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ABSTRACT

This work develops a global version of the Method of Approximate Particular Solutions
(MAPS) as [17] or in the works of Bustamante [12], who have been researching and
applying this method in di�erent investigations and problems. This is due to its char-
acteristics such as RBF Collocation system, its mesh-free environment, great e�ciency
and precision in its approaches, easy to implement and its easy adaptation to di�erent
types of boundary conditions making it a powerful and robust numerical method for
solution of partial di�erential equations. Two MAPS formulations are studied here, in
the �rst one particular solutions of non-homogeneous linear Poisson equations for scalar
problems are used and in the second one particular solutions of a non-homogeneous
Stokes system for multivariate problems.

The results obtained are accurate, due to the integration process that it has incorpo-
rated, which provides a smoothness in the solution unlike the derivation process that
is carried out in other methods. Hence the problem variable is not approximated as
in Kansa's method, The RBFs are approximated by the di�erential operator and the
particular solutions obtained are used to approximate the variables of the given prob-
lem. When multivariate �ow problems occur, the components for velocity and pressure
in the momentum equation are approximated by the particular solutions of the non-
homogeneous Stokes equation system, which means that an integration strategy that
links velocity-pressure is not needed, since the particular solution of pressure is in terms
of speed.

Initially, two problems are solved to verify the implementation of the MAPS in order
to solve boundary value problem, the �rst one is a scalar problem whereas the second
one is non-homogeneous Stokes �ow problem, and results are compared with their
respective exact solutions. Then the work is focused on identifying the in�uence of the
di�erent boundary conditions in the MAPS, where the easy adaptation of the method
to arbitrary boundary conditions is evidenced. For this, a scalar problem is solved, then
a homogeneous vector problem and �nally an inhomogeneous vector problem. These
results are compared with the exact di�erent solutions for each case. Thirdly, electro-
kinetic �uids in microchannels are studied, which allows us to know the physical nature
of the problem while showing the great development and research interest in this subject.



Finally, pressure-driven �uids, electroosmotic �ows and mixed �ows are studied; These
�uids are initially developed in micro channels and �nally in nanochannels through the
implementation of the MAPS.

In summary, the main contribution of this work is the development of a meshless nu-
merical method based in RBFs which is implemented to solve the �ow problem within
and between the interface of two nanochannels of a proton exchange membrane in a fuel
cell, which becomes an advance in the �eld of mathematics since a meshless method is
developed to solve mixed electro-kinetic �uids (pressure driven �ow and electro-osmotic
�ow) that are not reported in the literature to solve this type of problem, as well as a
contribution to the �eld of applied mathematics.

KEYWORDS:

Radial Basis Functions, meshless methods, MAPS, Stokes system, electrokinetic �uid,
micro and nanochannel
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INTRODUCTION

In recent decades, the use and development of meshless methods has increased, as is
the case of RBF collocation methods, which have recently been applied to a variety of
problems within science and engineering. These allow to eliminate the di�culties of the
traditional methods of preprocessing the mesh and its e�ciency. But nevertheless, we
are interested in this type of methods with RBF collocation because of its ease of im-
plementation to solve problems in two and three dimensions, its rapid convergence and
its �exibility when applying arbitrary boundary conditions. In addition, interpolations
with RBF have shown to be quite robust, although this contradicts their dependence
on the shape parameter, current research topic to �nd its optimal value. On the other
hand, this work used a global RBF scheme to solve PDEs and, like the literature, it
was evident that the matrix of the system is a�ected by the accuracy of the solution,
a situation that arises when the number of nodes increases of the system in search of a
better precision which is related to the bad conditioning of the matrix.

Meshless methods using radial basis functions (RBF) have been studied in recent years
due to their simplicity of implementation, high rates of onvergence and �exibility. RBF
have been widely used in continuous interpolation [11] and global dispersed data sets.
This interpolation strategy has become the basis of meshless methods for solving PDEs
through the development of the Kansa method [44]. Kansa used the Multiquadric (MQ)
function to obtain an accurate solution meshless for the advection-di�usion equations
and Poisson Chen in [16], although the Kansa method was used by many authors to
solve Laplace equations [15, 45, 62], [21, 61, 62] Poisson equation, Helmholtz equation
[19] and Parabolic [17] which show better accuracy compared to the traditional methods
[15, 19, 57, 100]. In [45] the authors concluded that the bad conditionality of the matrix
worsens as the number of nodes increases.

The Method of Approximate Particular Solutions (MAPS) was developed initially by
Chen to solve PDE for linear problems in two dimensions (see [17, 21, 72]) with the
purpose of �nding a set of coe�cients that are approximated by numerical schemes
based on radial basis function to approximate a particular solution. In [17] the authors
solve scalar problems with elliptic PDE as Poisson type [76], Helmholtz and Biharmonic
[29] and in [16] presents the method to solve elliptic PDEs with variable coe�cients



(see [28, 75]), showing how simple and easy is to apply the MAPS. During the last
two decades, the MAPS have been used extensively in diverse investigations to solve
problems of convection-di�usion [39, 92, 28], In [84] uses RBF trigonometric for the
solution of PDEs, elipticos problems [103] and at local level [97, 96, 66], see also [51, 59,
54]. It is important to note that the scheme developed by Chen is based on particular
Poisson solutions to approximate the PDEs. On the other hand, Bustamante et al. [13]
develop a MAPS scheme to solve a vector equation of a Stokes �ow, which was also
implemented to solve the Navier-Stokes equations in [14, 30, 31, 25, 101], and elasticity
problems [12].

The MAPS presented previously, is intended to be used to solve electrokinetic �uids in
nanochannels, which are important in various chemical and biomedical analyzes. We
are based on the theory developed by [56] and [46] with respect to the electrokinetic
�ows, [36, 73, 32], which have been studied in two major subtopics: the �rst one, are
the pressure-driven �uids [93, 63, 40, 38], which occurs when a liquid is forced through
a channel under applied hydrostatic pressure, resulting in an electric current in the
direction of �ow pressure-driven, see also [67, 77, 35]. The second ones are the electonic
�uxes [102, 55, 88], which consist of those �uids that move under the in�uence of an
applied electrical force, that is, the electroosmosis that allows the pumping of �uids
and the �ow control using electric �elds. In addition, the velocity pro�les for this type
of �ow are mostly uniform; this type of �uid was initially studied in microchannels [74,
43, 87, 91], but in recent years has been growing greatly investigations in nanochannels
[98, 20, 64, 68], see also the works [47, 71, 77, 99].

We are interested in the phenomenology of PEM membranes, since these constitute an
important factor in the operation of fuel cells. It is for this reason that the modeling
of fuel cells is very useful for the developers of these technologies, as it can lead to
improvements in the design of fuel cells. The improvements necessary for the operation
and operation of the fuel cell require one in design, materials and optimization. There
are many published models for PEM fuel cells in the literature, but it is often a daunting
task to begin to understand the complexity of current models [34, 5]. According to [24]
the multi-scale models lose too much precision compared to those that focus on a speci�c
component, see also [50]. Research in this type of technology has used di�erent types
of approaches for the modeling and simulation of the PEM membranes, such as the
work done by [37, 90, 47]. They present results that use molecular dynamics [1, 26, 46],
consider that the larger radius leads to faster di�usion of the proton, in the same way
[42, 33, 4, 83] obtained similar procedures and approaches, see also [80, 41].

Peighambardoust et al. [69], it shows us a detailed review of the evolution in investiga-
tions carried out on proton exchange membranes and the importance they have for the
operation of a fuel cell, while in [89], they consider that high temperature proton ex-
change membrane fuel cells (HT-PEMFC) It has several advantages, such as high proton
conductivity, low fuel permeability, low electroosmotic drag coe�cient, good chemical
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/ thermal stability, good mechanical properties and low cost. Similarly [23] shows the
di�erent materials that are currently considered for membrane manufacturing, see also
[89], [85] and [52].

One of the most interesting studies regarding the investigation of the phenomenology
of the transport of �ow of loaded �uid, is the one proposed by [48] which propose a
hydrodynamic model that allows them to describe the �ow of charged �uid and the
change of pore morphology due to mechanical deformations, solve a set of numerical
coupled nonlinear equations, based on the experiments of [9, 81, 86]. Berg et al. [10],
the equilibrium form of the interface representing the lateral limit of a channel of the
pore embedded in an elastomer is studied. In the models proposed by [48, 49] they
a�rm that an ohmic resistance is observed between the interfaces of two electrolyte
membranes of joint polymer, of which no theoretical explanation is found. Also they
propose a new model for the �ow of �uid loaded in and between the nanochannels and
investigated numerically, they solve it for velocity, pressure, electrical potential and
proton concentration. Finally the work of [7] by means of an uncoupled continuous
model studies the distribution and the �ow of protons inside a cylindrical nanopore
�lled with water of a PEM, in it the Poisson-Nernst-Planck equations are modi�ed.

From the review shown above we can see the importance of the electrokinetic �ows
and the role they play when investigating the �ow of �uid in PEM membranes, besides
it is evident that these have not been solved with the MAPS method. Taking into
account the importance of developing new numerical methods and diversifying its �eld
of applications, in this work we set out as the main objective the following:

OBJECTIVES

To develop a meshless numerical method of RBFs with approximate particular solutions
to solve the 2-D Stokes �ow problem in and between the interface of two nanocanales of
a proton exchange membrane (PEM) in a fuel cell, allowing the identi�cation and char-
acterization of the factors that generate the electro-ohmic resistance in the transport
of protons in a nanochannel.

For the development of the overall objective the following speci�c objectives are pro-
posed:

• Study the characteristics of the meshless numerical method of radial basis func-
tions with approximate particular solutions.

• Solve the linear and non-linear scalar problems for the Poisson equations for the
electric potential and Nernst-Planck equations in the proton concentration of the
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proposed model.

• Solve Stokes' �ow problem, coupled with the equations of the electric potential
and proton concentration.

• Validate the results obtained and the e�ciency of the meshless numerical algo-
rithm based on RBFs with approximate particular solutions identifying the e�ects
generated by the electro-ohmic resistance in the transport of protons in a PEM
membrane.

