
DEVELOPMENT OF A COOPERATIVE RANGE-BASED

UNDERWATER NAVIGATION SYSTEM

SANTIAGO RÚA PÉREZ

UNIVERSIDAD PONTIFICIA BOLIVARIANA

ESCUELA DE INGENIERÍAS

DOCTORADO EN INGENIERÍA

MEDELLÍN

2020



DEVELOPMENT OF A COOPERATIVE RANGE-BASED

UNDERWATER NAVIGATION SYSTEM

SANTIAGO RÚA PÉREZ

Dissertation presented to the School of Engineering in partial ful�llment of

the requirements for the degree of PhD in Engineering (Doctor en

Ingeniería)

Advisor

Rafael Esteban Vásquez Moncayo, Ph.D.

Antonio Manuel dos Santos Pascoal, Ph.D.

UNIVERSIDAD PONTIFICIA BOLIVARIANA

ESCUELA DE INGENIERÍAS

DOCTORADO EN INGENIERÍA

MEDELLÍN

2020



Medellín, May 26, 2020

Nota de aceptación

Firma

Nombre:

Presidente del jurado

Firma

Nombre:

Jurado

Firma

Nombre:

Jurado



DECLARACIÓN DE ORIGINALIDAD

�Declaro que esta tesis (o trabajo de grado) no ha sido presentada para optar a un

título, ya sea en igual forma o con variaciones, en ésta o cualquier otra universidad�.

Art. 82 Régimen Discente de Formación Avanzada, Universidad Ponti�cia Bolivariana.

Firma Autor:



This thesis is dedicated to my beloved MGC.



ACKNOWLEDGMENTS

First of all, I would like to thank the two people who introduced me to the world

of underwater robotics, my advisor Rafael Vásquez, and professor Carlos Alejandro

Zuluaga. This trip started when they hired me 6 years ago as a professional associated

with the underwater robotics program, allowing me to complete my master's thesis and

then to continue with my PhD. If I hadn't accepted this o�er so many years ago, I

probably wouldn't be delivering my thesis on these topics today.

I would like to say thanks to my advisor Rafael Vásquez for guiding me both in the

development of my master's degree and in generating the motivation to continue with

the development and completion of my PhD. Additionally, I want to thank all the

professors and students associated with the underwater robotics program because from

each one I have learned something important for my professional development.

During the development of my PhD, I participated in an international internship at the

Instituto Superior Técnico de Lisboa, speci�cally I was at the Laboratory of Robotics

and Engineering Systems LARSyS. I want to thank my advisor Antonio for receiving

me and introducing me to the topic on which my thesis is based. Thank you very much

for everything, I have learned so much in the short time I was there. Additionally, I

met great people like Nandeesh, Hung Tuan, Francisco Rego, Vahid Hassani, and my

great friend Naveen. Thank you very much Naveen for having the patience to teach me

and explain so much about observability; I really learned a lot during my stay.

I also want to thank my family for the unconditional support I had during the devel-

opment of my doctoral studies.

Finally, but not least, the love of my life Manuela Gamboa. She motivated me to start

this path and supported me during all phases of it. During the most stressful moments,

you were always there, encouraging me to �nish and move it forward. I think it would

not have been possible without you.



This thesis has been developed with the �nancing of Colciencias through the call for

national doctorates 647 of 2015. Additionally, some parts of the research related to this

work were funded by the Fondo Nacional de Financiamiento para la Ciencia, la Tec-

nología y la Innovación, Francisco José de Caldas; Ecopetrol; the Universidad Ponti�cia

Bolivariana; and the Universidad Nacional de Colombia; project 1210-531-30550.



CONTENTS

Pág.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4. Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5. Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. Observability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Vehicle motion without ocean current . . . . . . . . . . . . . . . . . . 32

2.2.2. Vehicle motion with ocean current . . . . . . . . . . . . . . . . . . . . 33

2.2.3. Beacon Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4. Observability De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5. Observability analysis without ocean current . . . . . . . . . . . . . . . . 39

2.5.1. Vehicle moving in circles . . . . . . . . . . . . . . . . . . . . . . . . . . 45



2.5.2. Vehicle moving in straight lines . . . . . . . . . . . . . . . . . . . . . . 49

2.5.3. Vehicle does not move . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5.4. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6. Observability analysis with ocean current . . . . . . . . . . . . . . . . . 60

2.6.1. Vehicle moving in circles . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.2. Vehicle moving in straight lines . . . . . . . . . . . . . . . . . . . . . . 67

2.6.3. Vehicle does not move . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6.4. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3. Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2. Extended Kalman Filter considering ocean currents . . . . . . . . . . . . 76

3.3. Exogenous Kalman Filter taking into account ocean currents . . . . . . . 84

3.3.1. Linear Quadratic Estimator for the state augmented system . . . . . . 85

3.3.2. Inverse state transformation . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.3. Linearized Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.4. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4. Optimal trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2. Process and measurement model . . . . . . . . . . . . . . . . . . . . . . 97



4.3. Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4. Unconstrained Trajectory Optimization . . . . . . . . . . . . . . . . . . 99

4.5. Constrained Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 104

4.5.1. Problem 1 - Vehicle and Beacon help to improve observability . . . . . 104

4.5.2. Problem 2 - Beacon helps to improve observability . . . . . . . . . . . 108

4.5.3. Problem 3 - Best constant rotation for the beacon . . . . . . . . . . . 111

4.5.4. Problem 4 - Energy Cost Function . . . . . . . . . . . . . . . . . . . . 113

4.6. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A. Further observability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1. State Augmentation without taking into account ocean currents . . . . . 119

A.2. Observability analysis when the vehicle and the beacon does not move

(without ocean current) . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3. Complements to the proof of Proposition 5 . . . . . . . . . . . . . . . . . 123

A.4. State Augmentation without taking into account ocean currents . . . . . 124

B. Observer design without taking into account ocean currents . . . . . . . . 128

B.1. Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2. Exogenous Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 134



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



LIST OF FIGURES

Pág.

1 Navigation, guidance, and control structure . . . . . . . . . . . . . . . . . 21

2 Setup con�guration in 2D space . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Manipulator arm with the beacon at the tip . . . . . . . . . . . . . . . . . 34

4 Illustration of the proposed setup with the vehicle and the beacon . . . . . 36

5 Observability analysis procedure for the underwater navigation system . . 40

6 Geometric interpretation of indistinguishable initial conditions for the

VCBN condition without taking into account ocean currents. . . . . . . . . 49

7 Simulation results for two di�erent initial conditions in VCBN scenario with-

out taking into account ocean currents. . . . . . . . . . . . . . . . . . . . . 58

8 Simulation results for two di�erent initial conditions in VLBN scenario with-

out taking into account ocean currents. . . . . . . . . . . . . . . . . . . . . 59

9 Simulation results for a combination of trajectories without taking into ac-

count ocean currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 Simulation results for two di�erent initial conditions in VCBN scenario and

taking into account ocean currents. . . . . . . . . . . . . . . . . . . . . . . 73

11 Simulation results for a combination of trajectories and taking into account

ocean currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

12 Histogram of the steady state MAE for EKF simulation taking into account

ocean currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



13 Histogram of ISE for EKF simulation taking into account ocean currents. . 81

14 Vehicle's trajectory and its estimation for the EKF . . . . . . . . . . . . . 81

15 Norm of the estimation errors for the EKF . . . . . . . . . . . . . . . . . . 82

16 Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

17 Norm of the estimation errors for a simulation that within the CI using the

EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

18 Observer design methodoloy based on XKF . . . . . . . . . . . . . . . . . 85

19 Observer interconnections diagram . . . . . . . . . . . . . . . . . . . . . . 90

20 Histogram of the steady state MAE for XKF simulation taking into account

ocean currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

21 Histogram of ISE for XKF simulation taking into account ocean currents. . 92

22 Vehicle's trajectory and its estimation for the XKF . . . . . . . . . . . . . 93

23 Norm of the estimation errors for the XKF . . . . . . . . . . . . . . . . . . 93

24 Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

25 Norm of the estimation errors for a simulation that within the CI using the

EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

26 Histogram comparison of ISE and MAE for both observers . . . . . . . . . 96

27 Vehicle's trajectory optimal solution for problem one and all four scenarios. 106

28 Beacon's trajectory optimal solution for problem one and all four scenarios. 107

29 Optimal solution for problem one and all four scenarios. . . . . . . . . . . 108

30 Vehicle's trajectory for the second problem. . . . . . . . . . . . . . . . . . 109



31 Beacon's trajectory optimal solution for the second problem . . . . . . . . 110

32 Optimal solution for the second problem. . . . . . . . . . . . . . . . . . . . 110

33 Beacon's trajectory optimal solution for the third problem . . . . . . . . . 111

34 Optimal solution for the third problem. . . . . . . . . . . . . . . . . . . . . 112

35 Cost Function plot for constant beacon's angular velocity and di�erent ve-

hicle's speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

36 Pareto front for the multi-objective optimization problem . . . . . . . . . . 114

37 Geometric interpretation of indistinguishable initial conditions in the case

that neither the vehicle nor the beacon are moving. . . . . . . . . . . . . . 122

38 Histogram of the steady-state MAE for EKF simulation without ocean cur-

rents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

39 Histogram of ISE for EKF simulation without taking into account ocean

currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

40 Vehicle's trajectory and its estimation for the EKF . . . . . . . . . . . . . 132

41 Norm of the estimation errors for the EKF . . . . . . . . . . . . . . . . . . 132

42 Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

43 Norm of the estimation errors for a simulation that within the CI using the

EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

44 Histogram of the steady state MAE for XKF simulation without taking into

account ocean currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

45 Histogram of ISE for XKF simulation without taking into account ocean

currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

46 Vehicle's trajectory and its estimation for the XKF . . . . . . . . . . . . . 138



47 Norm of the estimation errors for the XKF . . . . . . . . . . . . . . . . . . 139

48 Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the XKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

49 Norm of the estimation errors for a simulation that within the CI using the

XKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



LIST OF TABLES

Pág.

1 Simulation parameters (model with ocean currents) . . . . . . . . . . . . . 79

2 Simulation scenarios for Problem 1 . . . . . . . . . . . . . . . . . . . . . . 105

3 Simulation parameters (without ocean currents) . . . . . . . . . . . . . . . 129



NOMENCLATURE

Bv(t) Linear velocity of the vehicle w.r.t {I}, and expressed in {B}
η Orientation of the vehicle

χ Angular position of the manipulator
Ib(t) Position of the beacon
Id(t) Range vector from the beacon to vehicle
Ip(t) Position of the vehicle w.r.t inertial frame
Ivc(t) Ocean current w.r.t {I}
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I
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ASV Autonomous Surface Vehicle
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EKF Extended Kalman Filter

FIM Fisher Information Matrix
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ISE Integral of the Square Error

LBL Long Base-Line
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VCBN Vehicle moving in Circles, and the Beacon does Not move

VCBR Vehicle moving in Circles, and the Beacon Rotating

VLBN Vehicle moving in straight Lines, and the Beacon does Not move

VLBR Vehicle moving in straight Lines, and the Beacon Rotating

VNBN Neither Vehicle nor the beacon Move

VNBR Vehicle does Not move, and the Beacon Rotating

XKF eXogenous Kalman Filter



ABSTRACT

The motivation for improving underwater navigation systems arises from the need to

increase the quality of the estimation of position, velocity and orientation of the vehicle.

The development of an underwater navigation system is not trivial since traditional

methods used for aerial, ground or water surface vehicles, that rely on satellite systems,

cannot be used underwater. Therefore, a lot of e�ort has been made during the last

decades to develop new methodologies to locate an underwater vehicle by using acoustic

positioning systems. Within these acoustic systems, underwater navigation based on

single-range measurements has appeared as a less expensive solution, which is simple to

calibrate, deploy and recover. However, the implementation of such navigation systems

require caution when a �lter to estimate the position is developed, since it su�ers from

observability issues under certain scenarios.

This work addresses the development of a new methodology for the navigation system of

an underwater vehicle based on single beacon measurements. By moving a cooperative

mobile beacon attached under the surface vessel or platform, the system will be able to

estimate the position of the vehicle. In order to achieve this, a model that describes the

relative motion between the vehicle and the beacon is de�ned �rst, and then, observ-

ability conditions for the system are established. We de�ne three types of maneuvers

for the vehicle: moving in circles, straight lines, and without any motion. We found

that, knowing beacon's initial position, it was possible to ensure observability for the

vehicle's maneuvers. Additionally, in the worst case scenario, where neither the beacon

or vehicle's initial positions are known, we found that the system is not observable just

in the case when the vehicle remains in the same position.

Once these conditions are known, two state observers are implemented: an Extended

Kalman Filter and the Exogenous Kalman Filter. We evaluated both observers by

running Monte Carlo simulations. We used two metrics to evaluate the performance:

the Mean Absolute Error and the Integral of the Square of the Error. Both observers

presented good performance, but we prove global convergence for the XKF.



Finally, knowing which trajectories are better to increase the accuracy of the position

estimation, a trajectory planner is implemented. We used the Fisher Information Ma-

trix to de�ne an index to be optimized in order to increase the accuracy in the state

estimation. All the observability analyses and the estimation of the position are devel-

oped from a theoretical point of view and validated through simulations in Matlab.

KEYWORDS:

Marine system navigation, guidance and control; underwater navigation; single-range

navigation; cooperative mobile beacon; observability.



1. INTRODUCTION

O�shore exploration requires highly reliable and precise systems in order to guarantee

safety of people and ecosystems; such exploration systems allow one to obtain informa-

tion from areas of interest [1�4]. Consequently, several researchers have focused their

interests on the construction of underwater vehicles that allow the exploration of the

ocean from a surface station. The most used underwater systems to perform such tasks

include Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles

(ROVs). These vehicles comprise mechanical and electronic components, and instru-

ments such as multibeam echosounders, side scan sonars, cameras, sampling systems,

among others [5�7].

Regardless if they are operated by cable (ROVs) or autonomous (AUVs), it is necessary

to develop control strategies to achieve the desired movements [8,9], and navigation algo-

rithms to localize the vehicle under the surface. Figure 1 shows a three-level hierarchical

Guidance, Navigation, and Control (GNC) structure for an underwater vehicle [10,11].

Position

Velocity

Attitude

Mission

Waypoints

Setpoints

PATH

PLANNING

MISSION

PLANNING

CONTROL VEHICLE
NAVIGATION

SYSTEM

SENSORS

MID LEVEL

HIGH LEVEL

LOW LEVEL

Figure 1: Navigation, guidance and control structure. In a typical GNC structure for

an ROV the control and navigation systems are implemented in the vehicle, while the

mission and path planning in the support vessel. Taken from [11].

.

The GNC system for an underwater vehicle can be developed with di�erent degrees of

21



sophistication, depending on the type of operation that is to be performed, and the

autonomy levels that need to be achieved [8,12�14]. One of the main elements included

in the GNC is the navigation system. It allows estimating the position, velocity, and

attitude of the vehicle with respect to a system located on the surface control station,

from measurements made with di�erent sensors: Attitude and Heading Reference Sys-

tem (AHRS); Conductivity, Temperature, and Depth (CTD) sensor; pressure meter;

acoustic positioning system; Global Positioning System (GPS); altimeter; and sonar;

among others. Given the characteristics of water, the development of underwater local-

ization systems is not trivial and presents a number of challenges [15�17]. Traditional

methods that rely on GPS cannot be used underwater, due to the attenuation of the

electromagnetic signals. Therefore, for certain operating depths, knowing the vehicle's

position is not a simple issue, and this should be taken into account from the design

stage in order to achieve a synchronized operation between the surface station (usu-

ally located on a vessel) and the underwater vehicle [18, 19]. To solve the navigation

problem, technologies that rely acoustic signals are used since they can be propagated

through water. Hence, arrays of sensors are used to determine the range and bearing

to the vehicle.

This work is being developed within the Strategic Program for the Development of

Robotic Technology for O�shore Exploration of the Colombian Seabed, project 1210-

531-30550, contract 0265 - 2013, which is funded by the Fondo Nacional de Finan-

ciamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas; the

Colombian Petroleum company, ECOPETROL; the Universidad Ponti�cia Bolivariana

- Sede Medellín, UPB; and the Universidad Nacional de Colombia - Sede Medellín,

UNALMED.

1.1. LITERATURE REVIEW

The motivation for developing an underwater navigation system arises from the need to

estimate the position, velocity, and orientation of the vehicle all the time. A wide range

of navigation methods and sensor suites have been developed to solve the problem:

22



• Inertial Navigation System (INS): these methods are based on accelerometers

and gyroscopes mounted on the vehicle to estimate the position, velocity, and

orientation via dead-reckoning. Knowing its current position, speed and course,

the algorithm is able to calculate the new position at a given time [20,21].

There are two main design methods for an INS: Gimbaled type (GINS), where

the inertial sensors are mounted on a stable platform which is isolated from the

movement of the vehicle; and Strapdown (SINS), where the sensors are mounted

rigidly to the structure of the vehicle. Because of their smaller size, lighter weight

and easy manufacture, SINS are more suitable for underwater robotic applica-

tions [22, 23]. Some disadvantages of a SINS are: the initial alignment of the

sensors can be di�cult; estimation drift due to noise integration and bias; and

expensive for more precise sensors [24�27].

• Geophysical Map-based Navigation (GMN): the objective is to use bathy-

metric, geomagnetic, and gravitational information to estimate position, velocity,

and orientation of the vehicle. As stated by Leonard and Bahr [28], these ap-

proaches are based on matching sensor data with an a priori environment map,

under the assumption that there is su�cient spatial variation in the parameter(s)

being measured to permit accurate localization. One of the main advantages of

these techniques is to avoid the deployment of other sensors such as beacons to nav-

igate within a di�erent environment. Nevertheless, the method requires an a priori

knowledge of the map, which can be expensive to be generated [29]. To get more

information, see for instance Melo and Matos [30] and the references therein for a

complete survey on advances on terrain based navigation for underwater vehicles.

• Acoustic based navigation: these systems comprise a transceiver/transponder

set, and the measurements depend on the time of �ight of acoustic signals within

the water. The transceiver sends a signal that is received by the transponder,

who answers sending back a response signal; the relative position between the

transceiver and the transponder is computed by considering the speed of sound in

the water. Within the acoustic positioning systems, single range-based navigation

has appeared as an alternative solution for the location of underwater vehicles since

it can reduce the infrastructure [15]. This navigation method only uses the range

between the vehicle and the beacon; therefore, the state estimation of the vehicle

involves many challenges [31, 32]. This type of navigation for underwater vehicles

has been considered in recent years as a less expensive solution, simple to calibrate,

to deploy and recover.
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One of the �rst ideas using single beacon localization for underwater vehicles, appeared

in 1995 with the work of Scherbatyuk [33]. He proposed a navigation system, based

on an LBL system, with a single transponder, and onboard sensors to estimate the

position of the vehicle and the current velocity. The proposed algorithm assumed that

the vehicle moves in a straight-line path, therefore, some ambiguities were presented

in the estimation of the initial position. By that time, the work of Scherbatyuk [33]

showed the potential of using single transponder navigation with some observability

drawbacks that should be solved.

Four years later, Song [34] gave necessary and su�cient conditions for local observability

for 2D target tracking with single-range measurements. Using the Fisher Information

Matrix (FIM), he established that if the target relative motion is moving with constant

velocity or acceleration, the system was not observable. After those works, the research

around single-range navigation grew up exponentially in the last two decades [31,35�50].

For instance, Larsen [31] proposed a navigation system based on dead-reckoning (DR),

acoustic range, and range rate measurement to a single source. His concept, called

Synthetic LBL, used temporal diversity of range measurement from a single stationary

source and an accurate DR navigation system to estimate the position of the vehicle.

In [37], Gadre and Stiwell presented a local observability analysis of the single range

navigation system around some vehicle trajectories and in [38], they presented the

same analysis in the presence of unknown currents. Harts�eld [39] tested the concept

of Larsen [31] during sea trials with the REMUS 6000, an AUV capable of diving up

to 6000 m.

Some researchers have been focused on developing algorithms to solve problems related

to single beacon localization. To solve the problem of localization (indistinguishability of

states), Dandach et al. [45,51] presented a continuous-time adaptive-source localization

algorithm, which used a mobile agent to estimate the location of a stationary source.

Saúde and Aguiar [52] proposed a solution to estimate the underwater vehicle position in

the presence of unknown ocean currents based on the combination of DR with multiple

range measurements taken at di�erent instants of time. Huang et al. [46,50] presented a

bank of maximum a posteriori estimators for single beacon localization. Clark et al. [53]

proposed a Gaussian mixture �lter which generated Gaussian mixture approximations

to the conditional densities. Mandi¢ et al. [54] presented a mobile beacon control

algorithm that ensures observability in single-range measurement.
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Observability analysis

As it was mentioned before, the observability analysis for single-beacon navigation is not

a simple task. The theoretical foundation on observability for nonlinear system is based

on the milestone paper from Hermann and Krener [55], where the fundamental notions

about indistinguishability, local weak observability, and rank test were described.

Regarding the observability analysis for the single-beacon localization problem, An-

tonelli et al. [56] focused on the observability analysis of the relative localization of two

AUV. Assuming that the vehicles were equipped with depth sensors, linear/angular

velocity sensors, and communication devices with range measurements, they found

conditions that ensure observability of the linearized model and locally observability

conditions for the nonlinear system. Nevertheless, the scope of this work does not go

into a deeper analysis in which trajectories should execute one vehicle to ensure the

observability of the other. By using state augmentation and transforming the nonlinear

system into a linear time-varying system, Batista et al. [57] found necessary and suf-

�cient conditions on the observability of the nonlinear system. Inspired by this work,

Bayat and Aguiar [58] addressed the single and multiple observability analysis of the

Simultaneous Localization and Mapping (SLAM) for AUV navigation using range mea-

surements to stationary beacons. Crasta et al. [59] investigated the observability for

two classes of maneuvers in 2D and in [60,61], they extended the approach for 3D and

trimming trajectories. All observability analyses carried out on the previous works as-

sume that the beacon is �xed, therefore the vehicle should execute excited maneuvers

to ensure observability on the system.

Practical considerations

The performance of the navigation system for an underwater vehicle can be degraded by

communication losses, multipath e�ects, noise, and bandwidth limitation. Therefore,

some researchers have developed special interests in robust methods, which guarantee

performance over several scenarios. Olson et al. [62] proposed an outlier rejection algo-

rithm to improve the performance of an EKF; the method was based on the representa-

tion of range data as graph and applied graph partitioning algorithms. Indiveri et al. [63]

proposed an outlier rejection algorithm for single-beacon navigation based on the least

entropy-like (LEL) [64]. Lekkas et al. [65] proposed a simple χ2 statistics test in order

to evaluate every new measurement and discard those which gave large residuals com-
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pared to the predicted value of an EKF. More recently, Emami and Taban [66] proposed

an H-in�nity algorithm for underwater navigation, which decreased the e�ects of the

outliers data.

