengineering to assess the movement of blood within deforming valves [17].

The Arbitrary Lagrangian-Eulerian method (ALE) is the departing point for most of the

CMM [18]. The main idea of ALE is to solve the fluid domain using a Eulerian reference

frame, while the solid is addressed by a Lagrangian approach. Therefore, the fluid domain

is deformed to track the solid motion. But the ALE method is limited to moderate

boundary deformations [19], and authors have proposed variations and improvements in

order to extend the possible applications. Among these improvements, the re-meshing [20],

overset meshes [21, 22] the Extended ALE method [23], and the Fixed ALE method [24],

stand above the rest. The motivation behind these methods is to avoid highly deformed
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meshes by means of regeneration and control strategies which imply a constant transfer of

information between old and new meshes. This particular feature increases the simulation

time and produces numerical error [1].

On the other hand, the solid interface does not coincide with boundary of the fluid domain

for NCMM, but it is defined in its interior. In this case, there is no need to re-mesh when

there are large displacements of the internal solid boundaries inside the fluid domain [25].

Unlike CMM, NCMM are suitable for analyzing problems that involve large deformation

and great changes in the structure topology [26]. One drawback is the need for a finer fluid

mesh resolution near the interface, such as in boundary layer problems [21] or high gradient

zones that require a detailed numerical description of the phenomena. Additionally, a

stabilized formulation for the numerical approximation of the Navier-Stokes equations

in the fluid domain is mandatory in both CMM and NCMM approaches: the Galerkin

approximation is enough to solve the elastic solid deformation problem using stantard

approaches, however, instabilities like the inf-sup compatibility condition between the

interpolation spaces of the different variables of the problem may appear for the fluid

flow problem. Therefore, the Variational Multi-Scale (VMS) framework has been recently

used to stabilize these problems [27], mainly defining the subscales as Algebraic Sub-Grid

Scales (ASGS) or Orthogonal Sub-Grid Scales (OSGS) [28].

The way the fluid-solid interface is solved generates another division in NCMM: diffuse

and sharp interface methods [3, 29]. In the first type of methods, the interface is defined

by a wide layer of grid cells using discrete delta functions. In the second, the interface

is tracked by setting a very thin edge. This thin edge can be defined, among several

techniques, by a certain function, by modifying the shape of the cells belonging to the

interface, or by incorporating jump conditions [30]. One brief depiction of the difference

between diffuse and sharp interface methods is presented in Figure 1.2. The immediate

consequence is the higher accuracy near the interface obtained by sharp interface methods

in contrast to the diffuse interface methods.

Ωf

Ωs

Γ

(a)

Γ

Ωf

Γ

Ωs

(b)

Figure 1.2: Diffuse interface (a) and sharp interface (b).

A widely used NCMM and diffuse interface method is the Immersed Boundary Method

(IBM) proposed in [31]. In that approach, the interface is defined using elastic constitutive

laws that are added to the fluid equations. The IBM has been applied to problems where

the mass of the solid object is not relevant, for example, flexible flapping wings, vocal

fold vibration, [32], flow patterns around the heart valves [33], movement of biological
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swimmers [34], and others. That method has demonstrated to be suitable for FSI problems

with elastic solid boundaries. However, it is difficult to apply in FSI problems involving

rigid solid bodies due to the increased stiffness of the discrete system. In this sense, the

Direct Forcing IBM has overcome these type of problems [35]. Also, the penalty IBM

allows the inclusion of the solid mass in the FSI system [36], and the Fictitious Domain

Method (also called Penalization Method) represents the rigid solid obstacles as porous

media with zero porosity [3]. Although diffuse interface methods have a lower accuracy at

the interface, they have successfully been used to model compressible and incompressible

fluid-structure interaction problems [37, 38, 39, 36], multiphase fluids [40], and others.

Sharp interface methods, on the other hand, portray an internal classification due to

the wide variety of approaches: Cut-Cell methods, Immersed Interface Methods (IIM),

eXtended Finite Element Method (XFEM), Finite Cell Methods (FCM), CutFEM, among

others. In the Cut-Cell method [41], the interface cells are cut locally and re-meshed

so that the faces (or edges) of the new cells match the interface. Its drawbacks are the

handling of cut cell topology for complex geometries and the change of Degrees of Freedom

(DOF) as a result of re-meshing. Similar to the Cut-Cell method, the XFEM can be used

to simulate discontinuities and cracks in materials [42]. This is achieved by improving the

interpolation space of the unknowns where the interface intersects with the cells. The

XFEM has also been used to model multi-phase fluid problems [43] or FSI problems

[44]. Another approach is the inclusion of jump conditions at the solid-fluid interface: for

instance, the IIM [45]. In contrast, the CutFEM method [46] includes penalty terms in

the fluid equations and modifies the integration scheme over the cut elements. It also

includes a stabilization method to avoid instabilities due to bad cuts. This method has

been successfully applied in incompressible fluid problems [47], representation of complex

geometries [46], multi-phase fluid problems [48], FSI problems [49, 50], and others. A

similar approach to the CutFEM method is implemented in the present work, but the cut

element stabilization is improved by the VMS framework.

In all these methods, the moving boundary randomly cuts the cells of the fluid mesh

triggering numerical difficulties. The first is the tracking scheme of the immersed and

moving solid domain. The second is the treatment of the fluid cells belonging to the

interface: the strategy on how to account for in the fluid flow equations the partially

covered cells at the interface. The third is the prescription of no-slip boundary conditions

over the solid surface in the case of moving cell edges that do not coincide with the nodes

of the fluid mesh. The fourth are the instabilities that may appear at the fluid-solid

interface due to the lack of information and the ill-conditioning of the discrete linear

system of equations associated with highly-covered fluid cells. Hence, other numerical

ingredients are necessary in the construction of a successful sharp interface scheme.

To track the location of the interface, both the Level-Set method and overlapping meshes

can be used. The Level-Set method is used for simple geometries: this method defines

a distance function to classify the elements that belong to the fluid or the immersed

body. Instead, overlapping meshes are used for more complex geometries: it considers

two meshes, one at the background that is precisely the fixed fluid mesh, and another one
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at the foreground that represents the immersed solid body.

Once the interface is located, the fluid elements cut by the interface must be carefully

treated with the corresponding contribution of those elements to the global assembly

of the discrete linear system of equations. In this sense, integrating only the region

of cut elements that belong to the fluid domain becomes crucial. One robust strategy

for integrating the elements cut by the interface is the sub-triangulation (tessellation)

technique that divides the elements and redefines quadrature points to only integrate the

part that belongs to the fluid domain [42, 51]. This numerical sub-integration keeps the

same DOF of the original mesh, and therefore, preserves the original linear system size [46].

The use of local refinement schemes near the interface has been also used to improve the

accuracy of the method, which can be hierarchical [52, 53] or spacetree-based [54] mesh

size refinement, but also interpolation order refinement [50]. However, some drawbacks

are related to the difficulties to use the mesh refinement technology or the linear system

update at each refinement step. Other methods are based on the exclusion of the basis

functions of the cut elements from the approximation space, or the recombination of these

parts with nearby functions [55]. Besides, the use of Legendre, Lagrange, B-splines, or

Nurbs interpolation polynomials have been identified to affect the accuracy of the covered

fluid element integration [56, 57, 50].

In the case of the Dirichlet’s boundary conditions prescription over the solid interface,

those can be imposed weakly by adding new terms to the discrete fluid flow formulation.

This method can for example set no-slip conditions for the viscous fluid flow over the

immersed and moving solid boundary directly in the fluid cells discrete equations. The

main idea of the weak imposition is to penalize the numerical solution, making it equivalent

to the Dirichlet value. The method of Lagrange multipliers is one classic technique to

weakly impose boundary conditions at the immersed interface. However, it increases the

DOF of the discrete linear system [50, 58], and restricts the interpolation spaces of the

Lagrange multipliers to the fulfillment of an inf-sup compatibility condition. More recently,

the Nitsche’s method has been widely used for weakly imposing boundary conditions. It

has been implemented along with the CutFEM method [46, 49], the XFEM [59], and the

FCM [56] to solve the Poisson, Stokes, Navier-Stokes, and Fluid Structure Interaction

(FSI) problems [60, 50]. Several Nitsche-based techniques have been proposed to avoid

user-defined parameters. Those methods have been suitable for problems with complex

linear systems because those reduce the number of parameters to be included. One of

these methods is the penalty-free Nitsche method, which is a non-symmetric modification

of the original Nitsche method [61, 56, 47]. Another is the Linked Lagrange method

in [62], which arises from the three-field fluid flow equations and demonstrates optimal

convergence error for diffusive problems.

The fourth ingredient is the stabilization technique for bad cut elements at the interface.

Indeed, lack of information associated with highly-covered elements affects the assembled

linear system making it ill-conditioned and triggering instabilities in the discrete solution.

That numerical issue can be explained by the small support given by the fluid part of

the cut element. One strategy to overcome this issue is the Fictitious Domain Stiffness
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method, for which a penalization is included in the formulation only for elements in the

interface. It is based on the idea of increasing the contribution of the basis functions

of bad cut elements. Preconditioners have also been used for stabilizing the discrete

formulation. Those are designed to act over the assembled system matrix, such that the

method works independently of the mesh size or the shape of the cut elements [55, 63].

Similarly, other methods exclude the contribution of bad-cut elements to the linear system

assembly or replace the local support by using composed functions. A recent approach is

the Ghost Penalty (GP) method [64, 46], which increases the weight of the basis functions

of bad cut elements by adding extra terms to the variational formulation. Currently, the

Ghost Penalty with Orthogonal Projections to the finite space (GPOP) proposed in [65]

for Stokes problems has demonstrated improved performance for prescribed Neumann

conditions [24] at the boundaries of the fluid domain. The GPOP is an alternative to the

classical GP method that is used in the CutFEM method [46], which uses the orthogonal

projection to the finite element space of the unknowns [65, 24]. Finally, it has also been

demonstrated in [61] that the penalty parameters of the Nitsche method have stabilization

properties for the bad cut elements.

Another important ingredient, not necessarily related to NCMM but to FSI, is the coupling

method between the fluid and solid domains, which refers to the bidirectional transfer

of information between the domains. These strategies can be classified as monolithic or

partitioned [1]. In the first approach, fluid and solid problems are solved simultaneously

in the same matrix, while in the second approach each problem is solved in separate

matrices linked by boundary conditions or source terms. Monolithic approaches are

more robust and efficient, but programming is more demanding and the solution is more

difficult to converge on the non-linearities of the problems. Partitioned approaches, or

so-called segregated approaches, are more stable and allow greater flexibility to select

the methods used in each domain, allowing each field to be resolved using robust and

efficient solvers that have already been evaluated and validated [66, 67]. In partitioned

methods, the choice of the boundary conditions pair at the interface directly affects the

stability and convergence of the numerical problem. The most commonly used in the

literature is the Dirichlet–Neumann (DN), in which solid displacements are prescribed

on the fluid, and tractions are imposed on the solid boundary. If Dirichlet boundary

conditions at the immersed fluid interface are weakly imposed, the DN pairs could be

seen as a Neumann-Neumann (NN) coupling. Many other strategies have been analyzed

in literature and have shown better results than the DN, i.e. the Robin-Neumann (RN)

algorithm has shown superior results over other approaches. In [23] it was shown that

RN is better than DN for problems affected by the added mass effect: a numerical issue

associated with the density value of the fluid and solid. A similar conclusion about RN was

stated in [68], where the authors showed that RN is more accurate than Robin–Dirichlet

(RD) or DN, but also that RN always converges and that it is insensitive to the added

mass effect. Despite the above, NN is the preferred approach in this work, and therefore,

the density between domains is always considered to vary in magnitude to avoid stability

problems.

Furthermore, partitioned techniques can be classified as explicit or implicit [69] depending
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on the temporal integration scheme. In any case, the preferred approach must ensure that

the fluid and solid solutions at the interface are balanced at each consecutive time step.

Explicit (or loosely coupled) techniques resolve fluid and solid domains once per time step

using only the information of the previous time steps, so these techniques do not assure

the balance of velocities and stresses at the interface. Small-time steps are typically used

in those methods to guarantee the solution stability, but also to avoid the loss of mass

and momentum balance. Hence, these methods never are exactly conservative, however,

the accumulated temporal error can be improved by implementing predictor-corrector

schemes. On the other hand, implicit (or strongly coupled) techniques enforce the balance

of velocities and stresses at each time step through an iterative process of resolving both

domains until a convergence tolerance is reached; this also implies a high computational

cost but a rise in the temporal accuracy.

Indeed, FSI problems for incompressible flows coupled with hyperelastic solids are highly

non-linear problems, explained by the inner non-linear condition of the separated problems

and to their interaction at the interface. Newton method can be used to solve the coupling

non-linearity, however, it is expensive and hard to calculate. In this regard, a fixed point

method —like the well known Picard’s scheme— is a fair trade-off between robustness

and computational cost: at each Picard’s iteration, the fluid flow field is solved through

the tracking of the dynamic interface and the weak imposition of the no-slip boundary

conditions. Then, the fluid tractions are prescribed to deform the solid domain and this

process is repeated until a certain convergence criterion is satisfied. This algorithmic

strategy has been widely used in literature to deal with FSI problems.

1.2.2 Fluid-Solid Interaction applications

As mentioned before, FSI applications are countless. However, in this work, we are

especially interested in two topics: flexible flapping foils, and numerical studies of auto-

rotating seeds.

Flapping foil mechanisms are a relatively new field of research that was first explored

in the 1980s [70], and have been an active field of study ever since. Flapping foils are

systems that are used to extract (harvest) or deliver (propel) energy between a fluid flow

and a mechanism of moving solid components through oscillating heaving and pitching

movements. When foils are used to extract energy, they work as turbines: they leverage the

flutter phenomena for the energy harvesting [71], which is an unwanted aeroelastic effect

generated by the transfer of energy from the fluid to a solid structure that is transformed

into oscillations that are increasingly larger. The efficiency of these devices is relatively

low compared to traditional wind turbines and therefore, experimental and numerical

studies have been conducted to understand their operation and improve their efficiency.

The survey of the state of the art classifies related research into oscillating trajectories

exploration and airfoil performance examination. The first group of studies focuses on

understanding and optimizing the pitching (rotation) and heaving (translation) movements

of the flapping foil. The second branch seeks to optimize the airfoil shape to improve the
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efficiency of the system. In this last group, some surveys are dedicated to improving the

energy harvesting efficiency of the system by modifying the trailing edge of the flapping

foil. For instance, a numerical study of a flapping foil with adaptive Gurney flap using

the finite volume method with sliding meshes has been reported in [72]. The authors of

that work found that the adaptive Gurney flap airfoil has greater efficiency than the fixed

Gurney flap airfoil or a conventional trailing edge airfoil. Another study conducted inside a

wind tunnel aimed to test a flapping wing with a rigid, passive, and spring-jointed trailing

edge [73]. The findings were related to the efficiency increase when the natural frequency

of the trailing edge is close to the oscillation frequency. Also that the high rigidity of the

spring affects the mean output power. In the research published in [74], IBM was used to

study the effect of a flapping foil with a flexible tail. The efficiency was higher for the

flexible tail than for the rigid one. This flexible configuration is somewhat idealized since

IBM can not consider thick flexible objects. Similarly, increased efficiency of a flapping

airfoil with a spring-connected tail has been reported in [75] using the IBM methodology.

In general, all these trailing edge mechanisms raise the instantaneous camber of the airfoil

and therefore, generate a greater pressure difference between the upper and lower surfaces

of the profile allowing it to move easily and producing an increased lift. Other studies aim

to investigate the aerodynamic response by completely deforming the flapping foil shape.

In one of these evaluations, an oscillating foil with a prescribed deformation was solved

using a volume finite method with moving and conforming meshes [76]. They reported

an increased power efficiency with respect to the original and non-deformed oscillating

foil. A similar analysis has been achieved in [77] and [78] using an IBM. In [79], IBM was

used to analyze a combined active control of the heaving and pitching movements with

a flapping rigid plate, which reached a significant power coefficient. Worth to mention

that in this work we show the capacity of the proposed technology to solve this type of

problems without entering into developments or improvements that allow increasing the

efficiency of the flapping foil systems.

Regarding auto-rotating seeds, there have been recent studies of their flight due to the

interesting physics related to their aerodynamics. Most studies are devoted to the Maple

seed: a single-leafed seed that involves a special aerodynamic effect generated at very low

Reynolds number called Leading Edge Vortices (LEVs). This effect increases lift, allowing

the seed to remain in the air longer and thus, improving its dispersion. The Maple seed has

been used as an input to design bio-inspired flight vehicles and wind turbines [80, 81]. Also,

many studies have characterized its aerodynamic, from experimental analysis [82, 83, 84],

analytical methods [85], and numerical simulations [86, 87, 36, 88, 89]. Some numerical

studies, like the ones carried out in [36, 87] used NCMM, and specifically the IBM to

describe the flight of the seed. Another auto-rotating seed is the one from the Triplaris

Samara tree, which is a three-leaf seed that has also aroused a lot of interest and has

bio-inspired wind turbines design [90, 91]. This seed also has been studied by means of

experimental tests [92, 93], or analytical analysis [94], however no one has made numerical

analysis of its geometry.



10

1.3 Objectives and outline

A numerical methodology based on NCMM and the VMS-FEM stabilized formulation

for FSI problems is presented in this thesis. In particular, this methodology can solve

Newtonian and incompressible fluid flows at low Reynolds number interacting with rigid

and hyperelastic solids subjected to large displacements and/or deformations.

The specific content of this work is divided into several topics, which are progressively

developed, and will be presented in the document as follows:

• Chapter 2 presents the VMS stabilized formulation of the incompressible Navier-

Stokes equations, including the weak imposition of essential boundary conditions,

and the stabilized formulation for the cut elements. In this chapter, a dedicated

study of the GPOP along the sharp interface scheme is presented, emphasising the

inclusion of additional penalty parameters based on the fraction of the element

belonging to the fluid. Some applications are presented, most of which use the

Level Set method [95] to track the interface. In the case of complex applications,

overlapping meshes of the solid and fluid domains are implemented [19, 49, 96]. For

example, for the three different cases of valves closing a channel flow.

• Chapter 3 presents the FSI coupling numerical strategy. A partitioned FSI scheme

is adopted in this thesis, where each problem is solved in separate matrices that are

communicated after each obtained solution. In this sense, an implicit (or strongly

coupled) technique is used to enforce the balance of velocities and stresses at each

time step. This is achieved through an iterative Picard’s scheme with a coupling

convergence tolerance. The applied case a flapping foil is presented along with some

benchmark problems.

• Chapter 4 presents the aerodynamic simulation and two-dimensional characterization

of the auto-rotating Triplaris seed that uses the numerical methodology presented

in the previous chapters.

• Chapter 5 closes the thesis with some conclusions and the summary of further

possible research lines.

1.4 Research dissemination

The research work contained in each chapter is quite self-contained, although this implies

the need to repeat some information. The notation is introduced gradually as required

and may vary (slightly) from chapter to chapter. This is because each chapter of this

thesis is intended to be disseminated in the form of articles in peer-reviewed scientific

journals, as indicated below:

1. Chapter 2:

”Stabilized formulation for fluid flows with immersed moving solids using overlapping

and non-conforming meshes”, In preparation.
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2. Chapter 3:

”FSI simulations using non-conforming mesh methods by the Ghost Penalty

stabilization technique with orthogonal projections defining the fluid as

incompressible and the solid as non-linear”, In preparation.

3. Chapter 4:

”Finite Element Simulation of the Triplaris Americana seed flight using a Non-

Conforming and Overlapping Meshes approach for the fluid-structure interaction”,

In preparation.
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2 Stabilized formulation for fluid flows

with immersed moving solids using

overlapping and non-conforming meshes

Abstract

The fluid flow can be solved using a fixed domain, as long as it is not required

to simulate the effect of an immersed solid having displacements. This chapter

investigates a computational methodology that can solve this fluid and structure

problem through the use of two separated and overlapping domains. It is based on

the Non-Conforming Meshes Method, that leaves fixed the mesh for the fluid on

the background but allows high displacements of an overlapped mesh for the solid

on the foreground. In the case of the fluid flow solver, a stabilized Finite Element

formulation of the incompressible Navier-Stokes equations is used, which comes

from the Variational Multi-Scale paradigm. Since the moving solid boundaries

do not necessarily coincide with the edges of the background elements, Dirichlet

boundary conditions over the fluid velocity are weakly prescribed by employing

the Nitsche’s method. Local instabilities on the sharp interface are controlled with

a Ghost Penalty method that includes the orthogonal projections to the Finite

Element space of the interface jumps. The main contribution of the present study is

the definition of the algorithmic parameters involved in the cut element stabilization.

For the proposed numerical schemes optimal convergence results are obtained for the

velocity and pressure variables. The method is applied in two-dimensional dynamic

problems involving stationary and moving immersed solids, demonstrating the

ability of the proposed computational strategy to simulate real engineering problems.

Highlights

• An overlapping domain method for solving FSI problems is applied.

• The Variational Multi-Scale method is used to solve the incompressible flow.

• The weak imposition of no-slip conditions is applied over the solid interface.

• A Ghost Penalty method with Orthogonal Projections controls cutting

instabilities.

• Closing movements for different types of gates are successfully tested.

2.1 Introduction

The vast majority of fluid flow simulations are performed using a fixed computational

domain. Solving fluid flows inside a varying domain is also feasible, but the complexity of

the computational methods increases. For instance, flow simulations including moving

obstacles (rigid or flexible) imply some additional internal moving boundaries of the fluid

domain. If the obstacle’s rigidity is high, the deformation of the obstacle can be neglected

and the problem reduces entirely to reproducing the fluid flow with a predefined motion

of some internal boundaries. Lots of practical applications can be represented in that way:
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for example, the opening or closing of a valve in a channel [97], a bi-leaflet mechanical

heart valve [98, 99], the aerodynamic phenomena of a car overtaking another car [100, 101],

or the rotation of propellers [102]. Another is the case of the flow affecting the motion

of the rigid obstacle —like in the free-falling of a sphere [103]—, for which the coupling

between the tractions of the fluid and the solid must be accounted for in the displacement

calculation of the obstacle. Yet, the mechanical flow problem with moving boundaries is

hard to be solved and requires the development of additional numerical methods than the

approximation of the incompressible fluid flow equations.

In any case, several issues arise when trying to numerically approximate the incompressible

Navier-Stokes equations inside a changing fluid domain. The Finite Element Method

(FEM) has the capacity to solve both fluid and solid problems. One of the classic

formulations is the Galerkin approximation, which accurately approximates solutions of

the heat conduction and elasticity (or generalized Poisson) problems: analytic solutions

even exist and can be used to evaluate the accuracy of the numerical method. However, for

complex problems, like the fluid flow equations, the stability of the Galerkin approximation

may be affected. For example, for convection-dominated problems, instabilities may appear.

The inf−sup compatibility condition between the interpolation spaces of the different

variables of the problem also triggers instabilities for the Galerkin approximation. To

overcome these issues, stabilization methods were proposed at the end of the last century:

those include, the Streamline-Upwind/Petrov-Galerkin (SUPG) method [104], the Galerkin

Least Squares (GLS) method [105], and the Variational Multi-Scale (VMS) method [27].

Since the VMS constitutes a mathematical framework itself, several ways can be chosen

to construct the stabilized formulation. Essentially, by including the Orthogonal Sub-Grid

Scales (OSGS) [28], the Dynamic Sub-Grid Scales (DSGS) [106], and the Non-linear

Sub-Grid Scales (NSGS) [107, 108].

In the discrete version of the fluid domain, one can use a mesh for the fluid that deforms

gradually as the boundaries displace, but which can originate ill-shaped elements for large

boundary displacements. It is the so-called Conforming Mesh Method (CMM), which

typically implies to regenerate the deformed mesh with the consequent increase of the

simulation cost and the need of transferring the information from the old to the new

mesh. Also, inducing diffusion errors during the transfer operation [1]. Another approach

is to use two separated and overlapping meshes for the fluid and solid domains: a static

background mesh for the fluid and a dynamic at the foreground for the solid obstacle.

That is the so-called Non-Conforming Mesh Method (NCMM) [1], for which the internal

boundary can be described as a cut interface of the elements at the background mesh. In

the NCMM approach, there is no need to deform any mesh and, therefore, there is no

re-meshing procedure, not even for large displacements of the immersed solid obstacle [25].

Hence, NCMM is suitable for solving problems that involve large relative displacements

between the solid and the bulk fluid flow, but also when great changes in the fluid domain

topology are present, such as closing throats in a flow. Nevertheless, the tracking of the

cut interface is not easy and great effort has to be made to numerically represent the

moving boundary.
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Numerical techniques for defining the cut interface are usually divided into diffused

[34, 36, 109, 35] and sharp interface methods [3, 29]. In the diffused interface methods,

the interface is represented by adding source terms to the Navier-Stokes formulation. In

contrast, the main idea of the sharp interface methods is to cut the fluid elements at

the interface by using very thin edges which can be tracked, for example, by the Volume

of Fluid (VOF), Level-Set function [95], or an overlapping mesh [49, 96, 19]. Other

approaches, like the Cut-Cell Method (CCM) [41, 110], Immersed Interface Method (IIM)

[45], eXtended Finite Element Method (XFEM) [42, 43, 44], Finite Cell Method (FCM)

[56, 111], and CutFEM method [46, 47, 50, 48], have also been developed to represent

the continuity between the fluid and the solid. Some important numerical ingredients

are necessary to make sharp interface methods viable. One is the strategy for imposing

Dirichlet boundary conditions at the moving interface, like the non-slip condition over the

obstacle. The second is the algorithmic tracking of the elements belonging to the interface.

The third is the cut cell stabilization that overcomes the lack of numerical information

inside bad-cut elements.

Certainly, Dirichlet boundary conditions can not be imposed over the element nodes

since the moving interface does not coincide exactly with the elements of the fluid mesh.

Yet, these conditions can be imposed weakly by adding new terms to the discrete fluid

flow formulation [3]. The main idea of the weak imposition is to penalize the numerical

solution, making it identical to the Dirichlet value. The method of Lagrange multipliers is

one classic technique to weakly impose boundary conditions at the immersed interface.