THESIS OUTLINE

This work the method of approximate particular solutions global in two dimensions,
where we study numerically the solution of electrokinetic �uids and their application
to proton exchange membranes (PEM) in a fuel cell. This document is organized as
follows: in Chapter 1, the MAPS is presented for scalar problems as in [16] and it is
also presented for multivariable problems as in [13]; once the results are presented of
implementing the global MAPS, some general observations are made. In Chapter 2,
the in�uence of boundary conditions in the MAPS is presented, for this, three types
of problems are solved, the �rst a "Slip Flow" for a homogeneous Stokes �uid, second
a connective laminar �ow between parallel vertical plates this for a non-homogeneous
Stokes and �nally a scalar problem is solved and the results are compared in these three
situations. In Chapter 3, a general theory of electro-kinetic �uids is shown as in [46],
a formulation of these �uids for cylindrical and rectangular microchannels is presented
which is done for two general cases for pressure-driven �uids and for electro osmotic
�uids. Finally, in Chapter 5 the MAPS is applied to solve problems of electro-kinetic
�uids in two nanochannels of a PEM membrane of a fuel cell, a solution that is made
for a mixed �ow driven by pressure and electro osmotic.
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Chapter 1

GLOBAL METHOD APPROXIMATE

PARTICULAR SOLUTIONS

In this section we show the theoretical foundations of the method of approximate par-

ticular solutions (MAPS), which was developed by [17] to solve PDE for linear problems

in two dimensionswith the purpose of �nding a set of coe�cients using RBF numerical

schemas and approximate a particular solution. The authors solve a elliptic equations

for a problem of Poisson type. In addition, they solve the equations of Helmholtz and

Biharmonic and in [16] they presents the method to solve Elliptic PDEs with variable

coe�cient, showing how simple and easy to apply is the MAPS.

Unlike the contributions of [17] and [16], Bustamante et al. [14] and [13] particular

solutions of Stokes are used to approximate velocity and pressure, We use this procedure

to solve a scalar problem and a vector problem. The particular solutions of Stokes and

Poisson are used to study the problem of electro-osmotic �ow in a membrane channel

PEM, given by the model Kimmerle et al. [48]formed by the steady state Poisson-

Nernst-Planck-Stokes equations.



1.1 Global MAPS for Linear PDEs

Now we present the global MAPS scheme which was proposed by [17]. Consider a

boundary value problem, where L and B are linear partial di�erential operators that

apply in the Ω domain of the problem and its Γ boundary, such as:

L(u(~x)) = f(~x) ∀xεΩ (1.1)

B(u(~x)) = g(~x) ∀xεΓ (1.2)

where f and g are known functions. The unknown variable u can be approximated by

RBF using the MAPS, such as:

u(~x) =
N∑
k=1

αkûk(r) (1.3)

where û is the corresponding particular solution, then we have,

L(u(~x)) =
N∑
k=1

αkL(ûk(r)) =
N∑
k=1

αkφ(rk) = f(~x) (1.4)

since,

L(û(~x)) = φ(rk) (1.5)
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then, if û satis�es the boundary conditions 1.2, we have the expression

B(u(~x)) =
N∑
k=1

αkB(ûk(r)) = g(~x) (1.6)

Thus, we obtain the following system of equations

N∑
k=1

αkB(û(r)) = g(~x) (1.7)

N∑
k=1

αkφ(rk) = f(~x) (1.8)

The implementation of the MAPS is reduced to solving the following linear system of

algebraic equations:



B[û(~x1, ~ξ1)] . . . B[û(~x1, ~ξN)]

...
. . .

...

B[û(~xNb
, ~ξ1)] . . . B[û(~xNb

, ~ξN)]

φ(|~xNb+1 − ~ξ1|) . . . φ(|~xNb+1 − ~ξN |)
...

. . .
...

φ(|~xN − ~ξ1|) . . . φ(|~xN − ~ξN |)





α1

...

αNb

αNb+1

...

αN


=



g( ~x1)

...

g( ~xNb
)

f( ~xNb+1)

...

f( ~xN)



For Nb points at the boundary and Ni interior points, with N = Nb +Ni. The solution

of the previous boundary value problem is achieved after solving the resulting algebraic

system for the coe�cients α.
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The particular solution û of (1.5), has previously been used in connection with the

numerical solution of a linear boundary value problem using classical decomposition in

terms of its particular and homogeneous solutions, combined with The Fundamental

Solution Method [29] and with the Boundary Element Method (BEM) [27] to �nd the

corresponding homogeneous solution.

1.2 Global MAPS for scalar problems

According to [16]. Give the boundary value problem in two dimensions of the form:

∇2u+ b1(x, y)
∂u

∂x
+ b2(x, y)

∂u

∂y
+ c(x, y)u = f(x, y), (x, y) ∈ Ω (1.9)

Bu = g(x, y), (x, y) ∈ ∂Ω (1.10)

The equation (1.9) is a Poisson type equation, which we can see if we rearrange, as

∇2u = h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
(1.11)

where

h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= −b1(x, y)

∂u

∂x
− b2(x, y)

∂u

∂y
− c(x, y)u+ f(x, y) (1.12)

Using the RBF, we have that a particular approximate solution of the solution is given

10



by

ûp =
N∑
i=1

αiΦ(ri) (1.13)

Where Φ is obtained by the analytical solution of the expression

∇2Φ = φ (1.14)

so,

Φ(r) =
1

9
(4c2 + r2)

√
r2 + c2 − c3

3
ln
(
c+
√
r2 + c2

)
(1.15)

where φ(r) =
√
r2 + c2 and r =

√
(x− xi)2 + (y − yi)2

Now the solution of the problem (1.9)-(1.10) can be approximated by

u(x, y) ' û =
N∑
i=1

αiΦ(ri) (1.16)

Therefore of (1.14) we have to,

∇2u ' ∇2û =
N∑
i=1

αi∇2Φ(ri) =
N∑
i=1

αiφ(ri), inΩ (1.17)
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so we have the expression

h

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
=

N∑
i=1

αiφ(ri) (1.18)

As the derivatives of the solution can be approximated by the particular solution û we

have,

∂u

∂x
' ∂û

∂x
=

N∑
i=1

αi
∂Φ

∂x
(ri) (1.19)

∂u

∂y
' ∂û

∂y
=

N∑
i=1

αi
∂Φ

∂y
(ri) (1.20)

Therefore we have the following formulation:

N∑
i=1

αi

(
φ(ri) + δ(x, y)

∂Φ(ri)

∂x
+ β(x, y)

∂Φ(ri)

∂y
+ γ(x, y)Φ(ri)

)
= f(x, y) (1.21)

This expression is completed with the boundary condition and we have the system:

N∑
i=1

αiΨ(rij) = f(xj.yj) (1.22)

N∑
i=1

αiBΦ(rij) = g(xj.yj) (1.23)

12



where

Ψ(rij) = φ(rij) + δ(xj, yj)
∂Φ(rij)

∂x
+ β(xj, yj)

∂Φ(rij)

∂y
+ γ(xj, yj)Φ(rij) (1.24)

1.3 Global MAPS for the Stokes equation

In [13] the MAPS procedure is used, as presented above, to solve elasticity problems

modeled by the Navier equations. A linear combination of the particular displace-

ment solutions is used to approximate the problem variables, that is, the displacement

components in this case.

The procedure proposed by [17], is used in the global Stokes MAPS, but the particular

solutions solve a Stokes system. In addition, the de�nition of a particular solution, in

terms of an auxiliary potential, leads to satisfy the continuity equation automatically.

Consider a two-dimensional arbitrary region Ω with boundary Γ. The steady-state

equations of Navier-Stokes in its primitive variable formulation, with a low Reynolds

number, a system of nonlinear equations for incompressible �uid �ow is reduced to the

Stokes linear system:

∂ui
∂xi

= 0 (1.25)

µ
∂2ui
∂xj∂xj

+
∂p

∂xi
= 0 (1.26)
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With i = 1, 2 for a problem in two dimensions. The natural boundary conditions are

de�ned by the speed and/or surface tension given by,

ui = ~uib ∀x ∈ Γu (1.27)

ti = σijnj = −pni + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∀x ∈ Γt (1.28)

The particular solution (ûli, p̂
l) are given by the following non-homogeneous Stokes

system, from the equations (1.26) and (1.25):

µ
∂2ûli(~x,

~ξ)

∂xj∂xj
+
∂p̂l(~x, ~ξ)

∂xi
= φ(r)δil (1.29)

∂ûli(~x,
~ξ)

∂xi
= 0 (1.30)

Where the �eld variables ûli and p̂
l are known as Stokes' particular velocities and pres-

sures, respectively. The inhomogeneous term in the momentum equation (1.29) is given

by the function φ for our case de�ned as the Multiquadric RBF (MQ), φ(r) = (r2+c2)1/2,

which depends on r given by the Euclidean distance between a �eld point ~x and a test

point ~ξ and the shape parameter c.

Making use of the decomposition formula of Oseen [70] to �nd the corresponding fun-

damental solution of the Stokes equations. First, we de�ne the particular speeds in

terms of an auxiliary potential ψ, as

14



ûli(~x,
~ξ) =

∂2ψ(r)

∂xm∂xm
δil −

∂2ψ(r)

∂xi∂xl
(1.31)

Substituting the velocity representation formula (1.31) in the equation (1.26), the fol-

lowing expression is obtained

µ
∂4ψ(r)

∂xj∂xj∂xm∂xm
δil − µ

∂4ψ(r)

∂xi∂xl∂xm∂xm
− ∂pl(~x, ~ξ)

∂xi
= φ(r)δil (1.32)

By multiplying certain terms by δil leaving aside those that coincide in the subscripts,

we obtain a non-homogeneous biharmonic equation for the potential ψ, with the RBF

φ as an inhomogeneous term, next to an expression that relates p̂ with ψ, that is

µ
∂4ψ(r)

∂xm∂xm∂xk∂xk
= φ(r) (1.33)

µ
∂4ψ(r)

∂xm∂xm∂xi∂xl
+
∂pl(~x, ~ξ)

∂xi
= 0 (1.34)

By directly integrating the �rst of these two previous equations, you get the following

expression for ψ in terms of r.