Optimal and cooperative navigation perspectives

Knowing that the trajectories of the vehicle a�ect the observability of the system, two

lines of work started being developed: �rst, cooperative localization between AUVs [67];

and second, the design of optimal trajectories, which maximize the information provided

by sensors [68].

Regarding cooperative localization, Rui and Chitre [69] presented a cooperative posi-

tioning system between two AUVs. The idea was to use one vehicle to localize, while

the other one was executing a lawnmower path over the survey area. Fallon [70] devel-

oped an algorithm for cooperative AUV navigation with an autonomous surface craft.

By developing a path planning algorithm for the surface vehicle, the AUV was able to

localize with respect to the surface vehicle. Webster et al. [71] reported a decentralized

extended information �lter for single-beacon cooperative navigation between vehicles.

Using ranges and state information from a single reference, the other vehicles were able

to improve their localization. Parlangeli and Indiveri [72,73] described the single range

observability issues related to cooperative underactuated underwater vehicles. They

described all possible unobservable motions for the vehicles given the initial conditions

and the velocity commands. Tan et al. [49] explored the use of a single-beacon vehi-

cle for range only localization to support other AUVs. They developed a cooperative

path-planning algorithm for the beacon based on dynamic programming and Markov

decision formulation. Mandi¢ et al. [54] developed a mobile beacon control algorithm

that ensure observability for single-range navigation. Using a cost function based on the

rank condition, the goal of the algorithm was to reduce this cost as much as possible.

Despite of the previous work, the trajectories that the vehicle or the beacon should

execute only guarantee the observability of the system, but not how good is the in-

formation provided by the range measurements [68]. To tackle this problem, Moreno-

Salinas et al. [74] found an optimal geometric con�guration of a sensor network which

maximized the range information available for the vehicles. Pedro et al. [75] developed

a single-beacon localization algorithm based on the maximization of the information for

localization, at the same time reducing energy consumption. Moreno-Salinas et al. [76]
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developed an integrated motion planning, control, and estimation algorithm for range-

based positioning, and Crasta et al. [77] extended the techniques proposed in [76] to

deal with the presence of unknown disturbances represented by ocean currents.

1.2. PROBLEM STATEMENT

In spite of the progress made in range-based navigation, cooperative navigation for

underwater vehicles remains as a promising �eld for the underwater robotic commu-

nity. For instance, the Innovative Training Network on Autonomous Unmanned Aerial

Systems for Marine and Coastal Monitoring (MarineUAS, http://marineuas.eu) is

a doctoral program to strengthen research on Autonomous Unmanned Aerial Systems

for Marine and Coastal Monitoring [78, 79]. One of the main focus of the program is

to develop strategies of cooperative navigation between autonomous unmanned aerial

vehicles (UAVs), autonomous surface vehicles (ASVs), and autonomous underwater ve-

hicles (AUVs).

Most of the above solutions rely on the deployment of another vehicle (which can be

expensive) or to execute (persistent) exciting manoeuvres (which can imply a deviation

from the real mission) to ensure observability. Therefore, this dissertation is aimed

at developing a new methodology for the navigation system of an underwater vehicle,

based on the range measurement from the vehicle to a simple cooperative mobile beacon

(cooperative in the sense that it is going to help in the observability of the system and

simple in the sense that the use of another vehicle is not required) attached to a static

support vessel or a �xed platform, which allows the vehicle to execute its mission

without the need to perform manoeuvres to ensure observability. The main research

questions which are addressed are:

• Will it be possible to develop a motion strategy for a cooperative mobile beacon,

attached to a static surface vehicle or platform, which guarantees the observability

of any given vehicle's trajectory?

• Based on the trajectories that should execute the beacon, in order to guarantee

observability, will it be possible to propose a mechanism for the movement of the

beacon?
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• Will it be possible to quantify how good is the observed measurement for any given

trajectory of the vehicle and the beacon?

1.3. CONTRIBUTION

The key novel contributions that emerge from this doctoral thesis are:

Chapter 2:

• Unlike the methods we found in the literature, we propose a simple mechanism

attached to a surface vessel or platform, which can help to localize the vehicle

underwater by using single-range measurement.

• We derive observability conditions for the combination of movement of the vehicle

and the beacon. This conditions allow one to design control strategies for the

beacon to guarantee observability of the whole system.

• We study the observability conditions in two scenarios: when it possible to know

the beacon's initial position a priori and when it is not. This problem can be seen

as an SLAM problem, where we are also interested in the location of the beacon.

Chapter 3:

• We developed and implemented a nonlinear �lter based on the Extended Kalman

Filter for the vehicle's and beacon's position. The �lter was implemented with and

without taking into account ocean currents.

• We implemented an improved a version of the EKF called Exogenous Kalman Fil-

ter for the vehicle's and beacon's position. Unlike the EKF, the XKF has global

observability properties, and at the same time it shows good noise-rejection prop-

erties.

Chapter 4:

• We tackled the observability problem of single range navigation from a optimization

point of view. For this, we maximized the Fisher Information Matrix in order to

�nd trajectories that improve the observability of the system.
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• Additionally, we included another cost function, which accounted for the energy

used to move the beacon. Using the multi-objective toolbox from Matlab, we found

the Pareto front, which shows that no matter how much we increase the energy of

the beacon there will be a point where the FIM of the system will not be improved.

Additionally, the following contribution are for the research group are:

• This thesis strengthens the research group's lines: Control Theory and Mechatron-

ics.

• The academic products associated with the thesis (conferences and journal pa-

pers) are reported to the research group, which enhances its position within the

Colombian Science, Technology and Innovation System.

• During the Ph.D. several master student were advised in topics related with navi-

gation and control of underwater vehicles.

1.4. PRODUCTS

During the PhD, di�erent products were accomplished:

• Dissertataion document

• Articles:

� Rúa, S., Crasta, N., Vásquez, R.E., and Pascoal, A.M. 2020. Enhanced

cooperative single-range underwater navigation based on optimal trajectories.

IFAC-PapersOnLine, Accepted.

� Rúa, S., Crasta, N., Vásquez, R.E., Betancur, M.J., and Pascoal, A.M. 2019.

Cooperative range-based navigation using a beacon with circular motion in-

stalled on board the support platform. IFAC-PapersOnLine, 52(21). pp.

390�395. doi: 10.1016/j.ifacol.2019.12.338.

� Vásquez, R.E., Castrillón, F., Posada, N.L., Rúa, S. and Zuluaga, C. 2019.

Curriculum change for graduate-level control engineering education at the Uni-

versidad Ponti�cia Bolivariana. IFAC-PapersOnLine, 52(9). pp. 306�311.

doi: 10.1016/j.ifacol.2019.08.225.

� Rúa, S., Zuluaga, C.A., Posada, N.L., Castrillón, F. and Vásquez, R.E.
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2016. Development of the Supervision/Control Software for a Multipur-

pose Three-Tank System. IFAC-PapersOnLine, 49(6). pp. 156�161. doi:

10.1016/j.ifacol.2016.07.170

� Rúa, S. and Vásquez, R.E. 2016. Development of a Low-Level Control System

for the ROV Visor3. International Journal of Navigation and Observation,

2016. pp. 1�12. doi: 10.1155/2016/8029124

� Ramírez-Macías, J.A., Brongers, P., Rúa, S. and Vásquez, R.E. 2016. Hy-

drodynamic Modelling for the Remotely Operated Vehicle Visor3 Using CFD.

IFAC-PapersOnLine, 49(23). pp. 187�192. doi: 10.1016/j.ifacol.2016.10.341

� Aristizábal, L.M., Rúa, S., Gaviria, C.E., Osorio, S.P., Zuluaga, C.A.,

Posada, N.L., and Vásquez, R.E. 2016. Design of an Open-Source Based Con-

trol Platform for an Underwater Remotely Operated Vehicle. DYNA, 83(195).

pp. 198�205. doi: 10.15446/dyna.v83n195.49828

• Software suite in Matlab with all the simulation presented in this work.

1.5. THESIS STRUCTURE

This thesis is organized as follows: Chapter 2. focuses on the observability analysis

of the cooperative range-based navigation system. To this end, we �rst introduce the

model of the vehicle and beacon. Then, we describe some de�nitions of observability

for linear and nonlinear systems, which are going to be used in the following sections.

Then, the observability properties of the system are studied with and without tanking

into account ocean currents. Chapter 3. focuses on the implementation of the nonlinear

�lter for the beacon and vehicle's position estimation problem. First we introduce the

model taking into account ocean currents and noise. Then, we implement an Extended

Kalman Filter which is based on the linearization of the model around the current

state estimation. Since the EKF does not have global stability properties, an variation

called Exogenous Kalman Filter is implemented. Chapter 4. is focused on �nding

optimal trajectories which maximizes range information to localize the vehicle under the

water. Chapter 5. presents some conclusions and future work related with underwater

navigation.
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2. OBSERVABILITY ANALYSIS

2.1. INTRODUCTION

The observability analysis is an important task while designing a state observer for a

dynamical system. In particular, this chapter presents the observability analysis of a

cooperative system; it is shown under which di�erent combination of trajectories is the

system observable.

2.2. SYSTEM MODELLING

To analyze the motion of the vehicle and the beacon, two coordinate frames are de�ned:

an inertial Earth-�xed frame (this frame is considered as the North, East, Down frame

NED {N}; attached to a port facility or a stationary support vessel), where the motion

of the vehicle is described, and a body-�xed frame {B}, which is conveniently �xed to

the vehicle and moves with it. Additionally, to de�ne the mathematical model, two

di�erent scenarios are taken into account: �rst, the motion of the vehicle only depends

on its velocity; and second, the motion is a�ected by ocean currents. Figure 2 shows

the setup used in this work.
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Vessel

or Fixed 

Platform

ROV

Mobile beacon

Figure 2: Setup con�guration in 2D space. The orange dotted lines represent the

trajectory executed by the vehicle, while the blue one the beacons trajectory.

2.2.1. Vehicle motion without ocean current

The kinematics (motion) of the vehicle (without being a�ected by ocean currents) can

be described as
Iṗ(t) = I

BR(t)Bv(t), (2.1)

where Ip(t) = [xv, yv, zv]
> ∈ R3 denotes the position of the vehicle with respect to the

inertial frame {I}, Bv(t) = [uv, vv, wv]
> ∈ R3 is the linear velocity of the vehicle with

respect to {I} and expressed in {B}, and IBR(t) ∈ SO(3) is the rotation matrix from

{B} to {I}. The orientation of the vehicle can be parameterized using Euler angles

η = [φ, θ, ψ]>, then the rotation matrix can be written as

I
BR(t) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψsθcφ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsθcφ

−sθ cθsφ cθcφ

 , (2.2)

where s· = sin(·) and c· = cos(·). Recall that the rotation matrix satis�es
I
BṘ(t) = I

BR(t)S(ωv(t)), (2.3)

where ωv(t) = [p, q, r]> ∈ R3 denotes the angular velocity of the vehicle, and S(·) is the
skew-symmetric matrix de�ned as

S(a) :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (2.4)
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for every a = [a1, a2, a3]> ∈ R3.

Assumption 1. The roll and pitch motions of the vehicle are small, that is φ ≈ θ ≈ 0.

Assumption 1 implies that the angular velocity in roll and pitch will be zero, that is

p = q = 0. Additionally, it encompasses a wide range of vehicles such as ROVs and

AUVs [19, 68, 80], which are designed to have stability in roll and pitch, or have no

control over those motions.

Let w (ζ) = [cos(ζ) sin(ζ) 0]> and w⊥ (ζ) = [− sin(ζ) cos(ζ) 0]> be orthonormal vectors

and ei ∈ R3, i ∈ {1, 2, 3} the ith column of the 3 × 3 identity matrix. Then, taking

into account Assumption 1, the rotation matrix IBR(t) can be written as IBR(ψ(t)) =

[w (ψ(t)) w⊥ (ψ(t)) e3]. Using this fact and the equation (2.1), the motion of the

vehicle can be written as
ẋv = uv cosψ − vv sinψ

ẏv = uv sinψ + vv cosψ

żv = wv

 (2.5)

2.2.2. Vehicle motion with ocean current

In the previous section, the motion of the vehicle was formulated without considering

the e�ects of the ocean current. Now, the idea is to model the motion of the vehicle

being a�ected by ocean currents under certain assumptions:

Assumption 2. Ocean currents are constant and irrotational.

The kinematics (motion) of the vehicle a�ected by a constant ocean current is given by

Iṗ(t) = I
BR(t)Bv(t) + Ivc(t)

Iv̇c(t) = 0

}
(2.6)

where Ivc(t) = [vcx , vcy , vcz ]
> ∈ R3 is the unknown ocean current. Then, expand-

ing (2.6) and using Assumption 1, the motion of the vehicle is given by

ẋv = uv cosψ − vv sinψ + vcx

ẏv = uv sinψ + vv cosψ + vcx

żv = wv + vcz

v̇cx = v̇cy = v̇cz = 0


(2.7)
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2.2.3. Beacon Motion

Consider now a support vessel or a �xed platform (where the inertial frame is �xed),

which has a mobile beacon attached. This beacon sends an acoustic signal to the vehicle,

and by measuring the time of �ight it is possible to measure the range to the vehicle.

Typically this beacon is assumed to be static [32, 57�61, 63, 64, 77, 81�85] or mobile by

using another vehicle [54, 72, 73]. The proposed mechanism consists in a manipulator

arm with 2-DoF (a revolute and a prismatic joint), which has the beacon attached at

the tip (see Figure 3). The key idea is that the prismatic joint will be compensating

the perturbations generated by the waves in the vessel (to regulate the depth of the

beacon), while the revolute joint will be used for observability purposes.

Assumption 3. The depth of the manipulator arm is known and maintained to a

constant value.

1 DoF Manipulator

Vessel

Beacon

Revolute 

joint

Figure 3: Manipulator arm with the beacon at the tip. The longitudinal axis will be

used to compensate for the ocean wave and regulate the depth of the arm, while the

rotational movement to ensure observability in the system.

Let Ib(t) = [bx, by, bz]
> ∈ R3 denote the position of the beacon with respect to the

inertial frame. The motion of this beacon is given by
Iḃ(t) = lmωmw⊥ (χ(t)) ,

χ̇(t) = ωm,

}
(2.8)

where lm ∈ R is the manipulator's length, ωm ∈ R is the angular velocity of the
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manipulator, and χ ∈ [0, 2π) is the angular position of the manipulator in the xy plane.

Notice that the motion of this manipulator is only in the xy-plane.

Since the beacon is �xed to a vessel or a platform, Assumption 3 implies that the

manipulator should have a regulator to control the depth at a speci�c value. Let
Id(t) = [dx, dy, dz]

> ∈ R3 denote the range vector from the beacon to vehicle and given

by Id(t) = Ib(t)− Ip(t) . Then, the range measurement d(t) is given by

d(t) = ||Id(t)|| = ||Ib(t)− Ip(t)||, (2.9)

where || · || denotes the Euclidean norm in Rn.

2.3. PROBLEM STATEMENT

Now that the model of the vehicle and the beacon were de�ned, the problem to be

solved can be stated. For the motion of the vehicle there are two scenarios: whether

or not the vehicle is being a�ected by ocean current. Further, it is assumed that the

depth of the beacon (bz) and the vehicle (pz) are known or measured. The 3D kinematic

model of the vehicle and the beacon for the two scenarios (see Figure 4) are given by

• Without ocean current:

Iṗ(t) = I
BR(ψ(t))Bv(t)

Iḃ(t) = lmωmw⊥ (χ(t))

χ̇(t) = ωm

d(t) = ||Ib(t)− Ip(t)||

pz(t) = Ip(t)>e3

bz(t) = Ib(t)>e3


(2.10)
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• With ocean current:

Iṗ(t) = I
BR(ψ(t))Bv(t) + Ivc(t)

Iv̇c(t) = 0

Iḃ(t) = lmωmw⊥ (χ(t))

χ̇(t) = ωm

d(t) = ||Ib(t)− Ip(t)||

pz(t) = Ip(t)>e3

bz(t) = Ib(t)>e3



, (2.11)

Vessel

ROV

Mobile beacon

Vessel

ROV

Mobile beacon

a) b)

Figure 4: Illustration of the proposed setup with the vehicle and the beacon. In a)

without taking into account the current, and in b) with ocean currents.

Throughout this work, the velocity and the orientation of the vehicle, and the angular

velocity of the manipulator are assumed as inputs to the system. These variables can

be available from an Attitude Heading Reference System (AHRS) for the orientation,

a Doppler Velocity Log (DVL) for the velocity, and a Rotary Encoder (for the angular

velocity of the manipulator). The problem addressed here is to study whether or not it

is possible to estimate the initial position of the vehicle and the beacon given the time

histories of the inputs (linear velocity and rotation of the vehicle, and rotation of the

beacon), and the time histories of the outputs (depths and range from the beacon to the
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vehicle). Notice that the solution of the problem is not trivial since the observability is

going to change depending on the trajectories executed by the vehicle and the beacon.

To solve this problem, the following section introduces some de�nitions needed to carry

out the observability analysis of the system (2.10) (respectively (2.11) with ocean cur-

rents).

2.4. OBSERVABILITY DEFINITIONS

In the following, some necessary de�nitions are introduced for observability analysis of

the system (2.11) ((2.10) resp.). The de�nitions for linear and nonlinear system are

presented.

Nonlinear Systems

Consider a general nonlinear system

ẋ = f(x,u)

y = h(x)

}
(2.12)

de�ned on Rn, where f is a smooth and complete vector �eld on Rn, the input vector

u = [u1 · · ·up]T takes values in a compact subset Ω of Rr containing zero in its interior,

and the output function h : Rn → Rm has smooth components h1, . . . , hq.

Two states x1,x2 ∈ Rn are indistinguishable for the system (2.12) if, for every admissible

input u ∈ Ω, the solutions of (2.12) satisfying the initial conditions x(0) = x1 and

x(0) = x2 produce identical output-time histories. In other words, x1,x2 ∈ Rn are

indistinguishable for the system (2.12), if and only if

h (Φu (t,x1)) = h (Φu (t,x2)) (2.13)

for every t ≥ 0 and input u, where Φu(t,x0) denotes the solution of the system (2.12)

at time t for the initial condition x0 and the input u. Given x0 ∈ Rn, let us denote

I(x0) ⊆ Rn as the set of all points that are indistinguishable from x0 with respect to

the system (2.7). Recall that the indistinguishability is an equivalence relation on Rn.

The following de�nitions from [55] are used. The system (2.12) is observable at x0 ∈ Rn

if I(x0) = {x0}, and is observable if I(x0) = {x0} for every x0. The system (2.12) is
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weakly observable at x0 ∈ Rn if x0 is an isolated point of I(x0). The system (2.12)

is weakly observable if it is weakly observable at every x0 ∈ Rn. Clearly, observability

implies weak observability.

Linear Time Varying Systems

Consider a general LTV system

ẋ = A(t)x(t) +B(t)u(t)

y = C(t)x(t)

x(t0) = x0

 (2.14)

de�ned on Rn, where x ∈ Rn is the state vector, u ∈ Rr is the input vector, y ∈ Rm is

the output vector, A(t), B(t), C(t), D(t) are matrices with appropriate dimensions, and

x0 ∈ Rn is the initial condition of the system. The solution for the equation (2.14) is

given by

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

y(t) = C(t)Φ(t, t0)x0 +

∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ

 (2.15)

where Φ(t, t0) ∈ Rn×n is the state transition matrix, and is given by the Peano-Baker

series

Φ(t, t0) = I +

∫ t

t0

A(σ1)dσ1 +

∫ t

t0

A(σ1)

∫ σ1

t0

A(σ2)dσ2dσ1 + ... (2.16)

Recall that observability is referred to whether is possible or not to estimate the initial

condition of the system given the time history of the input and output. Then, from the

output equation in (2.15), the observability can be determined by analyzing when we

can �nd a solution for the equation

ỹ(t) = y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ)dτ

= C(t)Φ(t, t0)x0 (2.17)

for the unknown x0 ∈ Rn. The following de�nitions are borrowed from [86]. Given two

times t1 > t0 > 0, the unobservable subspace on [t0, t1] denoted as UO[t0, t1] from the

system (2.14) consists of all states x0 ∈ Rn for which C(t)Φ(t, t0)x0 = 0,∀t ∈ [t0, t1].

The system (2.14) is observable if and only if UO[t0, t1] = {0}. From this last de�nition,
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the relationship between indistinguishable initial conditions and the unobservable space

can be derived. Given a input/output pair {u(t),y(t)} with t ∈ [t0, t1] associated with

the initial condition x0 ∈ Rn of system (2.14). Then I(x0) = {x0 +xu : xu ∈ UO[t0, t1]}
is the set of all indistinguishable initial conditions on [t0, t1] from system (2.14).

Additionally, the unobservable space can be analyzed by computing the kernel of the

observability matrix from system (2.14), which is given by

O =


N0(t,t 0)

N1(t,t 0)
...

Nk−1(t, t0)


where

Ni(t, t0) :=
diC(t)Φ(t, t0)

dti
, i ∈ {0, 1, ..., k − 1}

2.5. OBSERVABILITY ANALYSIS WITHOUT OCEAN CURRENT

Up to this point, only the kinematic model of the vehicle and beacon have been de�ned.

Note that the system (2.10) is nonlinear since the time evolution of the state and the

output depend on a nonlinear function of the state.

To perform the observability analysis of model (2.10), �rst the model is transformed to

the reference frame {B}. Subsequently, inspired by the approach [32,57], an state space

augmentation is applied to convert the nonlinear system into a LTV system. Taking

into account that this new system is equivalent∗ and by using linear system tools, the

observability of the system is analyzed. Figure 5 shows a summary of this procedure.

Additionally, since the information of the depth is available for the vehicle and the

beacon, the whole observability analysis will be carried out in the horizontal plane.

