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ABSTRACT

Structural Health Monitoring (SHM) is highly relevant nowadays, not only for aerospace

maintenance, but for a large number of newly engineering applications. Pattern recogni-

tion has become an important part of SHM for signal processing and anomalies or dam-

age detection, assuring structural integrity. New methods are created day by day and

more researchers and engineers feel the interest to generate techniques which can make

SHM become a more compacted, sophisticated and automatized system, eliminating hu-

man factors and intrinsic errors. This work evaluates the computational complexity and

accuracy of a novel methodology of unsupervised clustering called FA+GA-DBSCAN

which employs a combination of machine learning techniques including factor analysis

for dimensionality reduction and a density clustering algorithm called DBSCAN en-

hanced with a genetic algorithm. In order to automatically detect a variety of structural

behaviors using the novel methodology an experiment with a beam in cantilever under

dynamic loads was taken in consideration.

Keywords:

Clustering, operational conditions, pattern recognition, SHM, unsupervised learning.



RESUMEN

El monitoreo de salud estructural (SHM) es altamente relevante ahora, no solo en

el mantenimiento aeroespacial, sino también en un sinnúmero de nuevas aplicaciones

ingenieriles. El reconocimiento de patrones se ha convertido en una parte importante

en el SHM para el procesamiento de señales y detección de anomaĺıas o daños que

aseguran una integridad estructural. Dı́a tras d́ıa son creados nuevos métodos en los

que ingenieros e investigadores sienten el interés de generar nuevas tecnoloǵıas que

puedan convertir al SHM en un sistema más compacto, sofisticado y automatizado,

eliminando los factores humanos y errores intŕınsecos. Este trabajo evalúa la precisión

y el costo computacional de una metodoloǵıa novedosa de clustering no supervisado

que ha sido llamada FA+GA-DBSCAN la cual emplea una combinación de técnicas de

aprendizaje automático incluyendo análisis factorial para reducción dimensional y un

algoritmo de agrupamiento por densidad llamado DBSCAN mejorado con un algoritmo

genético. Para detectar automáticamente una variedad de condiciones operacionales

utilizando esta metodoloǵıa novedosa un experimento con una viga en voladizo bajo

cargas dinámicas fue tenido en consideración.

Palabras Clave:

Aprendizaje no supervisado, clustering, condiciones operacionales, reconocimiento de

patrones, SHM.



1 INTRODUCTION

Historically, classification has been one of the most important methods for the modern

human being to keep things in order. Classification, in a primitive way, is the simple

action to group objects in a specific order [1]; initially, classification was used by hu-

mans to survive, they made different classifications between similar species of animals

depending on their benefits or their dangerousness and the same could have happened

also with poisonous and edible plants.

After the ancient and rudimentary classification models created by Greek and Roman

thinkers, the concept of taxonomy was introduced and became an important field of

scientific research since Swedish Carl Linnaeus’ era (1707-1778), who described, classi-

fied and gave a scientific name to a great number of living things [2]. Simpson [1] gave

a general concept of taxonomy as the “theoretical study of classification, including its

foundation, principles, procedures and rules”, being this one of the first steps in the

construction of pattern recognition as an area of study.

Currently, pattern recognition has become the science behind classification and it has

several applications in many science fields. While technology improves every day, the

amount of information in relation with it increases; pattern recognition is a part of

machine intelligence devoted to decision making, as a result of a need for handling

information in an automatic way [3]. Machine intelligence is also known as machine

learning and its goal is to make computers capable of learning from information, un-

derstanding and processing it through algorithms [4].

Bishop states that pattern recognition is “a field that is concerned with automatic

discovery of regularities in data through the use of computer algorithms and with the use

of these regularities to take actions such as classifying the data into different categories”

[5]. Classification has facilitated the development of technology as it has helped to

understand new phenomena looking for features that describe them [6], those features

can be a starting point to find other similar characteristics over new information based

16



on similarity or dissimilarity between features and this new information [7].