ψ(r) =
1

12µ

[
1

75
φ(r)(4r4 + 48r2c2 − 61c4)− c3 ln(c)r2 − 1

5
(5r2 − 2c2)c3 ln(c+ φ(r))

]
(1.35)
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Substituting (1.35) in (1.31) and (1.34), you get expressions for ûli and p̂
l, in terms of

r, then the expressions for the �ow �eld (u, p) is given as:

ûli(~x,
~ξ) =

1

µ

{(
ψ

r
+ ψ

′′
)
δil −

[
ψ
′

r

(
δil −

x̂ix̂

r2

)
+ ψ

′′ x̂ix̂

r2

]}
(1.36)

Where x̂i = xi − ξi(i = 1, 2), with its corresponding directional derivative

∂ûli(~x,
~ξ)

∂xj
=

1

µ

{[(
ψ

′

r2
−
ψ

′′

r

)
+ ψ

′′′
]
x̂j

r
δil +

(
ψ

′

r2
−
ψ

′′

r

)(
x̂l

r
δij +

x̂i

r
δlj

)
−
[
3

(
ψ

′

r2
−
ψ

′′

r

)
+ ψ

′′′
]
x̂ix̂j x̂k

r3

}
(1.37)

The particular pressure solution is given by the following equation obtained after inte-

grating and expressing in radial terms the equation (1.34):

p̂l = −µx̂l
r

[
ψ
′′′ −

(
ψ
′

r2
− ψ

′′

r

)]
(1.38)

Then, we have that for this case the velocity �eld u and pressure p of Stokes, are

approximated by the expressions:

ui(~x) ≈
N∑
k=1

αlkû
l
i(rk) (1.39)

p(~x) ≈
N∑
k=1

αlkp̂
l(rk) (1.40)
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Substituting these expressions in the momentum equation (1.26), we have the repre-

sentation of the approximate momentum equation:

N∑
k=1

αlk

[
µ
∂2ûli(rk)

∂xj∂xj
− ∂p̂l(rk)

∂xi

]
=

N∑
k=1

αlk[φ(rk)δil] = 0 (1.41)

Then, by replacing the equations (1.39) and/or (1.40) in the boundary conditions (1.27)

and/or (1.28), the placement process is completed by obtaining the following matrix

system:



B1[û11, û
1
2, p̂

1] B1[û21, û
2
2, p̂

2]

B2[û11, û
1
2, p̂

1] B2[û21, û
2
2, p̂

2]

[φ] [0]

[0] [φ]


[α1]

[α2]

 =



[g(~x)1]

[g(~x)2]

[0]

[0]



Here, it is generally used the boundary condition Bk[u1, u2, p] = g(~x)k, where B
k is a

boundary operator and gk the corresponding value of the boundary condition. In the

case that a pressure boundary condition is imposed, it would be necessary to prescribe

one of the components of the velocity �eld, according to the physics of the problem.

It is important to note that the expressions obtained for the particular solution of the

velocity (1.36), its derivatives (1.37) and the pressure (1.38), although there are terms

1/rn, the particular solution obtained it is not singular anywhere in the delimited

domain since the singularities in the terms ψ
′

r2
and ψ

′′

r
are canceled in the expression

ψ
′

r2
− ψ

′′

r
. The following expressions for radial derivatives of ψ, required for the last

equations, are obtained from (1.35).
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ψ

r
=

4r6 + 36r4c2 + 39r2c4 + 7c6

180(r2 + c2)(3/2)
− (5r4 + 3r2c2 − 2c4)c3

60(r2 + c2)(3/2) [c+ (r2 + c2)(1/2)]

− 1

6
c3 ln

[
c+ (r2 + c2)(1/2)

]
− 1

6
c3 ln(c)

ψ
′′

=
16r6 + 84r4c2 + 96r2c4 + 7c6

180(r2 + c2)(3/2)
− (20r4 + 25r2c2 − 2c4)c3

60(r2 + c2)(3/2) [c+ (r2 + c2)(1/2)]

+
(5r2 − 2c2)c3r2

60(r2 + c2) [c+ (r2 + c2)(1/2)]
2 −

1

6
c3 ln

[
c+ (r2 + c2)(1/2)

]
− 1

6
c3 ln(c)

ψ
′′′

=
76r4 + 176r2c2 + 285c4

300(r2 + c2)(3/2)
− (4r4 + 48r2c2 − 61c4)c3

300(r2 + c2)(5/2)

+
(10r4 + 15r2c2 − 2c4)c3r

20(r2 + c2)2 [c+ (r2 + c2)(1/2)]
+

(5r2 + 22c2)c3r

20(r2 + c2)(3/2) [c+ (r2 + c2)(1/2)]

+
(−5r2 + 2c2)c3r3

20(r2 + c2)(5/2) [c+ (r2 + c2)(1/2)]
+

(−5r2 + 2c2)c3r3

30(r2 + c2)(3/2) [c+ (r2 + c2)(1/2)]
3

Finally, due to the relationship between the expressions of the particular velocity solu-

tion and the pressure in the equation (1.34), it is not necessary to look for a velocity-

pressure coupling. In addition, the formulation ful�lls the mass conservation, since the

particular solution exactly satis�es the continuity equation.
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1.4 Numerical Results

In this section we solved some problems that helped us to implement generic codes for

the MAPS. At the beginning, the main intention was to verify the performance of the

method, review its behavior to solve scalar and vector problems.

To determine the accuracy obtained, the errors are evaluated in terms of the relative

root-mean-square error (RMSE) which are given by:

RMSE =

√
1
N

∑N
i=1 |ui − ûi|2

max|u|
(1.42)

where ûj is the approximate solution and uj the analytic solution.

1.4.1 Scalar problem

We present a scalar problem given by a 2D Poisson equation with Dirichlet boundary

conditions (for more details see [82]) given by:

4u = sin(πx) sin(πy), 0 ≤ x, y ≤ 1 (1.43)

u(x, y) = 0, along the boundaries (1.44)

Which has the exact solution ue(x, y) = −1/(2π2) sin(πx) sin(πy)
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(a) (b)

(c)

Figure 1.1: Results (a) u for c = 1.2e−1, (b) u for c = 1.2e−3, and (c) u in x = 0.5 for
c = 1.2e−1
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N c = 1.2e−1 c = 1.2e−3

441 1.3402e−5 7.1950e−5

961 3.2996e−6 2.5842e−5

1681 5.6170e−7 1.2755e−5

Table 1.1: RMSE errors according to discretization size and shape parameter

The �gure 1.1 shows the results for two di�erent values of the shape parameter, there

is not a noticeable di�erence between them. However, the 1.1 table shows the errors

for various discretization and the two values of shape parameters.

In the table 1.1 it can be seen how for the large shape parameter better solutions are

obtained, however in both cases good approximations are achieved, see for example [16]

and [14].

1.4.2 Vector problem

Secondly, we solve a vector problem similar to the one in [18], which solves an inho-

mogeneous Stokes equation on the domain Ω = (0, 1) × (0, 1). For our case, we apply

Dirichlet boundary conditions over the entire bounday ∂Ω. The di�erential equation is

given by:

−µ(∇u+∇uT ) +∇p = f (1.45)

∇ · u = 0 (1.46)

Along with the boundary condition
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u = uAnalytical, on ∂Ω (1.47)

Where the exact solution is given by the following expression:

~u = (x3 + 8x2y − 6xy2 + 10y3, 10x3 − 3x2y − 8xy2 + 2y3)T (1.48)

p = 4x3 − 6xy2 (1.49)

The solution to this problem allowed us to verify the operation of the code for the

solution of vector problems. In the �gure 1.2, we show the results for velocity "u" and

in the �gure 1.3 for velocity "v", on the lines x = 0 and x = 1.

(a) (b)

Figure 1.2: x-Velocity component comparison in: a) x = 0, b) x = 1

To verify the operation of the method when performing the reconstruction of the deriva-

tives, we calculate the derivative du
dy

which was compared with the derivative of the

analytical solution, which can be seen in the �gure 1.4.
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(a) (b)

Figure 1.3: y-Velocity component comparison: a) x = 0, b) x = 1

(a) (b)

Figure 1.4: Derivative from the solution: a) x = 0, b) x = 1
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Finally we perform the reconstruction of the traction, whose y-component is shown on

both x = 0 and on y = 0 lines, In �gure 1.5. The other components are not illustrated

since they show a constant behavior.

Figure 1.5: Traction

1.5 Final Remarks

In this section, we solved two problems using MAPS, which allowed us to create generic

codes for both scalar problems and vector problems. The solution of these veri�cation

problems demonstrate the good behavior of the MAPS and is novel and little has been

used to solve PDEs.

In the following chapters we will show how the choice of a type of boundary condition

can in�uence the MAPS, and we use it to solve a problem that models the �ow of gates

through a PEM membrane.
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Chapter 2

INFLUENCE OF THE BOUNDARY

CONDITION IN THE MAPS

For the solution of di�erential equations many numerical methods have been devel-

oped such as �nite di�erence method (FDM), �nite element method (FEM), boundary

elements method (BEM) and some recent meshless methods base on radial basis func-

tions (RBF), such as the Method Approximate Particular Solutions (MAPS) (see [17]

and [14]). However, one factor to be taken into account is how (BC) a�ect the com-

putational domain and the application of the method, since these are mathematical

approximations and simpli�cations of the reality.

Ataie-Ashtiani et al. [3], the in�uence of boundary conditions on density-dependent

�uid is investigated, the authors state that more research is required to evaluate the

impacts of BCs and demonstrate that the choice of BCs for dependent �ow problems

the density, more care should be taken in the studies and simulations made. On the

work [22] the authors propose a strategy for choosing e�ective boundary conditions

in the solution of compressible �ow problems, they claim that it is possible to get

better approximation when Dirichlet boundary conditions are applied and also the

computational cost is reduced. While [6] study numerically the e�ects of di�erent

boundary conditions on the surfaces of the computational domain extended over a



natural convection �ow in an open cavity, they conclude that BCs have a sensitive

e�ect within the cavity, since they observed changes in the characteristics of �ow and

heat transfer within the cavity occurred due to the di�erent BC.

The work done by Madhavan in [60] studied the sensitivity of cardiovascular �ow under

the in�uence of di�erent boundary conditions on entry and exit in a patient-speci�c

aorta model, a�rming that most researchers choose to guess this type of condition be-

cause it is di�cult and expensive to measure. In addition, they found that entry velocity

conditions a�ect signi�cantly only the �ow region near the entrance and their study in-

dicates that the exit conditions in�uences a greater percentage of the domain solution.

On the other hand [65] try to show that for arbitrary boundaries of a computational

region in a subsonic �ow and shock waves, the numerical treatment of such limits can

be physically defective and suggests what actions to take, when these situations arise.

As is a�rmed in [60], this type of decisions does not only a�ect this type of situa-

tions, it is also presented when using a numerical method to solve a problem, due to

simpli�cation made to the models.

In this chapter we intend to show the in�uence of the choice of these boundary conditions

in the MAPS with RBFs.