Even though the range measurement is acquired in a three dimensional space, the

range in 2D can be obtained by applying Pythagorean theorem as dxy =
√

(d2 −∆z2),

∗Equivalent in the sense that the state trajectories of the linear varying system have one-to-one correspondence to

the state trajectories of the nonlinear system. In other words, the transformation is injective.
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where ∆z = pz − bz is the di�erence between two depths (vehicle and beacon), and dxy
denotes the range measurement in the xy-plane. Then, for the sake of completeness,

the system (2.10) in a two dimensional space can be rewritten as

Iṗ(t) = I
BR(ψ(t))Bv(t)

Iḃ(t) = lmωmw⊥ (χ(t))

χ̇(t) = ωm

dxy(t) = ||Ib(t)− Ip(t)||


(2.18)

where Ip, Bv, Ib ∈ R2, IBR ∈ SO(2), and the vectors w (·) and w⊥ (·) are properly

rede�ned in R2.

Nonlinear kinematic
model (inertial-frame)

Nonlinear kinematic
model (body-frame)

LTV system

Observability analysis
with state constraints

Figure 5: Observability analysis procedure for the underwater navigation system.

Notice that the state from the LTV system has constraints, since it comes from a

similarity transformation done to a nonlinear system.

Recall that the system (2.18) is expressed with respect to the {I} frame and the state is

given by the position of the vehicle and the beacon. The key idea here is to express the

model (2.18) in the frame {B} and to use the range vector Bd(t) and the manipulator

angle χ(t) as new state variable of the system. With these two variables it is possible

to describe the motion of the system (2.18). From this part of the document, explicit

dependence of time (t) will be omitted for sake of simplicity. Further, since Assump-

tion 1 implies rotation only in the z-axis, let Rα := R(α) denote the rotation matrix

that rotates vectors by an angle α ∈ [0, 2π) about the z-axis. Since ψ(t) represents the
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rotation from {B} to {I}, then IBR(ψ(t)) := Rψ Let us rewrite the range vector in the

{B} frame, that is

Bd = R>ψ (Ib− Ip). (2.19)

Using the time derivatives of the vehicle and beacon positions (2.18) and the equa-

tion (2.3), it follows that

Bḋ = Ṙ>ψ (Ib− Ip) +R>ψ (Iḃ− Iṗ)

= −S(r)R>ψ (Ib− Ip) +R>ψ (lmωmw⊥ (χ)− IBRψ
Bv)

= −S(r)Bd− Bv + lmωmR>ψw⊥ (χ) (2.20)

To get a state-space realization of the system, let us de�ne the state vector as x =

[x1, x2]>
def
= [Bd, χ] ∈ R2 × [0, 2π), and recall that r ∈ R the angular velocity of the

vehicle, ωm ∈ R the angular velocity of the beacon, Bv ∈ R2 the linear velocity of the

vehicle, and Rψ ∈ SO(2) are inputs to the system. Then, the state-space realization

can be written as
ẋ1 = −S(r)x1 − Bv + lmωmR>ψw⊥ (x2)

ẋ2 = ωm

}
(2.21)

From (2.18) and (2.19), and by using the square range measurement instead of the usual

range measurement, it is possible to rewrite the output equation as

d2
xy = ||Ib− Ip||2

= Bd>Bd

= x>1 x1 (2.22)

At this point, it is important to point out that square range measurement is used for

observability purpose, and that the conclusions obtained with this measurement does

not change [59]. The following remark summarizes this statement.

Remark 1. The system (2.10) (respectively (2.11)) with range squared measurement is

observable if and only if the system (2.10) (respectively (2.11)) with range measurement

is observable.

Proof. Suppose that the system (2.10) (respectively (2.11)) with range squared measure-

ment is observable. Thus, for every di�erent pair of initial conditions x0 and z0, there
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exists a time t∗ ∈ [0, t∗], and an input u∗ such that h (Φu∗ (t∗,x0))2 6= h (Φu∗ (t∗, z0))2.

Then, it also follows that h (Φu∗ (t∗,x0)) 6= h (Φu∗ (t∗, z0)), which means that the sys-

tem (2.10) (respectively (2.11)) with range measurement is observable. The reverse can

be concluded in the same way. This completes the proof.

Now that the system is expressed in the {B} frame, a state augmentation is ap-

plied to make the system linear with respect to the state variables. Notice that

the nonlinearities in the state variables come from the output equation (2.22)

and the term w⊥ (x2) in (2.21). Inspired by the same ideas presented in [81],

let us de�ne the following state-space augmentation z := [z1, z2, z3, z4, z5, z6] :=

[x1,R>ψw⊥ (x2) ,R>π/2z2, z>1 z1, z>1 z2, z
>
1 z3]. Then, the system (2.21) with the previ-

ous state augmentation described, can be rewritten in linear form (for a detailed step

by step of this procedure, see Appendix A.1.) with state variable z ∈ R9, input vector

u = [Bv>, ωm, r]
> ∈ R4, and output y ∈ R as

ż = A(u)z +Bu

y = Cz

}
(2.23)

where

A(u) =



−S(r) lmωmI2 0 0 0 0

0 −S(r) −ωmI2 0 0 0

0 (ωm − r)I2 0 0 0 0

−2Bv> 0 0 0 2lmωm 0

0 −Bv> 0 0 0 −ωm
0 0 −Bv> 0 ωm 0


,

B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0


,

C =
[
0 0 0 1 0 0

]
,
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and the initial conditions satisfying

z1(0)

z2(0)

z3(0)

z4(0)

z5(0)

z6(0)


:=



x1(0)

R>ψ0
w⊥ (x2(0))

R>π/2z2(0)

z1(0)>z1(0)

z1(0)>z2(0)

z1(0)>z3(0)


(2.24)

It is important to explain that the constraints imposed in the initial conditions (2.24)

are important for the observability analysis. These constraints guarantee one-to-one

correspondence between the original nonlinear system (2.21) and the LTV system de-

scribed by (2.23).

Now that the system is LTV, one way to solve this problem is to �nd the Observability

Gramian and test if it is nonsingular for any t > 0. Nevertheless, this is not a simple

task, mainly due to the state transition matrix given by the Peano-Baker series in (2.16).

Instead, the set of admissible inputs u to the system is rede�ned. The motion of the

vehicle and the beacon are restricted to trim trajectories. Along these trajectories the

velocities measured in the body frame and the control inputs u are constant [87].

Assumption 4. The vehicle and beacon are executing trim trajectories, that is, u̇ = 0.

Notice that Assumption 4 implies that the system (2.23) can be seen as an LTI system,

since A(u) is constant and known. Then, the observability analysis of the system can be

carried out by just analyzing the observability matrix. Further, the class of maneuvers

executed by the vehicle and beacon can be summarized as:

• vehicle

� staying at the same point: ||Bv|| = 0.

� moving in straight lines: ||Bv|| 6= 0 and r = 0.

� moving in circles: ||Bv|| 6= 0 and r 6= 0.

• beacon

� without movement: ωm = 0

� rotating: ωm 6= 0.

Based on these maneuvers, the observability analysis is carried out for the system (2.23).

Proposition 1. Consider system (2.23) with u ∈ R4 ful�lling assumption 4. Further,
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suppose that the vehicle moves in circles, that is,

||Bv|| 6= 0, r 6= 0, (2.25)

and the beacon rotates with angular rate

ωm 6= 0 6= ±r 6= 2r 6= 1

2
r. (2.26)

Then, the system (2.23) is observable.

Proof. Consider the initial condition z(0) ∈ R9 and let u ∈ R4 be constant. Since

the input is known and constant, (2.23) is an LTI system. The observability matrix

associated with the system (2.23) is de�ned by O = [C,CA, ..., CAn−1]> with n ∈
{1, 2, .., 9}. Then the observability matrix is given by

O = 2



0 0 0 1 0 0

−Bv> 0 0 0 lmωm 0

−r Bv⊥> −2lmωm
Bv> 0 0 0 −lmω2

m

r2 Bv> −3lmrωm
Bv⊥

>
3lmω

2
m
Bv> 0 −lmω3

m 0

r3 Bv⊥
>

lmωm
Bv>g1(r, ωm) 3lmrω

2
m
Bv⊥

>
0 0 lmω

4
m

−r4 Bv> lmrωm
Bv⊥

>
g2(r, ωm) lmω

2
m
Bv>g3(r, ωm) 0 lmω

5
m 0

−r5 Bv⊥
> −lmωmBv>g4(r, ωm) −lmrω2

m
Bv⊥

>
g2(r, ωm) 0 0 −lmω6

m

r6 Bv> −lmrωmBv⊥
>
g5(r, ωm) lmω

2
m
Bv>g6(r, ωm) 0 −lmω7

m 0

r7 Bv⊥
>

lmωm
Bv>g7(r, ωm) lmrω

2
m
Bv⊥

>
g5(r, ωm) 0 0 lmω

8
m 0


(2.27)

where Bv⊥ = Rπ/2
Bv, and gi : R2 7→ R with i ∈ {1, 2, ..., 7}, are functions of ωm and r

given by

g1(r, ωm) = 4r2 − 3rωm + 4ω2
m,

g2(r, ωm) = 5r2 − 6rωm + 7ω2
m,

g3(r, ωm) = 4r2 − 3rωm + 5ω2
m,

g4(r, ωm) = 3r4 − 5r3ωm + 7r2ω2
m − 4rω3

m + 3ω4
m,

g5(r, ωm) = 7r4 − 15r3ωm + 25r2ω2
m − 21rω3

m + 13ω4
m,

g6(r, ωm) = 6r4 − 10r3ωm + 14r2ω2
m − 8rω3

m + 7ω4
m,

g7(r, ωm) = 8r6 − 21r5ωm + 41r4ω2
m − 45r3ω3

m + 35r2ω4
m − 15rω5

m + 8ω6
m.

The determinant of (2.27) is given by

det(O) = −256r3ω10
m l

6
m||Bv||6(r − ωm)7(2r − ωm)2(2ωm − r)4(ωm + r)4.
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Note that if (2.25) and (2.26) hold, then det(O) 6= 0, which implies that the observ-

ability matrix is full rank and therefore system (2.23) is observable. This completes the

proof.

Nevertheless, since the state-augmented system (2.23) is not a minimal realization of

the original nonlinear system [88, 89], it is important to analyze the observability of

the system when (2.25) and (2.26) do not hold. Therefore, the following scenarios are

analyzed:

1. Vehicle moving in Circles, and the Beacon Rotating (VCBR).

2. Vehicle moving in Circles, and the Beacon does Not move (VCBN).

3. Vehicle moving in straight Lines, and the Beacon Rotating (VLBR).

4. Vehicle moving in straight Lines, and the Beacon does Not move (VLBN).

5. Vehicle does Not move, and the Beacon Rotating (VNBR).

6. Neither the vehicle nor the beacon move (VNBN).

Two additional scenarios for each of these cases are analyzed: when the beacon's initial

position is known a priori, and when it is not known.

2.5.1. Vehicle moving in circles

Here, the observability of the system is analyzed assuming that the vehicle is moving

in circles, that is, r 6= 0 and ||Bv|| 6= 0, while the beacon can be rotating or not. In

Proposition 1 the case in which the beacon was rotating was analyzed. Now consider

that the beacon does not move (ωm = 0); hence, the following proposition establishes

the observability properties of the system given a stationary beacon.

Proposition 2 (VCBN). Consider system (2.23) with u ∈ R4 ful�lling assumption 4.

Further, suppose that the vehicle moves in circles ( (2.25) holds) and the beacon does

not move, that is,

ωm = 0. (2.28)

Then, the system (2.23) with the constraints in the initial conditions (2.24) is not

weakly observable. Moreover, for every z(0) ∈ R9, the set of all indistinguishable initial
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conditions denoted by I(z(0)) is given by

I(z(0)) =


z(0),



z1(0)

sβ

s⊥β
z4(0)

z>1 (0)sβ

z>1 (0)s⊥β




, (2.29)

where sβ : [0, 2π) 7→ S1 is the map described by sβ := [cos β sin β]> and s⊥β := R>π/2sβ.

Proof. Consider the initial condition z(0) ∈ R9 and let u ∈ R4 be constant. Since

the input is known and constant, (2.23) is an LTI system. Taking into account (2.28),

the �rst three rows of the observability matrix associated with the system (2.23) are

calculated by

O =

 0 0 0 1 0 0

−2Bv> 0 0 0 0 0

−2rBv⊥
>

0 0 0 0 0

 (2.30)

and the following rows can be computed as CAj = −r2(CAj−2) for j ∈ {3, 4, 5, ...}.
Since the rank of (2.30) is 3, then the kernel of O is given by

ker(O) =



0 0 0 0 0 0

ex ey 0 0 0 0

0 0 ex ey 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (2.31)

Recall that the unobservable space is given by all initial conditions that generate the

same input-output map. Therefore, all initial conditions of the form z̄(0) = z(0) +

ker(O)α with α = [α1, α2, α3, α4, α5, α6]> ∈ R6, are indistinguishable from z0. Then

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0)

z2(0) +αa

z3(0) +αb

z4(0)

z5(0) + α5

z6(0) + α6


, (2.32)
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where αa = [α1, α2]> and αb = [α3, α4]>. Recall that the initial conditions should

satisfy the constraints given by (2.24). Since z2 := R>ψw⊥ (x2), then

z̄>2 (0)z̄2(0) = 1,

(z2(0) +αa)
> (z2(0) +αa) = 1,

||αa + z2(0)||2 = 1,

αa = −z2(0) + sβ, (2.33)

where sβ := [cos β, sin β]> with β ∈ [0, 2π). From the relation between z2(0) and z3(0)

in (2.24) and using (2.32), it can be concluded that

z̄3(0) = R>π/2z̄2(0),

z3(0) +αb = R>π/2 (z2(0) +αa) ,

αb = R>π/2αa. (2.34)

Moreover, it is possible to obtain α5 and α6 from the relation of z5 and z6 in (2.24),

thus

z̄5(0) = z5(0) + α5,

z̄>1 (0)z̄2(0) = z>1 (0)z2(0) + α5,

z>1 (0) (z2(0) +αa) = z>1 (0)z2(0) + α5,

α5 = z>1 (0)αa (2.35)

and

z̄6(0) = z6(0) + α6,

z̄>1 (0)z̄3(0) = z>1 (0)z3(0) + α6,

z>1 (0) (z3(0) +αb) = z>1 (0)z3(0) + α6,

α6 = z>1 (0)αb. (2.36)

Then, the set of indistinguishable initial conditions are given by

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0)

sβ

s⊥β
z4(0)

z>1 (0)sβ

z>1 (0)s⊥β


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This implies that the set of indistinguishable initial conditions from z(0) ∈ R9 is a

continuous of points parametrized by a free parameter β and described by (2.29). Thus

the system is not weakly observable. This completes the proof.

To give a psychical meaning of the set (2.29), the initial condition z(0) needs to be trans-

formed to the original coordinate system. Using (2.24) and (2.19), it can be shown that

the initial beacon's position in the {I} frame is related by Ib(0) = lmR>π/2Rψ0z2(0).

Additionally, the initial vehicle's position is given by Ip(0) = Ib(0)− Id(0), which im-

plies Ip(0) = Rψ0

(
lmR>π/2z2(0)− z1(0)

)
. Then, the indistinguishable initial condition

in the beacon's position is given by

Ib̄(0) = lmR>π/2Rψ0 z̄2(0),

= lmR>π/2Rψ0sβ,

= lmsγ, (2.37)

where sγ = R>π/2Rψ0sβ with γ := β + ψ0 + π/2 and γ ∈ [0, 2π). And for the position

Ip̄(0) = Rψ0

(
lmR>π/2z̄2(0)− z̄1(0)

)
,

= lmsγ −Rψ0z1(0),

= lmsγ − Id(0),

= Ip(0)−
(Ib(0)− lmsγ

)
. (2.38)

Figure 6 shows the geometrical interpretation of the set (2.29).

The observability conditions given by the proposition 2, establish the set of indistin-

guishable initial conditions when the beacon and vehicle initial positions are unknown.

The following corollary states the observability properties when it is possible to known

the beacon's initial position.

Corollary 1. Suppose that the initial condition of the beacon is known. Then the

system is observable.

Proof. Suppose that the initial conditions of the beacon are known, that is, Ib̄(0) =
Ib(0). Using this in (2.38) implies that Ip̄(0) = Ip(0). Consequently, I(p(0)) = {p(0)}
and the system is observable. This completes the proof.
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Figure 6: Geometric interpretation of indistinguishable initial conditions for the

VCBN condition without taking into account ocean currents. Notice that the set of

the indistinguishable initial conditions for the vehicle's position is given by a circle

centered in Ip(0)− Ib(0).

2.5.2. Vehicle moving in straight lines

In the previous sections, the observability analysis was carried out assuming that the

vehicle was moving forward and rotating at the same time. Here, the observability of

the system is analyzed assuming that the vehicle is moving in straight lines, that is,

r = 0 and ||Bv|| 6= 0, while beacon can be rotating or not.

First, we analyze the observability conditions when the beacon is not moving. The

following proposition states the observability properties of the system assuming that

the beacon does not move and the vehicle is moving in straight lines.

Proposition 3 (VLBN). Consider system (2.23) with u ∈ R4 ful�lling assumption 4.

Further, suppose that the vehicle moves in straight lines, that is,

||Bv|| 6= 0 and r = 0, (2.39)

and the beacon does not move ( (2.28) holds). Then, the system (2.23) with the con-

straints in the initial conditions (2.24) is not weakly observable. Moreover, for every
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z(0) ∈ R9, the set of all indistinguishable initial conditions denoted by I(z(0)) is given

by

I(z(0)) =


z(0),



z1(0) + γBv⊥

sβ

s⊥β
z4(0)

z>1 (0)sβ + γBv⊥
>
sβ

z>1 (0)s⊥β + γBv⊥
>
s⊥β




, (2.40)

where sβ : [0, 2π) 7→ S1 is the map described by sβ := [cos β sin β]>, s⊥β := R>π/2sβ and

γ ∈ {0,−2z1(0)>Bv⊥/||Bv||2}.

Proof. Consider the initial condition z(0) ∈ R9 and let u ∈ R4 be such that is con-

stant. Since the input is known and constant, (2.23) is an LTI system. Taking into

account (2.28), the �rst two rows of the observability matrix associated with the sys-

tem (2.23) are calculated by

O =

[
0 0 0 1 0 0

−2Bv> 0 0 0 0 0

]
(2.41)

and the following rows can be computed as CAj = 0 for j ∈ {2, 3, ...}. Since the rank
of (2.30) is 2, then the kernel of O is given by

ker(O) =



Bv⊥ 0 0 0 0 0 0

0 ex ey 0 0 0 0

0 0 0 ex ey 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


. (2.42)

Notice that the linear subspace generated by the ker(O) is of 7th order and there are only

�ve constraints in the initial conditions (2.24). Therefore, the unobservable subspace

will depend on two free parameters, which implies that the set of indistinguishable initial

conditions is given by a continuous of points and, hence, the system is not observable. To

characterize this set, recall that all initial conditions of the form z̄(0) = z(0) + ker(O)α
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with α = [α1, α2, α3, α4, α5, α6, α7]> ∈ R7, are indistinguishable from z0. Then

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0) + α1
Bv⊥

z2(0) +αa

z3(0) +αb

z4(0)

z5(0) + α6

z6(0) + α7


, (2.43)

where αa = [α2, α3]> ∈ R2 and αb = [α4, α5]> ∈ R2. Recall that the initial conditions

should satisfy the constraints given by (2.24). Since z2 := R>ψw⊥ (x2), then

z̄>2 (0)z̄2(0) = 1,

αa = −z2(0) + sβ, (2.44)

where sβ = [cos β, sin β]> with β ∈ [0, 2π). From the relation between z2(0) and z3(0)

in (2.24) and using (2.32), it can be concluded that αb = R>π/2αa Now, from (2.24)

z̄4(0) = z4(0),

z̄>1 (0)z̄1(0) = z>1 (0)z1(0),(
z1(0) + α1

Bv⊥
)> (

z1(0) + α1
Bv⊥

)
= z>1 (0)z1(0),

α1(2z>1 (0)Bv⊥ + α1||Bv||2) = 0. (2.45)

Here, either α1 = 0 or α1 = −2z>1 (0)Bv⊥/||Bv||2. Moreover, it is possible to obtain α6

from the relation of z5(0) in (2.24) given by

z̄5(0) = z5(0) + α6,(
z>1 (0) + α1

Bv⊥
>
)

sβ = z5(0) + α6,

α6 = −z5(0) + z>1 (0)sβ + α1
Bv⊥

>
sβ. (2.46)

Following the same procedure for α7, it follows that

α7 = −z6(0) + z>1 (0)s⊥β + α1
Bv⊥

>
s⊥β . (2.47)

Finally, the set of indistinguishable initial conditions is given by

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0) + γBv⊥

sβ

s⊥β
z4(0)

z>1 (0)sβ + γBv⊥
>
sβ

z>1 (0)s⊥β + γBv⊥
>
s⊥β


,
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with γ ∈ {0,−2z>1 (0)Bv⊥/||Bv||2}. This completes the proof.

The observability conditions given by the proposition 3, establish the set of indistin-

guishable initial conditions when the beacon and the vehicle are unknown. The following

corollary states the observability properties when the information of the beacon's initial

position is known.

Corollary 2. Suppose that the initial condition of the beacon is known, then, the system

is weakly observable.

Proof. Since the beacon's initial position is known, that is Ib̄(0) = Ib(0), it implies that

z̄2(0) = z2(0) and, hence, αa = αb = 0. Moreover, using the fact that z̄4(0) = z4(0), it

can be obtained that α1 ∈ {0,−2z>1 (0)Bv⊥/||Bv||2}. Additionally, it also implies that

α6 = α1
Bv⊥

>
z2(0) and α7 = α1

Bv⊥
>
z3(0). Therefore, the set of indistinguishable initial

conditions denoted by I(z(0)) is given by

I(z(0)) =


z(0), z(0)− 2

z>1 (0)Bv⊥

||Bv||2



Bv⊥

0

0

0
Bv⊥

>
z2(0)

Bv⊥
>
z3(0)




, (2.48)

Notice that this set consists of only two isolated points, then it can be concluded that

the system is weakly observable. This completes the proof.

Notice that the observability properties stated in proposition 3 and corollary 2, both

assume that the beacon does not move. While in the �rst, the set of indistinguishable

initial conditions was a continuous of points, by knowing the initial conditions of the

beacon, we could reduce it to just two points. It would be expected that by moving the

beacon, a richer trajectory will be generated. Indeed, that is the case and the following

proposition states the observability properties of the system assuming that the beacon

rotates and the vehicle moves in straight lines.