Pattern recognition is divided into two major groups: supervised pattern recognition

classifies objects in previously known classes, determining to which of these classes

new data belongs [8]. In other words, supervised learning can generate a set of rules

using classifiers to generalize new information [9]. The type, extension of damage and

the remaining life of the structure system can be determined using supervised learning

attached to analytical models [10]. Unsupervised pattern recognition, unlike supervised

pattern recognition, is used when labeled data are not available. Unsupervised pattern

recognition is also called clustering [11] and its goal is to search for groups in the data

universe that discriminate data in a particular group. Clustering methods can work as

a part of a supervised method, looking for the representative classes [12].

Pattern recognition algorithms have the ability to detect related damage characteristics

using obtained features. Damage in structures can be considered as a physical change in

the system which can affect it negatively on its regular performance [13], besides it can

put lives, operations and money at risk. The need of having global information about

structural health has had an impact in the way maintenance is done. SHM, which by

now is one of the most notable methods of maintenance and damage prevention in many

structures, consists on an implementation of a system or strategy for damage detection.

Aerospace, civil, and mechanical engineering are the most concerned fields in SHM [14]

since it helps to reduce the risk due to the human factor, reducing the redundancy

methods, time and costs without affecting safety [15]. SHM-related algorithms usually

fall in one of three categories depending on the availability of information about dam-

aged and pristine structure: group classification when the algorithm has the ability to

classify pristine and damaged feature characteristics, analysis of outliers when there

are not available data to make a comparison and regression analysis when data are

correlated with particular types of damage including information about their extension

and location [13].

In this work, a methodology for operational conditions classification in a structure

under dynamic loads in which the relationships between strain signals sensed by means

of Fiber Bragg Gratings FBGs and operational loads that are unknown is presented.

An unsupervised clustering methodology which combines a variety of machine learning

techniques including factor analysis for dimensionality reduction and a genetic algorithm

17



around of a density clustering algorithm called Density Based on Spatial Clustering of

Application with Noise DBSCAN for operational condition classification is presented.

The computational complexity and accuracy include a comparative study with a similar

methodology based on a Local Density-based Simultaneous Two-Level Self-Organizing

Maps DS2L-SOM clustering developed by Sierra [16].

1.1 APPROACH OF THE PROBLEM

The continuous measuring of strain in a structure using fiber optic technologies is a

promising technology [17]. Besides, it is one of the methods used for SHM in which

clustering techniques are involved for novelty detection or anomaly detection methods

[18, 19, 20, 21], however, the clustering techniques used for SHM have received less

attention in the technical literature [10]. The novelty or anomaly detection methods

are specially used in structures in which, under their normal operational conditions, a

variety of dynamic loads can be present simultaneously.

In general, the mechanical behavior conditions associated to an aircraft’s structure are

presented in other kind of systems such as offshore oil platforms, bridges, ships, wind

turbines, among other. In such system the operational conditions may vary due to ther-

mal variation, vibration and acoustic environments, changing mass (fuel consumption),

aerodynamic forces due to atmospheric variations, among others [10].

Aircraft structures, are usually divided in major groups: wings, fuselage, tail units and

control surface; the configuration into these groups may vary depending on the aircraft’s

final application. Aircraft structures may support two different major loads: ground

loads related to movement and transportation on the ground, and air loads which are

the loads presented due the flight maneuvers.

Besides, the forces induced in the aircraft can be divided into surface forces related to

the forces applied in the surface of the structure (aerodynamic forces) and body forces

produced by the interaction between the structure and the gravitational and inertia

effects. Therefore, all aerodynamic loads are the result of the pressure distribution

across the surface produced by flights maneuvers and external conditions.

18



The loads in the aircraft’s principal structures (e.g. the wing), can be defined as a result

of direct loads, bending, shear, and torsion in addition to pressure loads [22]. Since the

number of loads presented in the wing is large, a constant monitoring in this type of

structures is decisive for its proper performance. Unfortunately, some of the aircraft’s

principal structures such as the wing, have portions which are difficult to reach, thus,

a lightweight and non sparkling sensing system is a good option for monitoring their

health condition. However, not every pattern recognition technique may work ade-

quately, as a part of a monitoring system, considering the aircraft’s structures natural

response due to changes in loads.