Now we consider two problems which are solved with the MAPS. We study the e�ects

of the number of nodes and type of boundary condition can on the precision of the

method. The results are compared with the respective analytical solution.

2.1 Problem 1: Solution of Slit �ow problem

We solve the Slit �ow problem, in a straight channel of length L = 4, applying di�erent

types of boundary conditions in the entrance and exit of the channel, over the domain

Ω = [0, 4] × [−1, 1], presented in �gure 2.1. The governing equation for the Slit �ow

problem is given by:
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µ∆~u− 4P
L

= 0 on Ω (2.1)

∇ · ~u = 0 (2.2)

If the �uid velocity is ~u = [u, 0] and assuming slip wall boundary condition. Which can

be reduced to the expression:

µ
∂2~u

∂y2
− 4P

L
= 0 on Ω (2.3)

u = 0 in y = w (2.4)

du

dy
= 0 in y = 0 (2.5)

Figure 2.1: Domain of the Problem

The problem that arises in the equations (2.3) y (2.5), has as an exact solution:

u =
4P
2µL

(y2 − w2) (2.6)

Where 4P is the pressure gradient with a value of −90Pa, where P=100 on channel

input y P=10 on output , w = 1 is the distance from the center of the channel to

stop, and µ = 1 is the viscosity. In addition, for this problem we use two types of
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Type 1: Traction Type 2: Dirichlet Type 3: Mixed Type 4: Analytical Traction

IN
(
P
0

) (
uE
0

) (
v
τx

)
=
(
0
P

) (
µ du

dy
τ

)
=
(−µ du

dy

P

)
OUT

(−P
0

) (
uE
0

) (
v
τx

)
=
(

0
−P

) (
µ du

dy
τ

)
=
(µ du

dy

−P

)
Table 2.1: Types of boundary conditions (IN, OUT channel input and output, uy
component 'y' of the speed, τx component 'x' of the traction and du

dy
is derived)

discretization: one performed with a distribution of uniform nodes, and another with a

distribution of nodes adapted in the direction of the axis "x" towards inlet and outlet

boundaries.

(a) Uniform discretization (b) Re�ned nodal distribution

Figure 2.2: Domain discretization, N = 3200

The table 2.1 shows the types of boundary conditions used in this problem. It is

important to note that the Type 1, is taken as in [48] in which traction is imposed as

the pressure in the component 'x' and zero speed in the component 'y'.

The �gure 2.3 shows the velocity pro�les for a uniform point discretization of the

boundary conditions used in this problem, and in the �gure 2.4 the pro�les for an

re�ned point discretization at x are shown.

The �gure 2.5 shows the velocity pro�les at the entrance (x = 0), exit (x = L) and in

the middle of the channel (x = L/2), the comparison with the analytical solution shows

a good approximation obtained with the MAPS, and table 2.2 shows the dogs for each

type of BC with a uniform discretization.

For this problems, it is important to reconstruct the derivative ∂ux
∂y

and the traction,
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(a) BC Type 1 (b) BC Type 2

(c) BC Type 3 (d) BC Type 4

Figure 2.3: Velocity pro�les for uniform points (N=3200) for di�erent boundary condi-
tions
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(a) BC Type 1 (b) BC Type 2

(c) BC Type 3 (d) BC Type 4

Figure 2.4: Velocity pro�les for adaptive in x points (N=3200) for di�erent boundary
conditions.
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(a) Pro�les in x = 0 (b) Pro�les in x = 2

(c) Pro�les in x = 4

Figure 2.5: Velocity pro�les of BC for N = 3200
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(a) Error u in x = 0 (b) Error u in x = 2

(c) Error u in x = 4

Figure 2.6: Error of the Velocities of theBC Type 1, 2, 3 and 4 for N = 3200
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because they are in�uencer variables of the problem, since it allows us to show the

precision of the method and shows us the behavior of the problem. In addition, it is

crucial to observe how the application of di�erent types of boundary conditions a�ects

the obtained values form the MAPS application. The �gure 2.7 shows the reconstruction

of the derivatives in the entrance, half and exit of the channel, besides the �gure 2.9-2.12

shows the reconstruction of the traction, in type 1 we obtained more imprecise values

while for the other types these are improved.

(a) Derivative in x = 0 (b) Derivative in x = 2

(c) Derivative in x = 4

Figure 2.7: Derivatives of BC for N = 3200

For condition type 2 and 4 similar results were obtained for traction and pressure

reconstruction, in the �gure 2.13 the reconstructed pressure for condition type 1, 2, 3

and 4 are shown, in which it can be evidenced as at the entrance of the channel it takes

the value of 100 at the entrance until reaching the exit with a value of 10, thus ful�lling
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(a) Error du in x = 0 (b) Error du in x = 2

(c) Error du in x = 4

Figure 2.8: Error of the derivatives of the BC Type 1, 2, 3 and 4 for N = 3200
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(a) (b)

(c) (d)

Figure 2.9: Traction BC Type 1, Adaptive discretization in x

35



(a) (b)

(c) (d)

Figure 2.10: Traction BC Type 2, Adaptive discretization in x
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(a) (b)

(c) (d)

Figure 2.11: Traction BC Type 3, Adaptive discretization in x
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(a) (b)

(c) (d)

Figure 2.12: Traction BC Type 4, Adaptive discretization in x
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Uniform

N Type 1 Type 2 Type 3 Type 4
450 3.74× 10−1 2.22× 10−3 2.52× 10−2 3.36× 10−2

800 7.86× 10−2 2.09× 10−4 1.52× 10−2 1.29× 10−2

1800 2.84× 10−2 4.72× 10−14 9.23× 10−3 9.17× 10−3

3200 4.18× 10−2 7.89× 10−14 5.19× 10−3 5.20× 10−3

Table 2.2: RMSE error discretization uniform

the pressure gradient. Although in the reconstruction of the pressure of the condition

type 2 at the entrance of the channel has the value of 40.3 and at the exit of the channel

it has the value of −49.1 the pressure gradient is ful�lled.

(a) Pressure BC Type 1 (b) Pressure BC Type 2

(c) Pressure BC Type 3 (d) Pressure BC Type 4

Figure 2.13: Pressure in y = 0 for N = 3200, Uniform discretization

In the �gure 2.14, the RMSE variation is shown according to the node distribution N,

in which it can be seen as in �gure refErrRMSE-N (b) the error is stabilized for the

BC type 1 and manages to improve the error for the other BC.

Finally in the table 2.2 and table 2.3, it is shown the RMSE error obtained with the

39



Re�ned x

N Type 1 Type 2 Type 3 Type 4
450 4.25× 10−2 2.14× 10−3 8.48× 10−4 8.48× 10−4

800 3.99× 10−2 2.60× 10−4 3.99× 10−4 3.99× 10−4

1800 4.13× 10−2 2.56× 10−12 4.65× 10−12 3.81× 10−12

3200 4.05× 10−2 4.46× 10−12 7.92× 10−12 1.06× 10−11

Table 2.3: RMSE error discretization re�ned in x

(a) (b)

Figure 2.14: RMSE error vs N in a) Uniform discretization, and b) adaptive discretiza-
tion in x

40



di�erent types of boundary conditions, this is calculated for the uniform and re�ne.

According to the results obtained above, it shows the importance of selecting the correct

boundary conditions when solving a PDE problem. For Type 2 and 4, good approxi-

mations of the solution are obtained, so they cannot be ruled out, however, the Type 3

condition shows consistent results and according to the physics of the problem.

2.2 Problem 2: Laminar Convective �ow between par-

allel plates

Given an energy balance at steady state within the laminar boundary layer is given by:

ρcp

(
ux
∂T

∂x
+ uy

∂T

∂y

)
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+ µ(

∂ux
∂y

)2 (2.7)

Considering a fully developed �uid, if neglecting the e�ects of friction and axial condi-

tion, see the �gure 2.15, and assuming that T is independent of 'y', the energy balance

equation is reduced to:

∂2T

∂y2
= 0 (2.8)

with boundary conditions

T = T0, x = x0 (2.9)

T = T1, x = −x0 (2.10)

So, integrating to equation (2.2) we have the expresión
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T =
T0 − T1

2x0
x+

T0 − T1
2

(2.11)

In its dimensionaless form, with Tm = T0−T1
2

we have

T − Tm
T1 − Tm

= − x

x0
(2.12)

Now, the moment equation is given by:

µ∇2u−∇p = −ρβg(T − Tm) (2.13)

which boils down to expression

µ
∂2u

∂x2
+ ρβg(T − Tm) = 0 (2.14)

whose exact solution is given by

uy =
gβx20(T1 − Tm)

6µ
ρ

[(
x

x0

)3

−
(
x

x0

)]
(2.15)

Entering the following dimensionaless variables,

û =
uyρcpx0

κ
dimensionaless velocity (2.16)

Gr = =
gβx30(T1 − Tm)

(µ
ρ
)2

Grasho� number (2.17)

x̂ =
x

x0
dimensionaless length (2.18)
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So we have,

û =
1

6
(Gr · Pr)(x̂3 − x̂) (2.19)

Where Pr = Cpµ

κ
is Prandtl number. Then, the Rayleigh number can be written as

the product of the Grashof number and the Prandtl number Gr · Pr. This problem is

solved in the domain given in �gure 2.15 with Ω = [−1, 1]× [0, 2], where x0 = 1, ρ = 1,

β = 0.5. With the following boundary conditions:

ux = 0, τy = 0 in y = 0 (2.20)

ux = 0, τy = 0 in y = 2 (2.21)

ux = 0, uy = 0 in x = −1, 1 (2.22)

where τy is the 'y' component of traction, in this way we have a boundary condition

mixed given by (ux, τy).

Figure 2.15: 2-D domain for the case of two parallel plates

In �gure 2.16, shown the results for N = 2500 nodes distributed homogeneously, these

are compared to the analytical solution. This was done similarly for the values Gr·Pr =
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100 see �gure 2.17 and Gr · Pr = 500 see �gure 2.18.

(a) (b)

(c)

Figure 2.16: Figure a) shows the velocity pro�le, in b) the analytical and numerical solution

of the velocity is compared and in c) the value of the analytical derivative is compared with

the numerical derivative. This for Gr · Pr = 50

We various solutions for N = 400, 900, 1600 and 2500 nodes are carried out in order

to analyze the e�ect of nodal distribution on method accuracy, see Table 2.4, where

it is shown that the precision of the method does not depend on the characteristics of

the �uid in a laminar �ow. In �gure 2.19 and 2.20 traction in x = −1 and y = 0 are

presented., it could be shown that by the symmetry of the problem, the values of the

traction τx(x = −1) = −τx(x = 1) and that τx(y = 0) = −τx(y = 2), so we only show

one of them.