However, it increases the Degrees Of Freedom (DOF) of the discrete linear system [50, 58]

and restricts the interpolation spaces of the Lagrange multipliers to the fulfillment of an

inf-sup compatibility condition. More recently, the Nitsche’s method has been widely

used for weakly imposing boundary conditions. It has been implemented along with

the CutFEM method [46, 49], the XFEM [59], and the FCM [56] to solve the Poisson,

Stokes, Navier-Stokes, and Fluid Structure Interaction (FSI) problems [60, 50]. Several

Nitsche-based techniques have been proposed to avoid user-defined parameters. Those

methods have been suitable for problems with complex linear systems because those

reduce the number of parameters to be included. One of these methods is the penalty-free

Nitsche method, which is a non-symmetric modification of the original Nitsche method.

That method has suboptimal convergence in L2−norm error and optimal convergence

in H1−norm error [61, 56, 47]. Another is the Linked Lagrange method in [62], which

arises from the three-field fluid flow equations and demonstrates optimal convergence in

L2−norm error for diffusive problems using linear elements.

The second ingredient is the tracking of the elements at the interface and the contribution

of those elements to the assembly of the discrete linear system of equations. A common

strategy for calculating the numerical integration of the elements cut by the interface

is the sub-triangulation (tessellation) technique that divides the elements and redefines

quadrature points to only integrate the part that belongs to the fluid domain [42, 51].

This numerical sub-integration keeps the same DOF of the original mesh, and therefore,

preserves the original linear system size [46]. The use of local refinement schemes near

the interface has been used in [112] as an alternative to the sub-integration schemes. In
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the refinement strategy, only those elements in the area of influence of the interface are

subdivided recursively until a spatial tolerance is reached: the elements belonging to

the fluid domain are accounted for, while those covered by the solid are neglected. The

refinement algorithms make use either of hierarchical [56, 53] or tree-based [54] methods,

which add a few new DOF to the original linear system. However, some drawbacks are

related to the refinement technology development and the linear system update at each

refinement step. Besides the interpolation order, the use of Legendre, Lagrange, B-splines,

or Nurbs interpolation polynomials have been identified to affect the accuracy of the fluid

element integration [56, 57, 50].

The third ingredient is the stabilization technique for bad cut elements at the interface.

Indeed, lack of information associated with highly-covered elements affects the assembled

linear system making it ill-conditioned and triggering instabilities in the discrete solution.

That numerical issue can be explained by the small support given by the fluid part of

the cut element, which increases the stiffness matrix condition. One strategy to overcome

this issue is Fictitious Domain Stiffness method, for which a penalization is included in

the formulation only for elements in the interface. It is based on the idea of increasing

the contribution of the basis functions of bad cut elements. Similarly, other methods

exclude the contribution of bad-cut elements to the linear system assembly or replace

the local support by using composed functions. Preconditioners have also been used

for stabilizing the discrete formulation. Those are designed to act over the assembled

system matrix, such that the method works independently of the mesh size or the shape

of the cut elements [55, 63]. On the other hand, it has also been demonstrated in [61]

that the penalty parameters of the Nitsche method have stabilization properties for the

bad cut elements. A recent approach is the Ghost Penalty (GP) method [64, 46], which

increases the weight of the basis functions of bad cut elements by adding extra terms to

the variational formulation. Currently, the Ghost Penalty with Orthogonal Projections to

the finite space (GPOP) proposed in [65] for Stokes problems has demonstrated improved

performance for prescribed Neumann conditions [24] at the boundaries of the fluid domain.

In the present study, some applied engineering problems are simulated for which non-

conforming mesh methods become mandatory. In this sense, two separated domains are

used: one at the background for the FEM fluid-flow solver, and another on the foreground

that represents the moving solid obstacle. Additionally, a stabilized formulation for the

FEM approximation of the Navier-Stokes equations in the fluid domain is achieved by

means of the VMS framework. One fundamental contribution of the present methodology

is the evaluation of the Ghost penalty stabilization technique of cut elements including the

Orthogonal Projection to the finite element space for Navier-Stokes problems. Specifically,

the evaluation of that technique when the Dirichlet conditions are imposed weakly through

the Nitsche’s method with a definition of the algorithmic parameters based on the mesh

size.

The remaining parts of this chapter are organized as follows. In Section 2.2, we recall

the variational formulation of the fluid flow problem. In that section, we detail the VMS

stabilized formulation and the numerical techniques that we implement to deal with
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the moving interface. Next, some numerical examples are demonstrated in Section 3.4,

including the solution of well-known benchmark problems and their extensions to real

engineering problems of valves with high displacements. Finally, some conclusions

regarding the achievements of the proposed schemes close the chapter at Section 2.4.

2.2 Finite Element Method approximation of the

flow problem

In this section, we recall the complete numerical approximation for solving the fluid flow

problem with the moving immersed solid obstacles. First, the Galerkin approximation

and the Variational Multi-Scale stabilized formulation of the incompressible Navier-Stokes

equations are presented. Then, the immersed interface tracking strategy using both a Level-

Set equation and overlapping meshes is described. Also, we detail the sub-triangulation

technique that is adopted to integrate the cut elements at the interface. Next, the weak

imposition of boundary conditions given by the Penalty and Nitsche methods and the

stabilization methods for the cuts based on the Ghost Penalty are described. Finally,

the implicit time integration scheme and the linearization scheme for the non-linear flow

equations are defined.

2.2.1 Strong form of the flow problem

The fluid and solid domains are denoted, respectively, as Ωf ⊂ Rd and Ωs ⊂ Rd, being

d = 2 or 3 the number of space dimensions and (0, T ) the time interval. The overall

domain Ω is composed of Ω = Ωs∪Ωf . The flow problem is defined in the fluid domain Ωf ,

with its boundary denoted as ∂Ωf = Γ and the unit outward normal to the boundary Γ

denoted as n. Here Γ is defined as Γ = Γd
⋃

Γn, where Γd is the boundary where Dirichlet

boundary conditions are prescribed and Γn is the boundary where Neumann boundary

are applied.

The strong form of the incompressible Navier-Stokes equation is such that, given the

prescribed velocity ud in the Dirichlet boundary Γd and the prescribed traction tn in the

Neumann boundary Γn, find the velocity u : Ωf −→ Rd and the pressure p : Ωf −→ Rd

satisfying

ρ (∂tu+ u · ∇u)− µ∆u+∇p = f in Ωf , t ∈ (0, T ),

∇ · u = 0 in Ωf , t ∈ (0, T ),

u = ud on Γd, t ∈ (0, T ),

σ · n = tn on Γn, t ∈ (0, T ),

u = u0 in Ωf , t = 0,

(2.1)

where, ρ is the density of the fluid, µ is the dynamic viscosity, and f is the body force. In

the case of the viscous fluid, the Cauchy stress tensor is calculated as σ = 2µ∇su−pI and
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there exists a non-slip boundary condition ud = 0 over the immersed solid ∂Ωs contour

that corresponds, in part, to Γd.

For the sake of conciseness, the first two equations in (4.1) can be written in vector form

as

M∂tU + L (a;U ) =F in Ωf , t ∈ (0, T ) , (2.2)

where U = [u, p]> is the vector of unknowns, F = [f , 0]> is the vector of forces, and

L (a;U) is the linearized vector form of the differential operator that is defined as

L (a;U) :=

[
ρ (a · ∇u)− µ4u+∇p

∇ · u

]
, (2.3)

for which the first argument a is the advection velocity field. M is the mass matrix

defined as:

M =

[
ρI 0

0 0

]
(2.4)

2.2.2 Weak form of the flow problem

Let L2(Ωf) be the space of square-integrable functions in the domain Ωf , and Hm(Ωf)

the space of functions whose derivatives are of order up to m ≥ 0 and that belong to

L2(Ωf). The space H1
0 (Ωf) is the space of functions in H1(Ωf) that vanish on Γ. The

L2−inner product in Ωf is denoted by (·, ·) and its norm by ‖·‖.

Let us consider the space W0 =
(
H1

0 (Ωf )
)d

as the space where we may seek the velocity

for each fixed time t and Q ⊂ L2(Ωf)/R as the space where we seek the pressure for

each fixed time t. The weak form of (2.2) is to find U = [u, p]> ∈W0 ×Q, such that

appropriate initial and boundary conditions are satisfied, and

(M∂tU ,V ) +B(U ;U ,V ) = L(V ), (2.5)

for all weighting functions V = [v, q]> ∈W0 ×Q.

In the previous relation, B(U ;U ,V ) and L(V ) are bilinear and linear forms, respectively,

that for the incompressible Navier-Stokes equations are defined as

B
(
Û ;U ,V

)
=ρ

∫
Ωf

(û · ∇u) · v dΩf + 2µ

∫
Ωf
D(u) : D(v) dΩf

−
∫

Ωf
p∇ · v dΩf +

∫
Ωf
q∇ · u dΩf ,

and

L (V ) =

∫
Ωf
f · v dΩf +

∫
Γ

tn · v dΓ,
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where D(·) :=
1

2

(
∇(·) + (∇(·)>

)
is the symmetric gradient operator, and Û = (û, p)>

are the non-linear components in the equations.

2.2.3 Galerkin approximation

Let us define a finite element partition T f
h = {K} of the domain Ωf composed by non-

overlapping elements K with diameter hK . The diameter of the element partition defined

by h = max{hK |K ∈ T f
h}. We construct conforming Finite Element spaces Wh,0 ⊂W0

and Qh ⊂ Q for the velocity and the pressure, respectively. These finite spaces are

constructed using piece-wise polynomials of order p (not to be confused with pressure)

such that those spaces tend to the continuous spaces in the case of h→ 0 or p→∞.

The Galerkin approximation of the weak problem (2.5) can be stated as: find Uh =

[uh, ph]
> ∈ Wh,0 × Qh, satisfying the initial and boundary conditions, such that

(M∂tUh,V h) + B(Uh;Uh,V h) = L(V h), for all weighting functions V h = [vh, qh]
> ∈

Wh,0 × Qh. The previous approximation of the Navier-Stokes equations suffers from

instability problems for convection-dominant flows or when the interpolation spaces used

for pressure and velocity variables do not satisfy the inf-sup condition.

2.2.4 Variational Multi-Scale stabilized element formulation

Some numerical techniques —called stabilized formulations— are used to overcome the

instability problems described before [113]. The general idea of stabilization methods is

to add some mesh dependent terms into the Galerkin approximation that are intended

not to affect convergence and to stabilize the problem. In the sense of

(M∂tUh,V h) +B(Uh;Uh,V h) + S (Uh;Uh,V h) =L(V h),

∀ V h ∈Wh,0 ×Qh,
(2.6)

where S(Uh;Uh,V h) is the added stabilization term.

A general approach to derive stabilized formulations is the so-called Variational Multi-

Scale (VMS) framework in [4], which consists of dividing the space of the continuous

solution into a finite space and an infinite one (called sub-scales): X = X h ⊕ X̃ , where

X = W ×Q is the continuous space, X h = Wh ×Qh is the finite element space, and

X̃ = W̃ × Q̃ is any space to complete X h in X . Indeed, X 0 = X h,0 ⊕ X̃ 0 with X̃ 0 any

complement of X h,0 in X 0.

When the split of the spaces is applied to the weak form of the flow problem (2.5), and

accordingly U = Uh + Ũ , being Uh ∈ X h,0 and Ũ ∈ X̃ 0, one obtain two equivalent
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sub-problems:

(M∂tUh,V h) +
(
M∂tŨ ,V h

)
+B(U ;Uh,V h) +B(U ; Ũ ,V h) = L(V h)

∀ V h ∈ X h,0,
(2.7)(

M∂tUh, Ṽ
)

+
(
M∂tŨ , Ṽ

)
+B(U ;Uh, Ṽ ) +B(U ; Ũ , Ṽ ) = L(Ṽ )

∀ Ṽ ∈ X̃ 0.
(2.8)

2.2.4.1 Finite element scale

Integrating by parts equation (2.7), and defining subscales zero on element boundaries

one obtains

(M∂tUh,V h) +
(
M∂tŨ ,V h

)
+B(U ;Uh,V h) +

∑
K∈T fh

(
L∗(a;V h), Ũ

)
K

= L(V h)

∀ V h ∈ X h,0,

(2.9)

where L∗(·) is the adjoint operator of L(·), that in the case of the incompressible Navier-

Stokes equations is given by

L∗(a;V h) =

[
−ρ (a · ∇vh)− µ4vh −∇qh

∇ · vh

]
.

2.2.4.2 Sub-scale

We can also subvert the integration by parts for the diffusive terms, such that (2.8) can

be written as(
M∂tŨ + L

(
U ; Ũ

)
, Ṽ
)

=
(
F −M∂tUh −L (a,Uh) , Ṽ

)
, ∀ Ṽ ∈ X̃ 0, (2.10)

At this point, it becomes necessary to approximate the application of the non-linear

differential operator into the subscales (at the left hand side of the previous relation) in

the sense of

L
(
U , Ũ

)
≈ τ−1 (U) Ũ ,

such that the application is modeled by a matrix of stabilization parameters τ−1 (U)

multiplying the subscales. Also, expression (2.10) can be written in terms of the finite

residual Rh = F −M∂tUh −L(a;Uh) as(
M∂tŨ + τ−1 (U) Ũ , Ṽ

)
=
(
Rh, Ṽ

)
, ∀ Ṽ ∈ X̃ 0.
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Note that all the Left Hand Side (LHS) terms of the previous variational form already

belong to the space of subscales X̃ 0. Hence, the equation for the subscales can be formally

reduced to the following ordinary differential equation:

M∂tŨ + τ−1 (U) Ũ =P̃ (Rh) , (2.11)

where P̃ (Rh) stands for the L2−projection of the finite residual into the space of sub-scales.

We call the subscales quasistatic because the temporal derivatives of subscales in (2.9)

and (2.11) are neglected, and linear, as the subscales are not included in the non-linear

terms of both the finite scale and sub-scale equations. This means that at all non-linear

instances U is replaced by Uh.

In the present chapter we use the definitions from [28] to construct the matrix of algorithmic

parameters. This is, we use a diagonal matrix with each term calculated as

τ−1 (Uh) =diag
(
τ−1

1 (uh) I, τ
−1
2 (uh)

)
where τ1 is the algorithmic parameter associated with the momentum equation and τ2 is

the one for the conservation equation. These can be defined within each element as:

τ1 (uh) =

(
C1µ

h2
+
C2ρ|uh|∞

h

)−1

,

τ2 (uh) = C3µ+ C4ρ|uh|∞h,
(2.12)

where C1 = 4.0, C2 = 2.0, C3 = 1.0 and C4 = 1.0 are algorithmic parameters independent

of the element size h and the velocity, and |uh|∞ is the L∞−norm of uh within each

element.

At this point, we can use several different approaches that will depend on the definition

of the space of the subscales. Some of those definitions include the transient description

of the subscales [106], the inclusion of the subscales in the non-linear terms [108], and

the term-by-term definition of the subscales [114] which leads to a non-residual approach.

Nevertheless, we restrain this work to the application of the two most studied subscales

definitions. The first one is the Algebraic Sub-Grid Scales (ASGS) approach that considers

the space of the sub-scales as the space of the finite residual, and therefore P̃ (Rh) = Rh.

With this in hand, the term of the LHS on equation (2.9) involving the subscales becomes

S
(
Ûh;Uh,V h

)
=
∑
K∈T h

(
L∗(ûh;V h), τ (Ûh) (F −M∂tUh −L(ûh;Uh))

)
K (2.13)

The second approach is the so-called Orthogonal Sub-Grid Scales (OSGS), which considers

that the space of sub-scales is orthogonal to the finite space, and therefore the projection

is P̃ (Rh) = P⊥h (Rh) = (I − P h) (Rh), being P h the L2−projection onto the finite space.

Hence, the projection of the residual can be expressed as P̃ (Rh) = Rh − P h(Rh), and

the term of the LHS of equation (2.9) involving the subscales becomes the following

stabilization term:
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S
(
Ûh;Uh,V h

)
=
∑
K∈T h

(
L∗(ûh;V h), τ (Ûh) (F −M∂tUh −L(ûh;Uh))

)
K

−
∑
K∈T h

(
L∗(ûh;V h), τ (Ûh)P h (Rh)

)
K
.

(2.14)

Note that the first term of the Right Hand Side (RHS) of the previous equation is equal

to the RHS of (2.13). In order to calculate the L2−projection of the residual onto the

finite space P h(Rh) in (2.14), one need to solve the following variational problem:∫
Ω

V h · P h(Rh) dΩ =

∫
Ω

V h · (F −M∂tUh −L(uh;Uh)) dΩ ∀ V h ∈ X h,0.

It is worth mentioning that in this work equal linear interpolation spaces are used (for

velocity and pressure) because the VMS approach guarantees the inf − sup condition.

However, high order definitions could be used, such as those of [115].

2.2.5 Fluid-Structure tracking

An important ingredient that must be accounted for in the numerical formulation is the

geometric tracking of the immersed boundary Γd = ∂Ωs. As mentioned before, we use the

sharp interface approach to track the interface that defines the immersed boundary. To

track the location of the interface, we use both the Level-Set method and overlapping

meshes. The Level-Set method is used for simple geometries: this method defines a

distance function to classify the elements that belong to the fluid or the immersed body.

Denoting the Level-Set function as ζ(x, t) ∈ R, x ∈ Ω, t ∈ (0, T ), it can be defined as

ζ (x, t) =

{
+ minxi∈Γd‖x− xi‖, x ∈ Ωf ,

−minxi∈Γd‖x− xi‖, x ∈ Ωs.

Hence, one can trace the interface as the location where it occurs the isovalue ζ(x, t) = 0.

That is, the immersed solid surface can be located from Γd = {x : ζ (x, t) = 0}. Also,

the mesh of active fluid elements can be calculated using the Level-Set function as

T f
h = {K|K ∈ ζ (x, t) < 0}.

Instead, overlapping meshes are used for more complex geometries: it considers two

meshes, one at the background that is precisely T b
h, and another one at the foreground

T s
h that represents the immersed solid body. The mesh of active fluid elements can be

calculated as T f
h = {K|K ∈ T b

h ∩ Ωf}.

Note that, with both methods some elements of the fluid mesh may be partially covered by

the fluid. The patch that extends over the elements cut by Γd and the first fluid neighbor

elements is T c
h ⊂ T

f
h. Finally, there is also the set of elements that must be neglected in

the analysis, which are the fully covered elements by the immersed solid T o
h = T b

h \ T
f
h.
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In those special cases, the fluid flow needs not to be solved, but the inactive DOF must

be carefully neglected in the assembly process.

Once the interface is located, the elements cut by the interface must be carefully treated.

We care for integrating only the region of cut elements that belong to the fluid domain. One

robust strategy for integrating the elements cut by the interface is the sub-triangulation

technique that divides the cut element. We use this technique to perform the numerical

integration of the part of the cut element that belongs to the fluid domain. As it is shown

in Figure 2.1, this method redefines the original integration points of the element by

relocating their positions. In this figure, the black dashed line represents the interface and

the circles represent the new integration points, where only the points that fall within the

fluid domain will be considered. The numerical sub-integration keeps the same number of

DOF’s of the original mesh [51], and therefore, the assembled matrix size is also preserved.

Figure 2.1: Integration splitting of the cut elements

Although the sub-triangulation approach is reliable, some limitations inherent to the

method are the following. First, the cut in the covered element is geometrically a straight

line between the intersecting points at the edges. The definition of the cut is also restricted

to at least two points located in two different edges of the element, such that an interface

can not enter or exit through the same edge. One example of this exceptional case is an

incoming corner through only one edge: the case of a rectangle moving upwards through

a triangular mesh is illustrated in Figure 2.2. This also means that a detail definition of

the shape of the interface inside an element is neglected (with the corresponding loss of

information and accuracy).

Figure 2.2: Advance of the interface at different times

As mentioned before, there are other integration techniques [116] that overcome these

issues by recursively subdividing the elements and using higher order element functions to

increase the accuracy of the interface. However, we believe that those methods can be

implemented in the proposed methodology as a future work. In the numerical examples

of Section 3.4, the interface dispersion can be mitigated by using small time steps and

mesh sizes. Also, by using soft interfaces to avoid sharp angles.
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2.2.6 Weak imposition of boundary conditions

Since the motivation of the present work is to represent the action of immersed objects in

the fluid domain, some specialized numerical methods for imposing boundary conditions

in the NCMM strategy are used. These are motivated since the no-slip condition of

the immersed solid in the fluid flow can not be prescribed strongly at the nodes of the

fluid element. Hence, the Dirichlet type boundary conditions are accounted in a weak

way similarly as a Neumann condition at the interface boundary. Specifically, in this

subsection we detail two methods for the weak imposition of Dirichlet boundary conditions

into the flow equations: one is the Penalty method [117], which is one of the simplest

approximations, and the other is the Nitsche method [118], that has been widely used

and gives better results than the Penalty method.

Regarding the Penalty method, it seeks to weakly impose the velocity boundary conditions

ud by adding the term W (ud;Uh,V h) to the LHS of (2.6). The classical definition of this

method is

W (ud;Uh,V h) =
α

h

∫
Γd

(uh − ud) · vh dΓ−
∫

Γd

(2µn · ∇suh − phn) · vh dΓ, (2.15)

where α is a penalty parameter defined to be α = s1µ+ s2ρh ‖uh‖L∞(K) , with s1 and s2

algorithmic parameters and where α depends on the geometry of the mesh, especially in

the geometry of the cut elements. It is precisely this mesh dependent parameters that

affect the stability of the method [62]. However, the value of the parameters are not

known a priori, and they are user-defined values to decide the degree of enforcement of

the boundary condition, and also to ensure stability. The natural choice of s1 and s2

will be to take them as high as possible to be on the safe side of the stability; however,

there could be a compromise between accuracy at the boundary and ill-conditioning of

the system.

The first term at the RHS of the previous equation is the penalization term for the weak

imposition of the Dirichlet boundary condition that vanishes for the true solution (when

u = ud at the boundary), while the second comes form the integration by parts of the

weak form of the fluid equation.

The second approach is the Nitsche method, which includes a term that guarantees

the symmetry of equation (2.15) but also vanishes at the boundary. Assuming that

w(u,v) =
∫

Γ
u · v dΓ, the symmetrization consist in defining a new term that meets

w(v,u)− w(u,v) = 0. Certainly, the Nitsche weak imposition leads to the form

W (ud;Uh,V h) =
α

h

∫
Γd

(uh − ud) · vh dΓ−
∫

Γd

(2µn · ∇suh − phn) · vh dΓ

−
∫

Γd

(2µn · ∇svh − qhn) · (uh − ud) dΓ,

(2.16)

by adding these terms to the LHS of equation (2.6). Indeed, the last term at the RHS of

the previous expression is a symmetry preserving term exclusive to the Nitsche method.
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2.2.7 Ghost Penalty stabilization using orthogonal projections

to the FE space

In highly convective flows, badly cut elements at the interface need to be treated to avoid

instabilities. These issues are caused by the small support given by the convection terms

in the stiffness matrix, and therefore, the lack of control may lead to oscillations in the

solution near the interface. To this end, stabilization methods for the cut cells are related

to the correct transfer of physical information between the fluid and the boundary.

One stabilization method for the cut cell is the so-called Ghost Penalty (GP) method

[64], which has been designed to improve the condition number of the stiffness matrix by

adding convection to the bad cut elements. In the case of the incompressible Navier-Stokes

equations, the GP method penalizes the jumps of the unknowns over inter-element faces

by adding a term of the form SG (Uh;Uh,V h) to the LHS of equation (2.6). Let us denote

Fg the set of faces (or edges) cut by the interface and those belonging to the first internal

layer of fluid connected to them. We use J·K to denote the jump operator over the edge f .

Let us also use the short-hand notation ∂n for the normal derivative (n · ∇). The classical

GP method [119] introduces the following terms to the fluid flow FE formulation,

SG

(
Ûh;Uh;V h

)
=
∑
f∈Fg

αβ 〈J(ûh · ∇)∂nuhK , J(ûh · ∇)∂nvhK〉f

+
∑
f∈Fg

αu 〈J∇ · ∂nuhK , J∇ · ∂nvhK〉f

+
∑
f∈Fg

αp 〈J∂nphK , J∂nqhK〉f

+
∑
f∈Fg

αν 〈J∂nuhK , J∂nvhK〉f ,

(2.17)

which are GP operators for the streamline derivative, fluid tractions, pressure and velocity,

respectively. Also, αβ, αu, αp and αν are penalty parameters which are functions of hK
and the physical problem. The main idea of the GP method in equation (2.17) is to

reduce the jump of gradients between elements at the interface of the immersed boundary.

More recently, a method based on the orthogonal projection to the finite element space

of the unknowns effectively controls the jumps (or instabilities). This method, proposed

originally in [65], can be related directly to the OSGS Variational Multiscale stabilized

formulation. Hence, we apply the Ghost Penalty with Orthogonal Projection (GPOP)

stabilization method into the LHS of the fluid flow finite formulation (2.6):

SG

(
Ûh;Uh,V h

)
=
∑

K∈T ch
σG
[
γ1 (ûh)

〈
∇vh,P⊥h (∇uh)

〉
K

]
+
∑

K∈T ch
σG
[
γ2 (ûh)

〈
∇qh,P⊥h (∇ph − ρf)

〉
K

]
,

(2.18)

where σG is a penalty parameter defined by the user, and γ1 (uh), γ2 (uh) are algorithmic
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constants that depend on the matrix of stabilization parameters τ (uh):

γ1 (uh) = suh
2τ−1

1 (uh) ,

γ2 (uh) = spτ1 (uh) .

Here su and sp are algorithmic parameters independent of the element size h. The

orthogonal projections P⊥h in the cut elements are defined as:

P⊥h (∇uh) = ∇uh − P h(∇uh),
P⊥h (∇ph − ρf) = ∇ph − ρf − P h(∇ph − ρf).