Even if the structure and material physical behaviors are well understood, modeling the

structure’s behavior under a variety of loads could be an extensively time-consuming

process. In some cases, due to the complexity of the structural behaviors, the rela-

tionships between normal operational conditions and strain signals are unknown and it

becomes necessary to identify such relationships in order to discriminate pristine strain

signals from damage strain signals. The use of an unsupervised clustering technique

in order to look for such relationships may be an accurate methodology following the

concept of novelty detection presented by Farrar and Worden [10].

To determine such relationships, a simplified structure which represents a system’s main

structure such an aircraft’s spar beam was taken in consideration in a experiment carried

out by Sierra [16]. A general representation of the experimental setup is presented in

Figure 1. The experiment setup consists in a hollow rectangular aluminum beam with

a 20 mm for 40 mm cross section, 1 mm thickness (See Figure 2) and a cantilever length

of 1200 mm. The region where the beam was fixed to the testing workbench using C

clamps, was filled with a wooden core to prevent plastic deformation.

The beam was submitted to dynamic bending loads using the same amplitude at the

beam’s tip, at a frequency around 4 Hz. The maximum amplitude at the beam’s tip was

around 14mm. Thus, it was expected loads around 4 3Kg and strains around 700 µε.
The bending loads were applied in the opposite end of the clamping zone, using a rod

connected from the beam’s longitudinal axis to an electric motor. Experiments included

13 variations of 2 ◦ in the pitch angle in order to generate data between −8 ◦ to 16 ◦.

The electric motor is not considered as a part of the experiment, and it does not rotate

in conjunction with the beam. The intention of changing the pitch angle is to simulate

19
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an aerospace structure (e.g. wing’s spar beam or a wind turbine blade’s main structure

where a set of variable pitch conditions can be presented). A pitch angle indicator

was placed in a side of the beam to have control on the pitch shift in every required

experiment. Some of the variations are presented in Figure3

Although, the technique carried out by Sierra, DS2L-SOM, was capable to determine

such 13 variations into 12 different clusters in the aluminum beam’s experiment with

high accuracy, the computational complexity was a drawback since it is desired in the
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near future to implement a damage detection system in an Unmanned Aerial Vehicle

UAV.

Thus, it is considered appropriate that a new methodology designed to avoid these

drawbacks is needed. Hence, in the current work it was intended to evaluate off-line,

if there is an unsupervised clustering methodology with the ability of classifying un-

known operational conditions using strain signals with low computational complexity

and reliable accuracy which could be part of a future SHM methodology for damage

identification.
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Figure 3. Representation of −8 ◦, 0 ◦ and 16 ◦ pitch angle variations.

1.2 OBJECTIVES

1.2.1 Main Objective

To develop an unsupervised clustering methodology by means of an improved DBSCAN

algorithm in order to classify operational conditions from strain signals measurements.
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1.2.2 Specific Objectives

• To apply preprocessing techniques in which data cleansing and scaling are included

in order to improve the quality of characteristics related with the system’s physics

(features).

• To process strain signals by means of a dimensionality reduction technique in a

suitable form that allows a following clustering by using a density based algorithm.

• To determine an unsupervised density-based algorithm for which previous knowl-

edge of the number of clusters is not required.

• To implement the methodology of the unsupervised clustering algorithm in a pro-

gramming language.

• To determine the accuracy and computational complexity of the proposed cluster-

ing methodology in comparison with a tested technique based on a Local Density-

based Simultaneous Two-Level Self-Organizing Maps (DS2L-SOM) clustering.

• To test the proposed clustering methodology in a real case with strain signals

obtained from an instrumented Unnamed Aerial Vehicle wing’s beam flying under

regular operational conditions.

1.3 Outline

The proposed methodology for automatic operational conditions classification in a

structure is developed considering a experiment developed by Sierra [16]. Section 2

deals with the state of art of different approaches to dimensionality reduction methods

however, its major focus is related with solutions for SHM problems using unsupervised

learning techniques. Section 3 deals with an outline of proposed axioms and paradigms

presented in the use of SHM and pattern recognition. Section 4 presents briefly the

reception and the preliminary processing of experimental data. Section 5 deals with

the dimensionality reduction of the experimental data; a technique called factor analy-

sis FA was selected for this task. A Machine learning technique selected for clustering

the dimensionality reduced data from the experiment called DBSCAN is presented in

Section 6. Here the DBSCAN algorithm is improved by means of a genetic algorithm.