Finally, Figure 2.21 presents the behavior of the pro�les when varying Gr · Pr for

velocity and the derivative.
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(a) (b)

(c)

Figure 2.17: Figure a) shows the velocity pro�le, in b) the analytical and numerical solution

of the velocity is compared and in c) the value of the analytical derivative is compared with

the numerical derivative. This for Gr · Pr = 100

PPPPPPPPPN

Gr · Pr
50 100 500 Condition of the matrix

400 2.34× 10−2 2.32× 10−2 2.34× 10−2 2.30× 107

900 1.24× 10−2 1.30× 10−2 1.24× 10−2 1.19× 108

1600 8.10× 10−3 8.44× 10−3 8.10× 10−3 1.90× 108

2500 6.04× 10−3 6.13× 10−3 6.04× 10−3 5.41× 108

Table 2.4: RMSE error according to discretization number and GrPr
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(a) (b)

(c)

Figure 2.18: Figure a) shows the velocity pro�le, in b) the analytical and numerical solution

of the velocity is compared and in c) the value of the analytical derivative is compared with

the numerical derivative. This for Gr · Pr = 500
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(a) (b)

(c)

Figure 2.19: Traction for a) GrPr = 50, b) GrPr = 100, c) GrPr = 500 en x = −1
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(a) (b)

(c)

Figure 2.20: Traction for a) Gr · Pr = 50, b) Gr · Pr = 100, c) Gr · Pr = 500 en y = 0

(a) (b)

Figure 2.21: a) Velocity, b) Derivative according to Gr · Pr
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(a) (b)

(c)

Figure 2.22: Errors for di�erent discretization points a) Velocity, b) derivative du
dy
, c)

Matrix Condition
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2.3 Problem 3: Scalar Problem

It is considered a problem which is taken from[16] which has an elliptic di�erential

equation with scalar coe�cient variable given by:

4u+ sin(x+ y)u+ (xy + x2)
∂u

∂x
+ x sinh(y)

∂u

∂y
= f(x, y) (2.23)

Figure 2.23: Problem domain 3

for this case, we have f(x, y) is given according to the analytical solution is given below:

u = y sin(φx) + x cos(φy) (2.24)

This problem is solved in the domain shown �gure 2.23 and two di�erent boundary

conditions are considered for its numerical solution. As in [16] the �rst one is considered

with Dirichlet boundary conditions across the entire boundary of the domain; and the

second one with, Neaumann boundary condition in line y = 0 and Dirichlet boundary

condition in the rest is applied.
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The pro�les of the solution and its derivatives are shown in �gure 2.24 �rst, the Dirichlet

boundary condition is applied and in �gure 2.25 Neaumann boundary condition is

applied on the line y = 0. In the table 2.5, it is possible to see that for the �rst case

the error remains constant, while in the second case, for N = 441 the error increases,

but this improves as the number of nodes increases (N = 961 and N = 1681) until the

error obtained in the First case, see Table 2.5.

(a) Approximate solution (b) Derivative respect to x

(c) Derivative respect to y

Figure 2.24: Results with BC type Dirichlet: a) Approximate solution, b) Derived in
'x', and c) Derived in 'y'

The table 2.5 shows the RMSE error obtained when solving for N = 441, 961 and 1681

for the two cases mentioned above.
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(a) Approximate solution (b) Derivative respect to x

(c) Derivative respect to y

Figure 2.25: Results with BC type Neumann (Mixed): a) Approximate solution, b)
Derived in 'x', and c) Derived in 'y'

Dirichlet Neumann
N u du

dx
u du

dx

441 6.69× 10−4 9.43× 10−3 1.13× 10−2 1.87× 10−2

961 2.56× 10−4 4.65× 10−3 6.01× 10−3 9.84× 10−3

1681 1.29× 10−4 2.77× 10−4 3.85× 10−3 6.25× 10−3

Table 2.5: RMSE error for the solution and its derivative with respect to 'x' according
to the type of boundary condition
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2.4 Final Remarks

In this chapter, the in�uence or implications of the boundary conditions when applying

the MAPS for the solution of a PDE is shown. In the table 2.2 we see the error obtained

for each type of boundary condition applied according to the number of discretization

used, where it can be shown that for boundary Type 1 the best approximation that could

be achieved was for a discretization of N = 3200 nodes with a uniform distribution, this

with an RMSE error of 4.18× 10−2. This is not appropriate since there is no physical

information in the problem to be used and therefore in that case Type 3 would be more

convenient..

On the other hand, when performing a distribution of di�erent nodes (see table 2.3) no

signi�cant improvement of the error for the type 1 boundary was evidenced, something

contrary to what happened with the type 3 boundary that passed from εerr = 5.19×10−3

to εerr = 7.92 × 10−12 and the type 4 boundary that passed εerr = 5.20 × 10−3 to

εerr = 1.06×10−11, this for a discretization ofN = 3200 node, showing a quite signi�cant

improvement when performing an adaptive discretization in x. The above shows how

the choice of boundary condition signi�cantly a�ects the results obtained, also shows

that these BCs must be consistent with the physical reality of the problem and can not

be imposed arbitrarily.

The table 2.5 shows the RMSE error for solution and the derivative with respect to

"x", in which it is evident that if the boundary condition is changed, and the PDE

solution remains the same, with a Neumann boundary condition the numerical solution

is worse.
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Chapter 3

ELECTROKINETIC FLUIDS

In this chapter we try to present and provide an explanation that allows us to under-

stand electro-kinetic �uids, this leads us to understand what electroosmotic �ows are.

According to [46], electrokinetic e�ects are important for micro and nanoscale trans-

port applications, as it the case of electroosmosis that allows �uid pumping and �ow

control using electric �elds, which eliminates the need of mechanical pumps or valves

with movable components. In addition the speed pro�les for electroosmotic �ows are

mostly uniform.

According to [56], if a stationary solid surface is contact with an aqueous solution and an

electric �eld is applied, excess counter ions in the di�use layer of the EDL will move, this

is called electroosmosis. As the ions move, they drag the surrounding liquid molecules

to move with them due to the viscous e�ect, resulting in a mass liquid movement. Such

liquid movement is called electroosmotic �ow (see also [71] and [47]).

3.1 The electrical double layer (EDL)

For [36], electrokinetic phenomena occurs due to the double electrical layer (EDL),

which is formed as a result of the interaction of the ionized solution with static charges

on the dielectric surfaces, generally the solution is electrically neutral although the



Electrostatic charges on the solid surface will attract counterions in the liquid.

Since the ions of opposite charge in the layer protect some of the electrical charges

on the surface, the electrokinetic potential quickly falls through the Stern layer. The

value of ψ at the edge of the Stern layer is known as potential zeta ζ, see [46]. The

distribution of ions in the di�use layer produces a net electric charge, which is related

to the electrokinetic potential through the Poisson equation as:

∇2ψ = − ρe
ε0ε

(3.1)

where ψ is the potential of the electric �eld, ρe is the free charge density, ε is the

dielectric constants in the middle and ε0 is the dielectric constants in the vacuum.

Assuming that the equilibrium Boltzmann distribution equation is applicable [56], we

have,

ci = ci∞ exp(−zieψ
kbT

) (3.2)

where ci∞ and zi are the mass ion concentration and the valence of the ith ions; e is the

charge of a proton, kb is the Boltzmann constant, and T is the absolute temperature.

The net electric charge density ρe is given by

ρe =
n∑
i=1

zieci = e

n∑
i=1

zici∞ exp(−zieψ
kbT

) (3.3)

Now if zi = z = constant and we assume a symmetric electrolyte of equal valence

that is in equilibrium with the charged surface, what results is the well-known Poisson-

Boltzmann equation (P-B)

∇2ψ =
2zec0
εε0

sinh(
zeψ

kbT
) (3.4)
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A more general form of the Poisson-Boltzmann equation

∇2ψ = − e

εε0

n∑
i=1

zici∞ exp(−zieψ
kbT

) (3.5)

By introducing the dimensionaless the electric potential Ψ = zeψ/kbT , the Poisson-

Boltzmann equation (3.4) can be rewritten as:

∇2Ψ = k2 sinh Ψ (3.6)

where k2 = 2z2e2c∞
εε0kbT

, is de�ned as the Debye parameter -Huckel. Now, if the electric

potential is small compared to the thermal energy of the ions, that is, (|zeψ| < |kbT |)
thus the function of the right side in 3.6 can be approximated by sinh(Ψ) ' Ψ, which

transforms the equation (3.6) to

∇2Ψ = k2Ψ (3.7)

This result is called in the literature as a linear approximation of Debye-Huckel, whose

assumption requires that Ψ < 25mV .

3.2 Electrokinetic �uids in a cylindrical microchannel

Consider an electro-osmotic �ow of a solution in a cylindrical nanochannel with a cir-

cular cross section. It is assumed that the channel wall has a uniform and constant

potential load or zeta along the channel, see �gure 3.1.
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Figure 3.1: Cylindrical Microchannel with circular section

3.2.1 Electrical double layer in a cylindrical microchannel

We have that the electric potential Ψ at any point of the liquid is described by the

Poisson equation in the radial direction ′Y ′ and axial direction ′X ′.

1

Y

∂

∂Y

(
Y
∂Ψ

∂Y

)
+
∂2Ψ

∂X2
= − ρe

εε0
(3.8)

If we assume that the Boltzmann distribution is applicable, the concentration of ions

for unit volume is of the form

ci = ci∞ exp(−zieΨ
kbT

) (3.9)

The net charge density ρe is equivalent to the di�erence in concentration between cations

and anions, like this:

ρe(Y ) =
n∑
i=1

cizie = e

n∑
i=1

zici∞ exp(−zieΨ
kbT

) (3.10)

For a symmetric electrolyte solution, the above equation becomes:

ρe(Y ) = e
n∑
i=1

zici∞ exp(−zieΨ
kbT

) = −2ec∞ sinh(
eΨ

kbT
) (3.11)
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Substituting equation (3.11) into equation (3.8), and entering the dimensionless vari-

ables.