Proposition 4 (VLBR). Consider the system (2.23) with u ∈ R4 ful�lling assump-

tion 4. Further, suppose that the vehicle moves in straight lines (that is , (2.39) holds)

and the beacon rotates (that is, (2.26) holds). Then, the system (2.23) with the con-

straints in the initial conditions (2.24) is observable.
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Proof. Consider the initial condition z(0) ∈ R9 and let u ∈ R4 be constant. Since the

input is known and constant, (2.23) is an LTI system. Taking into account (2.26) and

(2.39), the �rst six rows of the observability matrix associated with the system (2.23)

are given by

O =



0 0 0 1 0 0

−2Bv> 0 0 0 2lmωm 0

0 −4lmωm
Bv> 0 0 0 −2lmω

2
m

0 0 6lmω
2
m
Bv> 0 −2lmω

3
m 0

0 8lmωm
Bv> 0 0 0 2lmω

4
m

0 0 −10lmω
4
m
Bv> 0 2lmω

5
m 0


(2.49)

and the following rows can be computed as CAj = −w2
m(2CAj−2 + ω2

mCA
j−4) for

j ∈ {6, 7, 8, ...}. Since the rank of (2.49) is 6, then the kernel O of the observability

matrix is given by

ker(O) =



Bv⊥ 0 0

0 Bv⊥ 0

0 0 Bv⊥

0 0 0

0 0 0

0 0 0


. (2.50)

Recall that unobservable space is given by all initial conditions of the form z̄(0) =

z(0) + ker(O)α with α = [α1, α2, α3]> ∈ R3, are indistinguishable from z0. Then



z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0) + α1
Bv⊥

z2(0) + α2
Bv⊥

z3(0) + α3
Bv⊥

z4(0)

z5(0)

z6(0)


. (2.51)

Moreover, since the initial conditions should satisfy the constraint given by (2.24), then

z̄3(0) = R>π/2z̄2(0), implies that α3
Bv⊥ − α2

Bv = 0. Since both vectors (Bv⊥ and Bv)
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are orthogonal, then α2 = α3 = 0. From the relation z̄5(0) = z5(0), it follows that

(
z1(0) + α1

Bv⊥
)>

z2(0) = z>1 (0)z2(0),

α1z
>
2 (0)Bv⊥ = 0,

α1||z>2 (0)|| ||Bv⊥|| cos θ = 0,

α1 cos θ = 0, (2.52)

where θ is the angle between z>2 (0) and Bv⊥. Following the same procedure for z̄6(0) =

z6(0), leads to the same equation (2.52). Then α1 = 0 or z>2 (0) ⊥ Bv⊥. Since α1 =

α2 = α3 = 0, then z̄(0) = z(0) and the system is observable. This completes the proof.

Remark 2. Notice, that if the system without the knowledge of the beacon's initial con-

dition is observable, then the system will be observable with the additional information

of the beacon's position.

2.5.3. Vehicle does not move

In the previous sections, the observability analysis was carried out assuming that the

vehicle was moving forward but without rotation. Here, the observability of the system

will be analyzed assuming that the vehicle does not move, that is ||Bv|| = 0, while

beacon can be rotating or not.

The case when both are not moving is trivial. Since neither the vehicle nor the beacon

are generating richer trajectories, the system will not be observable. Therefore the

observability analysis in this section is carried out by assuming that the beacon rotates.

For more information related with the observability analysis when the beacon is not

rotating, see Appendix A.2. for more information.

The following proposition states the observability properties of the system assuming

that the beacon rotates and the vehicle does not move.

Proposition 5 (VNBR). Consider the system (2.23) with u ∈ R4 ful�lling assump-

tion 4. Further, suppose that the vehicle does not move, that is,

||Bv|| = 0; (2.53)
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and the beacon rotates (that is, (2.26) hold). Then, the system (2.23) with the con-

straints in the initial conditions (2.24) is not observable. Moreover, for every z(0) ∈ R9,

the set of all indistinguishable initial conditions, denoted as I(z(0)), is given by

I(z(0)) =


z(0),



1
2
||z1(0) + z2(0)||sα + 1

2
||z1(0)− z2(0)||sβ

1
2
||z1(0) + z2(0)||sα − 1

2
||z1(0)− z2(0)||sβ

1
2
||z1(0) + z2(0)||s⊥α − 1

2
||z1(0)− z2(0)||s⊥β

z4(0)

z5(0)

z6(0)




, (2.54)

where sγ : [0, 2π) 7→ S1 is the map described by sγ := [cos γ sin γ]>, s⊥γ := R>π/2sγ, and

α = cos−1

((
z1(0)+z2(0)
||z1(0)+z2(0)||

)> (
z1(0)−z2(0)
||z1(0)−z2(0)||

))
+ β .

Proof. Consider the initial condition z(0) ∈ R9 and let u ∈ R4 be constant. Since

the input is known and constant, (2.23) becomes in an LTI system. Moreover, since

the vehicle does not move (||Bv|| = 0), the �rst three rows of the observability matrix

associated with the system (2.23) are given by

O =

0 0 0 1 0 0

0 0 0 0 2lmωm 0

0 0 0 0 0 −2lmω
2
m

 (2.55)

and the following rows can be computed as CAj = −w2
m(CAj−2) for j ∈ {3, 4, 5, ...}.

Notice, that the rank of (2.55) is 3, then the kernel of the observability matrix O is

given by

ker(O) =



ex ey 0 0 0 0

0 0 ex ey 0 0

0 0 0 0 ex ey

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (2.56)

Recall that the unobservable space is given by all initial conditions of the form z̄(0) =

z(0)+ker(O)α with α = [α1, α2, α3, α4, α5, α6]> ∈ R6, which are indistinguishable from
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z(0). Then 

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



z1(0) +αa

z2(0) +αb

z3(0) +αc

z4(0)

z5(0)

z6(0)


, (2.57)

where αa := [α1, α2]>, αb := [α3, α4]>, and αc := [α5, α6]>. Recall that the initial

conditions should satisfy the constraints given by (2.24). Since z2 := R>ψw⊥ (x2),

then αb ful�lls the equation ||αb + z2(0)||2 = 1. From the relation between z2(0) and

z3(0) in (2.24) and using (2.57), it can be concluded that αc = R>π/2αb. Further,

since z̄4(0) = z4(0) and z̄5(0) = z5(0), it follows that ||αa + z1(0)||2 = ||z1(0)||2 and

α>aαb + α>a z2(0) + α>b z1(0) = 0 respectively. Gathering all three equations, we have

that
||αa + z1(0)||2 = ||z1(0)||2,

||αb + z2(0)||2 = 1,

α>aαb +α>a z2(0) +α>b z1(0) = 0.

 (2.58)

Notice that the are four variables (αa and αb) but just three equations, therefore

the solution of (2.58) has one free parameter, which implies that the system is not

observable. Moreover, the solution of (2.58) (To see the details in the procedure, go to

Appendix A.3.) is given by

αa = −z1(0) +
1

2
||z1(0) + z2(0)||sα +

1

2
||z1(0)− z2(0)||sβ,

αb = −z2(0) +
1

2
||z1(0) + z2(0)||sα −

1

2
||z1(0)− z2(0)||sβ,

 (2.59)

where β ∈ [0, 2π) and α = cos−1

((
z1(0)+z2(0)
||z1(0)+z2(0)||

)> (
z1(0)−z2(0)
||z1(0)−z2(0)||

))
+ β.

Then, the set of indistinguishable initial conditions is described by

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)


=



1
2
||z1(0) + z2(0)||sα + 1

2
||z1(0)− z2(0)||sβ

1
2
||z1(0) + z2(0)||sα − 1

2
||z1(0)− z2(0)||sβ

1
2
||z1(0) + z2(0)||s⊥α − 1

2
||z1(0)− z2(0)||s⊥β

z4(0)

z5(0)

z6(0)


,
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with β ∈ [0, 2π) and α = cos−1

((
z1(0)+z2(0)
||z1(0)+z2(0)||

)> (
z1(0)−z2(0)
||z1(0)−z2(0)||

))
+ β. This completes

the proof.

The observability conditions, given by the proposition 5, establish the set of indistin-

guishable initial conditions when the beacon and vehicle initial positions are unknown.

The following corollary, states the observability properties when the initial position of

the beacon is known a priori.

Corollary 3. Suppose that the initial condition of the beacon is known. Then, the

system is observable.

Proof. Since the beacon's initial position is known, that is Ib̄(0) = Ib(0), it implies

that z̄2(0) = z2(0) and z̄3(0) = z3(0); and hence αb = αc = 0. Since z̄5(0) = z5(0) and

z̄6(0) = z6(0), it implies that α>a z2(0) = 0 and α>a z3(0) = 0. Since z2(0) ⊥ z3(0), it

implies that αa = 0. Then, the set of indistinguishable initial conditions is given by

I(z(0)) = {z(0)} and the system is observable. This completes the proof.

2.5.4. Simulation Results

To illustrate the di�erent sets of indistinguishable initial conditions, three examples

have been implemented in MatlabTM; which is a high-performance language developed

by MathWorks. This section presents the simulations results for di�erent conditions:

• Scenario 1 : the vehicle moves in circles and the beacon does not move. This cor-

responds to Proposition 2. Notice that in this case, there is a continuous of points

that are indistinguishable between them. The initial position and orientation of

the vehicle are Ip(0) = [10, 5]> m and ψ(0) = π/4, respectively. The manipulator's

length is set to lm = 2 m and the initial angle to χ(0) = π/3, which implies that
Ib(0) = [1.00, 1.73]> m. The linear and angular velocity of the vehicle are given by
Bv = [2.1, 0.3]> m/s and r = 0.2 rad/s, respectively. The beacon does not move,

that is, ωm = 0 rad/s. Recall that the set of indistinguishable initial conditions in

the original coordinate frame is given by the equations (2.37) and (2.38). Then, by

choosing for example γ = χ(0) + π/2, a pair of indistinguishable initial conditions

is given by Ib̄(0) = [−1.73, 1.00]> m and Ip̄(0) = [7.26, 4.26]> m.

Simulation results are shown in Figure 7. Figure 7(a) shows two di�erent
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initial conditions that are indistinguishable. Although the initial conditions are

di�erent, the output trajectory is the same (see Figure 7(b)). Furthermore, once

the beacon's position is known, the dashed black circle disappear and the system

is observable (as it was proved in Corollary 1).
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Figure 7: Simulation results for two di�erent initial conditions in VCBN scenario

without taking into account ocean currents. Every initial condition in the black

dashed line will be indistinguishable.

• Scenario 2 : the vehicle moves in straight lines and the beacon does not rotate.

Nevertheless, the beacon's position is known a priori. This corresponds to Corol-

lary ??. For this particular case, there are just two isolated points given by (2.48).

Applying a state transformation to recover the state in the original coordinate

frame, it yields

Ip̄(0) = Ib(0)− Id̄(0),

= Ib(0)−Rψ0 z̄1(0),

= Ib(0)−Rψ0

(
I2 − 2

Bv⊥ Bv⊥
>

||Bv||2

)
z1(0),

= Ib(0)−

(
I2 − 2

Bv⊥ Bv⊥
>

||Bv||2

)
Id(0). (2.60)

In this case, the initial position and orientation of the vehicle are Ip(0) =

[5, 10]> m and ψ(0) = 0, respectively. The manipulator's length and initial angle
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are the same that in the �rst scenario, which implies that Ib(0) = [1.00, 1.73]>.

The linear velocity of the vehicle is given by Bv = [2.1, 0]> m/s. The angular rate

of the vehicle and beacon were set up to zero, that is, r = 0 and wm = 0 rad/s.

Once the velocity is set up, the other indistinguishable initial condition is given

by Ip̄(0) = [5.00,−6.54]> m, which ful�lls the condition (2.60). Simulation results

are shown in Figure 8. Figure 7(a) shows two di�erent initial conditions that

are indistinguishable. Although the initial conditions are di�erent, the output

trajectory is the same (see Figure 8(b)). Since these point are isolated, the system

is weakly observable.
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Figure 8: Simulation results for two di�erent initial conditions in VLBN scenario

without taking into account ocean currents. The beacon's initial position is known,

therefore there just two isolated indistinguishable initial conditions.

• Scenario 3 : the vehicle moves in straight lines and the beacon does not move at

the begining, with the same inputs and initial conditions of the previous scenario.

At t = 10 s, the beacon starts moving with angular velocity ωm = 0.3 rad/s, while

the vehicle does not change its trajectory. The key idea behind this example is to

illustrate how by moving the beacon, the two indistinguishable trajectories go in

di�erent directions, allowing one to distinguish between both initial conditions.

Simulation results are shown in Figure 9. Figure 9(a) shows two di�erent

initial conditions of the vehicle that are indistinguishable since the beacon is not

moving. Once the beacon starts moving at t = 10 s, both trajectories become
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Figure 9: Simulation results for a combination of trajectories without taking into

account ocean currents. The beacon's initial position is known, therefore there just

two isolated indistinguishable initial conditions. Once the beacon start moving both

trajectories can be distinguish and hence the two initial conditions.

distinguishable between them (see Figure 9(b)).

2.6. OBSERVABILITY ANALYSIS WITH OCEAN CURRENT

Up to this point, the observability analysis was carried without taking into account a

model for the ocean currents a�ecting the vehicle. Now, consider the system (2.11),

and using the information of the depth for the vehicle and beacon, the system (2.11)

can be rewritten in 2D as

Iṗ(t) = I
BR(ψ(t))Bv(t) + Ivc(t)

Iv̇c(t) = 0

Iḃ(t) = lmωmw⊥ (χ(t))

χ̇(t) = ωm

drxy(t) = ||Ib(t)− Ip(t)||


, (2.61)
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where Ip, Bv, Ivc, Ib ∈ R2, IBR ∈ SO(2), and the vectors w (·) and w⊥ (·) are properly
rede�ned in R2. Using the same approach described by Figure 5, �rst the system will be

expressed in the B-frame. Taking the time derivative of (2.19) and using the relations

in (2.61), it is possible to describe the system in the {B} as follows

Bḋ = −S(r)Bd− Bv + lmωmR>ψw⊥ (χ)− Bvc. (2.62)

Additionally, since Bvc = R>ψ Ivc, then, the time derivative of the current is given by

Bv̇c = −S(r)Bvc. (2.63)

To summarize, the system is completely described in the {B}-frame by the following

set of equations

Bḋ = −S(r)Bd− Bv + lmωmR>ψw⊥ (χ)− Bvc
Bv̇c = −S(r)Bvc

χ̇ = ωm

 , (2.64)

with state variable x = [Bd, Bvc, χ]> ∈ R4 × [0, 2π). The output equation is given by

d2
rxy = Bd>Bd. (2.65)

Notice that the next step in Figure 5, is to apply a state augmentation to transform the

system into a linear one with respect to the state variables. To that end, let us de�ne

the following state-space augmentation z := [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11] :=

[Bd, Bvc,R>ψw⊥ (χ) ,R>π/2z3, z
>
1 z1, z

>
1 z2, z

>
1 z3, z

>
1 z4, z

>
2 z2, z

>
2 z3, z

>
2 z4]. Then, the sys-

tem (2.64) can be transformed into a linear one (for a detailed step by step of this pro-

cedure, see Appendix A.4.) with state variable z ∈ R15, input vector u = [Bv>, ωm, r] ∈
R4, and output y ∈ R as

ż = A(u)z +Bu

y = Cz

}
(2.66)

where
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A(u) =



−S(r) −I2 lmωmI2 0 0 0 0 0 0 0 0

0 −S(r) 0 0 0 0 0 0 0 0 0

0 0 −S(r) −ωmI2 0 0 0 0 0 0 0

0 0 ωmI2 −S(r) 0 0 0 0 0 0 0

−2Bv> 0 0 0 0 −2 2lmωm 0 0 0 0

0 −Bv> 0 0 0 0 0 0 −1 lmωm 0

0 0 −Bv> 0 0 0 0 −ωm 0 −1 0

0 0 0 −Bv> 0 0 ωm 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −ωm
0 0 0 0 0 0 0 0 0 ωm 0



,

B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0

0 0 0

0 0 0

0 0 0



,

C =
[
0 0 0 0 1 0 0 0 0 0 0

]
,
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and the initial conditions satisfying

z1(0)

z2(0)

z3(0)

z4(0)

z5(0)

z6(0)

z7(0)

z8(0)

z9(0)

z10(0)

z11(0)



:=



Bd(0)
Bvc(0)

R>ψ0
w⊥ (χ(0))

R>π/2z3(0)

z1(0)>z1(0)

z1(0)>z2(0)

z1(0)>z3(0)

z1(0)>z4(0)

z2(0)>z2(0)

z2(0)>z3(0)

z2(0)>z4(0)



(2.67)

Based on assumption 4, system (2.66) can be analyzed as an LTI system, since A(u)

is constant and known. Further, recall that the observability analysis is carried out for

the class of maneuvers generated by assumption 4.

2.6.1. Vehicle moving in circles

Here, the observability of the system is analyzed assuming that the vehicle is moving in

circles, that is, r 6= 0 and ||Bv|| 6= 0, while the beacon can be rotating or not. First, we

will establish the observability properties of the system (2.66) given that the beacon is

rotating.

Proposition 6. Consider system (2.66) with u ∈ R4 ful�lling assumption 4. Further,

suppose that the vehicle moves in circles, that is,

||Bv|| 6= 0, r 6= 0, (2.68)

and the beacon rotates with angular rate

ωm 6= 0 6= ±r 6= ±2r 6= ±1

2
r. (2.69)

Then, the system (2.66) is observable.

Proof. Consider the initial condition z(0) ∈ R15 and let u ∈ R4 be constant. Since

the input is known and constant, (2.66) is an LTI system. The observability matrix
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associated with the system (2.66) is de�ned by O = [C,CA, ..., CAn−1]> with n ∈
{1, 2, .., 15} and the determinant is given by

det(O) = −1048576r18ω26
m l

8
m||Bv||6(r2 − ω2

m)15(r2 − 4ω2
m)4(4r2 − ω2

m)4.

Note that if (2.68) and (2.69) hold, then det(O) 6= 0, which implies that the observ-

ability matrix is full rank and therefore system (2.66) is observable. This completes the

proof.

Notice that by rotating the beacon and moving the vehicle in circles, the system is

observable. Now, since there are constraints in the initial conditions, it is important to

analyze the observability properties of the system given (2.68) or (2.69) do not hold.

For instance, the following proposition establishes it when the beacon is not rotating,

that is, ωm = 0.

Proposition 7. Consider system (2.66) with u ∈ R4 ful�lling assumption 4. Further,

suppose that the vehicle moves in circles ( (2.68) holds) and the beacon does not move,

that is,

ωm = 0. (2.70)

Then, the system (2.66) with the constraints in the initial conditions (2.67) is not

observable. Moreover, for every z(0) ∈ R15, the set of all indistinguishable initial con-

ditions denoted by I(z(0)) is given by

I(z(0)) =



z(0),



z1(0)

z2(0)

sβ

s⊥β
z5(0)

z6(0)

z>1 (0)sβ

z>1 (0)s⊥β
z9(0)

z>2 (0)sβ

z>2 (0)s⊥β





, (2.71)

where sβ : [0, 2π) 7→ S1 is the map described by sβ := [cos β sin β]> and s⊥β := R>π/2sβ.

Proof. Consider the initial condition z(0) ∈ R15 and let u ∈ R4 be constant. Since

the input is known and constant, (2.66) is an LTI system. Taking into account (2.70),
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the �rst seven rows of the observability matrix associated with the system (2.66) is

calculated as

O = −2



0 0 0 0 −0.5 0 0 0 0 0 0
Bv> 0 0 0 0 1 0 0 0 0 0

r Bv⊥
> −2 Bv> 0 0 0 0 0 0 −1 0 0

−r2 Bv> −3r Bv⊥
>

0 0 0 0 0 0 0 0 0

−r3 Bv⊥
>

4r2 Bv> 0 0 0 0 0 0 0 0 0

r4 Bv> 5r3 Bv⊥
>

0 0 0 0 0 0 0 0 0

r5 Bv⊥
> −6r4 Bv> 0 0 0 0 0 0 0 0 0


(2.72)

and the following rows can be computed as CAj = −r2 (2CAj−2 − r2CAj−4) for j ∈
{7, 8, 9, ...}. Since the rank of (2.30) is 7, then the kernel of O is given by

ker(O) =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ex ey 0 0 0 0 0 0

0 0 ex ey 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(2.73)

Recall that the unobservable space is given by all initial conditions that generate the

same input-output map. Therefore, all initial conditions of the form z̄(0) = z(0) +
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ker(O)α with α = [α1, ..., α8]> ∈ R8, are indistinguishable from z0. Then

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)

z̄7(0)

z̄8(0)

z̄9(0)

z̄10(0)

z̄11(0)



=



z1(0)

z2(0)

z3(0) +αa

z4(0) +αb

z5(0)

z6(0)

z7(0) + α5

z8(0) + α6

z9(0)

z10(0) + α7

z11(0) + α8



, (2.74)

where αa = [α1, α2]> and αb = [α3, α4]>. Recall that the initial conditions should

satisfy the constraints given by (2.67). Since z3 := R>ψw⊥ (χ), then

z̄>3 (0)z̄3(0) = 1,

||αa + z3(0)||2 = 1,

αa = −z3(0) + sβ, (2.75)

where sβ := [cos β, sin β]> with β ∈ [0, 2π). From the relation between z3(0) and z4(0)

in (2.67) and using (2.74), it can be concluded that

z̄4(0) = R>π/2z̄3(0),

z4(0) +αb = R>π/2 (z3(0) +αa) ,

αb = R>π/2αa. (2.76)

Moreover, using the fact that z7(0) := z1(0)>z3(0) and z8(0) := z1(0)>z4(0) in (2.74),

it is possible to obtain α5 and α6, thus

z̄>1 (0)z̄3(0) = z>1 (0)z3(0) + α5,

z>1 (0) (z3(0) +αa) = z>1 (0)z3(0) + α5,

α5 = z>1 (0)αa, (2.77)

and

z̄>1 (0)z̄4(0) = z>1 (0)z4(0) + α6,

z>1 (0) (z4(0) +αb) = z>1 (0)z4(0) + α6,

α6 = z>1 (0)αb. (2.78)
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Following the same procedure, and the relations z10(0) := z2(0)>z3(0) and z11(0) :=

z2(0)>z4(0) in (2.74), it implies that α7 = z>2 (0)αa and α8 = z>2 (0)αb. Hence, the set

of indistinguishable initial conditions are given by

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)

z̄7(0)

z̄8(0)

z̄9(0)

z̄10(0)

z̄11(0)



=



z1(0)

z2(0)

sβ

s⊥β
z5(0)

z6(0)

z>1 (0)sβ

z>1 (0)s⊥β
z9(0)

z>2 (0)sβ

z>2 (0)s⊥β



.