Section 7 introduce the pseudocodes of the proposed methodology. Section 8 presents

the the precision and computational complexity of the proposed clustering methodology
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in comparison with a proven classification technique called DS2L-SOM. Section 9 deals

with an approach of the methodology in a real case scenario, considering an acquisition

system flying prototype. Finally, conclusions and additional comments are presented.
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2 STATE OF THE ART

Several approaches have been made during the last decade to detect operational con-

ditions in structures or structure’s monitoring and prevent the damage growth; those

approaches are included in one of five general subjects reviewed by Farrar and Worden

[23]: SHM, condition monitoring [24], non destructive evaluation [25], statistical process

control [26] and damage prognosis [27]. However, some subjects are common for most

of the available proposed methodologies such as the use of statistical and mathematical

tools, the handling and physical interpretation of a large amount of information, and

SHM is not the exception.

2.1 DIMENSIONALITY REDUCTION METHODS

In addition to engineering, there have been parallel developments on statistics and

mathematics, specially to establish reduction techniques in fields such as astronomy,

biology, remote sensing, economics, psychology and consume transactions, due to the

large amount of data involved in actual problems. Besides, there is an obstacle on

handling big data problems with traditional statistical methods [28]. The data dimen-

sionality reduction process is also known as data compression. The implementation of a

data reduction technique is inherent to an SHM methodology due to the large amount

of data [10]. D.L. Donoho [29] states that high dimensional datasets needed new theo-

retical backgrounds and methodologies to handle large quantities of information.

Nowadays, several reduction techniques have been developed in order to describe big

data problems in a lower dimensional representation. Among the most widely used

methods for dimensionality reduction rely the techniques based on orthogonal projec-

tions due to their simple geometric interpretation in a lower dimensional space. Those

techniques are known as linear dimensionality reduction methods with orthogonal ma-
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trix constrains [30]. According to K. Fodor [28], the most widely used dimensionality

reduction techniques within the group of linear dimensionality reduction techniques are

principal component analysis or PCA [31] and factor analysis, FA [32]. Besides, other

developments in dimensionality reduction techniques have been explored, like: projec-

tion pursuit [33], independent component analysis, [34] and random projections [35].

Among other non-linear methods have been explored lately such as non linear PCA

[36], principal curves [37], multidimensional scaling [38], topologically continuous maps

(self-organized maps) or SOM [39], neural networks or NN [40], and genetic algorithms

for dimensionality reduction [41].

The selection between factor analysis and principal component analysis is not simple.

The computational issues and the performance of the algorithms facing a specific dataset

leads to an analysis of which of those algorithms is more suitable. FA and PCA aim to

the same goal: to describe a large number of observed variables into a compacted and

reduced number of new representative ones.

W. Velicer and D. Jackson [42] established an extensive comparative study between

PCA and FA. The two methods differ in the fact that in FA a reduction of the variance

or diagonal elements of the covariance matrix is involved, otherwise, PCA does not

allow operation on the diagonal elements, thus, the covariance or the elements out of

the diagonal will not be affected.

The algebraic variations between techniques lead to different results, however, it is

common to see that if the same number of components or factors have been selected

the results may be similar. If a dataset analyzed by the two methods produce different

results, it is precise to redefine the number of factors selected. It has been found that

PCA’s computational complexity is slightly lower than FA’s, although, if the problem

is well defined the convergence of FA is faster.

Otherwise, FA is aimed to manage latent or unobserved variables unlike PCA which

is intended to describe manifested or observed variables. W. Velicer and D. Jackson

also affirmed that a drawback for FA is that one of its techniques to fit a model works

adding a random component to the linear weighted result by an iterative process, this

technique is known as Maximum Likelihood factor analysis and sometimes may lead to

convergence problems.
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PCA and FA are partly exploratory and confirmatory analysis, nevertheless, PCA is a

more fashioned technique, in consequence it has been frequently used in a variety of

fields of study. PCA has been widely applied in the framework of SHM [43]. Ni et al.