ψ =
eΨ

kbT
, y =

Y

d
, x =

X

d

where d is the diameter of the nanochannel, thus we obtain the Poisson-Boltzmann

equation for a symmetric electrolyte solution, given by:

1

y

∂

∂y

(
y
∂ψ

∂y

)
+
∂2ψ

∂x2
= κ2 sinh(ψ) (3.12)

where κ =
(

2c∞e2d2

εε0kbT

)1/2
It is the Debye-Huckel parameter. Taking into account the

symmetry of EDL equation (3.12) it with non-dimensional boundary conditions

y = 0,
∂ψ

∂y
= 0 (3.13)

x = 0,
∂ψ

∂x
= 0 (3.14)

y = 1, ψ =
eζ

kbT
(3.15)

x = 1,
∂ψ

∂x
= 0 (3.16)

where ζ is the zeta potential.
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3.2.2 Electrokinetic �ow �eld in a cylindrical microchannel

The �ow of the electrolyte solution is determined by the momentum and mass conser-

vation equations,

ρ

[
∂~u

∂t
+ ~u · ∇~u

]
= −∇P + µ∇2~u+ Eρe (3.17)

∇ · ~u = 0 (3.18)

where ~u is the velocity vector, µ is the viscosity, ρ is the density of the �uid, ρe is the

net local charge density and E is the force of the applied electric �eld.

If we assume the steady state and fully developed �ow, then the velocity components

satisfy u = u(x, y) and v = w = 0, in terms of the radial coordinate ′y′ and component

axial ′x′, the equation of momentum (3.17) is reduced to:

µ
1

y

∂

∂y

(
y
∂u

∂y

)
+
∂2u

∂x
= ∇P − Eρe (3.19)

For a simple electro-osmic �ow there is no pressure along the capillary, that is ∇P
is zero. On the other hand for a pressure-driven �ow, Ez = 0. Otherwise, the �eld

strength would change in di�erent sections of the nanochannel. This implies di�erent

velocity �elds in di�erent sections of the �ows. However, for incompressible liquids, the

condition of continuity requires a constant �ow through the channel, then the pressure

gradient is required to satisfy the condition of continuity.

Now substituting (3.11) in equation (3.19) and entering the dimensionless variables

u = ud
D
, y = y

d
y x = x

d
, where D is the di�usion coe�cient, we obtain an equation for

a symmetric electrolyte solution, given by:
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1

y

∂

∂y

(
y
∂y

∂y

)
+
∂2u

∂x
= G1E sinh(ψ) (3.20)

where G1 = 2c∞ed3

µD
is a dimensionless number, see[56]. It is subjected to symmetric and

non-slip boundary conditions:

y = 0,
∂u

∂y
= 0 (3.21)

x = 0,
∂u

∂x
= 0 (3.22)

y = 1, u = 0 (3.23)

x = 1,
∂u

∂x
= 0 (3.24)

3.3 Electrokinetic �uids in a rectangular microchan-

nel

In this section, we intend to examine the numerical solutions of the Poisson-Boltzmann

equation and the momentum equation for electroosmotic �uid in rectangular nanochan-

nels. In this case the EDL �eld is two-dimensional and will a�ect the �ow �eld.

3.3.1 Electrical double layer in a rectangular microchannel

We consider a nanochannel 2W wide, 2H high with a length L, as shown in Figure 3.2.

The EDL �eld of a rectangular section is described by the Poisson equation (3.3.1).
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Figure 3.2: Rectangular Microchannel

∂2Ψ

∂Y 2
+
∂2Ψ

∂X2
= − ρe

εε0
(3.25)

If assuming that the Boltzmann distribution is applicable. The net charge density

expressed in terms of the Boltzmann distribution, which for a symmetric electrolyte is

given by:

ρe = −2c∞ze sinh

(
zeΨ

kbT

)
(3.26)

In this way, by substituting in the Poisson equation we obtain the PoissonBoltzmann

equation in two dimensions:

∂2Ψ

∂Y 2
+
∂2Ψ

∂X2
=

2c∞ze

εε0
sinh

(
zeΨ

kbT

)
(3.27)

Together with the following symmetric boundary conditions:
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Y = 0,
∂Ψ

∂y
= 0 (3.28)

X = 0,
∂Ψ

∂x
= 0 (3.29)

Y = H, Ψ = ζ (3.30)

X = W, Ψ = ζ (3.31)

Now applying the following dimensionaless variables

y =
Y

Dh

(3.32)

x =
X

Dh

(3.33)

ψ =
zeΨ

kbT
(3.34)

where Dh = 4HW
H+W

is the hydraulic diameter.

Then, the Poisson-Boltzmann equation and boundary conditions are transformed into:

∂2Ψ

∂Y 2
+
∂2Ψ

∂X2
= (κDh)

2 sinh (ψ) (3.35)

where κ = (2c∞z
2e2/εε0kbT )

1/2
it is the Debye-Huckel parameter. Besides the di-

mensionaless parameter κDh is often referred to as the electrokinetic diameter. The

corresponding non-dimensional boundary conditions are:
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y = 0,
∂Ψ

∂y
= 0 (3.36)

x = 0,
∂Ψ

∂x
= 0 (3.37)

y = H, Ψ =
zeζ

kbT
= ζ∗ (3.38)

x = W, Ψ =
zeζ

kbT
= ζ∗ (3.39)

3.3.2 Electrokinetic �ow �eld in a rectangular microchannel

Consider a steady state �ow, fully developed in two dimensions, then the velocity

components are reduced to u = u(x, y) y v = w = 0. Also, replacing ρe the equation

(3.17) becomes:

µ

(
∂2u

∂y2
+
∂2u

∂x2

)
=

(
2c∞ze sinh(

zeΨ

kbT
)

)
E (3.40)

This complemented with symmetric boundary conditions

y = 0,
∂u

∂y
= 0 (3.41)

x = 0,
∂u

∂x
= 0 (3.42)

y = H, u = 0 (3.43)

x = W, u = 0 (3.44)
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Now entering the dimensional variables:

u =
u

U
(3.45)

E =
EL

ζ
(3.46)

where U is the reference velocity and the distance L between the two electrodes. So we

have the following equation:

∂2u

∂y2
+
∂2u

∂x2
= ME sinh(ψ) (3.47)

where M =
2c∞zeζD2

h

µUL
and the boundary conditions are given by:

y = 0,
∂u

∂y
= 0 (3.48)

x = 0,
∂u

∂x
= 0 (3.49)

y =
H

Dh

, u = 0 (3.50)

x =
W

Dh

, u = 0 (3.51)

3.4 Numerical Results

In this section, the MAPS is used to solve the problem posed in [79], in which they

propose an analytical approach to an electro-kinetic �ow problem a�ected by Joule
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heating. A fully developed electroosmotic and pressure-driven combined �ow in the z

direction of a Newtonian liquid is solved in the computational domain given in Figure

3.3. The computational domain is given in 3.3,

(a) (b)

Figure 3.3: a) Domain of the problem (see [79]) and b) Discretization

The equations to be solved are given by the distribution of the electric potential which

is given by the Poisson-Boltzmann equation in the form [94]

∂2ψ

∂x2
+
∂2ψ

∂y2
=

2zen0

ε
sinh(

ezψ

KB

T ) (3.52)

De�ning the Debye Huckel parameter κ = (2n0e
2z2/εkBT )−1/2 and entering the dimen-

sional variables ψ∗ = ezψ/kBT , x
∗ = x/H, y∗ = y/H and y∗ = y/H y K = H/κ, the

equation is in the dimensional form

∂2ψ∗

∂x∗2
+
∂2ψ∗

∂y∗2
= K2 sinh(ψ∗) (3.53)

Together with dimensionaless boundary conditions

∂ψ∗

∂x∗
|x∗=0 = 0, ψ∗|x∗=α = ζ∗,

∂ψ∗

∂y∗
|y∗=0 = 0, ψ∗|y∗=1 = ζ∗ (3.54)
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(a) K = 1 (b) K = 5 (c) K = 10

(d) K = 15 (e) K = 20 (f) K = 25

(g) K = 30 (h) K = 35 (i) K = 40

Figure 3.4: The �gure shows the numerical pro�les of the dimensional potential for
di�erent values of K
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(a)

(b) Ampli�cation between 1.4 to 2

Figure 3.5: Electric potential for di�erent K, in y = 0.5
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where α = W/H and ζ∗ = ezζ/kBT . The analytical solution is the following expression:

ψ∗ = ζ∗
cosh(Ky∗)

coshK
+ 2ζ∗K2

∞∑
n=0

(−1)n cosh(βnx
∗)cos(γny

∗)

γnβ2
n cosh(βnα)

(3.55)

(a) Error vs K (b) Error vs N

Figure 3.6: Error

Strong e�ects of constant K can be seen in the numerical pro�les of the potential which

are shown in �gure 3.4. It is also observed that the electrical double layer only exists

near the wall. According to [95] microchannel �ows, the potential of EDL in the corner

regions is expected to cause strong resistance to �ow. Figure 3.5 shows the pro�les of

the potential at y = 0.5 where it is possible to see the e�ects su�ered at the corners for

the pro�le of the potential and in �gure 3.6 a), the errors obtained in di�erent values

of K (see [2]), while in �gure 3.6 b), error analysis is shown according to the discretion

used di�erent discretizations used for K = 40.

The velocity distribution of a mixed electroosmotic and pressure-driven �uid is reduced

to the expression given by:

µ

(
∂2u

∂x2
+
∂2u

∂y2

)
=
∂p

∂z
− ρEz (3.56)

where Ez = −dφ/dz It is the external applied electric �eld. The momentum equation

in the dimensional form can be rewritten as
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(a) Γ = 0 (b) Γ = 1

(c) Γ = −1 (d) Γ = −1.5

Figure 3.7: The �gure shows the distribution of the dimensionaless velocity for the case
where α = 2, K = 10 and values of Γ = 0, 1,−1 y −1.5
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∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
= −2Γ− K2

ζ∗
ψ∗ (3.57)

where u∗ = uz/uHS, here uHS = −εζEz/µ is called the Helmholtz-Smoluchowski elec-

troosmotic velocity, according to [79], it is the maximum possible electroosmotic veloc-

ity. Γ = uPD/uHS is the velocity scale relationship with uPD = −H2(∂p/∂z)/2µ repre-

senting the pressure-driven speed. This is complemented by the dimensional boundary

conditions given by

∂u∗

∂x∗
|x∗=0 = 0, u∗|x∗=α = 0,

∂u∗

∂y∗
|y∗=0 = 0, u∗|y∗=1 = 0 (3.58)

Equation (3.57) has the following expression as an analytical solution

u∗ = 1 + Γ(1− y∗)− ψ∗

ζ∗
− 4Γ

∞∑
n=0

(−1)n cosh(γnx
∗) cos(γny

∗)

γ3n cosh(γnα)
(3.59)

In addition, the average speed in the section of the channel is given by

u∗av =
1

α

∫ 1

0

∫ α

0

u∗dx∗dy∗ (3.60)

Figure 3.7 presents the distribution of the dimensional velocity for di�erent values of Γ.