This implies that the set of indistinguishable initial conditions from z(0) ∈ R15 is a

continuous of points parametrized by a free parameter β and described by (2.71). Thus

the system is not observable. This completes the proof.

Corollary 4. Suppose that the initial condition of the beacon is known. Then the

system is observable.

Proof. Suppose that the initial condition of the beacon is known, that is, Ib̄(0) = Ib(0).

which implies that z̄2(0) = z2(0) and z̄3(0) = z3(0). The last conditions imply that

αa = 0 and αb = 0, and therefore α5 = α6 = α7 = α8 = 0. Consequently, I(z(0)) =

{z(0)} and the system is observable. This completes the proof.

2.6.2. Vehicle moving in straight lines

In the previous sections, the observability analysis was carried out assuming that the

vehicle was moving forward and rotating at the same time. Here, the observability of

the system will be analyzed assuming that the vehicle is moving in straight lines, that

is, r = 0 and ||Bv|| 6= 0.

Based on the results of the previous sections, when the observability properties were
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established for the system without currents, we are only interested in knowing if the ob-

servability properties are maintained with the inclusion of the new state (ocean current

velocity). In the case when the beacon is not rotating, it is expected that the system

will not be observable (without knowing the initial position of the beacon) or weakly

observable (knowing the initial position of the beacon). Additionally, for the rest of the

analysis, it is assumed that the initial position of the beacon is known.

Therefore, the following proposition states the observability properties of the system

assuming that the beacon rotates and the vehicle is going in straight lines.

Proposition 8. Consider the system (2.66) with u ∈ R4 ful�lling assumption 4. Fur-

ther, suppose that the vehicle moves in straight lines (that is , r = 0 and ||Bv|| 6= 0)

and the beacon rotates (that is, ωm 6= 0). Additionally, that the initial beacon's position

is known. Then, the system (2.66) with the constraints in the initial conditions (2.67)

is observable.

Proof. Consider the initial condition z(0) ∈ R15 and let u ∈ R4 be constant. Since the

input is known and constant, (2.66) is an LTI system. Then, the �rst seven rows of the

observability matrix are given by

O = −2



0 0 0 0 −0.5 0
Bv> 0 0 0 0 1

0 −2 Bv> 2lmωm
Bv> 0 0 0

0 0 0 −3lmω
2
m
Bv> 0 0

0 0 −4lmω
3
m
Bv> 0 0 0

0 0 0 5lmω
4
m
Bv> 0 0

0 0 6lmω
5
m
Bv> 0 0 0

0 0 0 0 0

−lmωm 0 0 0 0

0 lmω
2
m −1 2lmωm 0

lmω
3
m 0 0 0 −3lmω

2
m

0 −lmω4
m 0 −4lmω

3
m 0

−lmω5
m 0 0 0 5lmω

4
m

0 lmω
6
m 0 −6lmω

5
m 0



(2.79)

and the following rows can be computed as CAj = −ω2
m (2CAj−2 − ω2

mCA
j−4) for
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j ∈ {7, 8, 9, ...}. Since the rank of (2.79) is 7, then the kernel of O is given by

ker(O) =



Bv⊥ 0 0 0 −ex 0 0 0

0 Bv⊥ 0 0 0 −ex 0 0

0 0 Bv⊥ 0 0 0 −ex 0

0 0 0 Bv⊥ 0 0 0 −ex

0 0 0 0 0 0 0 0

0 0 0 0 Bv>ex 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2Bv>ex 0 0

0 0 0 0 0 0 Bv>ex 0

0 0 0 0 0 0 0 Bv>ex



(2.80)

Recall that the unobservable space is given by all initial conditions that generate the

same input-output map. Therefore, all initial conditions of the form z̄(0) = z(0) +

ker(O)α with α = [α1, ..., α8]> ∈ R8, are indistinguishable from z0. Then

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)

z̄7(0)

z̄8(0)

z̄9(0)

z̄10(0)

z̄11(0)



=



z1(0) + α1
Bv⊥ − α5ex

z2(0) + α2
Bv⊥ − α6ex

z3(0) + α3
Bv⊥ − α7ex

z4(0) + α4
Bv⊥ − α8ex

z5(0)

z6(0) + α5
Bv>ex

z7(0)

z8(0)

z9(0) + 2α6
Bv>ex

z10(0) + α7
Bv>ex

z11(0) + α8
Bv>ex



. (2.81)

Notice that the initial conditions should satisfy the constraints given by (2.67). Since

the initial beacon's position is known, then z̄3(0) = z3(0) and z̄2(0) = z2(0). Using the

fact that z5(0) := z>1 (0)z1(0) and de�ning αa := α1
Bv⊥ − α5ex, then it is possible to

obtain a relation for αa given by

z̄>1 (0)z̄1(0) = z5(0),

||αa + z1(0)||2 = ||z1(0)||2,

αa = −z1(0) + ||z1(0)||sβ, (2.82)
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where sβ := [cos β, sin β]> with β ∈ [0, 2π). Moreover, using the relation z7(0) :=

z>1 (0)z3(0) and the value of αa in (2.81), it leads to

z7(0) = z̄>1 (0)z̄3(0),

z7(0) = (z1(0) +αa)
> z3(0),

(−z1(0) + ||z1(0)||sβ)>z3(0) = 0,

z1(0)>z3(0) = ||z1(0)||s>β z3(0), (2.83)

which implies that β = ∠z1(0). Since β has the same angle as z1(0), then equation (2.82)

implies that αa = 0. Hence z̄1(0) = z1(0). Recall that Bv⊥ = Rπ/2
Bv = [−vv, uv]>.

• First, suppose that uv = 0. Then, equation (2.81) implies that z̄6(0) = z6(0),

z̄9(0) = z9(0), z̄10(0) = z10(0), and z̄11(0) = z11(0).

• Now, suppose that uv 6= 0. Since αa = 0, it implies that α1
Bv⊥ = α5ex, which in

turn implies α1 = α5 = 0 and z̄6(0) = z6(0). Further, z̄3(0) = z3(0) and z̄4(0) =

z4(0) implies α3 = α4 = α7 = α8 = 0, which further implies that z̄10(0) = z10(0)

and z̄11(0) = z11(0).

De�ning αb := α2
Bv⊥ − α6ex and using z̄10(0) = z10(0) and z̄11(0) = z11(0), it implies

α>b z3(0) = 0 and α>b z4(0) = 0, respectively. Since z3(0) ⊥ z4(0), then αb = 0, which

implies z̄2(0) = z2(0). In other words, I(z(0)) = {z(0)} and hence the system is

observable.

2.6.3. Vehicle does not move

In the previous sections, the observability analysis was carried out assuming that the

vehicle was moving forward but without rotation. Here, the observability of the system

will be analyzed assuming that the vehicle does not move, that is ||Bv|| = 0. From

the observability analysis carried out in the previous sections, where the currents were

not taken into account, the only case where the system was observable was when the

beacon rotates and its initial position was known (Corollary 3).

Therefore, the following proposition states the observability properties of the system

assuming that the beacon rotates and the vehicle is not moving.

Proposition 9. Consider the system (2.66) with u ∈ R4 ful�lling assumption 4. Fur-

ther, suppose that the vehicle does not move (that is ||Bv|| = 0), the beacon rotates (that
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is ωm 6= 0) and the initial beacon's position is known. Then, the system (2.66) with the

constraints in the initial conditions (2.67) is observable.

Proof. Consider the initial condition z(0) ∈ R15 and let u ∈ R4 be constant. Since the

input is known and constant, (2.66) is an LTI system. Then, the �rst seven rows of the

observability matrix are given by

O = −2



0 0 0 0 −0.5 0 0 0 0 0 0

0 0 0 0 0 1 −lmωm 0 0 0 0

0 0 0 0 0 0 0 lmω
2
m −1 2lmωm 0

0 0 0 0 0 0 lmω
3
m 0 0 0 −3lmω

2
m

0 0 0 0 0 0 0 −lmω4
m 0 −4lmω

3
m 0

0 0 0 0 0 0 −lmω5
m 0 0 0 5lmω

4
m

0 0 0 0 0 0 0 lmω
6
m 0 6lmω

5
m 0


(2.84)

and the following rows can be computed as CAj = −ω2
m (2CAj−2 − ω2

mCA
j−4) for

j ∈ {7, 8, 9, ...}. Since the rank of (2.84) is 7, then the kernel of O is given by

ker(O) =



ex ex 0 0 0 0 0 0

0 0 ex ex 0 0 0 0

0 0 0 0 ex ex 0 0

0 0 0 0 0 0 ex ex

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(2.85)

Recall that the unobservable space is given by all initial conditions that generate the

same input-output map. Therefore, all initial conditions of the form z̄(0) = z(0) +
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ker(O)α with α = [α1, ..., α8]> ∈ R8, are indistinguishable from z0. Then

z̄1(0)

z̄2(0)

z̄3(0)

z̄4(0)

z̄5(0)

z̄6(0)

z̄7(0)

z̄8(0)

z̄9(0)

z̄10(0)

z̄11(0)



=



z1(0) +αa

z2(0) +αb

z3(0) +αc

z4(0) +αd

z5(0)

z6(0)

z7(0)

z8(0)

z9(0)

z10(0)

z11(0)



, (2.86)

where αa = [α1, α2]>, αb = [α3, α4]>, αc = [α5, α6]>, and αd = [α7, α8]>. Since the

initial beacon's position is known, then z̄3(0) = z3(0) and z̄4(0) = z4(0), which implies

that αc = αd = 0. Using z7(0) = z>1 (0)z3(0) and z8(0) = z>1 (0)z4(0) in (2.86), it

implies α>a z3(0) = 0 and α>a z4(0) = 0, respectively. Since z3(0) ⊥ z4(0), then αa = 0.

Consequently, the same analysis can be applied to z10(0) and z11(0), and �nd that

αb = 0. Hence, z̄1(0) = z1(0) and z̄2(0) = z2(0). In other words, I(z(0)) = {z(0)} and
hence the system is observable.

2.6.4. Simulation Results

To illustrate some of the conditions found in the previous section, two examples have

been implemented in MatlabTM. This section presents the simulations results for dif-

ferent conditions in the system:

• Scenario 1 : the vehicle moves in circles and the beacon does not move. This

corresponds to Proposition 7. Notice that in this case, there are a continuous of

points that are indistinguishable between them. The initial position and orien-

tation of the vehicle are Ip(0) = [10, 5]> m and ψ(0) = π/4, respectively. The

manipulator's length is set to lm = 2 m and the initial angle to χ(0) = π/3,

which implies that Ib(0) = [1.00, 1.73]> m. The linear and angular velocity of the

vehicle are given by Bv = [2.1, 0.3]> m/s and r = 0.2 rad/s, respectively. The

beacon does not move, that is, ωm = 0 rad/s. The initial ocean current velocity is
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Ivc(0) = [0.2, 0.35]> m/s. Recall that the set of indistinguishable initial conditions

is given by the equation (2.71). Then, by choosing a particular value of β, a pair

of indistinguishable initial conditions are given by Ib̄(0) = [−1.73, 1.00]> m and
Ip̄(0) = [7.26, 4.26]> m. Notice that equation (2.71) implies that Iv̄c(0) = Ivc(0).

The simulation results are shown in Figure 10. Figure 10(a) shows two di�erent

initial conditions that are indistinguishable. Although the initial conditions are

di�erent, the output trajectory is the same (see Figure 10(b)). Furthermore, once

the beacon's position is known, the dashed black circle disappear and the system

is observable (as it was proofed in Corollary 4).
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Figure 10: Simulation results for two di�erent initial conditions in VCBN scenario and

taking into account ocean currents. Every initial condition in the black dashed line

will be indistinguishable.

• Scenario 2 : the vehicle moves in straight lines and the beacon does not move at

the beginning with the same inputs and di�erent initial conditions. At t = 10 s,

the beacon starts moving with angular velocity ωm = 0.3 rad/s, while the vehicle

does not change its trajectory. The key idea behind this example is to illustrate

how by moving the beacon the two indistinguishable trajectories go in di�erent

directions, allowing one to distinguish between both initial conditions.

The simulation results are shown in Figure 11. Figure 11(a) shows two di�erent

initial conditions of the vehicle that are indistinguishable since the beacon is not

moving. Once the beacon starts moving at t = 10 s, both trajectories become

distinguishable between them (see Figure 11(b)).
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Figure 11: Simulation results for a combination of trajectories and taking into account

ocean currents. The beacon's initial position is known, therefore there just two

isolated indistinguishable initial conditions. Once the beacon starts moving both

trajectories can be distinguished and, hence, the two initial conditions.
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2.7. CONCLUDING REMARKS

We addressed the observability conditions for the localization problem of the vehicle and

the beacon. The vehicle is equipped with inertial sensors, a Doppler velocity log and

an acoustic ranging device to obtain the relative measure to a mobile beacon installed

under the hull of a support vessel. We addressed the problem with and without taking

into account the ocean current as a new state variable of the system. When the position

of the beacon is known, we proved that by moving the beacon under certain conditions,

it was possible to ensure the observability of the system all the times.
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3. OBSERVER DESIGN

3.1. INTRODUCTION

This chapter presents di�erent methodologies to solve the problem of state observer

design. The objective of an state observer is to estimate the unknown state of the

system through output measurements and the knowledge of the inputs applied to the

system. First, we use the Extended Kalman Filter (EKF) to estimate the vehicle's and

beacon's position, as well as, the ocean current velocity. Then, we use a variation of

the Kalman Filter known as Exogenous Kalman Filter (XKF), which provides better

performance since it is globally convergent and deals with the noise in its original

reference frame. This Chapter only presents the state observer design for the system

taking into account the unknown ocean currents. For more information regarding the

observer design when currents are not taken into account, refer to Appendix B.

3.2. EXTENDED KALMAN FILTER CONSIDERING OCEAN CUR-

RENTS

In this section we propose an observer for the nonlinear system (2.64) introduced in

Chapter 2, where we now consider that the system is corrupted with a process ζ(t) ∈ R5

and measurement κ(t) ∈ R zero mean Gaussian noise

ẋ(t) = f(x(t),u(t)) + ζ(t),

y(t) = g(x(t)) + κ(t),

}
(3.1)

76



where the state variable x := [x>1 ,x
>
2 , x3]> := [Bd, Bvc, χ]> ∈ R4 × [0, 2π), the input

vector u := [Bv>, ωm, r]
> ∈ R4, the output measurement y ∈ R,

f(x(t),u(t)) =

−S(r)x1(t)− Bv(t) + lmωm(t)R>ψ(t)w
⊥ (x3(t))− x2(t)

−S(r)x2(t)

ωm(t)

 ,
and

g(x(t)) = ||x1(t)||.

Notice that the system is nonlinear and, therefore, a state observer that accounts of this

nonlinearities is required. Additionally, the output measurement was taken as the actual

range and not the square range. This is important since it is assumed that the sensors

are a�ected with zero mean Gaussian noise. If the output measurement were taken as

the square range, then the output will be y(t) = x>1 (t)x1(t) + ||x1(t)||κ(t) + κ(t)2 =

x>1 (t)x1(t) + λ(t), where λ(t) = ||x1(t)||κ(t) + κ(t)2 is neither zero mean nor Gaussian

noise. For further details on this, refer to Chapter 2.3.1 of [90].

Then, the objective of the observer is to estimate x(t) given the time histories of the

input u(t) and the output y(t).

The Extended Kalman Filter (EKF) is the nonlinear version of the Kalman Filter (KF),

which is an algorithm that uses a time series of the input and the output corrupted

with additive independent white noise, a produces an statistically optimal estimation

of the state.

The main objective of the EKF is to extend the results of the KF for nonlinear sys-

tems. Basically, the EKF uses a linearized model of the system around the previous

estimation of the state. This method has been widely used in di�erent applications

such as: attitude estimation [91�95], navigation [96�99], model identi�cation [100�103],

biological or chemical process [104�106], among others [107�115].

To apply the EKF on (3.1), �rst the system should be discretized. We assume that the

control input u is constant over the sampling interval h (zero-order hold). Then, the

continuous model (3.1) is discretized using 1st-order approximation Euler method as

follows
xk+1 = f(xk,uk) + hζk,

yk = g(xk) + κk,

}
(3.2)
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where xk = [x1k ,x2k , x3k ]> = [Bd>k ,
Bv>ck , χk]

> is the state vector at time k, uk =

[Bv>k , ωmk
, rk]

> is the input vector at time k, yk is the measurement sampled at time k,

f(·) is

f(xk,uk) =

x1k + h
(
−S(rk)x1k − Bvk + lmωmk

R>ψk
w⊥ (x3k)− x2k

)
x2k + h (−S(rk)x2k)

x3k + hωmk

 ,
and g(·) is

g(xk) = ||x1k ||.

The EKF is executed in two steps: the predictor, which calculates a approximation of

the state and covariance; and the corrector, which improves the initial approximation

when a new measurement is available. The predictor equations for the EKF are

x̂−k+1 = f(x̂k,uk),

P̂−k+1 = FkPkF
>
k +Qk,

}
(3.3)

and the correction equation are given by

ỹk+1 = yk − g(x̂k),

Sk+1 = HkP
−
k+1H

>
k +Rk,

Kk+1 = P−k+1H
>
k S
−1
k+1,

x̂k+1 = x̂−k+1 +Kk+1ỹk+1,

P̂k+1 = (I −Kk+1Hk) P̂
−
k+1,


(3.4)

where x̂−k+1 is the a priori state estimation, P̂−k+1 is the predicted covariance estimate,

Kk+1 is the Kalman gain, x̂k+1 is the a posteriori state estimation, and P̂k+1 is the

corrected covariance estimate. Symbols Qk and Rk are the process and measurement

noise covariance matrices at time k, respectively. Furthermore, Fk and Hk are the

process and measurement Jacobian matrices at time k, respectively, given by

Fk =

I2 − hS(rk) −hI2 −hlmωmk
R>ψk

w (x3k)

0 I2 − hS(rk) 0

0 0 1


and

Hk =
[

x1k

||x1k
|| 0 0

]
.
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To test the observer, we run a Monte-Carlo simulation with 100 scenarios, in which we

choose randomly the beacon's and vehicle's initial position and orientation, as well the

ocean current velocity. We restrict the operation of the vehicle to an area larger than

the beacon's position (||Ip|| > ||Ib|| + ε); the foregoing in order to avoid collisions or

entanglement between the vehicle and beacon. The inputs of the system are chosen

such that Proposition 6 holds, that is, the angular velocity of the vehicle is set to

r = 0.25 rad/s, the velocity of the vehicle Bv = [1.5, 0]>m/s, and the angular velocity

of the beacon ωm = 1 rad/s. The manipulator's length is set to lm = 2 m and the

simulation time to t = 200 s. The range measurement is modeled with an additive white

Gaussian noise with a standard deviation of 0.3 m [81] and acquired every Ts = 0.1 s

being Ts the discretization sampling time .

Table 1: Simulation parameters (model with ocean currents)

Parameter Variable Value

Vehicle's angular velocity r 0.25 rad/s

Vehicle's linear velocity Bv [1.5, 0]>m/s

Beacon's angular velocity ωm 1 rad/s

Manipulator's length lm 2 m

Simulation time t 200 s

Standard deviation noise range sensor - 0.3 m

Regarding the state observer, we assume that the initial condition is initialized with

a random Gaussian distribution with mean equal to the real value and standard de-

viation of ±30 % from the real value. The Kalman �lter parameters were chosen as

Qk = 1× 10−4diag([1, 1, 1, 1, 0.001]) for the process noise covariance matrix, the out-

put noise variance as Rk = 0.32, and the initial estimation error covariance P0 = In.

The performance of the steady state is represented by mean absolute error (MAE).

The steady state MAE is obtained from the last 20 s of the simulation. The average

steady state MAE for vehicle's position is 2.4 m with a standard deviation of ±3.7 m; for

beacon's position is 0.17 m with standard deviation of ±0.32 m; and for ocean current

velocity is 0.29 m/s with standard deviation of ±0.14 m/s. Figure 12 shows a histogram

of the steady state MAE from all 100 simulation.

Taking into account that the simulation has an associated margin of error, then, the

average MAE is not just described as a particular value but instead as a con�dence
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Figure 12: Histogram of the steady state MAE for EKF simulation taking into

account ocean currents. There worst case scenario gave an steady state MAE of 17 m

in the vehicle's position.

interval where the level of uncertainty is established as 95 %. Then, for 95 % of sim-

ulations the steady state MAE for the vehicle's position is contained in the interval

(1.7632, 2.9776) m, for the beacon's position (0.1176, 0.2234) m, and for the ocean cur-

rent velocity (0.2708, 0.3180) m/s.

Additionally, to understand which was the worst case scenario, not only due to the

steady state error, we evaluate the performance by applying the integral of the square

of the error (ISE). The ISE is obtained from the whole simulation time (200 s). This

metric give us a quantitative behavior of the transient response for all the simulations.

Figure 13 shows an histogram of ISE from all 100 simulations.

In the worst case scenario, the vehicle's initial position was set to Ip0 = [15.31, 28.29]> m

and the beacon Ib0 = [0.73, 1.85]> m. The state observer was initialized with Ip̂0 =

[25.58, 35.97]> m and the beacon Ib̂0 = [1.22, 1.57]> m. Figure 14 shows the vehicle's

trajectory and its estimation. Notice, that at the beginning there is a large error

between the real position and its estimation. Additionally, the norms of the estimation

errors are shown in Figure 15. In the worst case scenario, the EKF takes the complete

simulation time to converge to the real value.
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Figure 13: Histogram of ISE for EKF simulation taking into account ocean currents.

The worst case scenario corresponds the same having the worst steady state MAE.

-100

-80

-60

-40

-20

0

20

40

60

80

100

-100 -50 0 50 100

Figure 14: Vehicle's trajectory and its estimation for the EKF. Notice that the �lter

takes time to converge, but at the end of the simulation is close to the real value.
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Figure 15: Norm of the estimation errors for the EKF. Notice that the �rst 200 s there

is a large estimation error in the vehicle position.

Recall that the last scenario lies outside the con�dence interval. Then, another inter-

esting scenario to show is one that lies between the con�dence interval. The vehicle's

initial position was set to Ip0 = [19.57, 6.45]> m and the beacon Ib0 = [1.06, 1.69]> m.

The state observer was initialized with Ip̂0 = [11.23, 3.26]> m and the beacon Ib̂0 =

[0.97, 1.74]> m. Figure 16 shows the vehicle's trajectory and its estimation. Notice,

that at the beginning there is a large error between the real position and its estimation.