Following the work in [119], we further penalize the weak imposition and ghost penalty

terms using αβ−1 and γ1β
−1 instead of α and γ1 alone, where β is calculated as the fluid’s

fraction at each element. This fraction can be calculated as the ratio between the fluid’s

area and the total element area in the two-dimensional case, or by using the volumes

in the three-dimensional case. The modified parameters have demonstrated to improve

the control over the boundary cut elements, as it will be presented in the numerical

experiments.

2.2.8 Time integration

Let us now comment on how to implement the time discretization for the fluid problem.

The time interval (0, T ) is divided in a sequence of discrete time steps 0 = t0 < t1 < ... <

tN = T , with a constant time-step, δt > 0, defining tn+1 = tn + δt for n = 0, 1, 2, ..., N .

In this work, an implicit time integration scheme to integrate the time derivative of

Eq. (2.6) is used. In the case of the first-order temporal derivative of the fluid flow

problem, the Backward Differentiation Formula (BDF) scheme is applied. For the time

dependent function y(t), the BDF approximation of order k = 1, 2, .., is given by δky
n+1/δt,

with

δky
n+1

δt
=

1

δt

1

γk

(
yn+1 −

k−1∑
i=0

φiky
n−1

)
,

where γk and φik are numerical parameters.

Hence, the fully discretized fluid flow problem given the initial conditions U 0, and

supposing that the subscales at the initial time step are identically zero, for n = 1, 2, .., is

to find Un+1
h ∈ X h,0, such that:(

δkU
n+1
h

δt
,V h

)
+B

(
Un+1
h ;Un+1

h ,V h

)
+ S

(
Un+1
h ;Un+1

h ,V h

)
+W (ud;U

n+1
h ,V h) + SG

(
Un+1
h ;Un+1

h ,V h

)
= L (V h) , (2.19)

for all V h ∈ X h,0. The previous equation defines the spatial and temporal VMS
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approximation of the fluid flow equations. A second-order BDF integration scheme

is implemented, which is:

δ2U
n+1
h

δt
=

1

δt

3

2

(
Un+1
h − 4

3
Un
h +

1

3
Un−1
h

)
.

For this case, two successive starting values are required when n = 1 to solve Un+1: the

initial condition U 0 and U 1
h. Hence, at the first time step we calculate U 1

h with the first

order BDF approximation, given by

δ1U
1
h

δt
=
U 1
h −U 0

h

δt
.

2.2.9 Linearization strategy

The implicit scheme brings the difficulty of solving the non-linearities of the discrete

fluid problem. To treat this issue, a linearization strategy that is based on Picard’s

method is implemented. At each step n+ 1, given Un+1,i
h and Ũ

n+1,i
, the finite element

unknowns is used to evaluate Un+1,i+1
h by considering Un+1,i

h in all non-linear terms of

Eq. (3.21), being i an iteration counter. The loop is iterated until the L2−norm of the

difference between consecutive finite element solutions is below a given convergence criteria,

|φn+1,i+1
h − φn+1,i

h | < ε|φn+1,i+1
h |, where φh stands for any finite element unknown and ε is

the tolerance. When the OSGS or the GPOP methods are accounted for, the orthogonal

projection of the finite quantity φn+1
h is approximated at each Picard’s iteration i+ 1 as

P⊥
(
φn+1,i+1
h

)
≈ φn+1,i+1

h − P h

(
φn+1,i
h

)
.

This is, the L2-projection onto the finite element space P h is evaluated with the finite

quantity at the end of the previous iteration. In our implementation, the finite element

projection is computed using a consistent mass matrix.

2.3 Numerical examples

In this section, numerical results for several flow problems are presented, where the weak

imposition of Dirichlet no-slip conditions on the boundary of an immersed object in a

fluid’s domain is mandatory. The first set of problems are intended to test the Nitsche

and Ghost Penalty methods in the VMS stabilized finite element formulation of the

incompressible Navier-Stokes equations. In this regard, the manufactured solution inside

a two-dimensional squared domain is used to test the numerical error of the methods and

to evaluate the definition of the algorithmic parameters in the formulation. The second

case is the well-known flow past an infinitely long cylinder at low Reynolds number. This

two-dimensional case is intended to test the weak imposition of Dirichlet conditions over

a dynamic flow problem.



27

Next, we aim to solve more complex problems that exhibit a strong interaction between

the immersed solid with a predefined motion and the fluid flow. In that final set of

problems, we evaluate a rising gate in a pipe flow, a closing throat in a pipe flow (inlet

hole, or Venturi tube), and the rotating flat body in pipe flow. These last three examples

are planned to demonstrate the ability of the proposed methodology in the simulation

of applied engineering problems. In all cases, we use finite element unstructured meshes

composed by linear triangles.

Some preliminary numerical examples are solved using the OSGS global stabilization

method and the Penalty method (2.15) for the weak imposition of essential conditions.

In the case of the OSGS stabilization method, it demonstrates a slightly better accuracy

than the ASGS. However its non-linear convergence is reduced and the computational

effort is larger. Also, some tests with the Penalty method for the weak imposition of

boundary conditions demonstrate similar results to the Nitsche method but its converge

worsens when large penalty parameters are used. Thus, we use the ASGS and Nitsche

methods in the following numerical examples.

2.3.1 Manufactured solution

Manufactured solutions [120] are used in this work in order to test the accuracy of the

discrete formulations. The main idea of the method of manufactured solutions is to use

the differential operator (2.3) applied to an analytical (known) function, and to use this

result as a discrete source term. The discrete problem aims to solve the forced setting

that implies using the calculated source term. Hence, the obtained numerical solution

can be compared against the analytic manufactured solution, and the accuracy of the

proposed numerical scheme can be quantified.

In this first numerical example, we solve a manufactured solution flow inside a square

domain Ω = [0, 1] m ×[0, 1] m. The analytical functions chosen as the exact solution for

velocity uex and pressure pex are, respectively,

uex(x) =

[
2x2

1x2(x1 − 1)2(x2 − 1)(2x2 − 1)

−2x2
2x1(x1 − 1)(x2 − 1)2(2x1 − 1)

]
m/s, x ∈ Ω

p(x) = µ sin(2πx1) sin(2πx2) kg/(m·s2), x ∈ Ω

which satisfy the divergence free condition ∇·uex = 0. A dynamic viscosity µ = 0.01

kg/(m·s) and a density ρ = 1.0 kg/m3 are set in all cases. The contours of the exact

velocity magnitude and the exact pressure are shown in Figure 2.3.

The case of a submerged circle of radius r = 0.25 m inside the square domain Ω is

evaluated first. The external boundaries conditions of the fluid’s domain Γ1,2,3,4 are

prescribed in a strong form by calculating the exact velocity at those locations. Instead,

the no-slip condition over the interface boundary Γ5 is imposed weakly. Hence, the
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(a) (b)

Figure 2.3: Contour plot of the analytic manufactured solution of (a) velocity magnitude
and (b) pressure.
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Figure 2.4: Manufactured solution problem setting. An scheme of the continuous
problem is shown at the left and the discrete problem is shown at the right.

boundary conditions are defined as

u(x) =0, x ∈ Γ1,2,3,4,

u(x) =

[
2x2

1x2(x1 − 1)2(x2 − 1)(2x2 − 1)

−2x2
2x1(x1 − 1)(x2 − 1)2(2x1 − 1)

]
m/s, x ∈ Γ5.

The complete problem setting —including the boundary conditions— is shown in Figure

2.4.

Multiple parameters of the weak imposition of the boundary conditions and the

stabilization of the cut cells are evaluated as follows. Specifically, the Nitsche method is

tested using α and αβ−1. Also, the Ghost Penalty with Orthogonal Projections is applied

by using the γ1 and the γ1β
−1 stabilization parameters. To analyse the accuracy and

convergence of the proposed scheme, the L2−relative error norm of the numerical solution

[uh, ph] is calculated with respect to the exact solution [uex, pex]. Two type of relative

error norms are calculated: the first is the L2−relative error norm over the immersed
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boundary (Γ5), which is given by

eu,L2(Γ) =
‖uex − uh‖L2(Γ)

‖uex‖L2(Γ)

, ep,L2(Γ) =
‖pex − ph‖L2(Γ)

‖pex‖L2(Γ)

,

e∇u,L2(Γ) =
‖∇(uex − uh) · n‖L2(Γ)

‖∇uex‖L2(Γ)

.

Here ‖∇uex‖L2(Γ) is the Frobenius norm of the velocity gradient at the boundary. The

relative error norm of the velocity gradient e∇u,L2(Γ) is the most sensitive quantity to

identify the instabilities at the cut elements, i.e., a great value is directly related to an

instability occurrence at T c
h, even if other measured errors are low. The second type of

error norm is the L2−relative error norm of the numerical solution over the domain Ω,

which for each variable is computed as

eu,L2(Ω) =
‖uex − uh‖L2(Ω)

‖uex‖L2(Ω)

, ep,L2(Ω) =
‖pex − ph‖L2(Ω)

‖pex‖L2(Ω)

,

e∇u,L2(Ω) =
‖∇(uex − uh)‖L2(Ω)

‖∇uex‖L2(Ω)

.

2.3.1.1 Mesh convergence

To measure the impact of the stabilization methods on the solution, the following scenarios

are considered:

• The Nitsche method.

• The Nitsche method using αβ−1.

• The Nitsche method and the Ghost Penalty with Orthogonal Projections.

• The Nitsche method and the Ghost Penalty with Orthogonal Projections using αβ−1

and γ1β
−1 respectively.

In all cases, the Nitsche parameters are set to s1 = 50 and s2 = 1.0, and the Ghost Penalty

parameters to sG = 0.01 and su = 0.1 and sp = 1.0. These parameters have been defined

in a similar way to those of [119] and have been corroborated with preliminary tests that

have demonstrated numerical convergences.

The relative error norms are computed for the numerical results using different meshes

with element sizes varying from 0.01 < h < 0.1 m. The instabilities at the cut elements

are present when at least one element of the interface has β < 10−6. This is explained

since instabilities are triggered by small ratios of β. In order to obtain reference solutions,

values of β > 10−3 are also tested using meshes with a similar number of elements as the
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Figure 2.5: Mesh convergence results. Domain relative errors for: (a) velocity, (b)
pressure, and (c) velocity gradient. Boundary relative errors for: (d) velocity, (e) pressure,
and (f) velocity gradient.

β < 10−6 meshes, but which guarantee that instabilities are controlled or negligible. To

this end, the size of the elements is modified so that the desired β is reached in all meshes.

The mesh convergence results for the different formulations are presented in Figure 2.5.

Both the accuracy and the slope m of each stabilized formulation are shown in this figure.

In the case of the domain relative errors, it is observed a homogeneous behavior for all

formulations: there is an optimal convergence of eu,L2(Ω) with a slope close to m ≈ 2.

Similarly, e∇p,L2(Ω) and e∇u,L2(Ω) demonstrate accurate results in all scenarios, with a

sub-optimal convergence. Reference solutions with β > 10−3 meshes show slightly better

pressure accuracy, but the slopes are similar in all cases.

On the contrary, diverse results are depicted from the boundary error measure. It can

be observed that the Nitsche method alone give inaccurate results: the poorest eu,L2(Γ)

accuracy is obtained for the Nitsche method with the Ghost Penalty. An asymptotic

behavior of the error convergence can also be appreciated when activating the GP using

γ1β
−1 parameter. This can be explained because of the increase in bad cuts in the interface
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zone when refining the mesh. Remarkably, a great improve in the accuracy of the method

is obtained when the αβ−1 parameter is used in the Nitsche scheme.

In the case of the ep,L2(Γ) pressure results, those are similar for all methods. This can be

explained since the β parameter does not affects most terms of (2.16) or (2.18). Special

attention must be drawn to the e∇u,L2(Γ) results, for which is evident the positive effect of

the αβ−1 and γ1β
−1 parameters: the proposed stabilization scheme show accurate results

for all mesh sizes. It also exhibits an asymptotic behavior at fine meshes, where the

error can be mostly associated to the Nitsche method. Hence, one conclusion is that the

proposed method can affect the accuracy of the solution at the interface, but it keeps

control over e∇u,L2(Γ) for all cut elements. However, since β can be close to zero, the

αβ−1 penalty parameter can go to infinity. This will create a severe ill conditioning of

the discrete problem. Therefore, if this occur the solution will diverge. In other words, β

can generate a problem of indetermination, but when this does not happen, the use of

this ratio can improve the behavior of the method.

In order to further investigate this result near the interface, the velocity field and the

velocity gradient magnitude are presented in Figure 2.6. Two different meshes are used to

obtain these results: one with an average element size of h = 1/22 m, and another with

h = 1/22.01 m. The results at the top of the figure are obtained using the h = 1/22.01 m

mesh, while the ones at bottom are obtained by using the h = 1/22 m size mesh. Both

meshes have β < 10−6 elements at the interface and the boundary condition is imposed

weakly using the Nitsche technique.

The results at the left of Figure 2.6 are obtained with the Nitsche method and the αβ−1

parameter. It is easy to observe sources of instability in the results using the h = 1/22.01

m mesh (top-left). There is an atypical velocity vector at the bottom of the interface for

which the magnitude of velocity is approximately four times the average, and the error is

around 216% if compared against the analytic velocity. In addition, the velocity gradient

magnitude is about 25 times the average. The elements where this instability appears

have the lowest β ratio of the interface elements. Some few elements near the top region of

the interface also show large velocity gradients (almost 15 times larger than the average).

On the contrary, the h = 1/22 m mesh results (bottom-left) are stable using the Nitsche

method and αβ−1 alone.

The results at the right side of Figure 2.6 are obtained using the Nitsche and Ghost

Penalty methods with the αβ−1 and γ1β
−1 parameters, respectively. When the Ghost

Penalty using γ1β
−1 is activated, is possible to see that these instabilities are reduced:

both the magnitude and direction of the velocity are controlled. In the h = 1/22.01 m

mesh (top-right) case, the relative velocity error of the maximum velocity is less than

7.5%. Also, the obtained velocity solution for the h = 1/22 m mesh (bottom-right) is

kept under control but the accuracy is slightly affected in contrast to the Nitsche αβ−1

method alone (bottom-left).
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(a) (b)

(c) (d)

Figure 2.6: Velocity field and velocity gradient norm results. (Top) h = 1/22.01 m size
mesh and (Bottom) h = 1/22 m size mesh. (Left) Nitsche method with the αβ−1 parameter,
(right) Nitsche and Ghost Penalty methods with the αβ−1 and γ1β

−1 parameters.

2.3.1.2 Algorithmic parameters

Next, the values of the algorithmic parameters are investigated. This analysis is done

to identify the ranges where the method achieves best performance. The global ASGS

stabilization is set including the Nitsche weak imposition method including αβ−1 and the

Ghost Penalty stabilization with γ1β
−1. Four different meshes are tested ensuring that

at least one element in the interface accomplishes β < 10−6. These three meshes have

average element sizes of h1 = 1/10 m, h2 = 1/22 m, and h3 = 1/60 m. The kinematic

viscosity is set to ν = 0.01 m2/s.

The first analysis is achieved for the Nitsche parameter s1 in a range between 5 and 1000,

and fixing s2 = 1.0, σG = 0.01, and su = 0.1. The relative error results are shown in

Figure 2.7 for the different values of the Nitsche parameter and the mesh sizes.
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The L2(Ω) relative error norm is almost constant for all values of s1. However, at the

interface is observed a reduction of the velocity error eu,L2(Γ) with the increase of s1. This

can be explained since the weight of the first term of equation (2.15) is directly related to

this parameter, imposing the ud value at the interface. Yet, this reduction of the velocity

error at the interface is compensated with the raise in the velocity gradient error e∇u,L2(Γ)

for which a high value of s1 increases the error. Also, small values of s1 affects the e∇u,L2(Γ)

accuracy, and therefore, optimal values for this Nitsche parameter are located inside a

narrow range. The Nitsche method has therefore the disadvantage of defining a-priori the

algorithmic parameters. In the manufactured solution problem, the optimal s1 value is

found to be close to 50.
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Figure 2.7: Relative error norms for different s1 values and mesh sizes. The results are
obtained by fixing s2 = 1.0, σG = 0.01, and su = 0.1.

Finally, the Ghost Penalty parameters are evaluated by shifting su between 0.001 and

1.0, and setting s2 = 50 and σG = 0.01. The error results of varying the su parameter

are shown in Figure 2.8 for the different meshes. Unlike the previous results, both L2

relative errors measured in the domain and over the interface seem to be affected by the

definition of the su value. Regarding the velocity gradient error e∇u,L2(Γ), it significantly

depends over the mesh size. It is observed that result for the two meshes with similar

element sizes (h2 = 1/22 m and h3 = 1/22.01 m) and β < 10−6, behave oppositely. It is
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possible to see that e∇u,L2(Γ) of h3 = 1/22.01 m increases for small values of su. Hence,

su > 0.1 is necessary to obtain accurate results, but also su > 0.5 so that the overall

accuracy is not penalized when using fine meshes. These results confirm the relevance of

the Ghost Penalty in the velocity control. However, the small range of values of su that

can be chosen leads to a careful selection.
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Figure 2.8: Relative error norms for different su values and mesh sizes. The results are
obtained by fixing s1 = 1.0, s2 = 1.0, and sG = 0.01.

2.3.2 Flow past a cylinder

Now, the flow past a cylinder at low Reynolds numbers is analyzed, which is a commonly

known benchmark for computational fluid dynamics solvers. This problem models the

flow past an infinitely long cylinder that can be represented as a two-dimensional flow.

The computational domain is defined as a rectangular domain Ω = [0, L]× [−H/2, H/2] =

[0, 2.2] m ×[0, 0.41] m with the definition of the cylinder as a circle cut of diameter d = 0.1

m located at [0.2, 0.2] m, as schematically shown in Figure 2.9. The fluid density and

kinematic viscosity are set to be ρ = 1.0 kg/m3 and ν = 0.001 m2/s, respectively. As the

boundary conditions of the problem, one sets no-slip boundary conditions for the upper
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and lower walls, as well as for the cylinder surface. In the case of the inlet wall (left-most

wall), we impose a parabolic profile for the horizontal component of velocity:

u1(0, x2) = 4Umax

(
x2(0.41− x2)

0.412

)
,

L

H

x

y

d

cx

cy

u2 = 0

u2 = 0

p = 0

u(0, y, t)

Figure 2.9: Flow past a cylinder problem scheme.

where, Umax is the maximum velocity of the inlet. Additionally, at the inlet face we impose

a null value for the vertical component of velocity. In the case of the outlet boundary,

tractions are prescribed as σ ·n = 0, which is the free boundary condition. The Reynolds

number is calculated based on the cylinder diameter, the kinematic viscosity, and the

mean inlet velocity Umean = Umax/1.5. The problem is tested for both Re = 20 and

Re = 100. The former leads to a steady flow, while the later case is periodically unsteady.

The numerical results can be compared against reported results in the literature [121].

Indeed, to make a quantitative comparison of the results, some integral values of the flow

field are calculated: some of the most comparable quantities are the integral value of the

lift and drag coefficients over the cylinder surface, which is calculated using the solution

of the velocity field, and compared against benchmarked results. Firstly, forces that the

fluid exerts over the cylinder surface Γ in each spatial direction are computed. To do that,

the force F over the immersed boundary Γ by the surface integral is calculated as follows:

F =

∫
Γ

σ · n dΓ. (2.20)

To calculate the lift (CL) and drag (CD) coefficients, the vertical and horizontal components

of the force are split and scaled by the dynamic pressure 1
2
ρUmean

2D.

2.3.2.1 Laminar and steady Re=20 case

To evaluate the flow around cylinder for a Reynolds number equal to 20, the max velocity

is set to Umax = 0.3 m/s. To further test this assessment of the numerical methods for

stabilizing the cut elements, the flow around a cylinder is solved in a mesh that has at
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least one element with a cut ratio β < 10−6, such that instabilities at the interface are

induced.

In that order, four different cases are studied: the first one is the conforming mesh solution

of the problem. This case is intended to obtain a reference result, for which the cylinder

boundary exists as a real boundary of the fluid mesh and the Dirichlet conditions are

strongly imposed. The other cases are solved using the NCMM approach developed in this

work, defining the immersed cylinder by the interface and weakly imposing the boundary

conditions by the Nitsche method. In this sense, the second case is a baseline case for the

NCMM approach since it is obtained with a mesh in which all elements at the interface

fulfill β < 10−3, seeking to avoid the instabilities of bad cuts. Any cut stabilization

methods in the baseline case is neglected, such that the reference solution for the weak

imposition is obtained. The third and fourth cases use a similar mesh to the second case

(same number of elements), but with a β < 10−6. The third case is solved with Nitsche

αβ−1, and the fourth combines Nitsche αβ−1 and Ghost Penalty γ1/β. For all the NCMM

cases the Nitsche parameters are set to s1 = 110 and s2 = 1. In the fourth case, the Ghost

Penalty parameters are set to sG = 0.01 and su = 0.1.

The results for the drag and lift coefficients are presented in Table 2.1. Also, the pressure

difference ∆p = p(x1)− p(x2) between the points x1 = (0.15, 0.2) m and x2 = (0.25, 0.2)

m on the front and rear side of the cylinder is given in this table. The conforming mesh

results agree to the reported benchmark results. However, the CL results between those

deviate. This deviation is explained from the numerical precision of the method, which is

restricted to the use of linear triangle elements in the mesh. For the NCMM cases, it is

observed a lower accuracy of the methods in contrast to the CMM, but the results are still

close to and consistent with the benchmark values. However, the accuracy of the NCMM

results are limited in the refinement by the asymptotic behavior that we described before

in Section 2.3.1. As a remark, the solution diverges when the Nitsche method without cut

stabilization is attempted using the β < 10−6 mesh.

Case DOF CD CL ∆p

Reference [121] 51159 5.5567 0.0106 0.1172

Conformed mesh 49731 5.5118 0.0150 0.1192

NCM - Nitsche (α) 55326 5.4625 0.0136 0.1148

NCM - Nitsche (αβ−1) 52433 5.4618 0.0155 0.1147

NCM - Nitsche (αβ−1) - GP (γ1β
−1) 52433 5.4570 0.0156 0.1142

Table 2.1: Results for the flow past an infinite cylinder at Re = 20.

2.3.2.2 Laminar and transient Re=100 case

The flow past a cylinder for a Re = 100 generates swirling vortices due to the unsteady

flow separation of the fluid around the cylinder. The same fluid properties and boundary

conditions than the Re = 20 case are applied, except for the Umax = 1.5 m/s velocity

inlet. To capture this dynamic phenomena, a transient simulation using the second order
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backward difference (BDF2) method for the time integration is performed. Simulations

are run with a time step equal to δt = 0.01 s, for a total simulation time of T = 10

s, so that the flow develops completely. The CD, CL, and ∆p integral quantities are

measured at the run. Additionally, the f frequency for CL is computed, such that the

dimensionless Strouhal number can be calculated as St = fD/Umean. The numerical

results are compared against the reported benchmarks in [121], which were obtained using

conforming meshes of different sizes, and a time step equal to δt = 0.01 s.

For this transient case, a mesh with fewer elements than the Re = 20 case is used.

Nevertheless, the mesh fulfills a β < 10−6 for at least one element at the interface. The

Nitsche αβ−1 method with Ghost Penalty γ1β
−1 are tested. The Nitsche parameters are

set to s1 = 50 and s2 = 1, and the Ghost Penalty parameters are applied as sG = 0.01

and su = 0.01, that have been defined after previous tests for this case. The decrease

of the Nitsche and GP parameters is explained as the gradients and instabilities of the

numerical velocity increase with Re. Hence, the Nitsche parameters need to be decreased

with respect to the Re = 20 case to improve the non-linear convergence of the method.

In Table 2.2 the maximum, minimum, and mean values for the CD and CL are presented.

The frequency 1/f and the Strouhal number St values are displayed in that table. Moreover,

the time-dependent results for CD, CL, and ∆p are shown in Figure 2.10. As mentioned

above, the NCMM results obtained in this work are consistent with the CMM references

cases. Despite the coarse mesh used, the post-processed integral quantities agree well with

the coarse reference case. Also, the pressure contour and velocity streamlines are shown

in Figure 2.11, which demonstrate a consistent generation of von Kármán vortex over a

complete Strouhal period TS. However, it is noted that ∆p improves with finer meshes.

Likewise, a residual instability can be observed in badly cut elements at the interface,

even though the Ghost Penalty method controls the velocity solution at the interface.

This effect is not captured in the calculation of the forces.

CD CL
Case DOF min max mean min max mean 1/f St

CMM [121] 42016 3.1338 3.1964 3.1651 -1.0155 0.9838 -0.0158 0.3400 0.2941

CMM [121] 167232 3.1497 3.2124 3.1811 -1.0169 0.9859 -0.0155 0.3300 0.3030

NCMM 21426 3.1335 3.1940 3.1649 -0.9845 0.9158 -0.0677 0.3400 0.2941

Table 2.2: Integral results for the flow past an infinite cylinder at Re = 100.

2.3.3 Flow past rigid obstacles with predefined motion

The final three cases that are simulated with methods developed in the present work are:

a rising wall obstacle in a pipe flow, a closing throat in a pipe, and a rotating flat body

in a pipe. These cases comprise interactions between the fluid flow and a solid obstacle

with a predefined motion. Most are original simulations of engineering applications to

be first published here. In a strict sense, these problems cannot be considered as 2-way
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Figure 2.10: Time-dependent results of the flow past an infinite cylinder at Re=100. (a)
Drag coefficient, (b) lift coefficient, and (c) pressure difference.

(a) t = t0 (b) t = t0 + 1/4TS

(c) t = t0 + 2/4TS (d) t = t0 + 3/4TS

Figure 2.11: Pressure contour and velocity streamlines at different instants of the
simulation for the flow past an infinite cylinder at Re = 100.

fluid-structure interaction cases because the obstacle movement is known and prescribed

a-priori. Certainly, the solid deformation is neglected and so, its movement is addressed as

a rigid body motion. The interest to solve these problems lies on the dynamic change of

the cut elements in the fluid’s mesh: the moving obstacle generate cut elements with small

β ratios and instabilities are triggered continuously. To overcome the lack of information

of the uncovered nodes at each time step, the inverse distance weighting method to

interpolate the unknown in those nodes is used.