When Γ = 0, there is a purely electroosmotic �uid which is moved by the application of

the external electric �eld. In the case Γ = 1 a combined �uid is obtained in the presence

of a pressure gradient whose result is an overlap of electroosmotic and pressure-driven

velocity pro�les. When Γ = −1 a pressure opposes the �uid and delays the �ow. Figure

3.8 shows the pro�les of the dimensional velocities at y∗ = 0.5 together with the error

obtained when it is comparing with the analytical solution. It is observed, as the forces

of the electric �eld is limited to the regions of the wall, this a�ects the �ow velocity

pro�le as seen in Figure 3.8.

Finally, the energy conservation equation in terms of temperature and including the
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(a)

(b)

Figure 3.8: a) dimensional velocity pro�les for di�erent Γ y b)RMSE Error
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Figure 3.9: Velocity error vs N , for Γ = 1

e�ects of Joule heating, is given by

ρcp
DT

Dt
= ∇ · (k∇T ) + s (3.61)

where cp is the speci�c heat at constant pressure, k the thermal conductivity and

s = E2
z/σ0 the volumetric heat generation rate due to Joule heating. Then, energy

equation in dimensionaless form is

∂2θ∗

∂x∗2
+
∂2θ∗

∂y∗2
=

u∗

u∗av
(1 + 1/α + S) + S (3.62)

where S = E2
zH

qavσ0
is the dimensionless Joule heating parameter, see [58, 78]. with bound-

ary conditions

∂θ∗

∂x∗
|x∗=0 = 0, θ∗|x∗=α = 0,

∂θ∗

∂y∗
|y∗=0 = 0, θ∗|y∗=1 = 0 (3.63)

Which has as an analytical solution the expression given by
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(a) S = 1 (b) S = −1

(c) S = 2 (d) S = −2

Figure 3.10: Dimensionless temperature for the case where α = 2 , K = 20, Γ = −1.5
and values of S = 1,−1, 2 y −2
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(a)

(b)

Figure 3.11: a) Dimensionaless temperature pro�les for di�erent S and b)Error RMSE
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θ = A1 + A2y
∗2 − A3y

∗4 − (1 + 1/α + S)

u∗avK
2

ψ∗

ζ∗

+
∞∑
n=0

[
Bn

cosh(γnx
∗)

cosh(γnα)
− Cn

x∗ sinh(γnx
∗)

cosh(γnα)

]
cos(γny

∗) (3.64)

Where the coe�cients A1, A2, A3, Bn and Cn are de�ned below according to [78] as:

A1 =
(1 + 1/α + S)

u∗av
(1/K2 − 5Γ/12− 1/2) (3.65)

A2 =
(1 + 1/α + S)

2u∗av
(1 + Γ)− S/2 (3.66)

A3 =
(1 + 1/α + S)Γ

12u∗av
(3.67)

Bn =
2S(−1)n+1

γ3n
+

2(1 + 1/α + S)(1)n

u∗avγ
3
n

[
1 +

Γα

γn
tanh(γnα) +

2Γ

γ2n

]
(3.68)

Cn =
2Γ(1 + 1/α + S)(−1)n

u∗avγ
4
n

(3.69)

Then the average temperature in its dimensionaless form is given by

θav =

∫ 1

0

∫ α
0
u∗θdx∗dy∗∫ 1

0

∫ α
0
u∗dx∗dy∗

=

∫ 1

0

∫ α
0
u∗θdx∗dy∗

αu∗av
(3.70)

In the �gure 3.10, distribution of the dimensionless temperature for di�erent values of

the S is presented. It can be observed that for negative values of S (S = −1, S = −2)

the temperature di�erence between the center and the walls of the microchannel is

large, while this is getting large (S = 2) this di�erence decreases, as it is shown in

�gure 3.11. A clear for cases of S = −2 and S = 2, it is a clear trends of heating and

cooling of the microchannel surface, respectively. The eletroosmotic �uid generates a
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Joule heating that dissipates through the walls, because of this the heat �ow in the

walls is negative, for more details see [78].

3.5 Final Remarks

In this chapter a study on electrokinetic �uids for microchannels was presented, as

an overview of the theoretical foundations that support the problem and model to

be solved. This corresponds to a validation problem, where two types of pressure-

driver �ow �uids and electrosmotic �ows were considered for rectangular and cylindrical

microchannels, and solved a model for the distribution of potential, velocity, coupled

to the energy equation where dissipation is analyzed through the walls of the heat �ow

generated. In addition, it was solved for a non-linear di�erential Poisson-Boltzman

equation, where Newton Raphson's method was applied to solve the non-linearity which

allows to obtain a robust scheme
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Chapter 4

ELECTROKINETIC FLUIDS IN

NANOCANALS OF A PEM

MEMBRANE

In this section, a model for electro-kinetic �ow in a cylindrical nanochannel (from [9])

is solved by means of the MAPS. The domain is a nanochannel that has a uniform

charge density σs on the walls, due to the concentration of protons c found within the

channel. The models that are solved are a simpli�cation for a nanopore in electrolyte

membranes of polymers such as Na�on.

4.1 Governing equations

In order to solve this problem, it is assumed that the �ow moves in the axial direction

x due to the application of an external electric �eld and a pressure gradient. The

concentration of protons c and the electric potential ψ and the �uid velocity is denoted

by u = u(x, y) and the external electric �eld E applied is constant.

The solution of our problem is carried out in two dimensions, that is to say that both

the radial component ′y′ and the axial direction ′x′ are taken into account, see �gure



Figure 4.1: Cylindrical nanochannel

4.1. According to this, the system of equations of the model to be solved is given by:

1

y

d

dy
(y
dψ

dy
) +

d2ψ

dx2
= − qc

εε0
(4.1)

Using the Boltzmann distribution equation, the concentration of protons is determined

by

c(y) = c0e
−qzψ(y)/kBT (4.2)

Then the Poisson equation becomes the Poisson-Boltzmann equation, so

∇2ψ +
1

y

dψ

dy
= −qc0

εε0
e−qzψ/kBT (4.3)

Here ∆ψ = d2ψ
dy2

+ d2ψ
dx2

. Now introducing the dimensionaless variable ψ̂ = − qψ
kBT

, ŷ = y/R

we have to
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∇2ψ̂ +
1

ŷ

dψ̂

dŷ
= λeψ̂ (4.4)

Where λ It is a dimensionaless parameter λ = R2q2c0
εε0kBT

. According to [8] λ is restricted

in the range 0 ≤ λ < 8 and with c0 = 8σs
R2q2c0/εε0kBT−4qR

This is complemented with symmetric boundary conditions in their non-dimensional

form given by:

dψ̂

dŷ
= 0 at ŷ = 0 (4.5)

dψ̂

dŷ
=

λ

2(1− λ/8)
= − λσs

qRc0
at ŷ = R (4.6)

(4.7)

dψ̂

dx̂
= 0 at x̂ = 0 (4.8)

dψ̂

dx̂
= 0 at x̂ = L (4.9)

(4.10)

The �ow �eld is given by the Stokes equation of the form,

µ
1

y

d

dy
(y
du

dy
) + µ

d2u

dx2
− dP

dx
= −qc(y)E (4.11)

Here the pressure gradient dp/dx = P is constant, using the non-dimensional variable

ŷ = y/R and x̂ = x/R, we have to
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∇2u+
1

ŷ

du

dŷ
= −qc(y)ER2

µ
+
PR2

µ
(4.12)

Complemented with symmetric boundary conditions given by

du

dŷ
= 0 at ŷ = 0 (4.13)

u = 0 at ŷ = R (4.14)

du

dx̂
= 0 at x̂ = 0 (4.15)

du

dx̂
= 0 at x̂ = L (4.16)

(4.17)

In equation (4.1) q is the charge of the electron, D is the proton di�usion coe�cient,

c0 is the concentration of protons in the center of the channel and F is the Faraday

counter.

According to [9] and [8], the analytical solution for the electrical potential is given by:

ψ(y) = − ln

[(
1− λ

8
y2
)2
]

(4.18)

So, the concentration of protons is,

c(y) =
c0

(1− λy2/8)2
(4.19)

80



and the analytical solution of the Stokes equation,

u(y) =
2qc0ER

2

λµ
ln

[
1− λy2/8
1− λ/8

]
− PR2

4µ
(1− y2) (4.20)

4.2 Resultados

4.2.1 Cross section of radius R for a nanochannel

The model given by the equations (4.1) and (4.1) is solved using the MAPS, and the

parameters used were the following:

* T = 353K, ε = 45, q = 1.6× 10−19C

* σs = −q/(1× 10−9)2 = −0.16C/m2

* R = 1× 10−9m

* D = 7.5× 10−10m2/s, ε0 = 8.8854× 10−12C2/(Nm2), µ = 3.35× 10−4Pas

* E = 0.1/50× 10−6V/m = 2000V/m

In �gure 4.2, the comparison of the analytical solution with the numerical solution is

shown, for a uniform discretization of 2500 points, for this case a value of λ = 1 was

used. Figure 4.3 shows the results obtained for the electric potential for di�erent values

of λ.

The electro-osmotic velocity is calculated for a pressure gradient P constant to a value

of 100 atmosphere which is equivalent to 10 × 1010Pa/m. The �gure 4.4 the speed

pro�le shown compared with the analytical solution 4.20 and the relative error of this

calculation.

Figure 4.5 shows the velocity pro�les for di�erent values of λ which shows their depen-

dence on this non-dimensional parameter. In table 4.2.1, we show the RMSE errors
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(a) (b)

Figure 4.2: a) comparison of the numerical solution and the analytical solution of the electric

potential, in b) The error for a discretization of N = 2500

Figure 4.3: Electrical potential for di�erent values of λ and N=2500
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obtained for discretizations of N = 900 and N = 2500, taking di�erent values of λ for

the electric potential and electro-osmotic velocity. The variation of the parameter λ,

for the potential increases the resistance in the walls of the nanochannel which leads

to an increase in velocity, a situation that is generated to maintain the �ow of protons

through the nanochannel.