Additionally, the norms of the estimation errors are shown in Figure 17. It is important

to note that the behavior of the �lter is a�ected by how far the initial estimation is

from the real state of the system.

Additionally, since the output of the system is the range between the beacon and the
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vehicle, the further away is far from the other, the �lter tends to deteriorate. The above

seems to be because the position of the vehicle is larger in magnitude than the position

of the beacon, causing it to have a greater weight in the correction phase. Therefore, the

accuracy in the estimation decrease. Finally, the initial estimation covariance matrix is

�xed for all simulation scenarios. The above can cause that in those scenarios, where

the initial estimation value is very close to the real value, the �lter exhibits a more

aggressive transient response.
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Figure 16: Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the EKF.
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Figure 17: Norm of the estimation errors for a simulation that within the CI using the

EKF.

3.3. EXOGENOUS KALMAN FILTER TAKING INTO ACCOUNT

OCEAN CURRENTS

Estimation for nonlinear systems is a challenging problem. There are a lot of methods

in literature that solve the problem. In the previous section, the nonlinear version of the

Kalman Filter (EKF) was used. The EKF is based on the linearization of the system

around the current estimation and produces an optimal estimation of the state with

respect to noise. Although convergence were achieved in the simulation scenario, in

general there are no global stability properties guaranteed for the EKF.

Nonlinear observers have good global stability properties and desired performance.

Nevertheless, they can be noise sensitive. To solve both problems, Johansen and Fos-

sen [116] proposed a new version of the Kalman Filter, known as Exogenous Kalman

Filter (XKF). The key idea is: rather than linearizing the system around the current

estimation (EKF), the XKF proposes to linearize the system around the estimation of

a nonlinear observer. Since both system are in cascade, the Kalman Filter inherits the
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global stability properties of the nonlinear observer and at the same time is suboptimal

with respect to noise.

Inspired by those ideas, we propose the following methodology for the system (3.1):

�rst, a linear augmented-state observer is designed, which guarantees global stability

properties; then, an inverse state transformation is applied to recover the original state.

This estimation is highly a�ected by noise since the output used in the process is the

square range. To improve this, the estimation of this observer is used in the linearization

step of an EKF. Since the linear observer is in cascade with the EKF, then the complete

observer inherits the global stability properties. Figure 18 shows the observer scheme.

LQE for State 

Augmented system

Inverse State 

Transformation

Linearized Kalman

Filter

Figure 18: Observer design methodoloy based on XKF

3.3.1. Linear Quadratic Estimator for the state augmented system

The �rst stage in the procedure is to �nd an observer for the augmented-state sys-

tem (2.66). Recall that (2.66) and (3.1) are equivalent in the sense that there is one-to-

one correspondence in the state trajectories of both systems. The linear system (2.66)

is obtained by applying a state space augmentation to (3.1). Now consider that the

system (2.66) is corrupted with zero mean Gaussian disturbance v ∈ R15 and noise

w ∈ R

ż(t) = A(u)z(t) +Bu + v

ȳ(t) = Cz(t) + w

}
(3.5)
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where

A(u) =



−S(r) −I2 lmωmI2 0 0 0 0 0 0 0 0

0 −S(r) 0 0 0 0 0 0 0 0 0

0 0 −S(r) −ωmI2 0 0 0 0 0 0 0

0 0 ωmI2 −S(r) 0 0 0 0 0 0 0

−2Bv> 0 0 0 0 −2 2lmωm 0 0 0 0

0 −Bv> 0 0 0 0 0 0 −1 lmωm 0

0 0 −Bv> 0 0 0 0 −ωm 0 −1 0

0 0 0 −Bv> 0 0 ωm 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −ωm
0 0 0 0 0 0 0 0 0 ωm 0



,

B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0

0 0 0

0 0 0

0 0 0



,

C =
[
0 0 0 0 1 0 0 0 0 0 0

]
,

Remark 3. Although the disturbances ζ(t) and κ(t) in (3.1) are stochastic variables

with known covariance matrices, the stochastic properties of v and w in (3.5) are not

the same. The above is because a nonlinear transformation is carried out on the sys-

tem (3.1) which makes it di�cult to relate the stochastic properties of the new distur-

bances. Additionally, the transformation can lead to correlations between the state and

the disturbances.

Now the problem is to �nd the estimate ẑ(t) for the system (3.5) given the time histories

of {u(τ) : 0 ≤ τ ≤ t} and {ȳ(τ) : 0 ≤ τ ≤ t}. One way to solve the problem is by using
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Kalman-Bucy �lter, also known as Linear Quadratic Estimator (LQE). The �lter was

designed to minimize the mean square error E{(z(t)− ẑ(t))(z(t)− ẑ(t))>}.
Proposition 10 (Kalman-Bucy, 1961 [117]). An optimal estimator for the sys-

tem (3.5) has the form of a linear observer given by

˙̂z(t) = A(u)ẑ(t) +Bu + L(ȳ − Cẑ(t)), (3.6)

where L = P̄C>R̄−1 and P = E{(z(t) − ẑ(t))(z(t) − ẑ(t))>} satis�es the following

algebraic Riccati equation

A(u)P̄ + P̄A(u)> − P̄C>R̄−1CP̄ + Q̄ = 0. (3.7)

Sketch of the proof. Lets de�ne the state estimation error as e(t) = z(t) − ẑ(t). Then

ė(t) = (A(u)− LC) e(t)+γ, where γ = v−Lw. Notice that in absence of measurement

noise and disturbances in the process, e(t)→ 0 as t→∞ since (A(u)−LC) is a stability

matrix. In the presence of bounded noise measurement and disturbance, the system is

BIBO stable from the inputs v and w to the output e.

Additionally, notice that the covariance matrix R̄γ is given by R̄γ = E{(v − Lw)(v −
Lw)>} = Q̄+LR̄L>. Now, the idea is to �nd an L such that P̄ is as small as possible.

The covariance matrix P̄ of the error satis�es P̄ = E{e(t)e>(t)}, and its derivative

˙̄P = (A(u)− LC)P̄ + P̄ (A(u)− LC)> + Q̄+ LR̄L

= A(u)P̄ + P̄A(u)> + Q̄− LCP̄ + P̄C>L> + LR̄L

= A(u)P̄ + P̄A(u)> + Q̄+ (LR̄− P̄C>)R̄−1(LR̄− P̄C>)> − P̄C>R̄CP̄

Since P̄ satis�ed (3.7), then ˙̄P = (LR̄ − P̄C>)R̄−1(LR̄ − P̄C>)>, which implies that

Ṗ = 0 when L = P̄C>R̄−1.

Notice that the observer presented in (3.6) assumes that the output ȳ(t) is continuous

in time, but in reality is not. A straightforward approach is to hold the output between

each sample and assume it as continuous time (zero order hold). Other approach would

be using Euler's method to discretize the observer (3.6), as

˙̂zk+1 = ẑk + h (A(uk)ẑk +Buk + L(ȳk − Cẑk)) . (3.8)

Remark 4. Notice that ȳk 6= yk. The output of the state augmented observer (3.8) is

related to the original measurement as ȳk = y2
k.
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3.3.2. Inverse state transformation

Notice that in order to develop the linear observer, a state augmentation was performed.

The state estimation zk is related with the original system through the following inverse

state transformation

x̄k =

x̄1k

x̄2k

x̄3k

 =

 ẑ1k

ẑ2k

atan2 (Rψẑ4ke2,Rψẑ4ke1)

 , (3.9)

where ei ∈ R2, i ∈ {1, 2} the ith column of the 2× 2 identity matrix, and the function

atan2 : R2 → [0, 2π) is de�ned as

atan2 =



arctan(y/x) if x > 0

arctan(y/x) + π if x < 0 and y ≥ 0

arctan(y/x)− π if x < 0 and y < 0

π/2 if x = 0 and y > 0

π/2 if x = 0 and y < 0

undefined if x = 0 and y = 0

Remark 5. It is possible from x̄k to recover the vehicle and beacon positions, that is,
Ip(t) and Ib(t). Nevertheless, we will see through simulation that this estimation is

a�ected by the noise and it has better performance once it passed through the second

stage of the LKF.

3.3.3. Linearized Kalman Filter

Now, we have x̄k as an estimate of xk, which is a bounded signal given by the �lter (3.8)

and the inverse transformation (3.9). We use this signal as a linearization point for the

linear Kalman �lter. A �rst-order Taylor series expansion of (3.2) about the trajectory

x̄k yields the linearized model

xk+1 = f(x̄k,uk) + Fk(xk − x̄k) + εxk + hζk,

yk = g(x̄k) +Hk(xk − x̄k) + εyk + κk,

}
, (3.10)

where εxk and εyk are the high order terms in the linearization processes, Fk and Hk are

the Jacobian matrices around the state trajectory x̄k given by

Fk :=
∂f(x̄k,uk)

∂x
=

I2 − hS(rk) −hI2 −hlmωmk
R>ψk

w (x̄3k)

0 I2 − hS(rk) 0

0 0 1

 ,
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Hk :=
∂g(x̄k,uk)

∂x
=
[

x̄1k

||x̄1k
|| 0 0

]
.

Remark 6. Since x̄k is bounded and converges to xk, then it is possible to design an

observer for the system (3.10) without taking into account the high-order terms [116].

Then, the Linearized Kalman Filter (LKF) formulation for the system (3.10) in the

predictor-corrector form is given by

x̂−k+1 = f(x̄k,uk) + Fk(x̂k − x̄k),

P̂−k+1 = FkP̂kF
>
k +Qk,

}
(3.11)

and the correction equation are given by

ỹk = yk − g(x̄k)−Hk(x̂
−
k+1 − x̄k),

Sk+1 = HkP̂
−
k+1H

>
k +Rk,

Kk+1 = P̂−k+1H
>
k S
−1
k+1,

x̂k+1 = x̂−k+1 +Kk+1ỹk,

P̂k+1 = (I −Kk+1Hk) P̂
−
k+1.


(3.12)

Notice that, since ζk and κk in the original nonlinear system (3.2) are assumed additive,

then, the properties of the disturbances of the linearized system (3.10) are the same. A

block diagram showing all stages is presented in Figure 19.

The following assumptions guarantee that the Linear Kalman Filter inherits the stability

properties of the LQE.

Assumption 5. The process noise covariance matrix, the measurement noise covari-

ance matrix, and the initial estimation error covariance matrix are positive de�nite and

symmetric.

Assumption 6. The LTV system represented by the matrices Fk and Hk is uniformly

completely observable.

3.3.4. Simulation results

To test the observer, we run a Monte-Carlo simulation with 100 scenarios, in which

we choose randomly the beacon's and vehicle's initial position and orientation, and the

ocean current velocity. The conditions are the same as the EKF, where we restrict
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LQE for State Augmented system
Inverse State Transformation

Linearized Kalman Filter

Prediction

Correction

Figure 19: Observer interconnections diagram

the operation of the vehicle to an area larger than the beacon's position (||Ip|| >
||Ib||+ε), the foregoing in order to avoid collisions or entanglement between the vehicle

and beacon. The inputs of the system are chosen such that Proposition 6 holds, that

is, the angular velocity of the vehicle is set to r = 0.05 rad/s, the velocity of the

vehicle Bv = [1.5, 0]>m/s, and the angular velocity of the beacon ωm = 0.3 rad/s. The

manipulator's length is set to lm = 2 m and the simulation time to t = 200 s. The

range measurement is modeled with an additive white Gaussian noise with a standard

deviation of 0.3 m [81] and acquired every Ts = 0.1 s being Ts the discretization sampling

time.

Regarding the state observer, we assume that the initial condition is initialized

with a random Gaussian distribution with mean equal to the real value and stan-

dard deviation of ±30 % from the real value. The LQE parameters are chosen as

Q̄ = 0.001 diag([1, 1, 1, 1, 0.001 ones(1, 11)]) for the process noise covariance matrix,

and the output noise variance as R̄ = 0.1. The LKF parameters are chosen as

Qk = 0.001diag([1, 1, 1, 1, 0.001]), Rk = 0.32, and the initial estimation error covari-

ance P0 = In. All 100 simulations converge and the performance of the steady state is

represented by the mean absolute error (MAE). The steady-state MAE is obtained from
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the last 20 s of the simulation. The average steady state MAE for vehicle's position is

1.1 m with a standard deviation of ±0.3 m; for beacon's position is 0.27 m with stan-

dard deviation of ±0.12 m; and for ocean current velocity is 0.064 m/s with standard

deviation of ±0.017 m/s. Figure 20 shows an histogram of the steady state MAE from

all 100 simulation.
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(a) Vehicle's position (b) Beacon's position (c) Ocean current velocity

Figure 20: Histogram of the steady state MAE for XKF simulation taking into

account ocean currents. There worst case scenario gave an steady state MAE of 2 m in

the vehicle's position.

Taking into account that the simulation has an associated margin of error, then the

average MAE is not described as a particular value but instead as a con�dence in-

terval where the level of uncertainty is established as 95 %. Then, for 95 % of sim-

ulations the steady-state MAE for the vehicle's position is contained in the interval

(1.0866, 1.1850) m, for the beacon's position 0.2463, 0.2862) m, and for the ocean cur-

rent velocity (0.0609, 0.066) m/s.

Additionally, to understand which was the worst case scenario not only due to the

steady-state error, we evaluate the performance by applying the integral of the square

of the error (ISE). The ISE is obtained from the whole simulation time (200 s). This

metric gives us a quantitative behavior of the transient response for all 100 simulations.

Figure 21 shows an histogram of ISE from all 100 simulation.

From this point, it is interesting to understand how is the state estimation in the worst

case scenario and one from the CI. In the worst case scenario, the vehicle's initial

position was set to Ip0 = [6.29, 41.23]> m and the beacon Ib0 = [1.10, 1.66]> m.

The state observer was initialized with Ip̂0 = [6.10, 40.35]> m and the beacon Ib̂0 =
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Figure 21: Histogram of ISE for XKF simulation taking into account ocean currents.

The worst case scenario corresponds the same having the worst steady state MAE.

[1.23, 1.57]> m. Figure 22 shows the vehicle's trajectory and its estimation. Notice,

that at the beginning there is a large error between the real position and its estimation.

Additionally, the norm of the estimation errors are shown in Figure 23. Notice, that at

the begin it presented large errors in the estimation, but at the end it converges.
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Figure 22: Vehicle's trajectory and its estimation. Notice that the �lter takes time to

converge, but at the end of the simulation is close to the real value.
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Figure 23: Norm of the estimation errors for the XKF. Notice that the �rst 200 s there

is a large estimation error in the vehicle position.
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The last scenario lies outside the con�dence interval. Then, another interesting scenario

to show is one that lies between the con�dence interval. The vehicle's initial position

was set to Ip0 = [−0.17, 14.22]> m and the beacon Ib0 = [1.10, 1.669]> m. The

state observer was initialized with Ip̂0 = [−0.02, 13.79]> m and the beacon Ib̂0 =

[1.12, 1.65]> m. Figure 24 shows the vehicle's trajectory and its estimation. Notice,

that the algorithm achieves convergence even in the worst case scenario. Additionally,

the norms of the estimation errors are shown in Figure 25.
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Figure 24: Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the XKF.
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Figure 25: Norm of the estimation errors for a simulation that within the CI using the

XKF.

Although both observers were tested with di�erent simulations, it is important to make

a qualitative comparison of the performance of both. In the case of XKF, the average

MAE has better performance in the vehicle's position and ocean current estimation,

which means a better performance in steady state. This can be also seen, if we compare

the worst case scenario in both simulations. Finally, comparing the ISE distribution

both presented similar shape. It is important to recall, that one of the main advantages

of XKF over EKF, is the globally asymptotically stability property. Nevertheless, the

observer XKF structure imposes limits in the type of trajectories to perform by the

vehicle.
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(a) Vehicle's position (b) Beacon's position (c) Ocean current velocity

Figure 26: Histogram comparison of ISE and MAE for both observers

3.4. CONCLUDING REMARKS

We addressed the estimation problem from two di�erent implementations: the Ex-

tended Kalman Filter and the Exogenous Kalman Filter. For the EKF, we used the

model represented in the {B}-frame and assumed a Gaussian noise; this �lter is based

in the linearization of the the system around the current estimation. On the other hand,

the Exogenous Kalman Filter is based on the linearization of the system around the

estimation of a second �lter with globally convergence properties. Under some assump-

tions, the cascade �lter inherits the convergence properties and it has good response

against noise. Finally, both �lters were tested in simulation, with and without taking

into account ocean currents.
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4. OPTIMAL TRAJECTORIES

4.1. INTRODUCTION

Until now, all the analyses carried out in the previous sections about the system ob-

servability had been made from a yes or no point of view; this means that we answer

the question whether the system is observable or not. This chapter addresses the prob-

lem of optimal trajectories for the cooperative underwater navigation system from an

observability point of view. First, we derive a cost function based on the Fisher Infor-

mation Matrix and the trajectories of the vehicle and the beacon. Finally, we �nd out

optimal trajectories for the beacon based on the trajectories of the vehicle.

4.2. PROCESS AND MEASUREMENT MODEL

Consider the system described by the equation (2.61). This time, lets assume that

the vehicle's velocity is given by Bv := [v(t), 0]> ∈ R2 and that the vehicle's rotation

depends on ψ̇(t) = r(t). The above implies that the process and measurement model

are given by
Iṗ(t) = v(t)w (ψ(t)) + Ivc(t)

ψ̇(t) = r(t)

Iv̇c(t) = 0

Iḃ(t) = lmωm(t)w⊥ (χ(t))

χ̇(t) = ωm(t)

d(t) = ||Ib(t)− Ip(t)||


, (4.1)

where t ∈ [0, tf ) and tf > 0, Ip ∈ R2 is the vehicle's position, v : [0, tf ) → R is the

vehicle's speed, ψ : [0, tf ) → [0, 2π) is the course angle of the vehicle, Ivc ∈ R2 is the
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velocity of the current, r : [0, tf ) → R is the course rate of the vehicle, Ib ∈ R2 is the

beacon's position, lm is the length of the beacon's manipulator, ωm : [0, tf )→ R is the

angular rate of the beacon, χ : [0, tf ) → [0, 2π) is the angular position of the beacon,

and d ∈ R is the distance or range between the vehicle and beacon. In what follows,

we assume that the beacon's positions is known, and is going to be used to increased

the accuracy on the estimation. The solution of the system (4.1) at time t with initial

condition (p0, ψ0,vc0 , χ0) is given by

Ip(t) = p0 +

∫ t

0

v(τ)w (ψ(τ)) dτ + tIvc0

ψ(t) = ψ0 +

∫ t

0

r(τ)dτ

Ivc(t) = vc0

χ(t) = χ0 +

∫ t

0

ωm(τ)dτ

Ib(t) = lmw (χ(t))

d(t) = ||Ib(t)− Ip(t)||



, (4.2)

In order to avoid collision or entanglement, we assume that the distance between the

vehicle and beacon have a safety guard given by

||Ib(t)− Ip(t)|| ≥ R

for all t > 0 and R > 0.

4.3. FISHER INFORMATION MATRIX

Now, we focused on �nding the best trajectories for the system to increase the accuracy

on the state estimation. One way to quantify this is by using the Fisher Information

Matrix (FIM). The FIM give us a quantitative measure of how much information a

random variable X carries about an unknown parameter θ. The problem for the Fisher

Information Matrix can be written as follow: consider the problem of estimating an

unknown parameter θ ∈ Rn from a set of measured data given by y ∈ Rm. Let

g(y) : Rn → Rm be an unbiased estimation of θ. Then, the error covariance of an
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unbiased estimator is bounded by

E
{

[g(y)− θ][g(y)− θ]>
}
≥ FIM(θ)−1, (4.3)

where

FIM(θ) = E
{

(∇θ ln f(y,θ)) (∇θ ln f(y,θ))>
}
, (4.4)

and f(y,θ) is the probability density function. The result given by the equation (4.3) is

called the Cramer-Rao bound. This result establishes a lower bound on the variance of

an unbiased estimator. For our purpose, the objective is to minimize as much as possible

the bound which ultimately translates in a better performance in the estimation. The

unknown parameter for the problem at hand is θ := [p>0 ,v
>
c0

]> and the measured data

model is given by

y = z + η, (4.5)

where y := [y0, y1, ..., ym−1]> is a vector containing m range measurements, z :=

[d0, d1, ..., dm−1]> is the real or actual range measurement given by (4.2), and η :=

[η1, η2, ..., ηm−1]> is a vector containing the measurement noise with ηk ∼ N (0, σ2).

Note that the FIM explicitly depends on the range between the vehicle and beacon,

which in turns implies that is going to depend on the inputs of the system.

With this in mind, we �rst derive the FIM for the problem under consideration. Then,

we solve the problem without taking into account any constraint (unconstrained opti-

mization problem). Finally, we solve di�erent numerical scenarios where we put con-

straints over the motion of the beacon and vehicle. Also, we solve the problem when the

vehicle is doing its own mission, and the beacon is helping to improve the observability

of the system.

4.4. UNCONSTRAINED TRAJECTORY OPTIMIZATION

So far, just by moving the beacon with constant angular velocity, the system will become

observable (recall from Chapter 2, that those are the cases where just the initial position

of the vehicle and the initial ocean current are unknown). Now, it is our interest to

�nd out the best sequence of angular velocity for the beacon which can increase the

accuracy on the estimation.
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Consider the system described by the equations (4.1). Let m ∈ N and consider a time

sequence of length m, such as 0 = t0 < t1 < ... < tm−1 = tf , where tk are sampling

instants at which the range measure is acquired. For simplicity of the analysis, in what

follows, we assume that the speed, course rate of the vehicle, and the angular velocity

of the beacon are bounded piecewise constant functions of time, that is

v(t) = v̄k ∈ [v̄min, v̄max], t ∈ [tk, tk+1),

r(t) = r̄k ∈ [r̄min, r̄max], t ∈ [tk, tk+1),

and

ωm(t) = ω̄mk
∈ [ω̄mmin

, ω̄mmax
], t ∈ [tk, tk+1).