2.3.3.1 Rising gate in pipe flow

The effect of a single closing gate inside a pipe moving from one wall is first considered.

This problem is represented as a two-dimensional flow in a rectangular domain Ω =
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[0, L] × [0, H] = [0, 4.0] m ×[0, 0.8] m. The left-most side of the channel is the inlet

boundary, while the right-most side is the outflow. The rising gate is modelled as a

chamfered rectangle wall of width W = 0.15 m and chamfer radius equal to half the width.

The center-line of the rectangle is located at cx = 1.0 m from the inlet (see Figure 2.12).

As boundary conditions of the fluid flow, it is imposed a constant velocity u1 = 1.0 m/s

at the inlet boundary, a null manometric pressure at the outflow, and no-slip boundary

conditions on the bottom, top, and obstacle’s walls. The density and dynamic viscosity of

the fluid are set to ρ = 1.0 kg/m3 and µ = 0.01 kg/(m·s), respectively. The height h of

the gate (as measured from the bottom of the domain) is a linear function expressed as:

h(t) = hinitial +
t(H − hinitial)

tc
(2.21)

where tc is the closing time and hinitial is the initial height of the gate.

The exerted force of the fluid over the gate is calculated, and the pressure difference

upwind and downwind the gate. Specifically, the pressure difference ∆p = p(x1)− p(x2)

between x1 = (0.0, 0.4) m and x2 = (4.0, 0.4) m is measured. The Nitsche parameters are

set equal to s1 = 500 and s2 = 500, while the cut stabilization parameters are fixed to

sG = 0.1, su = 0.2, and sp = 1.0. A closing time of tc = 2 s and a time step δt = 0.01 s are

used, where the initial height of the gate is hinitial = 0.1H. The fluid mesh is composed of

linear triangles and DOF = 17847. A refinement of the mesh is provided along the wall

moving region. Also, finer elements are granted near constriction at the upper wall in

order to accurately solve the re-circulation pattern of the flow.

L
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x

y
cx

u = 0

u = 0

p = 0h(t) = f(t)

W

u(0, y, t)

Figure 2.12: Rising gate in pipe flow problem scheme.

The pressure contours and velocity streamlines are presented in Figure 2.13 for

different instants of the gate displacement, where numerical results at the time instants

corresponding to h(t)/H = {0.3, 0.6, 0.9} can be observed. From these results it can

be noticed that the pressure increases as the gate closes the channel, with the highest

values located upstream. Additionally, a re-circulation flow pattern is created downstream.

This re-circulation zone is detailed in Figure 2.14(a), where the horizontal component of

velocity is plotted against the vertical dimension at x1 = {1.5, 2.2} m positions. These

profiles are plotted corresponding to the same time instants than those of Figure 2.13.

Results of the exerted force over the rising gate and the pressure difference are presented
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in Figure 2.14(b). Both the forces and pressure difference increase as the gate closes the

channel. The plot is restricted to the time interval (1.7 ≤ t ≤ 2.0) s to avoid a large

increase of the results when the gate reaches the wall: the results for t > 2.0 s are omitted,

since large fluctuations can be observed from t = 1.98 s when the gate begins to cover the

adjacent elements to the top.

(a)

(b)

(c)

Figure 2.13: Contours of pressure and streamlines for the rising gate in pipe flow at
heights: (a) h/H = 0.30, (b) h/H = 0.60, and (c) h/H = 0.90.

2.3.3.2 Closing throat in pipe flow (inlet hole, or venturi tube)

This case is similar to the previous one, but it includes a second obstacle closing the flow.

A symmetric definition is set for the second closing gate: a falling obstacle from the top

channel wall is defined with the same geometry of the rising obstacle. Also, its closing

movement is prescribed to perform at the same speed of the rising obstacle but in the

opposite direction. Besides from the no-slip conditions on the closing walls, the same

domain and boundary conditions of the rising wall problem are prescribed. A schematic

of the problem is depicted in Figure 2.15. The linear expression (2.21) to define the

rising and falling movement of the obstacles is defined, but the total vertical distance

is considered as being half the channel height. In the case of the falling obstacle, ht is

defined from the top wall. Again, a total closing time tc = 2 s is defined and the initial

heights of the two obstacles as hinitial = 0.1H.

The fluid force along the obstacles and the pressure difference between x1 = (0.0, 0.4) m

and x2 = (4.0, 0.4) m are evaluated. The same mesh as the one used for the rising wall

problem, but refined locally at the middle of the channel where both gates meet, is used.

The Nitsche parameters are set to s1 = 500 and s2 = 500, while the cut stabilization

parameters are sG = 0.1, su = 0.01, and sp = 1.0. The time step is δt = 0.01 s. The
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Figure 2.14: Transient results of the rising gate in pipe flow. (a) Horizontal velocity
profiles at x1 = 1.5 m and different time instants. (b) Exerted horizontal forces over the
gate walls and pressure difference.
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Figure 2.15: Closing throat in pipe flow problem scheme.

pressure contours and velocity streamlines are presented in Figure 2.16 for three time

instants corresponding to h(t)/H = {0.15, 0.3, 045}. A similar trend to the rising wall

problem is observed: the upstream pressure increases as the throat closes. Also, a double

re-circulation pattern forms downstream of the throat. The re-circulation of the flow past

the throat can also be noticed in Figure 2.17(a), where the horizontal velocity profile at

x1 = 1.5 m is plotted at the same three time instants commented before. In addition,

Figure 2.17(b) shows the transient results of the exerted horizontal forces over the throat

walls and the pressure difference upstream and downstream. The transient results are

presented in the time interval (1.7 ≤ t ≤ 2.0) s, since the method is restricted to the

simulation before the two walls intersect. It is observed a slight difference between the

exerted force at the upper and lower walls. This can be explained by the randomness of

the cuts and the different β values of each interface. On the contrary, velocity profiles are

axially symmetric and the solution is not affected by the mesh size.
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(a)

(b)

(c)

Figure 2.16: Contours of pressure and streamlines for the closing throat in pipe flow at
heights: (a) h/H = 0.15, (b) h/H = 0.30, and (c) h/H = 0.45.

2.3.3.3 Rotating flat body in pipe flow (throttle body)

The last problem solved is a rotating flat obstacle inside a pipe. The shape of the obstacle

makes this case similar to a throttle body constraining a fluid flow in a pipe. The flow

problem is defined in the same two-dimensional rectangular domain as in the previous cases,

but including a rotating rectangle of length I = 0.95 m and width l = 0.1 m with rounded

edges of radius l/2.0. The center of the rectangle is located at (cx, H/2) = (1.0, 0.4) m.

The center of rotation coincides with the center of the rectangle. A schematic of the

problem is depicted in Figure 2.18. The inlet flow is defined at (0, x2) m, where a constant

velocity profile u(0, x2, t) = (1.0, 0.0) m/s is prescribed, while a null manometric pressure

condition is set at the outlet (L, x2) m. No-slip boundary conditions are imposed on the

bottom and top walls of the fluid domain, as well as on the rotating obstacle walls.

The expression that defines the rotating manoeuvre of the body can be expressed as a

linear function similar to equation (2.21), as

θ(t) = θinitial +
t(π/2− θinitial)

tc
, (2.22)

where θ(t) is the angular position of the body (as measured with respect to the horizontal

axis), θinitial is the initial angular position of the body, and tc is the time to complete a

π/2 rotation.

The force exerted on the obstacle and the pressure difference at the same points than

the previous examples are evaluated. The same Nitsche and cut stabilization parameters

used for the case of the closing throat in pipe flow are applied here. A total rotating time
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Figure 2.17: Transient results of the closing throat in pipe flow. (a) Horizontal velocity
profiles at x1 = 1.5 m and different time instants. (b) Exerted horizontal forces over the
throat walls and pressure difference.

tc = 2 s is considered, where the initial position of the valve is θinitial = 0 which is parallel

to the flow. The fluid mesh to be resolved has a total of DOF = 24507 and the time step

is δt = 0.01 s. In this case, a local refinement of the mesh is provided inside the rotation

area. The mesh is also refined downstream the obstacle and near the channel walls.

The pressure contours and the velocity streamlines are presented in Figure 2.19 for three

time instants corresponding to θ(t) = {π/12, π/4, 5π/125}. Again, the pressure increases

as the gate closes the pipe flow, but re-circulation zones only appear in the last instants

of the rotation. The horizontal velocity profile at x1 = 2.0 m is reported in Figure 2.17(a)

at the same three time instants. Also, Figure 2.17(b) demonstrates the transient results

of the exerted force over the flat body and the pressure difference between x1 = (0.0, 0.4)

and x2 = (4.0, 0.4). Above t = 1.85 s the pressure difference δp and exerted horizontal

force Fx show a strong oscillating behavior that can be linked with the throttling and

acceleration of the flow. These fluctuations are also related with instabilities triggered by

badly cut elements which are not fully controlled by the cut stabilization technique.
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Figure 2.18: Rotating flat body in pipe flow problem scheme.
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(a)

(b)

(c)

Figure 2.19: Contours of pressure and streamlines for the rotating flat body in pipe flow
at angular positions: (a) θ = π/12, (b) θ = π/4, and (c) θ = 5π/12.

2.4 Conclusions

In this work, a flow solver for fluid domains with immersed moving obstacles is developed.

A VMS stabilized formulation that defines the sub-scales as both Algebraic (ASGS) and

Orthogonal (OSGS) is applied to overcome the instability problems associated with the

Galerkin formulation of the fluid flow equations. Weak prescription of no-slip conditions

for the fluid velocity at the boundary of the immersed solid is addressed by means of the

Nitsche method. The tracking of the immersed solid interface is established by using a

sharp interface method, in which the Level-Set method is used for simply-shaped objects,

while a mesh that overlaps the fluid mesh is used for complex geometries of the immersed

obstacle. Also, the sub-triangle technique is implemented to perform the numerical

integration of the cut elements. In order to overcome the instabilities generated by the

bad cuts the Ghost Penalty with Orthogonal Projections is used. The numerical study of

alternative definitions for the algorithmic parameters of the Nitsche and Ghost Penalty

with Orthogonal Projections (GPOP) methods is a fundamental contribution of this study:

the use of αβ−1 and γ1β
−1 parameters work as a cut cell sensor that highly improves the

accuracy of the numerical method. However, a deeper analysis is needed to understand

the lack of stability of GPOP itself and how the β parameter can be modified to eliminate

the tendency for ill-conditioning of the system.

The numerical scheme has also demonstrated the ability to simulate complex flow problems,

beginning with the transient flow past a cylinder for which accurate results have been

obtained compared to the reference solutions. The simulation of cases with continuously

moving obstacles have also been addressed, finding transient solutions which are consistent
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Figure 2.20: Transient results of the rotating flat body in pipe flow. (a) Horizontal
velocity profiles at x1 = 2.0 m and different time instants. (b) Exerted forces over the
rotating body walls and pressure difference.

with the governing physics.

Despite the ability of the proposed method to solve these engineering problems, we find

it also useful to solve three-dimensional and transient flow problems with immersed

moving obstacles. Another future work may be devoted to the solution of the full two-way

fluid-structure interaction problem by including the coupled solution of the elasticity

problem for the immersed solid.
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3 Fixed and non-conforming mesh strategy

for incompressible flow and non-linear

solid interaction problems

Abstract

In this chapter, the finite element method with a Fixed Mesh strategy

using an Non-Conforming Mesh Methods is used to solve the Fluid-Structure

Interaction (FSI) problem including large displacements and deformations. The

numerical ingredients of the strategy include an implicit temporal integration

scheme and a stabilized spatial formulation for the fluid flow problem. The FSI

approach includes the computational methodology to deal with the multiple finite

element meshes representing the fluid and solid domains, the projection of the

fluid tractions onto the solid boundary, and the algorithmic approach for the

FSI coupling. Several applications are simulated, some of which make use of

a simplified rigid body motion scheme for the simulation of embedded bodies.

The solution of well-known benchmark problems assures the accuracy of the

developed numerical technique. But, precisely, most applications are conceived as

a full two-way FSI coupling with the structure being deformed as a hyperelastic solid.

Highlights

• An overlapping domain method for solving two-way FSI problems is applied.

• The Variational Multi-Scale method is used to solve the incompressible flow.

• An hyperelastic model is used to solve the solid deformations.

• The Nitsche method for the weak imposition of boundary conditions is applied

over the solid interface.

• Oscillating cylinders, flapping foils and free flying airfoils are successfully

tested.

3.1 Introduction

Fluid-Structure Interaction (FSI) studies are related to the analysis of coupled physical

effects that cannot be described by isolated studies of fluid flows or solid deformations.

These effects happen in several applications, for instance, in the flight of deformable

structures like parachutes. In many cases, such as pressure vessel containers or pipelines,

the solid structure can be considered rigid and therefore, can be neglected from the fluid

dynamics study. The only interest in those cases is to assess the safe support that has to

be given by the solid structure to the fluid flow dynamics. The opposite case is actually

the widely and historically studied structural mechanics problem, for which the effect

of dynamic hydraulic loads are simplified or neglected from the structural analysis. As

a direct consequence, the FSI level of complexity has been usually reduced and those

solutions have considered at most one-way interaction problems between the fluid and solid.
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However, there are other applications in which the coupled effect of the solid deformation

and the fluid flow needs to be accounted for. This second approach is called the full

two-way FSI coupling due to its bidirectional information transfer. Scientists has devoted

a complete effort on studying two-way applications, e.g. the insect flight [122] or the fish

swimming [123] have been studied in biology. FSI studies have been also carried out to

analyze aneurysms, artificial valves, cardiovascular stents, among other medical issues

[124]. Civil structures, such as buildings or bridges, are also affected by FSI phenomena,

for example, the Tacoma Narrows Bridge is a famous historical case of a structure that

collapsed due to the flutter effect [125], which is an unwanted aero-elastic phenomenon due

to the energy transfer from the fluid flow to the solid that generates increasing oscillations

over time. Also, in the aeronautical field, this same flutter effect has been investigated

in wings and blades [126]. In the case of wind turbines, FSI analysis has been used to

better predict the power coefficient of the wind turbines due to the deformation of the

blades and tower [127]. It is also applied in the transitory and more challenging analysis

of inflatable structures like parachutes [128] or airbags [11]. Finally, FSI analysis has been

implemented to design novel energy harvesting mechanisms. This is mainly explained by

the detailed description and cheapness to obtain the phenomenological visualization given

by this approach.

Flapping foils are one recently developed energy harvesting mechanism. These use the

flutter principle to capture kinetic energy from the fluid flow through oscillatory movements

[70]. Even though this technology has less impact on wildlife and has low noise levels,

its efficiency is below the rotating wind turbines performance. Recent studies have been

focused on the power coefficient increase of the flapping foils. For instance, a finite volume

method has been used in [72] to study the efficiency of a flapping foil by adding an

adaptive Gurney flap over the trailing edge. This modified mechanism has demonstrated

to increase the power output of the flapping foil. Another study conducted a wind tunnel

test of a flapping wing with a rigid passive actuator trailing edge. The research in [73]

found that efficiency increases when the natural frequency of the trailing edge is closer to

the oscillation frequency. Also, the Immersed Boundary Method (IBM) has been applied

in [74] to study the aerodynamic effect of a flapping foil with an added flexible thin tail at

the end of the trailing edge. These types of modifications have demonstrated a rise in the

airfoil efficiency, but those configurations have not been fully described by computational

methods because IBM can not consider thick airfoils. Similarly, a flapping airfoil with

a spring-connected tail has been tested in [75] using the IBM. The findings showed a

7.24% increase in the airfoil efficiency compared to the fully rigid airfoil. An oscillating

airfoil with a prescribed deformation of the shape of the solid body and its displacement

was tested using a finite volume formulation with moving and conforming meshes in [76],

obtaining a 16.1% raise in the power efficiency in contrast to the rigid wing. Similar

analyses have been carried out in [77, 78] using the IBM. The objective has been common

in these studies: to increase the instantaneous camber of the airfoil and therefore, to

obtain a greater difference of pressure between the upper and lower surface of the foil that

allows it to move easily and increases the lift.

But the FSI problem is a challenging physical problem since it involves the coupled
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solution of the fluid flow and the deformation of solids. Moreover, applications like the

aerodynamic performance of flapping foils can be demanding since those involve great

displacements of the solid embedded in the fluid flow. In most flapping airfoil cases, the

interaction is fully dynamic, and none steady state of the flow field can be reached. Also,

practical applications can be only described by complex (three-dimensional non-cartesian)

spatial domains. Hence, the numerical approximation of the FSI problem solution is the

only possible approach. One method that can achieve this solution is the Finite Element

Method (FEM), due to its geometrical capabilities and high interpolation order solution

of any physical problem described by partial differential equations.

Several numerical techniques have been developed in the literature, mostly devoted to

the coupling between the numerical approximations of the fluid’s and solid’s sub-domains.

Those can be classified based on the way the interface between the discretized spatial

subdomains is treated: there exists Moving Mesh Methods (MMM) and Fixed Mesh

Methods. The first approach solves the fluid flow in a deformable media that is completely

separated from the solid domain. The second approach, on the contrary, fixes the fluid

mesh in the back and leaves the deforming and immersed solid on an overlapping foreground

mesh. This method accounts for the overlapping region of the solid embedded in the

fluid as part of the discrete problem. Also, these approaches are directly related to

the Conforming Mesh Methods (CMM) and Non-Conforming Mesh Methods (NCMM)

[1]. The former transmits the boundary conditions between the fluid and solid domains,

granting that the discretized meshes match at the interface, while the latter defines the

solid as an immersed boundary in the interior of the discretized fluid’s domain. In this

work, the study of NCMM is of main interest, since they are specially designed to solve

problems with large movements of the immersed solid boundaries. The main advantage is

that regeneration of the fluid’s mesh is not needed and hence, the reduced computational

cost. However, these types of methods have problems for tracking the shape of the

interface, capturing the physical phenomena in the interface region, and transferring

information between domains with high fidelity.

The FSI temporal solution can be classified as monolithic and partitioned [1]. In the first

approach, the fluid and solid problems are solved together at each time step in the same

discrete matrix, while in the second approach each subdomain is evaluated as a separated

discrete problem, but the solutions are linked by boundary conditions or source terms.

Monolithic approaches are more robust and efficient, but programming is more demanding

and the convergence can be more difficult due to the high non-linearities of each problem.

Partitioned approaches are more stable and allow greater design flexibility over the

numerical methods applied in each subdomain [66, 67]. In partitioned methods, transfer

conditions at the interface directly affect the stability and convergence of the numerical

problem. The most commonly implemented transfer conditions are the Dirichlet–Neumann

(DN), where solid displacements are strongly prescribed as non-slip conditions of the fluid

flow and fluid tractions are imposed on the solid boundary. Dirichlet boundary conditions

can also be weakly imposed, resulting in a Neumann-Neumann (NN) coupling. However,

other strategies like Robin-Neumann (RN) conditions have shown superior results than DN.

In [23] it was shown that RN is better than DN for problems suffering from the added mass
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effect, which is a numerical instability for similar solid and fluid densities. This instability

usually takes the form of a wrong displacement solution due to an additional mass in

the structure arising from the fluid closest to the coupling interface. The conclusion that

RN is a better approach than RD or DN in such problems has also been reported in

[68], where the authors found that RN has adequate numerical convergence and that it is

insensitive to the added mass effect.

Furthermore, partitioned techniques can be classified as explicit or implicit [69] depending

on the temporal integration scheme. Explicit techniques resolve the dynamic fluid and solid

problems accounting only for the previously resolved solutions at previous time instants.

These techniques do not guarantee the continuity and momentum balance between the

subdomains at the interface and consequently, these methods are not conservative. Another

drawback is related to the stability problems when fixing large time steps in the explicit

approach. Perhaps their best feature is the low computational cost since they do not

require to solve a linear system of equations at each time step. On the contrary, implicit

techniques must solve the discrete system of equations at each time step, implying a

higher computational cost, but also enforcing the mass and momentum balance between

the fluid and solid subdomains. The important development in implicit techniques must

be the way to solve the high non-linearity of the coupled system. Indeed, the FSI problem

for incompressible flows interacting with deforming hyperelastic solids leads to a highly

non-linear system, which is explained by the inner non-linear condition of each fluid and

solid problems, but also by the non-linear interaction between them. Newton’s method

can solve the coupling non-linearity, but it is expensive and difficult to calculate. Another

option is the fixed point method or Picard’s scheme, which has a slower convergence, but

it is easier to program. In the case of Newton’s method, it has traditionally solved the

separated fluid and problems, and very efficient algorithms have been developed in this

sense. Advances in Newton’s methods can, therefore, be leveraged and included together

with the iterative coupling solution given by a fixed point method (such as Picard) of the

highly non-linear coupled system.

A final numerical issue has to do with the numerical prescription of fluid tractions at

the solid boundary. The numerical traction values have been traditionally calculated by

accounting for the flow solution provided by cut elements at the interface. Despite the use

of stabilization strategies for the badly cut elements, spurious gradient discontinuities may

be transferred to the solid boundary tractions, especially if the numerical solution inside

the covered fluid elements is accounted for. A consequence of this way of calculating fluid

tractions is that it may generate non-physical deformations of the solid. One solution

can be to neglect the numerical information of the cut elements at the interface and to

only account for the information of their neighboring elements fully belonging to the fluid

mesh in the computation of the fluid tractions. This reduced traction field can be then

projected onto the solid boundary at the interface avoiding non-physical estimations. An

algorithmic challenge in this approach is related to the dynamic update of the reduced

traction field when the solid-fluid interface moves. This can be addressed by permanently

updating the set of cut and covered fluid elements by the solid mesh and by projecting

the traction field onto the displaced solid boundary.
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In this chapter, a Fixed Mesh strategy using an NCMM - FEM formulation is proposed to

solve the FSI problem including large displacements and deformations of the embedded

solid in the fluid flow. An implicit scheme is used in the coupling between fluid and solid

solutions. The strategy includes recently developed numerical ingredients to deal with the

various issues that appear in this problem. Firstly, the Variational Multi-Scale (VMS)

[4] method is implemented to stabilize the numerical solutions for convection-dominated

problems or when equally interpolation spaces are used for the different variables of the

fluid’s problem. Other important parts are the weak imposition of essential conditions

at the interface through the Nitsche’s method and the cut elements stabilization by the

Ghost Penalty method. Moreover, the fluid tractions are computed only in the uncovered

fluid elements and then projected onto the solid boundary to accurately estimate physical

tractions and avoid the transmission of residual gradient discontinuities in the cut elements.

As explained before, these discontinuities do not affect the fluid field solution since they

are within the covered domain of the solid in the fluid mesh but if transmitted to the

solid boundary these may overestimate the applied tractions. Hence, a NN technique is

adopted here as the coupling strategy between the solid and fluid domains. Also, the

density between domains is assumed to be different to avoid stability problems in the

coupling scheme. An implicit time integration scheme for the dynamical fluid flow and

solid problems is used, also, for the coupling between them. In this sense, a Picard’s

scheme is used to solve the strong coupling between the fluid and solid solutions, but the

Newton method is used to solve each specific non-linear problem.

The remaining parts of this chapter are organized as follows. In Section 3.2, the variational

formulation of the FSI problem is recalled. In that section, the FEM stabilized formulation

of the fluid and non-linear solid models is described. There, the numerical ingredients

that are implemented to deal with the NCMM issues are explained, but also the temporal

integration scheme and the linearization procedures for each problem. Next, the FSI

approach is presented in Section 3.3. This includes the computational methodology to

deal with the multiple finite element meshes, the projection of the fluid tractions onto the

solid boundary, and the algorithmic approach for the fluid and solid solutions coupling.

With the numerical approach in hand, some numerical examples are demonstrated in

Section 3.4, including the solution of well-known benchmark problems. A flapping foil is

also solved in this section. Finally, some conclusions close the chapter in Section 3.5.

3.2 Finite Element Method approximation of the

FSI problem

In this section, the FEM stabilized formulation of the FSI problem is first presented. In

the beginning, the strong form of the FSI problem is recalled. Then, the separated FEM

formulations of the fluid and solid problems are explained in detail. Finally, the fully

discretized spatial and temporal approximation of the fluid-solid coupled problem is given

at the end of this section.
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3.2.1 Strong form of the FSI problem

In the present chapter, the fluid and structure interaction mechanics are modeled by using

the incompressible Navier-Stokes equations for the fluid dynamics and the non-linear solid

equations for the deformable structure. Let d = 2, 3 be the number of spatial dimensions

of the FSI problem. Here, the fluid domain is denoted by Ωf ⊂ Rd and the immersed

solid domain by Ωs ⊂ Rd|Ωs ∈ Ωf . The fluid-structure interface is denoted as Γf−s = ∂Ωs.

Also, superscripts f and s denote the fluid and the solid, respectively.

3.2.1.1 Solid problem

The solid deformation problem is such that, given the prescribed displacement dD in the

essential boundary ΓsD and the prescribed traction tsN in the natural boundary ΓsN , find

the displacement d : Ωs × t ∈ (0, T )→ Rd (not to be confused with the spatial dimension

d), such that:

ρs∂2
t d−∇ · P (d) = f s, in Ωs, t ∈ (0, T ),

d = dD on ΓsD, t ∈ (0, T ),

P (d) · ns = tsN on ΓsN , t ∈ (0, T ),

d = d0 in Ωs, t ∈ (0, T ),

(3.1)

where ns is the unit outward normal to the boundary ∂Ωs, ρs is the density of the solid,

f s is the body force on the solid, and P (d) is the first Piola-Kirchhoff stress tensor of the

solid.