[44] presented a PCA methodology for dimensionality reduction of frequency responses

for damage detection. Mujica et al. [45] explored statistical indexes based on PCA for

a damage detection. de Latour [46] performed a damage classification and estimation

using PCA for dimensionality reduction with acceleration time series. Sierra et al.

[47] presented a methodology for SHM based on the Self Organized Maps and PCA

statistical tools. Katsikeros et al. [48] developed a methodology for damage detection

in an aerospace lap-joint structure using strain signals. Rao et al. [49] created a

comparison study with strain signals detection in a variety of signal sensors using PCA.

Magalhães and Caetano [50] developed an SHM study using an on-line modal analysis

in a bridge located in Portugal. A database was created and a dynamic regression

complemented with PCA was performed for damage identification.

Nevertheless, FA is a technique that can not be rejected at all, since it has some derived

useful features when the retained factors describe a specific number of the original

variance. The common factors or factor scores may become a helpful tool to detect

clusters or outliers if they work together with a pattern recognition algorithm which

may also compensate the overall complexity cost of the clustering methodology if it is

selected adequately. FA has not been extensively used; overall, FA has been used in the

SHM framework for removing environmental effects such as temperature or humidity

in an SHM system [51, 52, 53].

2.2 UNSUPERVISED PATTERN RECOGNITION IN SHM

As it was discussed in Section 1, the algorithms for handling a large amount of informa-

tion such as supervised pattern recognition and unsupervised pattern recognition may

be part of an SHM methodology. In this study case, the attention was focused on SHM-

related applications with unsupervised pattern recognition used for novelty detections,

such as the existence of damage in a structure and in some cases the location of it [10].
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2.2.1 Unsupervised artificial neural networks

Unsupervised artificial neural network ANN for SHM works in a similar way as super-

vised ANN, but there is not a priori knowledge about structure damage [17], usually

studies named as unsupervised NN, are developed with trained supervised NN following

to an unsupervised clustering algorithm method.

Dervilis et al. [54] presented a group of machine learning techniques including multilayer

perceptron. A method based on auto-associative networks using radial basis function

RBF in which it can be generated a statistical representation of training data with

the help of pristine information was presented. Afterwards, unknown information was

compared with previous undamaged information for damage detection.

Wen et al. [55] presented a methodology with the use of modal parameters on a struc-

ture introducing a feature representation called damage localization feature DLF and

a learning model based on ANN and an unsupervised fuzzy algorithm, called unsuper-

vised fuzzy neural networks UFN. The study was made on a five story frame building

damaged, also the influences on measured noise and incomplete modal data were eval-

uated.

2.2.2 Fuzzy clustering algorithms

Unlike probabilistic algorithms in the fuzzy clustering algorithms a feature can be si-

multaneously part of more than one cluster. A representative point is used in case of

compact clusters, with dissimilarity measured between two points, depending on it, the

resulting algorithm can be fuzzy C-means or fuzzy k-means algorithm [3]. Unsupervised

fuzzy clustering is based on the optimization of a fuzzy objective function where it is

not necessary to specify the number of clusters, usually those kind of cluster methods

combine Fuzzy-c means and K-nearest neighbors [56], leading different cluster results

[57].

The article presented by Baraldi et al. [58] illustrates a real industrial case of fault

diagnosis on a steam turbine of a nuclear plant as a particular requirement of Electricite

de France (EDF) who had the need of unlabeled transient conditions identification by

operational or faulty circumstances based on 148 shut down transients. It was used
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pattern recognition for undefined signals behavior evolution classification, the general

aim in this publication was to detect similar vectors with different behaviors.

2.2.3 Gustafson-Kessel algorithms or GK algorithms

Following the previous topic Gustafson-Kessel algorithms or GK algorithms are based

in the fuzzy methodology, GK algorithm was made by D. Gustafson and W. Kessel

[59] with the intention to have visualization and differentiation between classes. In GK

algorithm is made a natural metric generalization through the use of a fuzzy covariance

matrix instead hard covariance matrix, arguing that a crisp membership is not quiet

realistic because pattern vectors will have characteristics of several classes, furthermore

a set of memberships were assigned to a pattern vector.