Based on this assumption, for all t ∈ [tk, tk+1), the model (4.2) can be written as

Ip(t) =


Ipk +

v̄k
r̄k

[−w⊥ (ψ(t)) + w (ψk)] + (t− tk)Ivc0 , if r̄k 6= 0

Ipk + (t− tk)(v̄kw (ψk) + Ivc0), otherwise,

ψ(t) = ψk + (t− tk)r̄k
Ivc(t) = vc0

χ(t) = χk + (t− tk)ω̄mk

Ib(t) = lmw (χ(t))


(4.6)

Then, the model at time tk+1 and with constant sample time ∆t = tk−1 − tk, is given
by

Ipk+1 =


Ipk +

v̄k
r̄k

[−w⊥ (ψk+1) + w (ψk)] + ∆tIvc0 , if r̄k 6= 0

Ipk + ∆t(v̄kw (ψk) + Ivc0), otherwise,

ψk+1 = ψk + ∆t r̄k
Ivck+1

= vc0

χk+1 = χk + ∆t ω̄mk

Ibk+1 = lmw (χk+1)


(4.7)

Now that the model of the system has been described, it is possible to derive the

particular FIM for the problem at hand. Recall that the FIM is given by (4.4) and the
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measured data vector by (4.5). Since the model of the measured data has a normal

distribution, then, the probability density function for the measurement vector y with

respect to the unknown parameter θ := [p>0 ,v
>
c0

]> is given by

f(y,θ) = (2π)−m/2|R|−1 exp

(
−1

2
(y − z)>R−1(y − z)

)
,

where R = σ2Im is the covariance matrix. Now, in order to obtain the FIM for our

problem, we need the gradient of the logarithm, that is,

∇θ ln f(y,θ) = (∇θz)>R−1(y − z)

Recall that the range vector d which is formed by stacking the range measurements,

implicitly depends on the initial conditions of the system. Straightforward computation

shows that the FIM for our problem is given by

FIMu(θ) = σ−2(∇θz)>(∇θz), (4.8)

where

∇θz =


−d>0

d0
−t0 d>0

d0
...

...

−d>m−1

dm−1
−tm−1

d>m−1

dm−1


m×4

In the above, remember that dk denotes the relative position vector at time tk from

the beacon with respect to the vehicle, that is, dk = bk − pk and the norm is given

by dk = ||dk||. Additionally, the range vector depends on the inputs of the system,

which in turn the FIM is going to depend on the inputs. For the sake of simplicity, the

following compact notation will be used

D :=


d>0
d0
...

d>m−1

dm−1

 ∈ Rm×2

T := diag(t0, t1, ..., tm−1) ∈ Rm×m.

Then, the Fisher information matrix is given by

FIMu(θ) = σ−2

[
−D>

−D>T

] [
−D −T D

]
= σ−2

[
D>D D>T D
D>T D D>T 2D

] (4.9)
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Remark 7. The Fisher information for our problem has the same structure that the

one tackled in [77]. Nevertheless it is important to point out that the constraint in the

motion for the beacon is di�erent. Recall that the motion of the beacon is restricted to a

small area given by the manipulator. At �rst glance it can be a disadvantage compared

to using another vehicle as a beacon since the manipulator will impose a smaller range

operation of the system. However, the dynamics of the manipulator is much faster than

another underwater vehicle, which allows the system to execute more excited maneuvers.

In order to solve an optimization problem, we de�ne the following cost function based

on the FIM like

J(u) = ln detFIMu(θ), (4.10)

which we seek to maximize.

Now, with a cost function that relates the amount of information that the range mea-

surement carries about the initial condition of the system, it is possible to state an

optimization problem. First, we solve the unconstrained optimization problem. To

that end, we recall the results of Popescu et al. [118].

Proposition 11 (Theorem 1.2 from [118]). Let Q ∈ Rmn×mn

Q :=


Q11 . . . . Q1m

...
. . .

...

Qm1 . . . Qmm

 ,
where Qij ∈ Rn×n with i, j = 0, 1, . . . ,m; Qij � 0; Qij = Q>ij; and aij = tr(Qij). Then

the determinant of Q is maximized when each block is a scaled identity matrix of the

form Qij = n−1aijIn and the maximum value of the detQ is given by (n−m det E)n,

where the elements of the square matrix E are {aij}.

With this tool, we can �nd out what is the maximum cost function for the FIM given

by (4.10). Let Q11 := D>D, Q12 = Q21 := D>T D, and Q22 := D>T D. Then, the

matrix Q is given by

Q =

[
Q11 Q12

Q21 Q22

]
.

Notice that Qij � 0 and Qij = Q>ij ∈ R2×2 for i, j = 1, 2. Now, the

a11 = tr(Q11) = m,
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a12 = a21 = tr(Q12) = tr(Q21) =
m−1∑
k=0

tk,

and

a22 = tr(Q22) =
m−1∑
k=0

t2k.

Then, the cost function J for the optimal value u∗ is given by

J(u∗) = ln detFIMu∗(θ)

= ln det
(
σ−2 (Q)

)
= ln

(
σ−8(2−2 det E)2

) (4.11)

In the special case when the measurements are taken with uniform sampling, that is

tk = kT , then

det E = det

([
m T

∑m−1
k=0 k

T
∑m−1

k=0 k T 2
∑m−1

k=0 k
2

])
,

= det

([
m T m(m−1)

2

T m(m−1)
2

T 2m(m−1)(2m−1)
6

])
,

=
1

12
T 2m2(m2 − 1).

Finally, it is possible to �nd out the optimal cost function for the unconstrained opti-

mization problem

J(u∗) = ln

(
T 4m4(m2 − 1)2

2304σ8

)
(4.12)

Remark 8. Notice that the optimal value for the cost function is directly proportional

to the number of range measurements taken into account in the optimization problem.

Additionally, if the variance of the sensor is to large, the accuracy of the system is going

to decrease.

Remark 9. Although the optimization did not take into account any of the constraints

for the vehicle and beacon, this value gives us an overview of the maximum value that

we can achieve in our optimization problem with constraints.
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4.5. CONSTRAINED TRAJECTORY OPTIMIZATION

In the previous section, we tried to solve the problem without taking into account any

restriction for the inputs in the vehicle and the beacon. Basically, equation (4.12) gives

us an intuition of the maximum value that we can achieve if the vehicle and beacon

can perform any trajectory. Now, with the constraint on the type of movement for

the vehicle and beacon given by (4.7) and bounds for the inputs, we try to solve the

problem using numerical optimization methods. Four di�erent optimization problems

are proposed:

• Problem 1: both inputs from vehicle and beacon are optimization variables. That

is u := [v̄k, r̄k, ω̄mk
]>

• Problem 2: the vehicle will be executing a particular mission, while the input of

the beacon is the optimization variable. That is u := [ω̄mk
].

• Problem 3: the vehicle will be executing a particular mission, and we want to

�nd the optimal constant angular velocity for the beacon.

• Problem 4: in the last we proposed a multi-objective optimization taking into

account an energy cost function.

To solve all these problems, we resort to numerical methods to maximize the determi-

nant of the FIM using the Genetic Algorithm toolbox from Matlab [119]. This toolbox

aims to make accessible GAs to the scienti�c community. GAs are stochastic global

search and optimization methods that mimic the nature of the evolution and are suitable

for solving nonlinear optimization problems.

4.5.1. Problem 1 - Vehicle and Beacon help to improve observability

For the �rst problem at hand, the inputs from the vehicle and the beacon are going

to be used as optimization variables. The above means that, both the vehicle and the

beacon will help to maximize the FIM, which in turns means to improve the accuracy on

the estimation. Additionally, we will impose upper and lower bounds for the vehicle's

speed and course rate, as well as, bounds for the angular velocity of the beacon. The

optimization problem will be
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max
u

ln detFIMu(θ)

s.t. Ipk+1 =


Ipk +

v̄k
r̄k

[−w⊥ (ψk+1) + w (ψk)] + T Ivc0 , if r̄k 6= 0

Ipk + T (v̄kw (ψk) + Ivc0), otherwise,

ψk+1 = ψk + T r̄k
Ivck+1

= vc0

χk+1 = χk + T ω̄mk

Ibk+1 = lmw (χk+1)

0 < v̄k < v̄ub

− r̄ub < r̄k < r̄ub

− ω̄mub
< ω̄mk

< ω̄mub

(4.13)

where u := [v̄k, r̄k, ω̄mk
]>, θ := [p>0 ,v

>
c0

]>, k ∈ {1, 2, ...,m} and FIMu(θ) is given by

equation (4.9). For the �rst problem, the idea is to �nd out the best sequence of actions

for the vehicle and beacon that maximizes the FIM. We solve the problem with four

di�erent conditions and bounds (see Table 2).

Table 2: Simulation scenarios for Problem 1

Scenarios v̄ub r̄ub ω̄mub
m T σ p>0 v>c0 Ju(u

∗) Jc(u
∗)

[m/s] [rad/s] [rad/s] [s] [m] [m] [m/s]

Scenario 1 (S1) 1.5 π/9 π 12 1 0.1 [3, 4.5]> [0.3, 0.1]> 30.54 29.56

Scenario 2 (S2) 1.5 π/6 π 16 4 0.5 [−5, 5]> [0.1, 0.3]> 25.52 25.52

Scenario 3 (S3) 1.0 π/9 π 12 1 0.1 [3, 4.5]> [0.3, 0.1]> 30.54 29.28

Scenario 4 (S4) 1.0 π/6 π/2 16 4 0.5 [−5, 5]> [0.1, 0.3]> 25.52 25.52

For all scenarios the beacon positions were set up to b>0 = [1.4142, 1.4142]> and the

initial orientation of the vehicle was ψ0 = π/3. In Table 2, Ju and Jc stand by un-

constrained and constraint optimal solution, respectively. Figure 27, 28 and 29 show

the solution of the problem for the four di�erent scenarios. Notice that for all four

solutions, the constrained problem reach the maximum cost function or is close to the

unconstrained solution. When we compare S2 and S4, despite the vehicle's velocity and

the beacon's rotation have a more restricted bound, the solution reaches its maximum.
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Figure 27: Vehicle's trajectory optimal solution for problem one and all four scenarios.

Even though, the beacon trajectory is not re�ected in the �gures, beacon is rotating

around the origin. Additionally, beacon and vehicle are at di�erent depth in order to

avoid collisions or entanglement.
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Figure 28: Beacon's trajectory optimal solution for problem one and all four scenarios.

Simulation time is di�erent between scenarios; since m and T are di�erent between

them.
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Figure 29: Optimal solution for problem one and all four scenarios. Notice that in

some solutions is necessary to continuously changing the rotation of the vehicle.

4.5.2. Problem 2 - Beacon helps to improve observability

For the second problem at hand, the inputs from the vehicle are given for a particular

mission, which means that the vehicle is not going to help to maximize the FIM. There-

fore, just the rotation of the beacon is used in the optimization process. Additionally,

we impose upper and lower bounds for the beacon's rotation. The optimization prob-

lem is given by (4.13), where this time u := [ω̄mk
]. The unknown parameter θ and k

remain the same and the upper bound for the rotation speed of the beacon is given by
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ω̄mub
= π/6. For this particular problem, we solve two di�erent scenarios. First, the

vehicle is going in straight line, that is, v(t) = 1.5 m/s and r = 0 rad/s. The initial

position of the beacon is given by b0 = [1.4142, 1.4142]> [m] and the initial position

and orientation of the vehicle are p0 = [3, 3]> [m] and ψ0 = 0 rad, respectively. The

ocean current is vc0 = [0, 0.3]> [m/s]. The sample time T and the number of samples

m were set up to 1 s and 10, respectively. For these conditions, the unconstrained prob-

lem reaches its maximum at Ju = 29.079, while the solution of the problem at hand

is Jc = 24.254. Although, only the beacon's rotation was involved in the optimization

process, the optimal value is very close to the unconstrained solution. Figure 30(a),

31(a), and 32(a) show the vehicle's trajectory, beacon's trajectory and optimal input

for the beacon, respectively.

For the second scenario, the inputs for the vehicle are zero. The above, implies that the

vehicle is just moving by the current. The rest of parameters were set up as the previous

scenario. The optimal cost function is Jc = 26.171. Notice that in the last scenario it

reaches a better solution than in the case that the vehicle is moving in straight line.

This is in part due to the proximity of the vehicle to the beacon, which in turn implies

that the angles between consecutive range measurement are more di�erent than in the

�rst scenario. Figure 30(b), 31(b), and 32(b) show the solution for the second scenario.
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Figure 30: Vehicle's trajectory for the second problem. The vehicle's trajectory is not

generated as result of the optimization problem.
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Figure 31: Beacon's trajectory optimal solution for the second problem.
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Figure 32: Optimal solution for the second problem. Recall that just ω̄k was used in

the optimization process.

Figure 32(b) shows that the e�ort to get the best optimal cost function is higher in

comparison with (a). Basically, the rotation velocity goes from one extreme to the

other.
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4.5.3. Problem 3 - Best constant rotation for the beacon

For the third problem, the objective is to �nd the best optimal constant rotation of the

beacon which maximizes the FIM. Therefore, just the rotation of the beacon is used

in the optimization process and it is constant all the time. The above implies that

u := ω̄mk
, with ω̄mk

being constant for all k ∈ {1, 2, ...,m}. The unknown parameter

θ remains the same. The same two di�erent scenarios from the previous problem

were solved with these conditions. The vehicle's trajectories are the same as shown in

Figure 30. The results of the beacon's position and the inputs are shown in Figure 33

and 34. The optimal cost function for the �rst scenario is Jc = 21.936 and for the second

Jc = 24.876. It is important to highlight at this point, that although it was shown in

previous chapters that the system was observable when the beacon was rotating, it

had not been concluded which would be the best rotational speed for it. Additionally,

the observability could be improved if a sequence of actions for rotational speed was

performed. Finally, since the optimization problem was transformed to the point of

having only one input variable, we can plot the cost function for di�erent values of

beacon's angular velocity and speed for the vehicle (see Figure 35). Notice, that even

for di�erent vehicle's speed, the optimal input for the beacon remains approximately

the same.
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Figure 33: Beacon's trajectory optimal solution for the third problem.
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Figure 34: Optimal solution for the third problem. Recall that ω̄k was used in the

optimization process and remains constant for the di�erent sample times.
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Figure 35: Cost Function plot for constant beacon's angular velocity and di�erent

vehicle's speed.
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4.5.4. Problem 4 - Energy Cost Function

Up to this time, the optimization problem has been based in one goal: maximizing the

Fisher Information Matrix in order to improve the accuracy on the estimation. We have

found that di�erent inputs achieve good performance in relation with the maximum

optimal cost from the solution of the unconstrained optimization. This performance

was achieved in most of the cases by accelerating the beacon from one direction the the

other (see Figure 31). Now, we are interested in the inclusion of a second cost function

that relates the energy required for the beacon's movement. The above implies, that

we want to maximize the FIM while at the same time than minimizing the energy

consumption of the beacon. Then, we have a multi-objective optimization problem

that involves two cost functions: the FIM and the energy consumption.

The energy consumption of the beacon can be related mostly to the rotational kinetic

energy, which is given by Ke = 1
2
Iω2

m(t), where I is the moment of inertia and ωm is the

beacon's angular velocity. Since the moment of inertia is a constant and is not within

the optimization variables, the energy cost function can be written as

J2 =

∫ tf

0

ω2
m(τ)dτ, (4.14)

and for a piecewise constant input, then

J2 = T
m−1∑
k=0

ω̄2
mk
. (4.15)

Now, the multiple optimization formulation is given by

min
u

(J1, J2)

s.t. − ω̄mub
< ω̄mk

< ω̄mub

(4.16)

where J1 = − ln detFIMu(θ) and J2 is given by (4.15). To solve this problem, we

resort to numerical algorithms, particularly with the Global Optimization Toolbox from

Matlab. For this problem, we tested just the scenario where the vehicle moves in straight

lines like Figure 30(a). Same parameters as the second problem were set up for this

case. Since we are solving a multi-objective optimization problem, Figure 36 shows the

Pareto Front and some of the solution for the beacon's input. Notice that if we want

to improve the FIM, then we need to spend more energy, which means that there is a
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compromise between both of them. Additionally, even if we continuously increase the

energy of the system, we are not going to improve the navigation system.
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Figure 36: Pareto front for the multi-objective optimization problem. Notice that

even if we increased more the energy, the observability is not going to improve further.

4.6. CONCLUDING REMARKS

We addressed the observability problem from a di�erent perspective, instead of the

classical yes or no point of view. We formulated an optimization problem for �nding the

best sequence of action for the system that improves the observability. To achieve this,

a cost function using the Fisher Information Matrix was derived. Next, the problem was

solved from an unconstrained and constrained perspective. For the �rst, an analytical

solution was found, which give us the best FIM that the system can achieve without

taking into account any constraint in the motion of the vehicle or beacon. For the

constrained problem, we solved four di�erent scenarios, where the motion of the vehicle

and beacon were involved, as well as the energy consumption.
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5. CONCLUSIONS AND FUTURE WORK

In this �nal chapter, some conclusions and future directions are given, based on the

work done in this thesis.

5.1. CONCLUSIONS

This thesis proposed a new methodology for underwater navigation of autonomous

system based on single-range measurements. This new methodology is based on a

cooperative system that uses a beacon with circular motion installed on board the

support platform. In the �rst part of the thesis, the observability problem of the

system was addressed in order to understand which type of trajectories the beacon

should execute to ensure the localization of both (vehicle and beacon). We addressed

the problem with and without taking into account the ocean current as a new state

variable of the system. We have shown that under certain parameterization of the

system inputs (constant inputs), it is possible to �nd a trajectory for the beacon that

guarantees observability at all times.

In the second part of this thesis, we addressed the observer design problem for the pro-

posed system. First, we used the classical approach of the Extended Kalman Filter. We

used a representation of the system with respect to the body frame and the lineariza-

tion of the system around the current estimation. We have shown through numerical

simulations that for both scenarios (with and without taking into account ocean cur-

rents), the observer converges. Then, we implemented the Exogenous Kalman Filter

for the system. The XKF was developed in three stages: �rst a linear state augmented

observer was designed to ensure global stability; then, an inverse transformation ap-

plied to recover the state of the original system; and �nally, a linearized Kalman �lter

around the last was performed. We tested the proposed observer through numerical
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simulations.

The �nal part of the thesis addressed the observability problem from an optimization

point of view. By using the Fisher Information Matrix and the proposed mechanism,

we found an optimal sequence of actions for the beacon that increase the accuracy on

the estimation of the vehicle's position and ocean current. Then, we included in the

optimization problem, a second cost function which relates the energy consumption

used by the beacon. We have proven that, there is a point where increasing the energy

of the beacon is not going to improve the FIM.

5.2. FUTURE WORK

This work can be continued in di�erent directions both experimentally and theoretically.

From the experimental point of view, the �rst step to follow is the construction, testing

and validation of the mechanism. It would be valuable to analyze the e�ects of having

the beacon near the hull of the vessel, such as generation of outliers. Also, analyzing

the e�ects on the length of the mechanism in terms of the accuracy of the observer,

which estimates the position of the vehicle; when the observability of the system in

Chapter 2 was analyzed, it is only concluded that the arm length must be di�erent

from zero for certain conditions. Additionally, Chapter 4 does not such length within

the optimization parameters either.

From the theoretical point of view, the �rst step is to perform the analysis in three

dimensions of the observability of the system, without taking into account the pressure

sensor. This means assessing whether the mechanism together with the movement

strategy can guarantee the observability of the system in three dimensions. Additionally,

to test the observer at the same time with the optimal strategy for the beacon. The

above means comparing the accuracy of an observer to the strategy generated by the

optimization solution, and the accuracy of this before a constant movement of the

beacon.

From the observer chapter, it is interesting to evaluate the possibility of using another

non-linear observer that guarantees the overall stability of the system without having
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to resort to an augmentation in the state system.
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A. FURTHER OBSERVABILITY ANALYSIS

In this appendix, we provide some part of the observability analysis that was not taken

into account in the Observability analysis chapter, as well as, some mathematical pro-

cedures used there.

A.1. STATE AUGMENTATION WITHOUT TAKING INTO ACCOUNT

OCEAN CURRENTS

In Section 2.5., a state augmentation was applied to the system

ẋ1 = −S(r)x1 − Bv + lmωmR>ψw⊥ (x2) ,

ẋ2 = ωm,

d2
xy = x>1 x1,

 (A.1)

in order to transform the system into a linear one. The state augmentation performed

was z := [z1, z2, z3, z4, z5, z6] := [x1,R>ψw⊥ (x2) ,R>π/2z2, z>1 z1, z>1 z2, z>1 z3]. To �nd

the new state representation of the system (A.1), the derivatives of each term are given

by

ż1 = −S(r)z1 − Bv + lmωmz2, (A.2)

ż2 = Ṙ>ψw⊥ (x2)− ωmR>ψw (x2) ,

= −S(r)R>ψw⊥ (x2)− ωmz3,

= −S(r)z2 − ωmz3, (A.3)

ż3 = R>π/2ż2,

= R>π/2 (−S(r)z2 − ωmz3) ,

= (ωm − r)z2, (A.4)
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ż4 = 2z>1 ż1,

= 2z>1
(
−S(r)z1 − Bv + lmωmz2

)
,

= −2Bv>z1 + 2lmωmz>1 z2,

= −2Bv>z1 + 2lmωmz5, (A.5)

ż5 = ż>1 z2 + z>1 ż2,

=
(
−S(r)z1 − Bv + lmωmz2

)>
z2 + z>1 (−S(r)z2 − ωmz3) ,

= −Bv>z2 + lmωm − ωmz>1 z3,

= −Bv>z2 + lmωm − ωmz6, (A.6)

ż6 = ż>1 z3 + z>1 ż3,

=
(
−S(r)z1 − Bv + lmωmz2

)>
z3 + z>1 (ωm − r) z2,

= z>1 S(r)z3 − Bv>z3 + (ωm − r) z5,

= z>1 S(r)R>π/2z2 − Bv>z3 + (ωm − r) z5,

= rz5 − Bv>z3 + (ωm − r) z5,

= −Bv>z3 + ωmz5. (A.7)

Additionally, the output is given by y = d2
xy = z>1 z1 = z4. Now, it is possible to rewrite

the system (A.8) in matrix form as

ż = A(u)z +Bu

y = Cz

}
(A.8)

where

A(u) =



−S(r) lmωmI2 0 0 0 0

0 −S(r) −ωmI2 0 0 0

0 (ωm − r)I2 0 0 0 0

−2Bv> 0 0 0 2lmωm 0

0 −Bv> 0 0 0 −ωm
0 0 −Bv> 0 ωm 0


,

B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0


,
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C =
[
0 0 0 1 0 0

]
.

A.2. OBSERVABILITY ANALYSIS WHEN THE VEHICLE AND THE

BEACON DOES NOT MOVE (WITHOUT OCEAN CURRENT)

In the last part of the subsection 2.5., the observability analysis of the system was carried

out taking into account di�erent kind inputs for the vehicle and beacon. Particularly,

in this appendix the observability analysis is done by assuming that the vehicle and

the beacon do not move. This conditions can be ful�lled by assuming that ωm = 0

and ||Bv|| = 0. It is easy to proof that the system is not observable using the original

coordinate system (2.18). The output of the system is given y(t) = ||p0 − b0||. Recall
that for observability purpose it is the same to analyze the range square measurement.