The first and second Piola-Kirchhoff stress tensor for a hyper-elastic material can be

defined as:

P (d) = F ·
∂W (E)

∂E
, S(d) =

∂W (E)

∂E
, (3.2)

respectively, where W : Rd×d → R+ is a given strain-energy density, F = I +∇d is the

deformation gradient, E = 1
2

(C − I) the Green-Lagrange strain tensor, and C = F T · F
the right Cauchy-Green deformation tensor. One of the simplest hyperelastic models is

the St. Venant-Kirchoff for a nonlinear, elastic, and isotropic material, which defines the

second Piola-Kirchoff stress as

S(d) = 2µsE + λstr (E) I, (3.3)

where µs =
Es

2(1 + νs)
and λs =

Esνs

(1 + νs)(1− 2νs)
are the Lamé coefficients given as

functions of the Young modulus Es and the Poisson ratio νs. Hence, the first Piola-

Kirchhoff stress tensor is computed from this last expression by contracting it with

F .
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3.2.1.2 Fluid problem

The fluid flow problem is such that, given the prescribed velocity uD in the essential

boundary ΓfD and the prescribed traction tfN in the natural boundary ΓfN , find the velocity

u : Ωf × t ∈ (0, T ) −→ Rd and the pressure p : Ωf × t ∈ (0, T ) −→ R satisfying

ρf (∂tu+ u · ∇u)−∇ · (2µ∇symu) +∇p = f f in Ωf , t ∈ (0, T ),

∇ · u = 0 in Ωf , t ∈ (0, T ),

u = uD on ΓfD, t ∈ (0, T ),

σf · nf = tfN on ΓfN , t ∈ (0, T ),

u = u0 in Ωf , t ∈ (0, T ),

(3.4)

where nf is the unit outward normal to the boundary Γf and (0, T ) is the time interval, ρf

is the density of the fluid, µf is the dynamic viscosity, and f f is the body force. The Cauchy

stress tensor is calculated as σf = 2µ∇symu− pI, where ∇sym(·) := 1
2

(
∇(·) + (∇(·))>

)
is

the symmetric gradient operation and I is the identity tensor. For the sake of conciseness,

the first two equations of (3.4) can be written in a linearized form as

M∂tU + L (u;U) =F in Ωf , t ∈ (0, T ) , (3.5)

where U = [u, p]T is the vector of unknowns, L (u;U) is the non-linear differential

operator, M is the transient matrix, and F is the vector of forces, which are defined,

respectively as

L (u;U) :=

[
ρ (u · ∇u)− µ∆u+∇p

∇ · u

]
, M =

[
ρI 0

0 0

]
, and F =

[
f f

0

]
. (3.6)

3.2.1.3 Transfer conditions

The coupling between fluid Ωf and solid Ωs domains can be done in several ways. The

preferred approach in this work is to use Neumann-Neumann conditions. It is explained

because the moving solid boundary randomly cuts the fluid mesh triggering the numerical

difficulty of prescribing Dirichlet conditions over the fluid nodes. Hence, those are imposed

weakly by adding terms to the discrete flow equations inside the fluid domain. At the

fluid-structure interface Γf−s the velocity of the fluid and solid coincide, while the tractions

must be equal and opposite:

α (u− us) = 0 on Γf−s, t ∈ (0, T ),

σf · nf + P (d) · ns = 0 on Γf−s, t ∈ (0, T ),
(3.7)

where us = ∂td is the velocity of the solid boundary, α is a penalization parameter, and

nf = −ns.
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3.2.2 Weak form of the FSI problem

Some standard notation is introduced to formulate the weak problems for the fluid and

the solid. Let L2(Ω) be the space of square-integrable functions in the domain Ω, and

Hm(Ω) the space of functions whose derivatives are of order up to m ≥ 0 and that belong

to L2(Ω). The space H1
0 (Ω) is the space of functions in H1(Ω) that vanish on Γ. The

L2−inner product in Ω is denoted by (·, ·) and its norm by ‖·‖.

Let W0 = (H1
0 (Ω))

d
be the space where the velocity for the fluid and the displacements

for the solid for each fixed time t are seek, and Q ⊂ L2(Ω)/R as the space where the

pressure for each fixed time t is seek.

3.2.2.1 Weak form of the solid problem

The weak formulation of the hyperelastic solid equation (4.2) is written as to find d ∈W0,

such that the boundary and initial conditions are satisfied and(
ρs∂2

t d,v
)

Ωs
+ (∇ · P (d),v)Ωs = (ρsbs,v)Ωs , (3.8)

for all weighting functions v ∈W0, where it is assumed that 〈ρsbs,v〉Ωs is well defined.

The second term on the Left Hand Side (LHS) of the previous expression can be integrated

by parts, giving(
ρs∂2

t d,v
)

Ωs
− (S(d),E(d,v))Ωs,0 = (ρsbs,v)Ωs + 〈tsN ,v〉Γs , ∀v ∈W0. (3.9)

It is noted that the previous equation is based on the initial reference frame Ωs,0 named

Total Lagrange formulation, but it can be converted to the current reference frame Ωs

using the expression of the Cauchy stress σs and the engineering strain ε := ∇sym(d)

which is referred as the Updated Lagrange formulation. Hence, the solid problem is to

find d ∈W0 such that(
ρs∂2

t d,v
)

Ωs
− (P (d), ε(v))Ωs = (ρsbs,v)Ωs + 〈tsN ,v〉Γs , ∀v ∈W0. (3.10)

3.2.2.2 Weak form of the flow problem

The weak form of (3.4) can be written in the more convenient vector form as to find

U = [u, p]> ∈W0×Q, such that appropriate initial and boundary conditions are satisfied,

and (
M

∂U

∂t
,V

)
+B(Û ;U ,V ) = L(V ), (3.11)

for all weighting functions V = [v, q]> ∈W0 ×Q. Here

(
M

∂U

∂t
,V

)
, B(Û ;U ,V ), and

L(V ) are the transient, bilinear and linear forms, respectively, that for the incompressible
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Navier-Stokes equations are defined as(
M

∂U

∂t
,V

)
=

(
ρf
∂u

∂t
,v

)
,

B
(
Û ;U ,V

)
=
(
ρf (û · ∇u) ,v

)
Ωf

+ 2
(
µf∇sym(u),∇sym(v)

)
Ωf
− (p∇,v)Ωf + (q∇,u)Ωf ,

L (V ) = (f ,v)Ωf + 〈tfN ,v〉ΓfN .

, where Û = (û, p)> are the non-linear components in the equations.

3.2.3 Finite Element Formulation of the FSI problem

Let T h be a finite element partition of the domain Ω composed by non-overlapping

elements K with diameter hk. The diameter of the element partition defined by h =

max{hk|K ∈ T h}.

Finite Element spaces Wh ⊂W and Qh ⊂ Q are constructed made of continuous piece-

wise polynomial functions in space. In this work, equal-order Finite Element spaces are

used for velocity, displacement and pressure variables, such that:

Wh :=
{
v ∈

[
C0 (Ω)

]d
: v ∈ [Qp (K)]d ∀K ∈ Th

}
, (3.12)

Qh :=
{
q ∈ C0 (Ω) : q ∈ Qp (K)∀K ∈ Th

}
. (3.13)

These finite spaces are constructed using piece-wise polynomials Qp of order p (not to be

confused with pressure), such that those spaces tend to the continuous spaces in the case

of h→ 0 or p→∞.

3.2.3.1 Galerkin approximation of the solid problem

The Total Lagrange Formulation of the non-linear solid problem is of especial interest

in the present work. The Galerkin approximation considers replacing W0 by the Finite

Element space Wh,0 in equation (3.10). Therefore, the discrete solid problem consists in

finding dh ∈Wh,0 such that the boundary and initial conditions are satisfied and(
ρs∂2

t dh,vh
)

Ωs
− (S(dh),E(dh,vh))Ωs,0 = (ρsbs,vh)Ωs + 〈tsN ,vh〉Γs , ∀vh ∈Wh,0.

(3.14)

3.2.3.2 Galerkin approximation of the flow problem

The Galerkin approximation of the weak problem (3.11) can be stated as: find Uh =

[uh, ph]
T ∈Wh,0 ×Qh such that(

M
∂Uh

∂t
,V h

)
+B(Uh,V h) = L(V h), (3.15)
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for all weighting functions V h = [vh, qh]
T ∈Wh,0 ×Qh.

3.2.3.3 Global stabilization of the flow problem

The Galerkin approximation for the Navier-Stokes equation above presents instability

problems for convection dominant flows or when the interpolation spaces used for pressure

and velocity variables do not satisfy the inf-sup condition. A Variational Multi-Scale (VMS)

[4] stabilized formulation is adopted in the present work to overcome these instability

problems. The numerical technique consists in adding the following term to the LHS of

Galerkin equation (3.15) in order to add numerical diffusivity:

S
(
Ûh;Uh,V h

)
=
∑
K∈T h

(
L∗(ûh;V h), τ

(
Ûh

)
P̃ (Rh)

)
K
, (3.16)

where L∗(ûh;V h) is the adjoint of the non-linear fluid flow differential operator in (3.6),

Rh is the residual defined as Rh = F − ∂tUh − L(ûh;Uh), and P̃ (Rh) stands for a

L2−projection of the finite residual into a certain space. Indeed, this last projection

term can be defined to be P̃ (Rh) = IRh to what is referred as the Algebraic Sub-Grid

Scales (ASGS) approach. Another recent approach defines the projection of the residual

as P̃ (Rh) = P⊥h (Rh) = IRh − P h(Rh) meaning that the projected space is orthogonal

to the finite space. This approach is the so-called Orthogonal Sub-Grid Scales (OSGS)

method in VMS [129]. Additionally, τ
(
Ûh

)
is a matrix of stabilization parameters

associated with the momentum and mass conservation equations which depends over the

unknowns.

3.2.3.4 Weak imposition of Dirichlet boundary conditions

Dirichlet boundary conditions uD at the fluid-structure interface Γf−s are imposed weakly.

Specifically, these are prescribed by means of the Nitsche’s method [118], which adds

W (uD; Ûh;Uh,V h) to the LHS of (3.15):

W (uD; Ûh;Uh,V h) =
α(uh)

h
〈(uh − uD),vh〉Γf−s − 〈(2µn · ∇symuh − phn),vh〉Γf−s

− 〈(2µn · ∇symvh − qhn), (uh − uD)〉Γf−s ,
(3.17)

where the penalization parameter α(uh) depends on the viscosity and the velocity.

3.2.3.5 Cut cell stabilization

As instabilities may occur in highly convective flows due to bad cuts elements at the

interface, it is necessary to add local stabilization. In this sense, the Ghost Penalty

stabilization using orthogonal projections to the FE space proposed in [24] and that was
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discussed in Chapter 2 is implemented, by including the term SG

(
Ûh;Uh,V h

)
to the

LHS of (3.21):

SG

(
Ûh;Uh,V h

)
=
∑
K∈T ch

σG[γ1 (uh)
〈
∇vh,P⊥h (∇uh)

〉
K

+ γ2 (uh)
〈
∇qh,P⊥h (∇ph − ρf)

〉
K

],

(3.18)

where σG is a penalty parameter defined by the user, and γ1 (uh), γ2 (uh) are algorithmic

constants that depend on the matrix of stabilization parameters τ (uh). Note that this

term is acting only in the subset of cut fluid elements by the interface K ∈ T cut
h ⊂ T h.

Even though better results could be found by penalizing the weak imposition and ghost

penalty terms with αβ−1 and γ1β
−1 instead of α and γ1 alone, where β is calculated as

the fluid’s fraction at each cut element, this method is not implemented here for the sake

of algorithmic easiness.

3.2.3.6 Stabilized FEM formulation of the flow problem

Let the non-linear terms in the previous formulation be arranged in the following bi-linear

form

A(uD; Ûh;Uh,V h) :=B
(
Ûh;Uh,V h

)
+ S

(
Ûh;Uh,V h

)
+W (uD; Ûh;Uh,V h) + SG

(
Ûh;Uh,V h

)
.

Hence, the stabilized formulation of the fluid flow problem is given as to find Uh =

[uh, ph]
T ∈Wh,0 ×Qh such that:(

M
∂Uh

∂t
,V h

)
+ A(uD; Ûh;Uh,V h) = L (V h) , (3.19)

for all V h ∈Wh,0 ×Qh, subjected to the appropriate boundary and initial conditions.

3.2.4 Time integration of the FSI problem

An implicit partitioned time integration scheme is used to integrate the time derivatives of

Eqs. (3.14) and (3.19). This methodology is chosen since large time steps can be used due

to its unconditional stability. The way to integrate the time derivatives of the separated

problems is explained next.

Let the time interval (0, tf ) be partitioned in a sequence of discrete time steps 0 = t0 <

t1 < ... < tN = tf , with δt > 0 the (constant) time step-size defining tn+1 = tn + δt for

n = 0, 1, 2, ..., N .
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3.2.4.1 Time integration of the solid problem

The discretization method for the second-order time derivative in the solid problem is done

employing the second-order central difference scheme. The time and spatial discrete form

of the solid problem consists in solving the dynamic equation (3.14) at tn+1: given the

initial conditions d0, find dn+1
h ∈Wh,0 for n = 1, 2, .., such that the boundary conditions

are satisfied and(
ρs
dn+1
h − 2dnh + dn−1

h

(δt)2
,vh

)
Ωs
− (S(dnh),E(dnh,vh))Ωs,0 = (ρsbs,vh)Ωs + 〈tsN ,vh〉Γs ,

∀vh ∈Wh,0.

(3.20)

To begin the recursion at n = 1, two successive displacements are required, one of which is

precisely the initial condition for displacements d0, and another in the fictitious previous

time instant, which is considered as zero.

3.2.4.2 Time integration of the fluid problem

In the case of the time discretization method of the first-order time derivative of the

stabilized fluid equations, the Backward Differentiation Formula of order two (BDF2) is

adopted in the present work. Hence, in the time and spatial discrete form of the fluid

problem consists in solving the fluid equation (3.19) as follows: given the initial conditions

U 0, for n = 0, 1, 2, .., find Un+1
h ∈Wh,0, such that the boundary conditions are satisfied

and(
M

(
3Un+1

h

2δt
− 2Un

h

δt
+
Un−1
h

2δt

)
,V h

)
Ωf

+ A
(
un+1
D ;Un+1

h ;Un+1
h ,V h

)
=L (V h) , (3.21)

In this case, two successive starting values are required when n = 1 to solve Un+1: the

initial condition U 0 and the solution at the fictitious and previous time instant, which is

exactly zero.

3.2.5 Linearization schemes

The coupling between fluid and solid equations is extremely nonlinear. This is explained

by the non-linearity of each separate problem, and the rise in complexity given by the

coupling. Hence, careful linearization schemes must be implemented to achieve a converged

solution of the coupled problem. The linearization techniques for each solid and fluid

problem are explained in the next lines.
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3.2.5.1 Linearization scheme of the solid problem

The non-linear variational form arising from the St. Venant-Kirchoff elastic model is

highly non-linear. Hence, the solution of the hyperelastic problem requires a linearization

scheme to be able to determine the displacement field at each coupling iteration. The

Newton-Rhapson method over the dicrete formulation is implemented to deal with the

non-linearities arising from the hyperelastic problem: at each step n+ 1, the i superscript

is introduced as an iteration counter, and given dn+1,i
h (initial guess), dnh, dn−1

h , and tsN ,

the solid finite element unknowns at i+ 1 are solved with

dn+1,i+1
h = dn+1,i

h − Js(dn+1
h )−1F s(tsN ;dn+1,i

h ,dnh,d
n−1
h ,V h), (3.22)

by considering F s(tsN ;dn+1,i
h ,dnh,d

n−1
h ,V h) as the complete variational form in (3.20) and

Js(dn+1
h ) =

∂F s(tsD;dn+1
h ,dnh,d

n−1
h ,V h)

∂dn+1
h

. (3.23)

The automated differentiation in [130] is used to calculate the Jacobian in Eq. (3.23) with

respect to the displacements.

3.2.5.2 Linearization scheme for the fluid problem

The implicit temporal scheme also brings the difficulty of solving the non-linearities of the

discrete fluid flow problem. In this case, the Newton-Rhapson scheme is also implemented

to solve the non-linearities of Eq. (3.21). Indeed, this linearization strategy is done as

follows: at each step n+ 1, an iteration counter i is used as superscript of the discrete

solutions, and given Un+1,i
h (initial guess), Un

h, Un−1
h , and un+1

D , the fluid finite element

unknowns at i+ 1 are computed with

Un+1,i+1
h = Un+1,i

h − Jf (Un+1
h )−1F f (un+1

D ;Un+1,i
h ,Un

h,U
n−1
h ,V h), (3.24)

by considering F f (un+1
D ;Un+1,i

h ,Un
h,U

n−1
h ,V h) as the complete variational form in (3.21)

and

Jf (Un+1
h ) =

∂F f (un+1
D ;Un+1

h ,Un
h,U

n−1
h ,V h)

∂Un+1
h

. (3.25)

In this case, the discrete linearized equation for the fluid flow problem is detailed in [131].

In that same article, it has been explained that the Newton-Raphson scheme applied to

the system of fluid equations is the most efficient one.
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Figure 3.1: Scheme of overlapping meshes

3.3 FSI computational strategy

In this section, the numerical and algorithmic strategies to deal with the FSI coupling

between the fluid and solid sub-domains are presented. First, the approach to deal with

the collection of fluid and solid meshes is explained. Especially with the interface definition

on the fluid’s mesh using computational geometry. Then, the numerical treatment of

the transfer conditions at the interface is detailed. Finally, the coupling scheme and its

algorithmic are described.

3.3.1 Multi mesh finite element method

In the discrete approach, an overlapped mesh method using two different meshes is

implemented, to what is referred as to multi mesh finite element methods. Especially,

the solid’s mesh overlaps arbitrarily the fluid’s elements at the background mesh (see

Figure 3.1). These two meshes together define the computational domain in which the

FSI problem is solved. Indeed, the geometric tracking of the immersed boundary in the

collection of two meshes can be challenging in the algorithmic sense. Here the sharp

interface approach is adopted, which defines the position of the interface exactly by cutting

the fluid elements in the background mesh. Hence, this approach leads to three subsets

of different type of fluid elements in the background mesh: the cut fluid elements by

the interface T cut
h , the completely covered fluid elements by the solid mesh T cov

h , and

the remaining (uncut and uncovered) fluid elements T h \ T c
h, where T c

h = T cut
h ∪ T cov

h .

The sharp interface approach over the multi mesh finite method has been traditionally

tackled through the development of computational geometry methods. For instance, by

efficiently and robustly computing intersections and quadrature points. In this work, the

efficient computational geometry and algorithmic approach of two-dimensional mesh-mesh

intersections in FEniCS library [130] are adopted. The implementation in FEniCS relies

on efficient generation and traversal of Axis-Aligned Bounding Box Trees (AABB trees).

This methodology allows for low-level operations for computing intersections of triangles

and tetrahedra and generation of quadrature points on cut cells.
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3.3.2 Neumann-Neumann method for transfer conditions

As explained before, spurious fluid tractions may be transferred to the solid boundary

tractions if the numerical solution inside the covered fluid elements is accounted for. The

approach in the present chpater is to neglect the numerical information of the set of cut

and covered fluid elements T c
h in the computation of the fluid stresses. Hence, only the

information of their neighboring uncovered elements —fully belonging to the fluid mesh—

is used in the computation of the stress field. This stress field σfh\c is computed using the

fluid flow solution Uh in T h \ T c
h and projected onto the solid boundary at the interface

Γf−s avoiding non-physical estimations of tsN . An algorithmic challenge in this approach

is related to the dynamic update of the T h \ T c
h sub mesh when the solid-fluid interface

moves. This issue is addressed by permanently updating the set of cut and covered fluid

elements T c
h in the multi mesh finite approach. In practice, this is done by recalculating

the overlapping part of the fluid mesh each time the solid mesh deforms and creating a sub

mesh contained in the background fluid mesh, which consists of K ∈ T h \T c
h. Projections

of fluid stresses from this space to the solid boundary is done by means of a L2−projection

onto the solid finite space of stresses P s
h(σ

f
h). Hence, the following variational problem is

solved: ∫
Ωs
Xh : P s

h(σ
f
h) dΩ =

∫
Ωs
Xh : σfh dΩ ∀ Xh ∈ Yh,0.

Here Yh,0 is the discrete second rank tensor space made of picewise polynomials. Finally,

the tractions over the interface can be computed from this projected fluid stress field.

3.3.3 Coupling treatment

An implicit partitioned approach is used to integrate in time, such that the interface

coupling must balance between the fluid and the solid solutions at each time step.

As described in the introduction section, Neumann-Neumann coupling conditions are

implemented in this work. In this regard, a Picard’s scheme at each time step is adopted

to deal with the implicit coupling of the transfer conditions: at each Picard’s iteration,

the fluid flow is solved considering the weak imposition of no-slip conditions on the fluid

elements next to the interface. Also, the fluid flow solution is stabilized by the Ghost

Penalty technique at the cut elements. Then, the fluid flow tractions are prescribed to

deform the solid domain. The complete Fluid-Structure Interaction (FSI) implicit scheme

is presented in Algorithm 1.

Another important ingredient in the iterative Picard’s scheme is the restoration of the

solid deformed mesh in case of not satisfying the traction balance at the interface. That

is, if in a given iteration the deformation of the solid mesh does not meet the balance,

then it must be restored to the previous time conditions to be able to test the next

deformation solution given the recently resolved flow field. This eliminates the possibility

of overlapping multiple mesh strains in the same Picard’s iteration, which would result in

an overestimation and non-physical results of the solid mesh strains. Also, the discrete
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fluid flow solution must be interpolated in the newly guessed active fluid mesh after

deforming the solid domain.

This iterative scheme results in a decreasing relative error between consecutive coupling

iterations, with the subsequent convergence of the numerical method: the scheme is

iterated until the L2−norm of the difference between consecutive Finite Element solutions

(of the flow field) is below a certain convergence criteria.

Additionally, a penalization for the solid displacements (see α in equation (4.5)) has

been applied to reduce errors in the calculation of the solid domain that would affect the

convergence of the problem. This has been mandatory in 2-way FSI problems, where the

fluid tractions of the the first iterations could generate over-deformations in the solid.

3.4 Numerical examples

This section demonstrates the application of the proposed methodology to some practical

problems. First, the formulation is applied to a falling cylinder in a non-inertial reference

frame, where only the inlet velocity is updated, so although the immersed interface does

not move, the formulation of our NCMM method is used. Then, the formulation is applied

to the two dimensional FSI Turek Benchmark problem [132] where all the FSI-NCMM

proposed methodology is applied. The third problem to be solved is the oscillating

cylinder with a predefined movement where the interface is updated every time a cylinder

movement occurs. The fourth case is the mass-spring system of a cylinder affected by

vortex-induced vibration, where the movement of the cylinder, unlike the previous case, is

affected by the forces of the fluid. Finally, the numerical techniques are applied to the

case of interest, flapping foils. Here is shown the ability of the proposed methodology in

the simulation of a technological application. Also, the formulation is applied to a full

two-way FSI problem of the free flight of an elastic airfoil. In all cases, the meshes are

composed of triangular elements.

3.4.1 Gravity falling cylinder

The first case is an infinitely long cylinder that falls inside a tank due to the gravitational

force. As the cylinder moves through the fluid, the location of the immersed boundary

would need to be updated each time step. However, this numerical problem considers a

non-inertial reference frame, in which the cylinder is fixed and the velocity of the fluid

considers its movement. Hence, for the gravity falling cylinder problem a two-dimensional

rectangular domain Ω = [0, L]× [0, H] = [0, 4.0] m ×[0, 2.0] m with a cylinder diameter

ds = 0.05 m located at [cx, cy] = [0.4L, 0.5H] is adopted (see Figure 3.2). The density

and dynamic viscosity of the fluid are set to ρf = 1.0 kg/m3 and µf = 0.01 kg/(m· s2),

respectively. The density of the cylinder is ρs = 10.0 kg/m3 and the gravity is assumed

to act on the horizontal axis as g = −9.81̂ı m/(s2). The cylinder is considered with a

null velocity at t = 0. A mesh with DOF = 41400 and a constant time step equal to
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dt = 0.005 are used. The Nitsche parameters are set to s1 = 500 and s2 = 100, while

the cut stabilization parameters are sG = 0.01, su = 1.0, and sp = 0.1. As boundary

conditions over the external computational domain, a null manometric pressure and a

fixed horizontal velocity [uD]1 of the fluid are imposed over the walls of the computational

domain according to the relative falling motion of the cylinder.

In this sense, the force balance over the solid cylinder on the horizontal axis (where the

falling motion occurs), aims to counteract the cylinder’s weight mg with the drag force D

as ma = mg −D. Hence, the numerical integration of the solid’s acceleration in order to

prescribe it as the inlet flow, as follows:

uD
(
ti+1
)

=

[
[uD]1

(
ti
)

+ gδt− D(ti)

ms
δt, 0

]>
. (3.26)

The analytical terminal velocity of the cylinder ut occurs when ma = 0, hence:

[ut]1 =

(
π

2

ρs

ρf
dsg

CD

)1/2

, (3.27)

where the drag coefficient CD can be defined as a function of the Reynolds number and

graphically obtained by experimental curves of the cylinder [133]. Therefore, calculating

the transient Reynolds number Ret = dsutρ
f/µf based on the terminal velocity given in

equation (3.27), and interpolating a spline that describes the experimental CD(Re) curve,

a simple iterative process is carried out to obtain the analytical terminal velocity and its

drag coefficient. These are equal to ut = 1.3556 and CD = 4.1927, respectively.

The time history results of the velocity, acceleration, and drag coefficient of the cylinder

are shown in Figure 3.3. These results are compared with the analytical values. Several

fluctuations in the velocity are encountered in the numerical simulation, which finally

converges to the analytical solution after approximately 6 s, obtaining a maximum relative

error of less than 3%. This behavior has been observed in the falling of solid objects in

viscous fluids [134].

3.4.2 Turek and Hron FSI Benchmark

The second problem evaluated is the flow past a rigid cylinder with an elastic bar attached

to it, which is a well known FSI benchmark for computational fluid dynamics solvers.