Dinh et al. [60] presented an article in which acoustic emission AE data from a Car-

bon Fiber Reinforced Polymers CFRP composite were used for unsupervised pattern

recognition (natural clustering) using GK clustering. The work presented by Dinh et

al. was followed by some others studies such as the paper presented by Doan et al. [61]

which presented a methodology for fatigue detection based on acoustic emission AE and

piezoelectric sensors on CFRP composite element (composite split disks), this compo-

nent presented a high noise data into a massive group of data becoming more difficult

damage detection. GK algorithm and Quasi-Static QS test for low data obtainment

were used for clustering.

Feature selection and clustering optimization was made by reducing the value the DB

index proposed by Davies and Bouldin [62], then, the set of denoised features S were

partitioned using a GK cluster algorithm (having in consideration the DB index) select-

ing a feature f by iteration to a current set of features S. The Mahalanobis distance

defined by the GK algorithm was used for a distance estimation between a signal and

a cluster.

Ramasso et al. [63] proposed another approximation of early detection of damage in

reinforced carbon fiber matrix using unsupervised clustering, with the use of AE time

series signals. The method presented a clustering optimization procedure using prob-

abilistic formulation instead distance measures, clusters were obtained automatically

by multiple subsets of features, a variety of clustering methodologies were taken in
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consideration in a technique called consensus clustering, but GK algorithm had special

attention for data scattering, with this technique sensitivity of kinetics and onsets of

damage detection was high.

2.2.4 Self-organized maps SOM

Self-organized maps or SOM were proposed by Kohonen [39], it is based in a topologi-

cally ordered mapping from signals in a a neural network by regression, those neurons

have the ability of developing into specific decoders or detectors of their respective

signal in a meaningful order. Moreover, a feature coordinate system in a network is

defined, those mappings are known as self organized maps; the map of features can be

used as a part of a pattern recognition methodology.

Sierra et al. [47] developed a methodology for SHM using a U-Matrix for clustering

visualization based on SOM and PCA’s statistical tools Q and T 2 indexes [45], for

automatic damage detection. The heuristic procedure was made by placing FBGs in a

variety of structures in which different kind of damages were induced then data were

from pristine and damaged structures were acquired. A baseline was created after PCA

was applied to data, moreover an automatic clustering methodology DS2L-SOM was

performed to process the information and determining the changes on load conditions.

A non-parametric algorithm based on vibration damage detection was developed by

Avci and Abdeljaber [64], and presents a novelty SOM technique. A structural damage

quantification following the previous article was presented by Abdeljaber et al. [65]

in which damage detection SOM algorithm was implemented on a Phase II Experi-

mental Benchmark Problem of SHM data, validated in a finite element method FEM

experiment.

Five different cases were considered for creating artificial damage. In order to generate

an SOM topology, accelerometer signals were measured under random excitation for

damaged and undamaged conditions, two different groups of accelerometers were taken

in consideration. To training the algorithm features from accelerometers response were

created, then a baseline was made following the original algorithm. The structure

was equipped with 15 accelerometers. A numerical demonstration was made with five

damage cases and 10 damage indexes were computed. The algorithm shown a high
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sensitivity to damaged structures numerically simulated.

2.2.5 Genetic algorithms GA

Genetic algorithms are inspired in natural selection, operators are applied to a popu-

lation of solutions, offspring are compared with its previous population according to a

specific function [3]. GA can be used for fitting quantitative models and for parameters

selection for optimizing the performance of a system [66]. A deeper explanation of the

GA algorithms is presented in Section 6.4. In SHM, GA are also known as bio-inspired

damage detection methods.

A newly unsupervised method based on GA is presented by Silva et al. [67] called

Genetic Algorithm for Decision Boundary Analysis GADBA developed for damage de-

tection in bridges; a dataset which belongs to the Z-24 Bridge in Switzerland and Tamar

Bridge in England in presence of operational and environmental influences were taken

in consideration for the experiment. It was carried out an algorithm for clustering opti-

mization by a concentric hypersphere algorithm, as well, it was developed a technique

for clusters characterization.