Let I(x0) denotes the set of initial conditions that are indistinguishable from the given

initial condition x0 = (p0,b0). Now, consider an initial condition x̄0 = (p̄0, b̄0) be such

that x̄0 ∈ I(x0). Then, ||p̄0 − b̄0||2 = ||p0 − b0||2 for every t ≥ 0. Notice that there

are less equations than variables, therefore the system is not observable. It is possible

to parametrize the set of indistinguishable initial condition by computing b̄0 = rmuα

with α ∈ [0, 2π) and p̄0 = rmuα + ||p0 − b0||uβ with β ∈ [0, 2π).

Corollary 5. Knowing the initial condition of the beacon does not change the observ-

ability of the system.

To know the initial condition of the beacon, implies that b̄(0) = b(0). Then, it implies

that the vehicle's initial condition is given by p̄0 = b0 + ||p0 − b0||uβ with β ∈ [0, 2π).

Figure 37 shows a geometric interpretation of the indistinguishable set for both scenar-

ios.
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a) b)

Figure 37: Geometric interpretation of indistinguishable initial conditions in the case

that neither the vehicle nor the beacon are moving. Notice that, once the beacon's

initial conditions is known, the set of indistinguishable initial conditions shrinks to a

circle centered in the beacon.
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A.3. COMPLEMENTS TO THE PROOF OF PROPOSITION 5

The proof of this section relies in solving the set of nonlinear equation given by

||αa + z1(0)||2 = ||z1(0)||2, (A.9)

||αb + z2(0)||2 = 1, (A.10)

α>aαb +α>a z2(0) +α>b z1(0) = 0. (A.11)

Recall that there are four variables and just three equations to solve the system, there-

fore, the solution will have one free parameter. To solve the system, �rst we apply the

following operation (A.9) + (A.10) + 2(A.11), that is

||αa + z1(0)||2 − ||z1(0)||2 + ||αb + z2(0)||2 − 1 + 2α>aαb + 2α>a z2(0) + 2α>b z1(0) = 0,

||αa||2 + 2α>a z1(0) + ||αb||2 + 2α>b z2(0) + 2α>aαb + 2α>a z2(0) + 2α>b z1(0) = 0,

||αa +αb||2 + 2α>a (z1(0) + z2(0)) + 2α>b (z1(0) + z2(0)) = 0,

||αa +αb||2 + 2 (αa +αb)
> (z1(0) + z2(0)) = 0.

(A.12)

Let us de�ne z+ := αa + αb, c+ := z1(0) + z2(0) and sγ : [0, 2π) → S1 as the map

described by sγ := [cos γ sin γ]>, then

||z+||2 + 2z>+c+ = 0,

||z+ + c+||2 = ||c+||2,

z+ = −c+ + ||c+||sα. (A.13)

Following a similar procedure, except this time (A.9) + (A.10)− 2(A.11), we obtain

||αa + z1(0)||2 − ||z1(0)||2 + ||αb + z2(0)||2 − 1− 2α>aαb − 2α>a z2(0)− 2α>b z1(0) = 0,

||αa||2 + 2α>a z1(0) + ||αb||2 + 2α>b z2(0)− 2α>aαb − 2α>a z2(0)− 2α>b z1(0) = 0,

||αa −αb||2 + 2α>a (z1(0)− z2(0))− 2α>b (z1(0)− z2(0)) = 0,

||αa +αb||2 + 2 (αa −αb)> (z1(0)− z2(0)) = 0.

(A.14)

Let us de�ne z− := αa −αb and c− := z1(0)− z2(0), then

||z−||2 + 2z>−c− = 0,

||z− + c−||2 = ||c−||2,

z− = −c− + ||c−||sβ. (A.15)
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By doing (A.13) + (A.15) and (A.13) - (A.15), it follows that

αa = −z1(0) +
1

2
||z1(0) + z2(0)||sα +

1

2
||z1(0)− z2(0)||sβ, (A.16)

αb = −z2(0) +
1

2
||z1(0) + z2(0)||sα −

1

2
||z1(0)− z2(0)||sβ. (A.17)

We can replace αa or αb in (A.9) or (A.10) respectively, what leads to∥∥∥∥1

2
||c+||sα +

1

2
||c−||sβ

∥∥∥∥2

= ||z1(0)||2

||c+||2 + 2||c+||||c−||s>α sβ + ||c−||2 = 4||z1(0)||2

cos(α− β) =
2||z1(0)||2

||c+||||c−||
− 1

2

||c+||
||c−||

− 1

2

||c−||
||c+|

cos (α− β) =
4||z1(0)||2 − ||z1(0) + z2(0)||2 − ||z1(0)− z2(0)||2

2||z1(0) + z2(0)||||z1(0)− z2(0)||

cos (α− β) =
2||z1(0)||2 − 2||z2(0)||2

2||z1(0) + z2(0)||||z1(0)− z2(0)||

cos (α− β) =

(
z1(0) + z2(0)

||z1(0) + z2(0)||

)>(
z1(0)− z2(0)

||z1(0)− z2(0)||

)
α = cos−1

((
z1(0) + z2(0)

||z1(0) + z2(0)||

)>(
z1(0)− z2(0)

||z1(0)− z2(0)||

))
+ β

(A.18)

A.4. STATE AUGMENTATION WITHOUT TAKING INTO ACCOUNT

OCEAN CURRENTS

In Section 2.6., a state augmentation was applied to the system

Bḋ = −S(r)Bd− Bv + lmωmR>ψw⊥ (χ)− Bvc,
Bv̇c = −S(r)Bvc,

χ̇ = ωm,

d2
xy = Bd>Bd,


(A.19)

in order to transform the system into a linear one. The state aug-

mentation performed was z := [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11] :=
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[Bd, Bvc,R>ψw⊥ (χ) ,R>π/2z3, z
>
1 z1, z

>
1 z2, z

>
1 z3, z

>
1 z4, z

>
2 z2, z

>
2 z3, z

>
2 z4]. To �nd the

new state representation of the system (A.19), the derivatives of each term are given

by

ż1 = −S(r)z1 − Bv + lmωmz3 − z2, (A.20)

ż2 = −S(r)z2, (A.21)

ż3 = Ṙ>ψw⊥ (x2)− ωmR>ψw (x2) ,

= −S(r)R>ψw⊥ (x2)− ωmz4,

= −S(r)z3 − ωmz4, (A.22)

ż4 = R>π/2ż3,

= R>π/2 (−S(r)z3 − ωmz4) ,

= ωmz3 − S(r)z4, (A.23)

ż5 = 2z>1 ż1,

= 2z>1
(
−S(r)z1 − Bv + lmωmz3 − z2

)
,

= −2Bv>z1 + 2lmωmz>1 z3 − 2z>1 z2,

= −2Bv>z1 + 2lmωmz7 − 2z6, (A.24)

ż6 = ż>1 z2 + z>1 ż2,

=
(
−S(r)z1 − Bv + lmωmz3 − z2

)>
z2 + z>1 (−S(r)z2) ,

= −Bv>z2 + lmωmz>3 z2 − z>2 z2,

= −Bv>z2 + lmωmz10 − z9, (A.25)

ż7 = ż>1 z3 + z>1 ż3,

=
(
−S(r)z1 − Bv + lmωmz3 − z2

)>
z3 + z>1 (−S(r)z3 − ωmz4) ,

= −Bv>z3 + lmωm − z>2 z3 − ωmz>1 z4,

= −Bv>z3 + lmωm − z10 − ωmz8, (A.26)
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ż8 = ż>1 z4 + z>1 ż4,

=
(
−S(r)z1 − Bv + lmωmz3 − z2

)>
z4 + z>1 (−S(r)z4 + ωmz3) ,

= −Bv>z4 − z>2 z4 + ωmz>1 z3,

= −Bv>z4 − z10 + ωmz7, (A.27)

ż9 = ż>2 z2 + z>2 ż2,

= (−S(r)z2)> z2 + z>2 (−S(r)z2) ,

= 0, (A.28)

ż10 = ż>2 z3 + z>2 ż3,

= (−S(r)z2)> z3 + z>2 (−S(r)z3 − ωmz4) ,

= −ωmz11, (A.29)

ż11 = ż>2 z4 + z>2 ż4,

= (−S(r)z2)> z4 + z>2 (ωmz3 − S(r)z4) ,

= ωmz10. (A.30)

Additionally, the output is given by y = d2
xy = Bd>Bd = z5. Now, it is possible to

rewrite the system (A.31) in matrix form as

ż = A(u)z +Bu

y = Cz

}
(A.31)

where

A(u) =



−S(r) −I2 lmωmI2 0 0 0 0 0 0 0 0

0 −S(r) 0 0 0 0 0 0 0 0 0

0 0 −S(r) −ωmI2 0 0 0 0 0 0 0

0 0 ωmI2 −S(r) 0 0 0 0 0 0 0

−2Bv> 0 0 0 0 −2 2lmωm 0 0 0 0

0 −Bv> 0 0 0 0 0 0 −1 lmωm 0

0 0 −Bv> 0 0 0 0 −ωm 0 −1 0

0 0 0 −Bv> 0 0 ωm 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −ωm
0 0 0 0 0 0 0 0 0 ωm 0



,
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B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0

0 0 0

0 0 0

0 0 0



,

and

C =
[
0 0 0 0 1 0 0 0 0 0 0

]
.
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B. OBSERVER DESIGN WITHOUT TAKING INTO ACCOUNT

OCEAN CURRENTS

In this appendix, we provide the observer design procedure for the system without

taking currents into account. This appendix is complementary to the results given in

the ?? section.

B.1. EXTENDED KALMAN FILTER

Based on the results of Chapter ??, we propose an EKF observer for the nonlinear

system (2.21) introduced in Chapter 2, where we now consider that the system is

corrupted with a process ζ(t) ∈ R3 and measurement κ(t) ∈ R zero mean Gaussian

noise
ẋ(t) = f(x(t),u(t)) + ζ(t),

y(t) = g(x(t)) + κ(t),

}
(B.1)

where the state variable x := [x>1 , x2]> := [Bd>, χ] ∈ R2 × [0, 2π), the input vector

u := [Bv>, ωm, r]
> ∈ R4, the output measurement y ∈ R,

f(x(t),u(t)) =

[
−S(r)x1(t)− Bv(t) + lmωm(t)R>ψ(t)w

⊥ (x2(t))

ωm(t)

]
,

and

g(x(t)) = ||x1(t)||.

Recall that the �rst step to apply EKF on (B.1), the system should be discretized. We

assume that the control input u is constant over the sampling interval h (zero-order

hold). Then, the continuous model (B.1) is discretized using 1st-order approximation

Euler method as follows
xk+1 = f(xk,uk) + hζk,

yk = g(xk) + κk,

}
(B.2)
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where xk = [x1k , x2k ]> = [Bd>k , χk]
> is the state vector at time k, uk = [Bv>k , ωmk

, rk]
>

is the input vector at time k, yk is the measurement sampled at time k, f(·) is

f(xk,uk) =

[
x1k + h

(
S(rk)x1k − Bvk + lmωmk

R>ψk
w⊥ (x2k)

)
x2k + hωmk

]
,

and g(·) is
g(xk) = ||x1k ||.

The EKF is executed with the same two steps (prediction (3.3) and correction (3.4)),

but with the process and measurement Jacobian matrices at time k described by

Fk =

[
I2 − hS(rk) −hlmωmk

R>ψk
w (x2k)

0 1

]
and

Hk =
[

x1k

||x1k
|| 0

]
.

To test the observer, we run a Monte-Carlo simulation with 100 scenarios, in which we

choose randomly the beacon's and vehicle's initial position and orientation. We restrict

the operation of the vehicle to an area larger than the beacon's position (||Ip|| >
||Ib||+ ε) and the inputs of the system are chosen such that Proposition 6 holds. The

rest of parameters are set with the values of Table 3.

Table 3: Simulation parameters (without ocean currents)

Parameter Variable Value

Vehicle's angular velocity r 0.025 rad/s

Vehicle's linear velocity Bv [0.7, 0]>m/s

Beacon's angular velocity ωm 0.5 rad/s

Manipulator's length lm 2 m

Simulation time t 200 s

Standard deviation noise range sensor - 0.3 m

Regarding the state observer, we assume that the initial condition is initialized with

a random Gaussian distribution with mean equal to the real value and standard de-

viation of ±30 % from the real value. The Kalman �lter parameters were chosen as

Qk = 1× 10−3diag([1, 1, 0.01]) for the process noise covariance matrix, the output noise
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variance as Rk = 0.32, and the initial estimation error covariance P0 = In. The per-

formance of the steady state is represented by mean absolute error (MAE). The steady

state MAE is obtained from the last 20 s of simulation. The average steady state MAE

for vehicle's position is 0.87 m with a standard deviation of ±0.75 m; and for beacon's

position is 0.041 m with standard deviation of ±0.037 m. Figure 38 shows an histogram

of the steady state MAE from all 100 simulation.

0 1 2 3 4
0

5

10

15

20

0 0.05 0.1 0.15
0

5

10

15

20

25

(a) Vehicle's position (b) Beacon's position

Figure 38: Histogram of the steady-state MAE for EKF simulation without ocean

currents. There worst case scenario gives an steady-state MAE of 4.3 m in the

vehicle's position.

Recall, that the average MAE is not just described as a particular value but instead as

a con�dence interval where the level of uncertainty is established as 95 %. Then, for

95 % of simulations the steady-state MAE for the vehicle's position is contained in the

interval (0.7490, 0.9987) m, and for the beacon's position (0.0347, 0.0470) m.

Additionally, to understand which was the worst case scenario not only due to the

steady state error, we evaluate the performance by applying the integral of the square

of the error (ISE). The ISE is obtained from the whole simulation time (200 s). This

metric gives us a quantitative behavior of the transient for all 100 simulations. Figure 39

shows an histogram of ISE from all 100 simulation.

In the worst case scenario, the vehicle's initial position was set to Ip0 = [19.20, 36.16]> m

and the beacon Ib0 = [0.96, 1.75]> m. The state observer was initialized with Ip̂0 =

[8.50, 36.03]> m and the beacon Ib̂0 = [0.52, 1.92]> m. Figure 40 shows the vehicle's

trajectory and its estimation. Notice, that at the begin is a large error between the real

position and its estimation. Additionally, the norm of the estimation errors are shown
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Figure 39: Histogram of ISE for EKF simulation without taking into account ocean

currents. The worst case scenario corresponds the same having the worst steady state

MAE.

in Figure 41. In the worst case scenario, EKF takes the complete simulation time to

converge to the real value.

131



-30

-20

-10

0

10

20

30

40

30 40 50 60 70 80 90

Figure 40: Vehicle's trajectory and its estimation for the EKF. Notice that the �lter

takes time to converge, but at the end of the simulation is close to the real value.

Additionally, we let the simulation run more time and after a while the error

converges to zero for all cases.
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Figure 41: Norm of the estimation errors for the EKF. Notice that the �rst 200 s there

is a large estimation error in the vehicle position.

132



Another interesting scenario to show is one that lies between the con�dence interval.

The vehicle's initial position was set to Ip0 = [24.41, 15.52]> m and the beacon Ib0 =

[1.20, 1.59]> m. The state observer was initialized with Ip̂0 = [22.96, 15.28]> m and

the beacon Ib̂0 = [0.94, 1.76]> m. Figure 42 shows the vehicle's trajectory and its

estimation. Notice, that at the beginning there is a large error between the real position

and its estimation. Additionally, the norms of the estimation errors are shown in

Figure 43.
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Figure 42: Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the EKF.
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Figure 43: Norm of the estimation errors for a simulation that within the CI using the

EKF.

B.2. EXOGENOUS KALMAN FILTER

Based on the results of Chapter ??, we propose an XKF observer for the nonlinear

system (B.1) introduced in Appendix B.1.. We applied the same methodology described

in Figure 18 for the system without currents.

• LQE for the state augmented system: the �rst step in the approach is to design

an LQE for the augmented-state system represented by Equation (2.23). This

observer has the form

˙̂zk+1 = ẑk + h (A(uk)ẑk +Buk + L(ȳk − Cẑk)) . (B.3)

where ẑk ∈ R9 is the state estimation vector, L ∈ R9 satis�es L = P̄C>R̄−1 and

P = E{(z(t) − ẑ(t))(z(t) − ẑ(t))>} satis�es the algebraic Riccati equation (3.7).

134



Additionally, the matrices A, B and C are given by

A(uk) =



−S(rk) lmωmk
I2 0 0 0 0

0 −S(rk) −ωmk
I2 0 0 0

0 (ωmk
− rk)I2 0 0 0 0

−2Bv>k 0 0 0 2lmωmk
0

0 −Bv>k 0 0 0 −ωmk

0 0 −Bv>k 0 ωmk
0


,

B =



−I2 0 0

0 0 0

0 0 0

0 0 0

0 lm 0

0 0 0


,

C =
[
0 0 0 1 0 0

]
.

Recall that ȳk 6= yk. The output of the augmented-state observer (B.3) is

related to the original measurement as ȳk = y2
k.

• Inverse state transformation: the state estimation zk ∈ R9 is related with the

original system through the following inverse state transformation

x̄k =

[
x̄1k

x̄2k

]
=

[
ẑ1k

atan2 (Rψẑ3ke2,Rψẑ3ke1)

]
. (B.4)

• Linearized Kalman Filter : now, x̄k is used as linearization point to build the

Kalman Filter. A �rst-order Taylor series expansion of (B.1) about the trajectory

x̄k gives the linearized model

xk+1 = f(x̄k,uk) + Fk(xk − x̄k) + εxk + hζk,

yk = g(x̄k) +Hk(xk − x̄k) + εyk + κk,

}
, (B.5)

where εxk and εyk are the high-order terms in the linearization processes, Fk and

Hk are the Jacobian matrices around the state trajectory x̄k given by

Fk :=
∂f(x̄k,uk)

∂x
=

[
I2 − hS(rk) −hlmωmk

R>ψk
w (x̄2k)

0 1

]
,

Hk :=
∂g(x̄k,uk)

∂x
=
[

x̄1k

||x̄1k
|| 0

]
.
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Then, the Linearized Kalman Filter (LKF) formulation for the system (B.5)

in the predictor-corrector form is given by

x̂−k+1 = f(x̄k,uk) + Fk(x̂k − x̄k),

P̂−k+1 = FkP̂kF
>
k +Qk,

}
(B.6)

and the correction equations are given by

ỹk = yk − g(x̄k)−Hk(x̂
−
k+1 − x̄k),

Sk+1 = HkP̂
−
k+1H

>
k +Rk,

Kk+1 = P̂−k+1H
>
k S
−1
k+1,

x̂k+1 = x̂−k+1 +Kk+1ỹk,

P̂k+1 = (I −Kk+1Hk) P̂
−
k+1.


(B.7)

To test the observer, we run a Monte-Carlo simulation with 100 scenarios, in which

we randomly choose the beacon's and vehicle's initial position and orientation. The

conditions are the same as the EKF, where we restrict the operation of the vehicle to

an area larger than the beacon's position (||Ip|| > ||Ib|| + ε), the foregoing in order

to avoid collisions or entanglement between the vehicle and beacon. The inputs of the

system are chosen such that Proposition 6 holds. The parameters and inputs are set

with the values of Table 3.

Regarding the state observer, we assume that the initial condition is initialized

with a random Gaussian distribution with mean equal to the real value and stan-

dard deviation of ±30 % from the real value. The LQE parameters are chosen

as Q̄ = 0.001 diag([1, 1, 0.001 ones(1, 7)]) for the process noise covariance matrix,

and the output noise variance as R̄ = 0.1. The LKF parameters are chosen as

Qk = 0.001diag([1, 1, 0.001]), Rk = 0.32, and the initial estimation error covariance

P0 = In. All 100 simulations converge and the performance of the steady state is repre-

sented by mean absolute error (MAE). The steady- state MAE is obtained from the last

20 s of the simulation. The average steady-state MAE for vehicle's position is 0.31 m

with a standard deviation of ±0.17 m; and for beacon's position is 0.09 m with standard

deviation of ±0.036 m. Figure 44 shows an histogram of the steady-state MAE from all

100 simulation.

Recall, that the average MAE is better represented as a con�dence interval where the

level of uncertainty is established as 95 %. Then, for 95 % of simulations the steady-
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Figure 44: Histogram of the steady state MAE for XKF simulation without taking

into account ocean currents. There worst case scenario gives an steady state MAE of

0.78 m in the vehicle's position.

state MAE for the vehicle's position is contained in the interval (0.2788, 0.3351) m, and

for the beacon's position (0.0837, 0.0957) m.

Finally, to understand which was the worst case scenario not only due to the steady-

state error, we evaluate the performance by applying the integral of the square of the

error (ISE). The ISE is obtained from the whole simulation time (200 s). Figure 45

shows an histogram of ISE from all 100 simulation.
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Figure 45: Histogram of ISE for XKF simulation without taking into account ocean

currents. The worst case scenario corresponds the same having the worst steady-state

MAE.
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Now, we show the time-history of the state estimation in the worst case scenario and one

scenario within the CI. In the worst case scenario, the vehicle's initial position was set

to Ip0 = [47.03, 40.01]> m and the beacon Ib0 = [0.41,−1.96]> m. The state observer

was initialized with Ip̂0 = [47.21, 42.07]> m and the beacon Ib̂0 = [0.13,−1.99]> m.

Figure 46 shows the vehicle's trajectory and its estimation. Additionally, the norms of

the estimation errors are shown in Figure 47. There is a large error at the beginning,

but it converges at the end of the simulation.
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Figure 46: Vehicle's trajectory and its estimation. Notice that the �lter diverges at

the beginning, nevertheless at converges close to the real value.
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Figure 47: Norm of the estimation errors for the XKF. Notice that at the beginning

the estimation error reaches almost 50 m.

The other scenario was the one that lies between the con�dence interval. The ve-

hicle's initial position was set to Ip0 = [29.27, 22.99]> m and the beacon Ib0 =

[−1.38,−1.44]> m. The state observer was initialized with Ip̂0 = [30.02, 22.73]> m

and the beacon Ib̂0 = [−1.28,−1.40]> m. Figure 48 shows the vehicle's trajectory and

its estimation. Additionally, the norms of the estimation errors are shown in Figure 49.
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Figure 48: Vehicle's trajectory and its estimation for a simulation that lies within the

CI using the XKF.
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Figure 49: Norm of the estimation errors for a simulation that within the CI using the

XKF.
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