This problem is based on the Turek’s work [132], and it is modeled as a two-dimensional

flow inside the rectangular domain Ω = [0, L] × [0, H] = [0, 2.5]m ×[0, 0.41] m, with a

cylinder of diameter d = 0.1 m located at [cx, cy] = [0.2, 0.2] m and a hyperelastic bar of

length l = 0.35 m and width w = 0.02 m attached to the cylinder (see Figure 3.4). The

boundary conditions and material properties are defined based on the reported second

case (FSI2) in [132]. The fluid density is set to be ρf = 1.0× 103 kg/m3 and the kinematic

viscosity is νf = 0.001 m2/s. The Nitsche parameters are set to s1 = 200 and s2 = 50,

while the cut stabilization parameters are sG = 0.01, su = 1.0, and sp = 0.1. The solid
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Figure 3.2: Gravity falling cylinder.
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Figure 3.3: Transient results of the (a) Drag coefficient CD, (b) velocity, and (c) relative
acceleration of the cylinder.

density is ρs = 10 × 103 kg/m3, the Poisson’s ratio is νs = 0.4 and the shear modulus

is µs = 0.5× 106 kg/(m· s2), giving an elasticity modulus of Es = 1.4× 106 kg/(m· s2).

No-slip boundary conditions are set for the upper and lower walls, as well as for the circle

surface and the elastic bar. In the case of the inlet face (left-most wall), the following

parabolic profile for the horizontal component of velocity is imposed:

uf1(0, y) = 1.5Ū
y(H − y)

(H/2)2
, (3.28)

where, the mean inflow velocity is Ū = 1.0 m/s. Additionally, at the inlet wall a null value

for the vertical component of velocity is imposed. In the case of the outlet boundary, the

tractions are defined as σ · n = 0, which is a free boundary condition.

The computational problem is addressed by using a background mesh for the fluid with

34788 elements and a foreground mesh with 5457 elements. The time step is δt=0.01 s,

and for the first 2 s the problem the solid beam is considered rigid, after that it is free to
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Figure 3.4: Scheme of the boundary condtions for the FSI benchmark Turek.

interacting with the fluid flow. A time instant of the contours of velocity magnitude and

pressure for the fluid field are shown in Figure 3.5, where is noticeable the vortex generation

downstream the flexible beam. In the same sense three contours of displacements for

the solid field in a Y -direction movement cycle (TSy) is shown in Figure 3.6, displaying

the effect of the fluid tractions on the shape of the beam. Figure 3.7 shows the current

results compared to the reference case. In Figures 3.7(a)-(b) the displacements of the

point A = (0.6, 0.2) are presented, and in Figures 3.7(c)-(d) the results for the lift and

drag forces on the solid are shown. Here one sees a big difference between the two results

for all the tested variables, we notice that the forces calculated on the surface of the solid

are not sufficient for a complete deformation of the solid and, at the same time, this

sub-deformation does not disturb the flow of the fluid enough to increase the forces. This

configuration of the discrete problem gives the best approximation given the mesh sizes

and algorithmic constants. Some findings indicate that some relaxation methods, like

Aitken’s method in [135], are mandatory when refined meshes are used. Hence, a finer

description of the FSI case and the error convergence analysis for smaller mesh sizes are

left as future work.

Although the solid problem was validated with the Turek benchmark (CSM2) [132] with

a maximum error equal to 4.5% for the solid displacements, there are still some problems

that have not been solved when the values of the fluid tractions are prescribed in the solid

formulation and that are still under study. In addition, some instabilities are observed

in the force graphs due to the residual instabilities in the cuts discussed in the previous

sections.

3.4.3 Flow past a transversely oscillating cylinder

The third example is a cylinder that vibrates in the direction perpendicular to the flow.

Two scenarios are analyzed here. The first considers the oscillation of the cylinder as
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(a)

(b)

Figure 3.5: Contours of velocity magnitude (a) and pressure (b) for the fluid field of
Turek benchmark FSI2

(a) t = t0

(b) t = t0 + 1/3TSy

(c) t = t0 + 2/3TSy

Figure 3.6: Contours of displacement magnitude at different instants for the solid field
of the Turek benchmark FSI2.

predefined, while the second computes the vibrations as a result of the balance of forces

from the fluid flow and the cylinder spring-mass system. One of the most relevant features

is the synchronization, or ”lock-in”, between vortex shedding and vibration frequencies of

the body. For the predefined oscillation, this occurs when the vortex shedding (Strouhal)

frequency fS of the body equals the imposed oscillation frequency of f0. Hence, in the

first type of simulation this oscillation frequency is imposed and it differs from the vortex

shedding frequency fS obtained in the fixed cylinder case. The second type of simulation

has to do with a dynamical system composed by the immersed cylinder subjected to a

vertical spring attached in parallel. If the fluid flow is sufficiently inertial, then the cylinder

begins to vibrate in the fluid flow. This so-called Vortex-Induced Vibration (VIV) occurs

when the flow induces the cylinder to oscillate at a certain frequency f which depends on

the flow regime, the cylinder mass, the damping constant and the spring rigidity. These

two oscillation scenarios are inside the lock-in zone.
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Figure 3.7: Transient results of x (a) and y (b) displacements of the point A, and lift
(c) and drag (d) forces on the cylinder and flag

The computational domain must be large enough to avoid a negative effect of the boundaries

on the results. It has been concluded in [136, 137] that the wall viscous effects can

affect the simulation accuracy. They indicated that the lower the Reynolds number,

the greater the influence of viscous effects, because the error generated by the artificial

boundary conditions perturbs the solution. Therefore, the computational domain is a

two-dimensional rectangular domain Ω = [0, L]× [0, H] = [0, 32.5d]m ×[0, 22d] m with the

oscillating cylinder initially located at [cx, cy] = [12.5d, 11d] m. The boundary conditions

of the problem are given as follows: no-slip boundary conditions are set for the upper and

lower walls, while the no-slip condition for velocity is weakly prescribed over the circle

surface. In the case of the left-most wall, a constant and homogeneous inlet velocity is set.

Also, a manometric pressure condition is defined on the right-most (outlet) boundary.

3.4.3.1 Predefined oscillation motion

The first oscillating cylinder case prescribes the motion of the solid cylinder. Hence,

the cylinder vibrates independently of the flow traction impinging over its surface. This

methodology of rigid bodies with predefined motion inside a fluid is similar to the one

in Chapter 2. The predefined vertical x2(t) motion of the cylinder is considered to be a

sinusoidal motion:

x2(t) = hmax sin (2πf0t), (3.29)
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Figure 3.8: Flow past a transversely oscillating cylinder.

where hmax is the maximal vertical displacement, and f0 is the oscillation frequency of

the motion of the cylinder. Both hmax and f0 are user-defined parameters. In this case,

the values of the spring rigidity, the cylinder mass, or the damping are neglected because

the whole movement of the cylinder is only dependent on equation (3.29).

The wake regimes are analyzed using the frequency ratio F = f0/fS and the adimensional

amplitude A = hmax/d. This case is evaluated at Re = 100 by fixing the cylinder diameter

equal to d = 1.0 m, the kinematic fluid viscosity of νf = 0.01 m/s2, the fluid density

ρf = 1.0Kg/m3, and the horizontal component of the inlet velocity equal to u1 = 1.0 m/s.

For a fixed cylinder at Re = 100, the Strouhal frequency is fS = 0.166, which comes from

a previously solved transient simulation. The constant adimensional amplitude A = 0.25

problem together with a frequency ratio F = 0.90 leads to a lock-in situation which results

in hmax = 0.25 and f0 = 0.1494. The mesh size gives a total DOF = 27735, being radially

refined in a homogeneous fashion near the influence zone of the immersed object. The

time step is fixed to δt = 0.02 s. The Nitsche parameters are set to s1 = 500 and s2 = 100,

while the cut stabilization parameters are sG = 0.01, su = 1.0, and sp = 0.1.

The lift coefficient (CL), the phase portraits, and the frequency of the CL curve results are

plotted in Figure 3.9 and contrasted to the reference solution [136]. The results obtained

show similar trends to those of the reference case, however, inaccuracies represented as

steep peaks and valleys occur due to small local instabilities that persist despite the

application of the ghost penalty. Furthermore, as the interface moves within the fluid

mesh, changes in the element cuts are generated, causing abrupt modifications in the

shape of the interface (see Figure 2.2 in Chapter 2) that is demonstrated because the

peaks and valleys do not achieve perfect symmetry. These instabilities do not globally

affect the physics of the problem, but may affect the calculation of forces at specific points

on the immersed boundary which for an elastic solid may generate an overestimation of

the deformation of the solid. A practical way to reduce these instabilities with the current

methodology is to reduce the size of the elements, use larger time steps or increase the
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velocities of the immersed boundary to avoid that it remains several time steps in the

same element, preventing a scattered calculation of the variables in similar times. The

best option to maintain the same reference parameters would be the size reduction of the

elements, however, due to the limitation of the computational resources it is not feasible

in this work, therefore it will be left for future analysis.

Figure 3.9(a) shows that the CLmax is about twice the reference value. This important

difference is directly affected by the ratio between the inlet velocity u1 and the vertical

velocity of the cylinder ∂x2/∂t, which is not specified in the reference, therefore is assumed

in this work. The phase portraits in Figure 3.9(b) represents the transfer of energy

between the motion of the cylinder and the fluid. A single limit cycle is the result of

perfect sinusoidal response, however in our case, slightly different cycles were found, but

all similar to the plotted. The irregular shape is due to the sharp oscillations in the CL
curve. In Figure 3.9(c) is plotted the spectrum of frequency for CL curve, where it is

showed that the force is oscillating at the same frequency that the cylinder f ∗ = 1, as

reported by the reference. Also, as expected, other small frequencies arise due to the noise

generated by the steep peaks and valleys of the CL curve.
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Figure 3.9: Results of (a) Lift coefficient CL vs normalized time t∗, (b) power spectral
density of the CL vs frequency f ∗, and (c) phase portraits of the cylinder movement.

3.4.3.2 Vortex-Induced Vibrations (VIV)

In this second case of oscillating cylinders the movement depends on the vortex released

downstream that will lead to fluctuating drag and lift forces that make the cylinder to
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oscillate. In this case, the vibration will also be dependent on spring attached to the

cylinder with a rigidity (k 6= 0), and any damping affecting the cylinder will be neglected

(b = 0). Cylinder translations in direction of the flow and rotations will also be restricted.

Unlike the first case, this is a 2-way FSI problem because the fluid forces are affecting the

displacement of the cylinder x2(t) which, as a result, modifies the flow field and, hence,

the fluid forces F2, and so on. If the flow induces the vibrations over the cylinder, as this

case, amplitude and frequency can not be known a priori. It is also known [138] that the

oscillation amplitude is self-limited to an upper limit. Vertical vibration is governed by

the equation of motion:

m
d2x2

dt2
+ b

dx2

dt
+ kx2 = F2 (3.30)

where m is the system mass, b is the damping, and k the spring constant only acting in

vertical direction. In order to compare the obtained results against [136], adimensional

parameters for frequency f ∗, mass m∗, and rigidity k∗ are calculated as follows:

f ∗ =
fd

u∞
, (3.31)

m∗ =
ms

1/2ρfd2
, (3.32)

k∗ =
k

1/2ρfu2
∞
, (3.33)

where u∞ is the free stream velocity, ms the cylinder mass, f is the actual oscillation

frequency of the cylinder. Additionally, the ”effective rigidity” parameter k∗eff introduced

in [139] to fold the influence of k∗ and m∗ in a single parameter is defined to be:

k∗eff = k∗ − 4π2f ∗2m∗ (3.34)

For this case, a problem is tested inside the resonant zone observed by [136] in a range

of k∗eff ≈ [0, 5]. The reference case analyzed was taken from [139] and has an effective

rigidity equal k∗eff = 2.14 which use a non-dimensional elasticity constant k∗ = 9, 88 and

a mass m∗ = 5.0. For a Re = 100, we use the kinematic fluid viscosity equal to νf = 0.1

m/s2, and the horizontal component of the inlet velocity equal to u1 = 10.0 m/s. Also, the

fluid and solid densities were defined as ρf = 1.0kg/m3 and ρs = 3.18kg/m3 respectively.

Finally, based on the adimensional equations (3.32) and (3.33), the spring rigidity is equal

to k = 494N/m and the cylinder mass equal to ms = 2.5kg. For this case the mesh size

gives a total DOF = 116697. The Nitsche parameters are set to s1 = 500 and s2 = 100,

while the cut stabilization parameters are sG = 0.01, su = 1.0, and sp = 0.1.

The problem was evaluated for 10s with a time step δt = 0.01 s, and during the first 2s

the cylinder was fixed to avoid high forces due to the instabilities of the first iterations

and also to allow the flow to develop the Von Kármán vortices downstream of the cylinder.

After that the cylinder was free to move in the direction perpendicular to the flow. The

velocity magnitude and pressure contours of the cylinder undergoing VIV at different
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(a) t = t0 (b) t = t0 + 1/3TS (c) t = t0 + 2/3TS

(d) t = t0 (e) t = t0 + 1/3TS (f) t = t0 + 2/3TS

Figure 3.10: Velocity magnitude and pressure contour at different instants of the
simulation for the flow past an infinite cylinder undergoing VIV at Re = 100.

instants is shown in Figure 3.10. Also, Figure 3.11 shows the graphs over time for the lift

and drag coefficients as well as for the displacements. The frequencies of the CL and CD
curves are also shown. It can be noted that the CL and CD curves (see Figures 3.11(a)-(b))

have small unwanted oscillations in their peaks and valleys that are generated by the

presence of the immersed boundary several time steps in the same cell as discussed in the

previous section. However, they do not affect the displacement behavior of the cylinder

(see Figure 3.11(c)) which is smoothed by the spring force. These three graphs also show

the proximity of the results obtained to those of the reference case. Despite the numerical

instabilities, the main CL and CD frequencies (see Figure 3.11(d)) show that the forces

on the cylinder are governed by the fluid and solid properties but not by the numerical

instabilities.

In addition, Table 3.1 compares the present results with the reference, as we see, the

results are close. However as mentioned, they can be improved by correcting the problems

mentioned above but also by working with a larger domain that reduces the viscous effect

of the walls.

Case f∗ k∗eff CL,max CL,W CD,mean A

Reference [139] 0.198 2.140 1.350 -0.020 2.230 0.570

NCMM 0.201 1.864 1.493 0.103 2.230 0.661

Table 3.1: Results for the cylinder undergoing VIV at Re = 100.

3.4.4 Flapping foil with prescribed motion

Another relevant case in this study are the flapping wings which are oscillation mechanisms

designed to propulsion purposed or power extraction from a fluid flow, by means of
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Figure 3.11: Normalized transient results of the VIV for the (a) lift coefficient CL, (b)
drag coefficient CD, (c) vertical displacement y∗, and (c) frequency f ∗ vs FFT of the CL
and CD.

combined oscillatory movements of heaving and pitching of a rectangular wing. Flapping

wings are an alternative way to conventional rotational turbines to generate clean energy.

The main advantages of these mechanisms over existing turbines is the low impact on

wildlife and reduced noise levels due to their relatively low blade tip speed. The numerical

approach in this work is applied to analyze the efficiency effect on an oscillating harvesting

system in a laminar flow.

The pitching and heaving motions of the airfoil can be passive, meaning that the position

of the foil is mainly governed by the fluid forces on the foil, or active, i.e. when all

movement is controlled externally. Active control is used when the heaving (vertical

translation) h(t) and pitching (rotational) θ(t) motions of the flapping foil structure are

imposed by the equations:

h(t) = h0sin(2πf0t+ φ),

θ(t) = θ0sin(2πf0t),
(3.35)

where h0 and θ0 are the heaving and pitching amplitudes, respectively, f0 is the prescribed

oscillation frequency, φ is the phase difference between the two motions, for which is kept

constant at 90◦ as is recommended in [72] for optimum power extraction performance.

Figure 3.12 shows an scheme of the heaving and pitching motions of the flapping airfoil.

The propulsion or power extractions regimes are related to the non dimensional frequency
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Figure 3.12: Heaving and pitching motions of a flapping wing.

f ∗ = f0c/u∞, and the pitching amplitude θ0. Which are summarized in a parameter called

feathering (χ), which means that when χ < 1 the system is associated with propulsion, and

when χ > 1 is related to power extraction [140]. On the other hand, the power extracted

by oscillation can be calculated as the sum of the pitching and heaving contributions.

The power from the heaving motion P2(t) is obtained as the product of the heaving

force F2(t) times the heaving velocity V2 as P2(t) = F2(t)V2(t), while the power from

the pitching motion Pθ(t) is calculated multiplying the pitching moment Mθ(t) times the

angular velocity ω(t) about the pitching center as θ(t) = Mθ(t)ω(t). Therefore, the total

average power extracted over one flapping period T can be integrated as the sum of these

contributions:

CP = CP2 + CPθ =

∫ 1

0

(
C2(t)

V2(t)

u∞
+ CM(t)

ω(t)c

u∞

)
d(t/T ), (3.36)

where C2(t) = F2(t)/(0.5ρfcu2
∞) and CM = MΘ(t)/(0.5ρfc2u2

∞) are the power coefficients

of heaving and pitching respectively. If CP > 0, the foil captures the kinetic energy

available in the fluid flow, but, if CP < 0 means the foil is providing energy to the fluid.

The total energy harvesting efficiency η for an oscillating foil is defined as:

η = η2 + ηθ =
P 2 + P θ

1/2ρu3
∞hTotal

= CP
c

hTotal
(3.37)

which is the ratio between the average total power extracted and the total power available

in the fluid area in which the foil moves. And where hTotal is the overall vertical extent of

the foil motion.

A 2D flapping foil in a laminar flow for a Reynolds numbers equal to 1100 is set following

the reference [140]. The fluid field is defined much smaller than the reference due to the

computational resources, therefore, some inaccuracies arose due to the viscous effect from

the walls. A rectangular two-dimensional domain Ω = [0, L]× [0, H] = [0, 10c]× [0, 7c]

is set as the computational domain with a NACA0015 airfoil of chord length c = 1.0

located at [cx, cy] = [0.35L, 0.5H + c] at a time t = 0 (see Figure 3.13). The boundary

conditions of the oscillating airfoil sets no-slip boundary conditions for the upper and
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Figure 3.13: Flapping airfoil scheme.

lower walls, as well as for the foil surface. In the case of the inlet face (left-most wall), a

constant velocity u2 = 11.0 is imposed, while for the outlet boundary, the tractions are

defined to be σ · n = 0. The amplitude is h0 = c, the pitching amplitude is Θ0 = 76.3o

and the center of pitching rotation xp is at c/3 from the leading edge. The prescribed

oscillating frequency is f0 = 1.54, which is equivalent to a non-dimensional frequency

f ∗ = 0.14. The kinematic viscosity is νf = 0.01. The time step was equal to δt = 0.005

during T = 5 so that a stabilization of the fluid flow periodicity was achieved. The Nitsche

parameters are set to s1 = 1000 and s2 = 500, while the cut stabilization parameters are

sG = 1.0, su = 1.0, and sp = 0.1. The velocity magnitude and pressure contours of the

airfoil oscillating for a time cycle T at different instants is shown in Figure 3.14. Figure

3.15 shows the CD, CL and CP2 curves over time for the reference case and those obtained

by our model. It can be seen that the current numerical results show trends to those of

the reference case for all plotted curves, however, there is still a substantial difference

between the two results. This is mainly due to the lack of fluid elements in the airfoil area,

which was not not enough to accurately capture the shape of the airfoil due to limited

computational resources, which also restricted the size of the domain. For this case it can

be noted that the momentum and the power coefficient by the pitching movement are

neglected, which represents less than 5% of the total contribution to the power. Table 3.2

shows the efficiencies of the two cases compared.

Case CP2 CPΘ
CP η2(%)

Reference 0.80 0.06 0.86 30.9

NCMM 0.88 – – 33.9

Table 3.2: Efficiency and power coefficcient for flapping foils.

3.4.5 Free flight airfoil

The last problem is the simulation of the free flight of an airfoil that is similar to a

two-dimensional kite with no attachment points. In this problem the computational
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(a) t = t0 (b) t = t0 + 1/3T (c) t = t0 + 2/3T

Figure 3.14: Velocity magnitude and pressure contour at different instants of the
simulation for the flow past an infinite aifoil flapping at Re = 1100.

domain and boundary conditions are like the case of the flapping foil (see Figure 3.13).

The difference here is that the displacements of the airfoil are not controlled by heaving

and pitching functions but by fluid forces acting on the elastic airfoil.

The rectangular two-dimensional domain is Ω = [0, L]× [0, H] = [0, 10c]× [0, 7c] an the

NACA0015 airfoil of chord length c = 1.0 m is located at [cx, cy] = [3c, 3c] with angle of

attack α = 10o at a time t = 0 s. No-slip boundary conditions are set for the upper and

lower walls, as well as for the foil surface. The inlet face imposed a parabolic velocity

profile with a mean velocity umean = 11.0 m/s, while for the outlet boundary, the tractions

are defined to be σ · n = 0. The dynamic viscosity is µf = 2.0× 106 Kg/(m·s) and the

density is ρf = 1.0 Kg/m3. The solid density is ρs = 103 Kg/m3, the Poisson’s ratio is

νs = 0.3 and the shear modulus is µs = 2.0× 106 kg/(m· s2). The airfoil was analyzed

during a time T = 5 s with time steps equal to δt = 0.01 s. The Nitsche parameters

are set to s1 = 1000 and s2 = 500, while the cut stabilization parameters are sG = 1.0,

su = 1.0, and sp = 0.1. Figure 3.16 shows the velocity magnitude and pressure contours

for different time instants during the free flight of the airfoil. The displacement of the

airfoil due to the aerodynamic forces can be observed in those figures, where a rectangular

grid is printed on the contours to allow the visualization of the movement of the airfoil

in the different instants of time. Additionally, Figure 3.17(a) shows the curves of the

displacements and rotation of the airfoil over time, and Figure 3.17(b) plots the lift and

drag forces in the same time range.
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Figure 3.15: Normalized transient results of the flapping airfoil at f ∗ = 0.14 of (a) lift
coefficient CL , (b) drag coefficient CD, (c) power coefficient.

(a) t = 1 s (b) t = 3 s (c) t = 5 s

Figure 3.16: Contours of velocity magnitude and pressure results for the free flight
airfoil for three instants of time.

3.5 Conclusions

This chapter has demonstrated the application of the proposed FSI methodology in

solving complex fluid problems. This FSI methodology uses a FEM approach for both

the incompressible Navier-Stokes equations and the equations of non-linear hyperelastic

solids. A stabilized VMS formulation is used to overcome Galerkin’s instability problems

in the fluid flow equations. This methodology was based on fixed mesh methods, where

the fluid and solid meshes overlap and the solid boundary is tracked by the fluid domain

as a sharp interface. In addition, the Neumann-Neumann boundary conditions are used

for the coupling, with fluid tractions imposed in one direction and solid displacements

applied by the Nitsche method in the other direction.

The methodology has been tested on problems for oscillating cylinders with predefined

motion and Vortex Induced Vibration (VIV), with satisfactory results close to reference
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Figure 3.17: Angle of attack and displacements vs time (a), and lift and drag forces vs
time for the airfoil (b).

values. In the same sense, a flapping foil has been tested with similar results. In all these

cases the solid was considered as a rigid body, however, the methodology was also tested

on the Turek 2-way FSI benchmark, where solids and fluids resolve completely, requiring

iterative coupling at the interface. The results show the ability of the method to solve

the physics of the problem, however, the underestimation of the displacements and forces

shows some issues to be solved. In the same order, the residual instabilities of the ghost

penalty also need to be controlled in the solution.

Finally, from an engineering perspective, this methodology can be successfully applied to

more complex FSI problems in order to develop new technologies or improve them, such

as flapping foils with flexible parts, which will be analyzed in future work.
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Choose initial guess: U−1
h = U 0

h,d
−1
h = d0

h;
for unsteady iterations: n = 0 to N do

Assign Un+1,c
h = Un

h,d
n+1,c
h = 0;

for coupling iterations: c = 0 to C do

if c = 0 then use the solid’s mesh of the previous time step xn+1,c+1
h = xnh;

Restore previously undeformed solid’s mesh xn+1
h = xn+1,c+1

h − dn+1,c
h ;

for solid’s non-linear iterations: i = 1 to I do

Solve solid’s displacements dn+1,i+1
h from (3.22) by imposing the tractions

tsh;

Calculate error of non-linear solution εsolid = ‖dn+1,i+1
h − dn+1,i

h ‖2;
if εsolid < Tolsolid then

Exit solid loop;
else

Update previous non-linear solid solution: dn+1,i
h = dn+1,i+1

h ;
Keep iterating;

end

end

Calculate solid’s deformation dn+1,c+1
h = dn+1,c

h + βs(dn+1,i+1
h − dn+1,c

h );

Deform solid’s domain xn+1,c+1
h = xn+1

h + dn+1,c+1
h ;

Update the set of covered fluid elements T c
h and the interface Γf−s;

Interpolate Un−1
h ,Un

h, and Un+1,c
h in the new active fluid mesh Ωf ;

for fluid’s non-linear iterations: i = 0 to I do

Solve the fluid flow field Un+1,i+1
h from (3.24) by weakly imposing the

Dirichlet conditions over Γf−s;

Calculate error of non-linear solution εfluid = ‖Un+1,i+1
h −Un+1,i

h ‖2;
if εfluid < Tolfluid then

Update coupling from non-linear solid solution: Un+1,c+1
h = Un+1,i+1

h ;
Exit fluid loop;

else

Update previous non-linear fluid solution: Un+1,i
h = Un+1,i+1

h ;
Keep iterating;

end

end

Project Un+1,c+1
h onto T h \ T c

h and calculate σf,n+1,c+1
h\c over this subset;

Project (Extrapolate) σf,n+1,c+1
h\c at the solid surface Γf−s to obtain tsh;

Calculate error of coupling εcoupling = ‖Un+1,c+1
h −Un+1,c

h ‖2;
if εcoupling < Tolcoupling then

Update fluid’s transient solutions: Un−1
h = Un

h,U
n
h = Un+1,c+1

h ;
Update solid’s transient solutions:
dn−1
h = dnh,d

n
h = dn+1,c+1

h ,xnh = xn+1,c+1
h ;

Exit coupling loop;

else

Update previous coupling solution: Un+1,c
h = Un+1,c+1

h ;
Keep iterating;

end

end

end
Algorithm 1: FSI coupling scheme.
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4 Simulation of the Triplaris Americana

seed flight using multiple approaches for

the solution of the aerodynamic fluid-

structure interaction

Abstract

In this work, the auto-rotation of the Triplaris seed during its free-fall flight

is evaluated by two dimensional simulations. In particular, the fluid-structure

interaction that occurs between the seed and its environment when it is carried by

the air. To directly solve this problem, a computational fluid-structure interaction

framework which includes the Finite Element approximation over Non-Conforming

Overlapping Meshes of the incompressible Navier-Stokes equations and the

Non-linear hyperelastic solid equations for the seed deformation is implemented.