(a) (b)

Figure 4.4: a) comparison of the numerical solution and the analytical solution of the velocity, in b)

The error for a discretization of N = 2500

Potential Velocity
HHH

HHH
HH

λ

N
900 2500 900 2500

0.1 2.30× 10−3 1.60× 10−3 5.97× 10−5 2.74× 10−5

0.5 4.31× 10−4 1.60× 10−4 6.20× 10−5 2.74× 10−4

1.0 1.50× 10−3 5.18× 10−4 6.31× 10−5 2.88× 10−5

5.0 1.13× 10−2 5.10× 10−3 8.41× 10−5 3.76× 10−5

7.5 7.20× 10−2 3.30× 10−2 2.73× 10−4 1.15× 10−4

Additionally, in table 4.2.1 it shows that there are no signi�cant variations in reference

to the number of nodes used, however it is appreciated that for high values of λ the

error increases situation that arises due to the resistances in the walls.
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Figure 4.5: Velocities pro�les for di�erent values of λ and N=2500

4.2.2 Two cylindrical nanochannels

In this section, the conductivity between two cylindrical nanochannels in connection

in a PEM membrane is studied. Two nanochannels a length of 10nm and a diameter

of 2nm are considered, which are assumed to be joined by the superposition of the

membrane layers. Two cases are taken into account, one where the nanochannels are

perfectly aligned and another in which there is a shift in the interfaces of the two, as

shown in 4.6.

This problem is solved in two dimensions in Cartesian coordinates along the two

nanochannels.

For this case, the model is solved in Cartesian coordinates in two dimensions that is

similar to that presented in equations (4.1) and (4.1), but with boundary conditions,
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Figure 4.6: Nanochannel: where L is liquid, O1 is inlet, O2 is outlet, S is solid and I is
free interface between liquid and solid, see [49]

Figure 4.7: Discretizacion
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∂ψ

∂n
=

σ0
ε0εr

, on I (4.21)

∂ψ

∂n
= (−1)iEext, on Oi, i = 1, 2 (4.22)

For the electric potential and with,

u = 0, on I (4.23)

∂u

∂n
= 0, on Oi, i = 1, 2 (4.24)

For velocity. First, the case is presented when the two nano channels are perfectly

aligned as shown in Figure 4.8.

(a) (b)

Figure 4.8: Straight nanochannel result a) electric potential, b) electro-osmotic velocity

For the ideal case of two perfectly aligned nano channels, no electro-osmotic resistance

is presented, which allows free �uid mobility. In Figure 4.8 a) the constant potential is

maintained at the boundary and in the liquid-solid interface, and it only shows variation

as it approaches the center of the nano channel, in Figure 4.8 b) it is observed that the

velocity is zero in the boundary and it is increasing towards the center of the channel

until reaching its maximum value.
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The results in Figure 4.8, that at the interface of the two nano channels there is no

resistance to the �uid and therefore there is no electro-osmotic resistance, which would

allow a good functioning of a PEM membrane.

(a) (b)

Figure 4.9: Nanocanal with jump a) electric potential, b) electro-osmotic velocity

Secondly, a case is solved where the nano channels have a slight displacement forming

a step or jump class, as shown in Figure 4.9. In Figure 4.9 a) the electrical potential

is kept constant at the boundaries of Cana nano channel, however there is a variation

in the interface between the two nano channels, in Figure 4.9 b) a velocity pro�le

is formed that is maintained constant and compliance with boundary conditions is

observed, however a decrease in �uid velocity is observed

The previous results show a resistance that occurs at the interface of the nano channels,

a variation that is evidenced by a decrease in �uid velocity. According to [49], he

considers that this variation in velocity is due to an electro-osmotic resistance that is

generated between the two nano channels. In the operation of the fuel cell, an increase

in pressure would be carried out to maintain the speed of the �uid, but according to [53]

and [10], this could generate that in the PEM membrane the jump or step is greater,

which leads to another decrease in speed.

On the other hand, we �nd that the �ow of protons is large near the pore wall. Which

agree well with the results of the literature. Hence, we believe that the objectives set

out in this work are met, since a powerful and robust mesh-free numerical scheme is

developed, which solves a mixed electro-kinetic �ow problem and identi�es the causes

of electro resistance -osmitica on the interface of two nano channels.
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4.3 Final Remarks

In this section, the MAPS was applied for the solution of an electrokinetic model of a

PEM membrane in a fuel cell. In the �rst, a cross-section of a nanochannel was resolved,

the λ parameter is varied for the electrical potential and the incidence of the double

electrical layer on the nanochannel wall is determined. In the �gure 4.3 it is observed

that for small values of λ, the potential exerts little resistance to the �ow and as it

grows there is an increase in resistance, a situation that is due to the polarity of the

wall, see [56]. The equations of potential and velocity are coupled, and an increase in

potential was observed represented in a decrease in velocity, a more pronounced pro�le

is obtained as shown in the �gure 4.5. This situation is due to the opposition exerted

by the double electrical layer to the passage of proton �ow through the membrane

nanochannels.

In the second problem, it resolved the electrokinetic model between two cylindrical

nanochannels connected to each other of a PEM membrane. In the results obtained it

is observed that it maintains the trend reported in the literature. In addition, the results

of the cross-section can be a�rmed that the electrochemical resistance reported in the

literature is probably due to the resistance exerted by the double electrical layer on the

walls of the nanochannels causing the speed decrease, a situation that worsens when

the o�set between the nanochannels is greater. For the electric potential it is solved for

a non-linear di�erential Poisson-Boltzman equation, where Newton Raphson's method

is applied to solve the nonlinearity of the model.

88



CONCLUSIONS AND FURTHER

WORK

CONCLUSIONS

A meshless method scheme of approximate particular solutions (MAPS)was developed,

which is implemented to solve scalar and vector problems. For this, two generic codes

were developed, the �rst with particular Poisson solutions for scalar problems and the

second with a particular solution of the Stokes equation system to solve �ow in a channel

and in two parallel plates, both cases with MQ function as RBF. A two-dimensional

Poisson equation with Dirichlet boundary condition and an inhomogeneous momentum

equation in two dimensions are solved, respectively.

The MAPS was implemented to solve two initial problems: �rst a 'Slit Flow' channel

and then a convective laminar �ow between two parallel plates and additionally an

elliptical di�erential equation with variable coe�cients. The in�uence of the type of

boundary conditions on the Approximate Particular Solutions Method for both vector

and scalar problems was determined. In the case of vector problems, the analysis

was performed for Dirichlet, traction and mixed boundary conditions, while the scalar

problem was performed for Dirichlet and Neumann conditions. In all cases, the care

that should be taken in the selection of the type of boundary condition was shown,

was found that the MAPS has a good behavior for mixed boundary conditions between

Dritchlet and traction, which shows better results and stability.

During application of the MAPS to solve the problem of the 'Slit Flow' in the channel,



was performed for two types of discretization: uniform and re�ned toward axis 'x'.

For the Type 1 boundary condition, no signi�cant di�erences were found when using a

uniform discretization and then a re�ned discretization. Something contrary to what

happened with the boundary condition Type 3, in which the error step εerr = 5.19×10−3

to εerr = 7.92× 10−12 and the boundary condition Type 4 step from εerr = 5.20× 10−3

to εerr = 1.06 × 10−11, improving results in these problems and showing that these

boundary conditions must be consistent with the physics of the problem.

Study of electro-kinetic �uids is carried out. These phenomenons are very important

for applications in various chemical and biomedical analysis subjects. In addition to the

great development in research topics of mechanical engineering and fuel cells type PEM.

The MAPS was implemented for solution of eletrokinetic �uid in micro and nanochan-

nels for electroosmotic and pressure-driven �uids, obtaining satisfactory results where

evidencing the e�ciency and simplicity of the solution method. These results were

compared and validated with the respective analytical solutions reported in the litera-

ture, convergence analyzes performed according to the type of discretization show how

quickly the MAPS achieves stability in the error.

It is important to keep in mind that electrokinetic �uids were solved for a nonlinear

Poisson-Boltzman di�erential equation, where Newton Raphson's method was applied

to solve nonlinearity which allows to obtain a robust scheme, which was later used for

the solution of the model in the PEM membrane.

After solving solve electrokinetic �ows method e�ciently, we studied the application

of the method to the problem of electroosmotic �ow in cylindrical nanochannels in

PEM membrane. Results were obtained for a mixed �ow (pressure-driven and electro-

osmotic) based on a system of two coupled equations for �uid velocity and potential.

The results obtained follow the trend reported in the literature, for two important cases

analyzed: the �rst case in which has two perfectly aligned nanochannels and the second

case where a slight shift in the interface of the two nanochannels. Results that allow

us to show the good behavior of the MAPS for the solution of this type of problems.

A numerical method of radial basis functions with approximate particular solutions

was developed which was used to solve the Stokes �ow problem and for the electrical

potential this in a PEM membrane of a fuel cell. The hypothesis at the beginning of

this work is validated and shown that the developed method is accurate and e�cient
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to solve electrokinetic �ows and nonlinear coupled equations. easy deployment, robust

and consistent method was achieved.

FURTHER WORK

The solution method developed here shows similar results to those reported in the

literature, although the capabilities of this solution method have been demonstrated

in this work and in previous research, It is recommended to continue with this type of

research.

One of the aspects to analyze is the type of discretization to be used. Signi�cant

changes were found in the results according to the assigned nodal distribution, this

without leaving the issue of bad conditioning of the matrix when trying to improve

the results by increasing the number of nodes In this work, only particular solutions

were used using the multicadric RBF, although some works have already used another

type of RBFs such as [84] that uses trigonometric basis functions to solve PDEs. It is

important to keep in mind that there is still much to investigate to �nd formulations

of the particular solutions for each RBF that is used. From there, for future work,

an implementation of the Local MAPS could be carried out and the behavior in the

interface of the two nano channels can be observed in more detail.

Regarding the application to electrokinetic �uids in the proton exchange membrane

(PEM), a study that takes into account the concentration of protons given by the

Nernst-Planck equation would be important, this coupled with the equations of the

electric potential and the �uid velocity Since, for reasons of time it was not taken into

account in this work. Similarly, a formulation of the MAPS could be worked on for a

three-dimensional problem that would be easy to apply due to the characteristics of the

method.

The method presented can be used for solving similar problems solved in this work,

even with a higher degree of complexity provided they are similar models.
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