In the first part of this chapter, the numerical methods that have been used to

deal with the challenges that arise in the fluid-structure simulations are presented.

Among the most important challenges that have been addressed: the implicit

solution of the dynamic equations coupling and the algorithmic developments

to deal with a collection of colliding meshes are recalled. In the second part, a

two-dimensional characterization of the cross profile of the Triplaris Americana and

an improved Blade Element Momentum Theory analysis for non-planar actuator

disks representing the leaves are used to evaluate its aerodynamic performance.

Predictive information for such phenomena is developed based on the simulations.

Highlights

• A two-dimensional simulation to analyze the cross-section of the leaf of the

auto-rotating Triplaris Americana seed.

• A Blade Element Momentum theory modified is used to analyze non-planar

rotating geometries like the seed.

• An overlapping domain method for two-dimensional FSI problems for describing

the rotation of the seed.

• The Variational Multi-Scale method is used to solve the incompressible flow.

• An hyperelastic model is used to solve the elastic deformation of the seed.

4.1 Introduction

Tree-leafed seeds are naturally designed to move away from their origin. These aerodynamic

seeds move away from the parent plant, since the new plant might not get the adequate

conditions (sun, water or nutrients from the soil) being near the grown specimen. The

flight is the most common mechanism in nature to disperse (move) the seeds, but others

like water, explosions or animals, are also common [141]. A schematic of the seed falling

is presented in Figure 4.1.
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Figure 4.1: Representation of the seed falling.

Few efforts have been given to investigate the flight of Tree-leafed seeds from the

mechanic’s point of view. That can be explained by the complexity of the fluid and

structural mechanics involved: the incompressible Navier-Stokes equations together with

the structural response of the seed portray as the mathematical model that completely

describes the flight. Indeed, this problem is similar to the aeroelastic description of

wings, which is studied for developing wind turbines or aircraft. The balance between

the structural resistance and aerodynamic loads for the turbine blades design, i.e., light

and strong blades with high aerodynamic efficiency, is one related problem [91]. Since no

analytic solutions are found for the complex flight phenomena present in flexible wings,

the engineering field has relied on numerical methods.

But the computational approach is still challenging. Since the Fluid-Structure Interaction

(FSI) problem involves the solution of the fluid flow and the deformation of solids, it

is a challenging problem. The kinetic and kinematic fields of both media are tightly

interconnected, where the deformations of the solid modify the flow domain, and the

tractions of the fluid at the interface stress the solid. In most cases, the interaction is fully

dynamic, and none steady state can be reached. To achieve the complete description of

the flight, it is necessary to perform an iterative analysis that involves the solution of fluid

dynamics and structural simulations, which require time and computational resources.

Most descriptions [94, 93] have not taken into account the complex three-dimensional

geometry of the seed nor its transient behavior, which leads to neglect the important

dynamics of flight. The numerical approximation of the incompressible Navier-Stokes

equations represents an active research topic itself in computational mechanics, and

its interaction with a deforming solid’s structure makes it even harder. Moreover, the

possibility to apply the numerical approximation of transient fluid-structure problems

onto a predictive model (that brings clues to the description of the flight) is emerging

nowadays.

Ongoing numerical simulations intended to describe the flight of seeds has been mostly

dedicated to the Maple seed (see for example the references [86, 87, 36, 88, 89]). In

those simulations, the flight is described as the flow past the rigid solid body; interactive
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mechanisms related to the fluid-structure interaction have been, therefore, not relevant in

those approaches. Instead, the seed’s wings are commonly hyperelastic whose lift is driven

by the wing’s deformation, so that, the duration of the flight is tightly related to the

complete description of the deforming solid. Experimental studies [82, 83, 84] have been

used as a source of inspiration in the development of flight vehicles and wind turbines

[80, 81].

From an analytical point of view, blade momentum and blade element momentum theory

have been the classic approaches to evaluate fluid-dynamics rotational components, and

have also been used to evaluate the Maple seed as in [82], or [142] which evaluates Maple-

like Mahogany seed. In addition, other kinematic and dynamic descriptions attempt to

analyze the aerodynamic response of this seed in the air [85].

A more complicated approach is the numerical solution of the fluid flow equations around

the wing profiles, named as the direct numerical simulation of turbulence. Direct numerical

simulations (of the turbulence generation and dynamical deformation) during the seed’s

flight have been only attempted in [36, 87, 86]. An Immersed Boundary Method was

used in those works to approximate the incompressible flow inside a simplified domain

of the Maple seed flight. But the major drawback of those numerical methods is the

limitation to Cartesian meshes, and therefore, to simple geometries that differ from the

actual mechanisms of the seed’s flight.

The interest in the present work is the two dimensional simulation and analysis of a

three-leafed seed with autorotation properties called Triplaris Americana, which uses the

rotation effect to fly away from the parent plant and maximize its reproductive possibilities.

We achieve this study by numerically approximating the incompressible flow and the seed’s

hyperelastic deformation with the actual conditions of the falling trajectory. This work

may serve in understanding the relevant physics of seed’s flight: due to the cumbersome of

in situ measurements of the airflow past the seed, the numerical simulation of the seed’s

flight becomes an alternative option. The particular characteristics of this seed have also

been used to design a bio-inspired a wind turbine [90, 91].

In this chapter, recently developed numerical ingredients that overcome the various

numerical issues related to the FSI problem related to flight are included. The present

methodology solves the solid’s domain immersed in the fluid’s background. Principally,

through the Finite Element Method (FEM), as it is useful in describing complex non-

cartesian geometries and the multiple coupled physics (i.e. fluid-structure). Firstly, a

Fixed Mesh Method and a Non-Conforming Mesh Method (NCMM) are applied between

the solid and the fluid discrete domains. NCMM are suitable for analyzing problems that

involve large deformation and great changes in the structure topology, mainly because the

fluid’s mesh does not need to follow the fluid-solid interface; therefore, there is no fluid’s

mesh deformation or mesh reconstruction. Secondly, the Variational Multi-Scale (VMS)

method is implemented to stabilize the numerical solutions for convection-dominated

problems or when equally interpolation spaces are used for the different variables of the

fluid’s problem. In terms of the discrete stabilized formulation, the weak imposition of

the fluid’s essential conditions using the Nitsche method at the FSI interface is crucial to
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define the no-slip conditions of the fluid over the moving solid boundary. Cut elements are

stabilized by using the Ghost Penalty method [64]. The approach to deal with the fluid

and structure coupling is done through an implicit coupling which is detailed in Chapter

3. Finally, the algorithmics is implemented in the FEniCS library, where multi mesh

methods are optimized by means of Computational Geometry methods and automated

partial differential equations solution [143, 144].

This chapter is organized as follows. In Section 4.2, the methodology that is implemented

to numerically simulate the seed’s flight is recalled. The computational model of the

Triplaris Americana seed and the flight problem setting are first presented. Then, the

numerical approach for solving the FSI-FEM problem in the overlapping domains are

described. In Section 4.3, the numerical results are presented. A complete numerical study

of the mechanisms that generate the lift in the realistic Triplaris seed flight is carried

out. Some concluding aspects of the direct numerical simulation of tree-leafed seed flight

problems with the present computational approach are stated in Section 4.4.

4.2 Methodology

In this section, the process of how to achieve a feasible simulation of the seed flight is

commented. First, the characteristics and properties of the Triplaris seed are presented.

Then, the FSI problem and the detailed description of the numerical strategies (to overcome

the difficulties typically encountered for numerically simulating FSI) are presented. Finally,

the procedure to achieve the numerical simulation is described.

4.2.1 Aerodynamic and mechanical properties of the Triplaris

seed

Triplaris Americana is a genus of plants in the family Polygonaceae, with about 25 species

distributed in America. The Triplaris seed is one of the multiple seeds with autorotation

properties that we can find in nature [145, 141].

The Triplaris has three radially arranged leaves connected to a bulb, when it falls from

the tree and interacts with the air creates auto-rotation effects that allow it to travel

more time in the air before landing in the ground. In Table 4.1 there is a summary of the

characteristics of the Triplaris. An important issue of the simulation is the complex three-

dimensional geometry of the seed. The main difficulty is to represent in a computational

environment the complexity of the seed’s shapes and tissues.
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Radius (cm) 2.15
Weight (g) 0.08
Falling speed (m/s) 1.13
Angular speed (RPM) 1322
Average Reynolds number 600

Table 4.1: Characteristics of the Triplaris Americana seed.

Figure 4.2: 3D model of Triplaris Americana seed.

The seed CAD model used in this work (and display partially in Fig. 4.2) is a clean copy of

a 3D imaging, specifically from a three-dimensional scanner, made in [146], and a geometry

characterization of the seed developed in [147]. This pre-processed model eliminates leaf

veins and assumes a symmetry in the distribution of leaves that are arranged every

120 degrees. About the 50% of the Triplaris seeds analyzed in [92] had this symmetric

configuration. Besides, any distortion or malformation of the leaves is omitted, and all

three leaves are drawn the same. However, the main characteristics of the seed, such as

the curvature of the leaves or the bulb shape, are preserved. These simplifications are

necessary to avoid information transfer problems in the numerical simulation when the

seed and fluid meshes overlap. As no information regarding the mechanical properties

of the seed is available, the averaged properties of different dry sheets from [148, 149]

are used as reference values. In this sense, the Poisson’s ratio is set to νs = 0.5 and the

elasticity modulus is given by Es = 33.4× 106 kg/(m· s2). These properties give a shear

modulus of µs = 11.1 × 106 kg/(m· s2). Additionally, the density of the seed is set to

ρs = 241 kg/m3, which has been calculated based on the weight of the seed (see Table

4.1) and its CAD-obtained volume.

For the sake of the aerodynamic characterization of the seed, the cross profile of the leaves

is simplified from the three-dimensional model. Figure 4.3 shows the simplified airfoil

shape form the cross-section of the Triplaris leaves. This seed foil has a maximum camber

of 9.2% and a thickness t/c = 0.021.

4.2.2 Fluid Structure Interaction problem

The complex fluid and structure mechanics related to the seed’s flight are completely

described by the incompressible Navier-Stokes equations coupled with the hyperelastic
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Figure 4.3: Airfoil from the cross section of the Triplaris Americana leaves.

solid equations. Considering the fluid domain Ωf ⊂ R2 and the immersed solid domain

Ωs ⊂ R2|Ωs ∈ Ωf . The fluid-structure interface is denoted as Γf−s = ∂Ωs. Here we use

superscripts f and s to denote the fluid and the solid, respectively.

4.2.2.1 Fluid flow problem

The fluid flow is defined in the fluid domain Ωf where nf is the unit outward normal to

the boundary Γf and (0, T ) is the time interval. The strong form of the incompressible

Navier-Stokes equation is such that, given the prescribed velocity ud in the essential

boundary Γfd and the prescribed traction tfn in the natural boundary Γfn, find the velocity

u : Ωf × t ∈ (0, T ) −→ R2 and the pressure p : Ωf × t ∈ (0, T ) −→ R satisfying

ρf (∂tu+ u · ∇u)− µ∆u+∇p = f f in Ωf , t ∈ (0, T ),

∇ · u = 0 in Ωf , t ∈ (0, T ),

u = ud on Γfd , t ∈ (0, T ),

σf · nf = tfn on Γfn, t ∈ (0, T ),

u = u0 in Ωf , t ∈ (0, T ),

(4.1)

where, ρf is the density of the fluid, µf is the dynamic viscosity, and f f is the body

force. The Cauchy stress tensor is calculated as σf = 2µ∇symu− pI, where ∇sym(·) :=

∇(·) + (∇(·))> is the symmetric gradient operation and I is the identity tensor.

4.2.2.2 Hyperelastic solid problem

The solid deformation problem is such that, given the prescribed displacement dD in the

essential boundary ΓsD and the prescribed traction tsN in the natural boundary ΓsN , find

the displacement d : Ωs × t ∈ (0, T )→ R2, such that:

ρs∂2
t d−∇ · P (d) = f s, in Ωs, t ∈ (0, T ),

d = dD on ΓsD, t ∈ (0, T ),

P (d) · ns = tsN on ΓsN , t ∈ (0, T ),

d = d0 in Ωs, t ∈ (0, T ),

(4.2)
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where ns is the unit outward normal to the boundary ∂Ωs, ρs is the density of the solid,

f s is the body force on the solid, and P (d) is the first Piola-Kirchhoff stress tensor of the

solid.

The first and second Piola-Kirchhoff stress tensor for a hyper-elastic material can be

defined as:

P (d) = F ·
∂W (E)

∂E
, S(d) =

∂W (E)

∂E
, (4.3)

respectively, where W : R2×2 → R+ is a given strain-energy density, F = I +∇d is the

deformation gradient, E = 1
2

(C − I) the Green-Lagrange strain tensor, and C = F T · F
the right Cauchy-Green deformation tensor. One of the simplest hyperelastic models is

the St. Venant-Kirchoff for a nonlinear, elastic, and isotropic material, which defines the

second Piola-Kirchoff stress as

S(d) = 2µsE + λstr (E) I, (4.4)

where µs =
Es

2(1 + νs)
and λs =

Esνs

(1 + νs)(1− 2νs)
are the Lamé coefficients given as

functions of the Young modulus Es and the Poisson ratio νs. Hence, the first Piola-

Kirchhoff stress tensor is computed from this last expression by contracting it with

F .

4.2.2.3 Fluid-Structure coupling

The coupling between fluid Ωf and solid Ωs domains can be done in several ways. The

preferred approach in this work is to use Neumann-Neumann conditions. It is explained

because the moving solid boundary randomly cuts the fluid mesh triggering the numerical

difficulty of prescribing Dirichlet conditions over the fluid nodes. Hence, those are imposed

weakly by adding terms to the discrete flow equations inside the fluid domain. At the

fluid-structure interface Γf−s the velocity of the fluid and solid coincide, while the tractions

must be equal and opposite:

α (u− us) = 0 on Γf−s, t ∈ (0, T ),

σf · nf + P (d) · ns = 0 on Γf−s, t ∈ (0, T ),
(4.5)

where us = ∂td is the velocity of the solid boundary, α is a penalization parameter, and

nf = −ns.

4.2.3 Numerical Strategy

The incompressible Navier-Stokes equations together with the hyperelasticity problem

presented before, portray as the mathematical model that is used to describe the complex

fluid-structure interaction problem that occurs during the seed’s flight. These equations
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are too complex that it is impossible to obtain an analytical solution for the transient

character of the flow involved in the aeroelastic setting. Numerical methods remain to be

the practical approach when one aims to approximate the solution of these equations.

4.2.3.1 Finite element approximation

The straightforward Galerkin approximation of the Navier-Stokes equation above presents

instability issues for convection dominant flows or when equal interpolating spaces are used

for the pressure and velocity variables, to what is referred to as the inf-sup condition. In this

work, the Variational Multi-Scale (VMS) finite element formulation of the incompressible

equations that has been studied in [150] is adopted. This globally stabilized finite

element method combines the possibility of describing complex geometries with high

order interpolations, and it is accurate in multi-physics applications. Another numerical

ingredient of this stabilized formulation is the weak imposition of no-slip boundary

conditions at the solid interface. This is motivated by the diffuse localization of the

interface with respect to the fixed fluid mesh nodes. In this line, the weak imposition

of the no-slip conditions for the fluid at the moving solid interface is achieved by means

of the Nitsche’s method. Nevertheless, bad cut elements at the interface (with a small

portion of fluid) need to be treated to avoid instabilities in highly convective flows. These

local instability issues are generated by the small support of their convection terms in the

stiffness matrix, therefore, the lack of control may lead to oscillations in the solution near

to the interface. To this end, the importance of stabilizing the Fluid FEM formulation for

the cut cells is related to the correct transfer of information between fluid and the solid

boundary. In the present work, the Ghost Penalty (GP) method [64] is adopted as a local

stabilization complement to the VMS stabilized fluid flow formulation, which is defined

by including some jump penalties acting on inter-element faces [151].

The design of the stabilization method leads to an accurate description of transient

incompressible flows. In particular, including the VMS global stabilization, the weak

imposition of no-slip boundary conditions through the Nitsche’s methods, and the local

stabilization of bad cut elements at the moving interface by the GP method lead to an

accurate fluid flow solver for fixed mesh methods. Algorithmically, stabilization parameters

for all the VMS, Nitsche, and GP methods have been taken from [113, 24].

In the case of the hyperelastic solid, the Galerkin method is applied straightforwardly in

the numerical solution of the solid problem. This method is capable of correctly describing

the solid deformations when the fluid tractions are prescribed on the solid boundary.

Since both the fluid and the solid problems are non-linear problems, a Newton numerical

scheme is adopted to solve each non-linear problem. An implicit second-order BDF scheme

for the fluid flow problem and the second-order central differential scheme for the solid

problem are used to discretize the time derivatives of those dynamical formulations.
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4.2.3.2 FSI treatment

In the discrete approach, an overlapped mesh method using two different meshes is

implemented, to what is referred as to multi mesh finite element methods. Especially,

the solid’s mesh overlaps arbitrarily the fluid’s elements at the background mesh (see

Figure 4.4). These two meshes together define the computational domain in which the

FSI problem is solved. In this work, the efficient computational geometry and algorithmic

approach of two and three-dimensional mesh-mesh intersections in FEniCS library [130]

are adopted. The implementation in FEniCs relies on efficient generation and traversal of

Axis-Aligned Bounding Box Trees (AABB trees). This methodology allows for low-level

operations for computing intersections of triangles and tetrahedra and generation of

quadrature points on cut cells.

Figure 4.4: Scheme for the overlapping meshes.

An implicit partitioned approach is used to integrate in time, such that the interface

coupling must balance between the fluid and the solid solutions at each time step.

As described in the preceding section, Neumann-Neumann coupling conditions are

implemented due to the impossibility of strongly defining the displacement conditions at

the interface. In this regard, a Picard’s scheme at each time step is adopted to deal with

the implicit coupling of the transfer conditions: at each Picard’s iteration, the fluid flow

is solved considering the weak imposition of no-slip conditions on the fluid elements next

to the interface. Also, the fluid flow solution is stabilized by the global VMS formulation

and the Ghost Penalty technique at the cut elements. Then, the fluid flow tractions

are prescribed to deform the solid domain. The iterative process advances until an FSI

coupling convergence criteria is satisfied. Then, the next time step is solved for both the

fluid and the solid problems.

Another FSI issue has to do with the inclusion of the fully covered fluid solution in the

stress computation near the interface. Hence, the present approach addresses this issue

by permanently updating the set of cut and covered fluid elements in the multi mesh

finite approach. In practice, this is done by recalculating the overlapping part of the

fluid mesh each time the solid mesh deforms and creating a sub mesh contained in the

background fluid mesh. Projections of fluid stresses from this space to the solid boundary
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is done by means of a L2−projection onto the solid finite space of stresses. This avoids

the transmission of overestimated stresses to the solid boundary, which may also cause

non-physical deformations in the solid domain.

Finally, the restoration of the deformed mesh in case of not satisfying the traction balance

at the interface at each Picard’s iteration is another key development of the present

methodology. This eliminates the possibility of overlapping consecutive mesh deformations

in the Picard’s iterative scheme, which would result in an overestimation and non-physical

results of the mesh strains. Also, care must be taken with the discrete fluid flow solution

at each guess solid deformation since it must be interpolated in the newly guessed active

fluid mesh after deforming the solid domain.

The previously exposed numerical strategies have been validated in several fluid-

structure interaction cases. The variational multi-scale finite element formulation of the

incompressible Navier-Stokes equations with the weak imposition of boundary conditions

has been presented in Chapter 2 and extended to the solution of fully FSI problems in

Chapter 3. The selected approaches for overcoming most of the numerical challenges

arising in the FSI problems are explained in detail in that last chapter.

4.3 Results

This section presents an in-depth analysis of the aerodynamics of the seed. First, an

aerodynamic characterization of the cross-section of the Triplaris Americana seed leaf is

presented and compared with other airfoils. Then, an analytical and stationary model

of the seed is described and applied using a classical theory to analyze rotational blades.

Finally, the two-dimensional FSI simulation using the overlapping meshes approach is

presented.

4.3.1 Aerodynamic characterization of the cross-sectional

profile of the Triplaris Americana leaf

The seed profile is characterized by solving a two-dimensional flow past the leaf. Figure

4.3 shows the simplified airfoil shape form the cross-section of the Triplaris leaf that is

used in this analysis. The computational domain Ωf is defined as a circular domain of

diameter D = 10c with the center of the simplified airfoil chord coinciding at the center

of the circular domain, as schematically shown in Figure 4.5. As boundary conditions of

the problem, the velocity inlet conditions for the left half of the circumference are known,

while σ ·n = 0 tractions are defined for the right half of the circumference, which is a free

boundary condition. In this first analysis, the flow is simulated using a single fixed mesh

for the fluid, such that no-slip boundary conditions are fixed strongly for the velocity at

the airfoil surface.

On average, the seed falls with a Reynolds number of 600, but the flow stream can impinge

on the airfoil at very different angles. Hence, several angles of attack α between [0◦, 40◦]
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Figure 4.5: Flow past the cross section of the Triplaris Americana seed leaf.

are simulated at this flow condition to characterize the airfoil performance. This transient

analysis of the continuous variation of the attack angle is achieved by modifying the

components of the inlet velocity through the simulation. Two seed airfoil shapes with

different edges are compared: one considers sharp leading and trailing edges, while the

second round up those edges. These two airfoil cases are selected because they represent

the extreme configurations that could naturally occur in the cross-section geometry of the

leaves of the seed. Note that the shape of the seed has been represented with rounded

edges in Figure 4.3.

Depending on the case, the meshes in these simulations are composed of around 34000

triangular elements, which are arranged in an unstructured fashion with a refinement

close to the surface of the airfoil. The time step is chosen to be δt = 0.1 s. The CD vs

α, CL vs α, and L/D vs α curves for these two profile configurations are presented in

Figure 4.6 for the Re = 600 condition. It can be observed that the foil with rounded

edges demonstrates a wider α range of high L/D ratios which makes it more efficient and

less susceptible to changes, especially in the α = [10◦, 25◦] range.

Moreover, to analyze the performance of these two geometries, they can be compared

against both a flat plate and the NACA4702 profile. Figure 4.7 shows the L/D ratio

curves for the 600 and 1000 Reynolds numbers, respectively. It can be seen that the

L/D ratio increases with the Reynolds in all cases, as it is expected. Also, that the

NACA4702 profile shows a slightly better performance than the seed foil with rounded

edges. However, the NACA4702 demonstrates a rapidly descending L/D curve in higher

α values. It is also observed that the efficiency seed profile does not improve as much as

that of the NACA4702 with the increase in Reynolds number, which shows that this seed

foil is specially adapted to work at very low Reynolds numbers. It is worth mentioning

that the oscillating behavior that appears on most curves for α > 20◦ can be explained by

the occurrence of stream vortices that are generated by the flow detachment on the upper
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Figure 4.6: Seed airfoil aerodynamic results at Re = 600 and different α attack angles:
(a) CD , (b) CL , and (c) L/D.
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Figure 4.7: Aerodynamic L/D results of different airfoils operating at several α attack
angles and (a) 600 and (b) 1000 Reynolds numbers.

airfoil surface.

4.3.2 Analytical model of the Triplaris seed flight

An analytical analysis of the flight of the seed can be performed by using a stationary

aerodynamic model known as the Blade Element Momentum Theory (BEMT). Although

new complex and semi-empirical analytical models have been developed to better predict

blade performance, BEMT remains a baseline wind turbine and propeller analysis method

due to its robustness and accurate estimation of the actual performance of the analyzed

geometry. The classical BEMT has been developed to analyze geometries which are

included in the same plane of rotation. However, due to the curvature of the Triplaris

Americana seed leaves, it is necessary to modify the classical BEMT and adopt the

novel version in [152] that allows conical blade geometries; the modified theory includes

a geometric parameter that defines the ψ angle between the planar disc and the conical

surface generated by the rotation of the deformed blade. In the present case, this φ angle

is used to describe the curvature of the leaves. One of the major limitations of BEMT is
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the inability to consider the three-dimensional effects that can underestimate the results,

as it will be discussed later.

In the classic analysis of momentum theory, rotational blades are idealized as an actuating

disk through which the free-stream velocity U∞ impinges with a decreased velocity at the

disk position UDisk. This condition is expressed as:

UDisk = U∞(1− a), (4.6)

where the axial induction factor a < 1 is the fraction of the decrease in wind speed between

the free-stream and the rotor plane. Additionally, when the wake rotation is included in

the momentum theory, a similar analogy for the modified angular impinging velocity of

the airflow at the rotating disk must be considered. Hence, the angular induction factor

a′ is introduced in the theory, which is defined as the ratio between the angular velocity

of the impinging flow stream and the angular velocity of the rotor Ω. Therefore, the

tangential velocity UT on the rotor position is calculated with:

UT = Ωr(1 + a′), (4.7)

where r is the local radius of a section of the blade. As the angular momentum theory is

applied together with the blade theory, the resulting methodology is called BEMT. The

BEMT divides each blade into i = 1, 2, ..., N sections of length li, where the mean section

is located at a radius ri from the rotor shaft. The stream velocities and exerted forces are

calculated in each section i, and then integrated over the entire blade to calculate the

rotor thrust and torque.

Indeed, the modified BEMT analysis in [152] which is suitable for non-planar actuating

disk geometries is applied here to analyze the Triplaris seed autorotation. In this sense,

Figure 4.8(a) shows a side view of the seed leaf that is segmented in different sections and

which includes the ψi angle defining the incidence of the free-stream flow over each section

of the leaf. The velocity UDisk can be divided into two components based on the ψi angle:

the normal component UN,i, and the radial component UR,i. The normal component of

velocity is the effective component of the free-stream velocity that is included in the

BEMT calculation on each section of the leaf.

For non-planar geometries, the normal and tangential velocities defined above must be

particularly considered in a separate balance. These are calculated at each section i by

means of the cosψi quantity:

UN,i = U∞(1− ai) cosψi, (4.8)

UT,i = riΩ(1 + a′i) cosψi, (4.9)

and the relative velocity Urel,i at each section i is defined as:

Urel,i =
√
U2
N,i + U2

T,i. (4.10)
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Figure 4.8: BEM leaf seed model: (a) segmentation in several blade sections, and (b)
velocity and force diagrams for a given radial leaf station.

In the same way, the inflow angle φi is defined with the normal and tangential velocities

by:

φi = tan−1

(
R

ri

(1− ai) cosψi
λ(1 + a′i)

)
, (4.11)

where λ is the tip speed ratio defined as ΩR/U∞, and R is total radius of the leaf. The

angle of attack αi can be computed from αi = φi − θi (see Figure 4.8(b) for a schematic

depiction), where θi is the pitch angle of each section.

Finally, the BEMT theory is only complete when the induction factors ai and a′i are

calculated in terms of the variables of the aerodynamic problem. By equating the thrust

expressions that can be obtained independently of blade theory and momentum theory by

balancing the energy of the system, an expression for the axial induction factor can be

defined as follows:

ai =
2Sw,i + Fi −

√
F 2
i + 4Sw,iFi(1− Fi)

2(Sw,i + F 2
i )

, (4.12)

where Fi < 1 is the tip loss factor and Sw,i is:

Sw,i =

(
σ′i
4

)
CT,i cosψi

2

sinφi
2 , (4.13)

σ′i is the local solidity of the seed, defined as Bci/2πri, B is the number of blades, ci the

mean chord, and CT,i is the local thrust coefficient that in this case is described by the
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Glauert model [153] as:

CT,i = 4ai

(
1− 1

2
(5− 3ai)aiFi

)
. (4.14)

On the other hand, the radial induction factor is computed from:

a′i =
c1

1− c1

, (4.15)

where c1 can be defined as:

c1 =

(
σ′i

4Fi

)
CQ,i

sinφi cosφi
, (4.16)

and CQ,i is the local forward force coefficient. To obtain the induction factors ai and a′i, a

fixed point method is used to solve the non-linear system of equations (4.8)-(4.16). The

forces in each section are then calculated and integrated in the rotor thrust and torque

analysis. Indeed, the thrust Ti and forward Qi forces for each section can be calculated

from:

Ti = qiCT,i = qi(CL,i cosφi + CD,i sinφi), (4.17)

Qi = qiCQ,i = qi(CL,i sinφi − CD,i cosφi), (4.18)

where qi = 1/2ρU2
rel,icili is the dynamic pressure in each section, and CL,i(αi) and CD,i(αi)

are, respectively, the lift and drag coefficients that are brought to this calculation directly

from the aerodynamic characterization of the leaf profile in Section 4.3.1.

Since the thrust Ti at each section is dependent on the ψ angle, only the parallel component

to the free-stream velocity contributes to the total thrust T :

T =
N∑
i=1

Ti cosψi. (4.19)

In the same way, the total torque Q is calculated by two terms:

Q =
N∑
i=1

Qiri + Ti
ci
4

sinψi, (4.20)

where the first term on the Right Hand Side (RHS) of the previous equation is the

summation of the torque at each i-th section (Qi force cross the radius ri), and the second

term is the torque due to the thrust generated by the curvature of the leaf. This torque

due to the thrust of the curvature is perpendicular component of Ti cross the distance from

airfoil pressure center to the middle of the airfoil (c/4). However, a sensibility analysis

based on the numerical results demonstrate that this last term can be neglected from the

formulation.
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The application of the BEMT analysis in the Triplaris Americana seed flight considers

the aerodynamic results of the seed foil with rounded edges from the previous section at a

Re = 600 and the geometric and kinematic data from Table 4.1. The chord distribution

is also taken from the three-dimensional model. However, there is not enough information

to completely define a reliable leaf curve regarding the pitch angle distribution.

To study the rotation of the seed, three cases are simulated using the BEMT approach.

The first type of case fixes the pitch angle θi = 3 at all sections. The second case aims

to obtain a maximum L/D ratio at each section of the leaf by finding the αi angle of

attack which maximizes this effect. The third case considers a straight blade shape as the

baseline blade performance, again using a pitch angle distribution that guarantees the

maximum L/D ratio in each section and keeping the same chord distribution through the

leaf to make the solidity σ′ comparable for all geometries. It is worth mentioning that

the first type of configuration could agree to the experimental one since very pronounced

pitch angles are not noticed from visual inspection. The third case is intended to evaluate

the performance of the curved geometry concerning conventional blade shapes. All inputs

were taken from Table 4.1.

The numerical results of the total thrust, total torque, thrust coefficient, and power

coefficient are listed in Table 4.2 for all geometries. Also, the results of all cases

are presented in Figure 4.9. The pitch angle θ across the leaf span r/R for all three

configurations is presented in Figure 4.9(a). This plot shows the increasing difference

between the planar and the curved geometries as they approach the root of the blade due

to the gaps in the ψ angles between the cases. Also, the local thrust coefficient CT,i is

plotted through the leaf span r/R in Figure 4.9(b), where it is observed that the curved

leaf with constant pitch obtains the greatest performance. This is confirmed with the

results in Table 4.2, where this geometry demonstrates the maximum thrust. However, it is

also noted that the power coefficient CP for the curved geometry with optimal θ is greater

than that of the curved geometry with constant θ. This is understood from the great

angles of attack present in the curved geometry with constant θ, which produce greater

lift and drag forces than the other geometries. This can be noted in Figure 4.9(c)-(d),

where the Lift and Drag forces are plot against the leaf span r/R, respectively. Finally, it

can be observed in all cases that the drag is proportionally greater than the lift, therefore

generating lower L/D values. This leads to a greater thrust driven mainly by the larger

drag force.

Table 4.2: Thrust, torque and coefficients for the different configurations.

Geometry Thrust Torque CT CP
(N × 10−4) (N ·m× 10−7)

Curved blade with θ = 3 5.5555 0.6782 0.0202 0.0089

Curved blade with optimal θ 4.9214 1.1986 0.0179 0.0158

Planar blade with optimal θ 4.9987 3.0879 0.0182 0.0408

From Table 4.1 it is expected that at a falling speed U∞ = 1.13m/s the thrust becomes

equal to the gravity force Fg, and therefore they balance giving zero acceleration T+Fg = 0.
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Figure 4.9: Pitch angle θ (a), local thrust coefficient CTLocal (b), lift coefficient CL, and
drag coefficient CD against r/R for the three geometries evaluated.

This falling velocity is similar to that reported in [154]. Therefore, taking the mass of the

seed as m = 0.08 g (from Table 4.1) and the gravity equal to g = 9.81 m/s, the weight

results in Fg = 7.8× 10−4 N. It is observed that this value is of the same magnitude as the

thrust generated by any geometry in Table 4.2. however, it is almost twice as much as any

of them. Therefore, zero acceleration is not reached for this falling velocity. If the curved

blade with θ = 3 is evaluated through a manual iterative process keeping the tip speed

ratio λ constant, it is found that the seed reaches the equilibrium of forces at a velocity of

approximately 1.34 m/s. However, this value is somewhat above the expected velocity.

Note that the BEMT thrust is function of the CLi and CDi and therefore, are below the

values needed to reach the equilibrium of forces at U∞ = 1.13m/s. This can be due to the

fact that a two-dimensional analysis of the cross leaf profile performance underestimates

these coefficients, especially the CLi . The fully three-dimensional characterization of the

seed leaf would be necessary to obtain the auto-rotating flight phenomena that is involved

in the Triplaris Americana fall from the mother tree.

Surfaces that can generate very high lift coefficients constitute a particular phenomenon

restricted to low Reynolds numbers. There are reports of this behavior in auto-rotating

seeds [80, 155], insects [156], birds [157], and others. In all those cases there is a magnifying

effect of the lifting force called Leading Edge Vortex (LEV), which is a stable vortex

generated on the upper surface of the leading edge at high angles of attack. This effect

has been understood as a vortex that delays the flow detachment, but it has been also
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described as a zone of lower pressure that increases the lifting force [158]. The main

characteristic of the LEV is that the flow should separate after passing the LEV when

there are high angles of attack, but, it has been demonstrated that it reattaches to the

profile. Note, however, that the LEV is a phenomenon that can not be described by

the simplified BEMT and two-dimensional profile characterization analysis. Hence, one

can consider the radial flow in the BEMT analysis as a future improvement of the seed

flight description using this approach. It has been described in [159] that the radial flow

can be related to the delay of the flow separation, and the present findings support that

affirmation. Finally, a three-dimensional numerical simulation is required to make an

accurate prediction of the forces and fluid flow phenomena involved in the auto-rotating

flight of the seed.

4.3.3 Two-dimensional FSI analysis of the flight of the Triplaris

seed

Finally, the most interesting case is the complete interaction between the deformable seed

and the wind flow around its fall. In this last example, the FSI analysis of the seed is

achieved using the numerical methodology in Section 4.2. Three different problems are

solved to analyze the flight of the seed. The first is a two-dimensional simulation of the

cross-section of the seed when observed from its top. The second case is a two-dimensional

simulation of the cross-sectional area of the root of the seed. In these first two simulations,

a constant rotation velocity is prescribed over the seed. The third case is a fully-coupled

FSI simulation of the cross-section of the seed when observed from its top. This last

two-dimensional simulation allows both the seed displacement and deformation as the

result of its interaction with the fluid flow. In all these cases, the fluid is considered to

be air. Hence, the fluid density is set to ρf = 1.0 kg/m3 and the dynamic viscosity to

µf = 1.789× 10−5 Kg/(m·s).

4.3.3.1 Top view and root cross-sectional view of the seed

The two fixed rotation cases are evaluated at the time instant of the flight when the seed

has reached the constant falling speed, and therefore a constant angular velocity can

be prescribed to the seed. These two-dimensional analyses are focused on the angular

effect of the flow in the seed rotation. Therefore, any axial phenomenon on the seed has

to be necessarily neglected from this analysis. The problem settings for both the top

view and root cross-sectional cases are shown in Figure 4.10. Circular fluid domains are

implemented for both simulations, considering an external diameter of DT = 0.1 m for

the top view case and DR = 0.012 m for the root cross-sectional case. Unstructured

meshes composed of 42941 triangular elements for the top view case and 82964 for the

root case are used. As boundary conditions, a null velocity u = 0 and pressure p = 0

conditions are prescribed at the outer boundary of the fluid domain, while a constant

rotational velocity ω = 1322 RPM is imposed over the immersed object together with the
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Figure 4.10: Fixed rotation schemes for: (a) the top view and (b) the root cross-section
of the Triplaris Americana seed cases.

corresponding non-slip condition over the fluid velocity at the seed surface. Both case are

simulated during a total simulation time of T = 1.0 s using a time step of δt = 0.001 s.

The Nitsche parameters are set to s1 = 1000 and s2 = 500, while the cut stabilization

parameters are sG = 1.0, su = 1.0, and sp = 0.1. Figures 4.11 and 4.12 demonstrate

the top view and the root cross-sectional numerical results, respectively. These figures

show the velocity and pressure contours of the flow at different instants of the rotation.

In the case of the top view case, the flow past the leaves shows a fully transient effect

due to the continuous interaction between the moving leaves and the precedent detached

wakes. On the other hand, a pseudo-stationary state of the flow around the interface

can be noticed for the root case. As pointed out in the BEMT analysis, the root area

barely contributes to the self-rotation of the seed. However, the present fluid flow results

show that this part may provide angular momentum to the flow that can be harnessed by

further radial sections, allowing the seed to rotate more freely. Hypothetically, it may also

be the beginning of the transition zone that produces disturbances allowing the rotation.

A fully three-dimensional simulation is suggested to investigate this flow pattern.

4.3.3.2 Fully-coupled FSI simulation of the top view of the seed

The last simulation is the fully-coupled 2-way FSI analysis of the top view of the seed. In

this case, the seed is represented as a hyperelastic solid, which is free to move and deform

as the result of its interaction with the surrounding fluid flow. The problem is modeled as

a two-dimensional rectangular domain Ω = [0, L] × [0, H] = [0, 1.0]m ×[0, 0.5] m, with

the seed located at [cx, cy] = [0.2, 0.25] m at t = 0 s (see Figure 4.13). No-slip boundary

conditions are set for the upper and lower walls, as well as for the seed surface. In the

case of the inlet face (left-most wall), there is a parabolic horizontal velocity profile with

a mean velocity of u1 = 1.0 m/s. Three cases with different initial angular positions are

evaluated (0o, 45o, and 90o), which allow us to analyze the rotational effect of the seed

in the fluid flow. All cases are simulated using a single unstructured mesh composed of

23338 triangular elements. The simulations are solved for a total time of T = 3.0 s using
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(a) 0.01 s (b) 0.10 s (c) 0.20 s (d) 0.50 s

(e) 0.01 s (f) 0.10 s (g) 0.20 s (h) 0.50 s

Figure 4.11: Flow results of the seed top view fixed rotation: (Top) velocity magnitude
contours, and (Bottom) pressure contours at different time instants.

a time step of δt = 0.01 s. The Nitsche parameters are set to s1 = 1000 and s2 = 500,

while the cut stabilization parameters are sG = 1.0, su = 1.0, and sp = 0.1.

Figure 4.14 and 4.15 show the contours for the velocity magnitude and pressure results,

respectively, for the three different seed starting positions at different times. The seed

displacement due to the fluid flow drag can be observed in those figures, where a rectangular

grid is printed on the contours to allow the visualization of the movement of the seed in

the different instants of time. Transient response in the flow past the seed is obtained in

all cases: great vortex detachments are present for the (45o) and (90o) initial positions.

Hence, the beginning of rotation is related to the generation of downstream vortices.

Especially, to the skew-symmetric condition of the vortex production in the (45o) and

(90o) initial positions. On the contrary, only the seed displacement (with the smallest

rotation) is obtained for the (0o) initial position. Also, a slight deformation of the seed

leaves can be appreciated as the seed is dragged downstream. But a spurious effect is

observed when the seed rotates: a volume loss in the seed happens gradually through

the rotation phenomena. That has been especially the case for the (45o) position, for

which relevant rotation of the seed is obtained. This volume loss is not physical, but it is

related to the discrete information transfer between consecutive deformation solutions

of the overlapping solid inside the fluid flow. This issue has been encountered for the

discrete numerical approach, and it is expected to be corrected soon. The effect of rotation
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(a) 0.01 s (b) 0.10 s (c) 0.20 s (d) 0.50 s

(e) 0.01 s (f) 0.10 s (g) 0.20 s (h) 0.50 s

Figure 4.12: Flow results of the root cross-section fixed rotation: (Top) velocity
magnitude contours, and (Bottom) pressure contours at different time instants.

on the seed volume can be corroborated in Figures 4.16(a)-(b), where the displacement

and rotation of the three configurations are plotted, showing that the more rotation the

greater the seed volume loss. Furthermore, it can be seen that the greater the rotation

the smaller the displacement. That is explained by the solid rotation theory, where the

available kinetic energy in the fluid flow is mostly transformed into rotational energy in the

seed. Displacements through time in x and y directions are shown in Figures 4.16(c)-(d).

Besides, Figures 4.16(e)-(f) show the forces on the seed in x and y directions, where it is

noted the 0o configuration barely rotates because its initial position generates symmetrical

forces in the y direction in the first two seconds. The other two configurations show more

unbalanced forces in this direction caused by the vortex generation past the cross-flow

blades.

4.4 Conclusions

In this chapter, the computational FSI framework that has been presented through this

thesis has been applied in the description of the auto-rotation of the Triplaris Americana

seed. The methodology is composed of a stabilized FEM approximation for both the

incompressible Navier-Stokes equations and the non-linear hyperelastic solid equations. It

solves implicitly the fluid-solid coupling condition at the interface through a Picard’s scheme
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Figure 4.13: Scheme for the fully-coupled FSI simulation of the top view of the Triplaris
Americana seed.

over multi-mesh methods. The work has exploited the two-dimensional capabilities of the

numerical strategy since the full three-dimensional framework is still under algorithmic

development. In that sense, several conclusions of the fluid flow interaction with the seed

during its flight have been achieved using purely two-dimensional cases.

At first, a two-dimensional characterization of the cross profile of the Triplaris Americana

leaf has demonstrated improved aerodynamic performance in terms of the lift and drag

coefficients for the low Reynolds numbers involved in the seed flight. The good performance

of the cross-sectional airfoil of the Triplaris leaves allows it to be used for industrial

applications such as Micro Aerial Vehicles (MAV). Additionally, the results of an improved

BEMT analysis for non-planar actuator disks concludes that the aerodynamics of the seed

are consistent with experimental tests. However, three-dimensional transient phenomena

cannot be capture by this analytical model or by two-dimensional profile characterization

analysis.

Furthermore, when applying the full FSI methodology to the two-dimensional interaction

of the seed cross-sections, results demonstrate that the methodology is suitable for

describing the active rotation of the seed and the flow around it. Large displacements and

deformations are described as a result of the overlapping meshes strategy. Specifically,

the auto-rotation of the Triplaris Americana seed has been tested using two different

cross-sections of the seed, where it has been demonstrated the complex behavior of the

flow around its shape during flight. Additionally, a fully-coupled FSI simulation is used to

represent the displacement and rotation of the seed in the fluid flow. The methodology has

shown the capacity to represent these phenomena, but it becomes mandatory to achieve

three-dimensional analysis to make a complete description of the seed flight mechanisms.

Therefore, given the current limitations of the code to work with overlapping meshes in

three dimensions, future work is proposed to perform a full coupling FSI simulation in

three dimensions of the seed with conforming mesh methods and dynamic meshes using

non-inertial frames.
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0o

45o

90o

(a) t = 1 s (b) t = 2 s (c) t = 3 s

Figure 4.14: Contours of velocity magnitude results at different time instants (1s, 2s,
and 3s) for the different initial positions (0o, 45o, and 90o) of the seed.
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0o

45o

90o

(a) t = 1 s (b) t = 2 s (c) t = 3 s

Figure 4.15: Contours of pressure results at different time instants (1s, 2s, and 3s) for
the different initial positions (0o, 45o, and 90o) of the seed.
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Figure 4.16: Integral results of the fully-coupled FSI simulation of the top view of the
seed: (a) x − y displacements phase diagram, (b) rotation angle through time t, (c) x
and (d) y displacements, and, (e) x and (f) y forces on the seed for the different initial
configurations..
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5 Conclusion

5.1 Achievements

The main objective of this thesis has been to develop an approach to solving Fluid-Structure

Interaction problems. Specifically, it has been used in the solution of aerodynamic cases

involving Newtonian and incompressible fluid flows interacting with largely displaced

and/or deformed solids.

In the first part of this thesis, the instability problems associated with the Galerkin

formulation of the fluid flow equations have been addressed. The numerical approximation

of the incompressible Navier-Stokes has been achieved by adopting the Variational Multi-

Scale (VMS) framework and defining the sub-scales as both Algebraic (ASGS) and

Orthogonal (OSGS). This development has been presented in Chapter 2, together with

some other necessary numerical ingredients. The first has been the weak prescription of

essential conditions in the immersed boundary of the fluid flow employing the Nitsche’s

method. Also, the tracking of the immersed interface has been ruled by the Level-Set

method for simply-shaped objects, while a mesh that overlaps the fluid mesh has been used

for complex geometries. In this regard, a sub-triangle technique has been implemented

to perform the numerical integration of the cut elements near the moving interface. But

the instabilities generated by the bad cuts need to be locally stabilized. Hence, the local

control of the fluid flow solution near the interface has been granted by including the Ghost

Penalty method with Orthogonal Projections (GPOP) into the fluid discrete formulation.

The inclusion of alternative definitions for the algorithmic parameters of the Nitsche and

GPOP methods has been a fundamental contribution of this first part of the thesis: the

use of αβ−1 and γ1β
−1 parameters work as a cut cell sensor that demonstrated improved

performance of the numerical accuracy provided by the method. This novel definition of

the algorithmic parameters has demonstrated optimal behavior for manufactured solution

problems when the weak imposition of the Dirichlet boundary conditions has been tested.

Also, the ability to simulate real engineering problems of the present formulation has been

granted: from the widely tested transient flow past a cylinder to the complex cases of

continuously moving obstacles in a channel flow.

Chapter 3 has been devoted to the solution of the fully-coupled 2-way Fluid-Structure

Interaction (FSI) problem by applying the stabilized numerical methodology described

before. The main objective has been to describe the interaction between an immersed

hyperelastic solid object and the encompassing fluid flow. Hence, the discrete coupled

formulation of the incompressible flow and the hyperelastic solid has been developed in that

chapter. The numerical ingredients of the FSI strategy have included the computational

methodology to deal with the multiple finite element meshes representing the fluid and

solid domains, the projection of the fluid tractions onto the solid boundary, and the

algorithmic approach for the solid displacements in the fluid flow. Several applications

are simulated, some of which make use of a simplified rigid body motion scheme for the

simulation of embedded bodies. In this sense, the third chapter has been mainly dedicated
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to the simulation of applied engineering cases, including the 2-way FSI Turek and the

flow past moving cylinders. It has been also devoted to the analysis of the aerodynamic

performance of flapping foils.

Chapter 4 has presented the aerodynamic simulation and characterization of the auto-

rotating Triplaris Americana seed applying the complete methodology that was presented

in the previous chapters. The work has exploited the two-dimensional capabilities of the

numerical strategy since the full three-dimensional framework is still under algorithmic

development. In that sense, several conclusions of the fluid flow interaction with the

seed during its flight have been achieved using purely two-dimensional cases. First, the

two-dimensional characterization of the cross profile of the Triplaris Americana and the

improved BEMT analysis for non-planar actuator disks representing the leaves have been

used to evaluate its aerodynamic performance. In this sense, the transient analysis of the

aerodynamic performance of the cross-section of the Triplaris leaf has been carried out

and compared with other low Reynolds airfoils to demonstrate the improved efficiency.

Indeed, numerical simulations demonstrated the superior performance of this geometry,

which allows it to be used in industrial applications such as Micro Aerial Vehicles (MAV).

Two-dimensional simulations have also been performed to visualize the flow around the

seed when it rotates at a constant speed. Two cases have been evaluated: a top view of

the seed and a cross-sectional view of the root of the seed. Finally, the fully-coupled 2-way

FSI methodology is applied to the interesting case of the two-dimensional displacement,

deformation, and rotation of the top view of the seed. This case emulates the drag of the

seed by the airflow, showing the capacity of the proposed methodology to solve the main

motivation of the present thesis.

5.2 Future works

The development of the thesis has brought several ideas that can be addressed in the

future.

• The most important issue to be tackled is the three-dimensional extension of the

algorithmic approach that has been presented in the thesis. Especially, regarding

the colliding schemes between multiple meshes composed by tetrahedra. That

will become the major tool development to analyze the complex aerodynamics of

immersed elastic bodies producing lift.

• One foregoing work in the mathematical formulation of the method is a deeper

study of the added algorithmic parameters of the Nitsche and Ghost Penalty with

Orthogonal Projection (GPOP), αβ−1 and γ1β
−1. These parameters can still be

improved.

This is explained by the asymptotic behavior of the error convergence against the

mesh size. A detailed mathematical analysis is needed to understand the boundedness

and symmetry of these new terms in the well-known global stabilized formulation

arising from the VMS framework.
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• Another task is the evaluation of alternative methods to the Nitsche’s Method for the

weak imposition that may not need user-defined parameters, especially the Linked

Lagrange method or the Nitsche non-symmetric method without penalty parameters.

That will simplify the proposed methodology and will allow the adjustment of

GPOP parameters only making the developed code to be a front-end software for

computational engineers.

• To improve accuracy at the interface, another task would be the inclusion of adaptive

mesh methods. Some automatic and dynamic mesh refinement strategies or the

local inclusion of higher interpolation order near the interface can greatly improve

the computational methodology. Additionally, linear elements have been a valid

approximation to build the present method. However, the precision at the interface

must be upgraded to simulate real applied cases.

• In the same line, the variational subscales can be used as error estimators for the

adaptive mesh refinement. Including the subscales at the edges of the element in

the variational formulation may be the way to accurately estimate the finite element

error at each fluid element.

• The volume loss encountered in the rotation of the solid bodies must be corrected.

Since this loss is related to the discrete information transfer between consecutive

deformation solutions of the overlapping solid inside the fluid flow, the work must

be focused on debugging the discrete numerical approach of the solid temporal

integration.

• For a better analysis of the results, more post-processing tools need to be implemented

in the algorithm to address the calculation of variables such as the torque, which

is necessary for the aeroelastic applications. For instance, in the calculation of the

wind turbine power coefficient or the flapping foil pitching moment.

• The computational study of several flapping foil systems arise as possible direct

applications and technology developments from the present thesis. For instance,

the energy harvesting systems with flexible trailing edge flapping airfoils need to be

detailed. Another problem set can be the three-dimensional analysis of the flapping

foil system, for which less simplifying conditions may lead to better descriptions of

this technology. The flapping foil systems in propulsion applications are technologies

that can be studied straightforwardly with the present developments. Lastly, the

performance analysis of the flapping foils when these are allowed to move freely in

the channel flow must also be quickly addressed.

• Indeed, scaling the proposed methodology to three-dimensions is mandatory for

evaluating more complex seed rotation problems. As commented before, the Triplaris

Samara flight can not be represented by simplified analytical models or the two-

dimensional analysis and must be deeper investigated by using the three-dimensional

setting. In this sense it is also proposed to perform a full three-dimensional FSI

simulation of the seed with conforming mesh methods and dynamic meshes using

non-inertial frames, which are technologies that are available and can be relatively
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easy to implement.

• Once the Triplaris Samara flight is represented, the same developments can be used

to different rotational geometries that increase the description complexity of the

solid material deformation: the description of complex structures such as composite

materials (of which wind turbine blades are usually made) becomes mandatory in

the technological transfer of this thesis to the aeronautic industry.
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