A paper presented by Betti et al. [68] associates ANN and GA for structural damage

identification. The methodology was applied on a three-story steel frame instrumented

with 12 accelerometers, modal singularities were taken into consideration. Loads were

applied to the structure, an ANN was trained by four specific signals spectra looking

for structure eigenvalues from their modes and frequencies. Afterwards, data output

were used to build update a finite element model. Besides, a GA algorithm was tested

to recognize damaged areas. Results showed that, the associations of ANN and GA

were effective for damage identification.

Meruane et al. [69] developed a methodology called hybrid real coded genetic algo-

rithm or Hybrid-RCGA, to detect structural damage in aerospace frame structures, in

a single and multiple damage scenarios. Different objective functions were studied, as

frequencies, modal analysis and strain energy, then, it was selected the one that had

better convergence. A damage penalization was convenient to determine a false alarm

detection problem caused by noise, finally, results were compared with conventional

methods.
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2.2.6 Algorithms based on cost function optimization (K-means)

Algorithms based on cost function optimization (K-means) are one of the most common

unsupervised algorithm, K-means clustering algorithm was introduced by Hartigan and

Wong [70]. K-means divides a number of points in a specific dimension into a number

of clusters using the (K-initial cluster centers) at the beginning.

A damage sensing system presented by Diez et al. [71] employed a novelty unsupervised

algorithm applied in the Sydney harbor bridge (Australia) for clustering a subgroup of

joints with similar behavior and detected failures or anomalies by vibration data. It

was not previous information about those anomalies, thus an unsupervised method

was performed. Tri-axial accelerometers were placed on the bridge, then, there were

collected structure’s vibration caused for the passing vehicles.

The methodology followed a feature extraction and outliers removal. Signal process-

ing were performed by a Fast Fourier transform FFT for representing the spectra in

a new sequence. Finally a behavior characterization was carried out by a K-means

clustering. Once the FFT was applied to the signals, K-means was performed with an

Euclidean metric detecting damage patterns represented by small clusters, which were

used afterwards to classify unknown data.

Santos et al. [72] established a methodology to classify different structural conditions in

a bridge’s cable through an on-line concept without data references. Neural networks

were used to estimate the actual structural condition, then, a clustering methodol-

ogy were applied using K-means with Gowda-Diday dissimilarity measures. Then, the

methodology was used with numerical and experimental data, and real-time detection

capabilities were reached by ANN and a K-means algorithm. The methodology was

successful and highly sensitive to damage detection allowing the algorithm to detect

small stiffness reductions.

Al-Jumaili et al. [73] performed a study of transient acoustic emission AE signals

from a carbon fiber laminate buckling test by the implementation of an unsupervised

clustering technique, besides, a hierarchical clustering was used to group distinctive

features. Data reduction was performed using a combination of PCA and Fuzzy C-

means, then, K-means was used for unsupervised pattern recognition. A clustering

quality criterion was taken in consideration looking for an optimal number of clusters.
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The methodology presented meaningful results for damage mechanisms detection and

AE signals classification.
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3 SHM USING PATTERN RECOGNITION

A change in the original conditions in a structure due to external or internal forces

may derive in damage, this involves mechanical relationships that can be determined

since the very first steps of the structure’s fabrication process. As time goes by, the

complexity of aerospace structures and the necessity of constant monitoring of structural

systems have impacted directly the way maintenance is carried out.

Non destructive testing NDT methods have been the cutting edge of damage detection

in the last few decades but some of those methods are time consuming and imply high

costs. SHM can be determined as the natural evolution of the NDT methods since the

SHM process can help in the optimization of structures, less weight, and improving the

economic income by reducing the maintenance expenditures [74]. Moreover, over the

last 20 years, authors have carried out the SHM process to a state of maturation in

which a group of axioms have emerged. Worden and Farrar [75] have developed the

axioms which are presented as follows:

Axiom I. All materials have inherent flaws or defects.

Axiom II. The assessment of damage requires a comparison between two system

states.

Axiom III. Identifying the existence and location of damage can be done in an

unsupervised learning mode, but identifying the type of damage present and the

damage severity can generally only be done in a supervised learning mode.

Axiom IVa. Sensors cannot measure damage. Feature extraction through signal

processing and statistical classification is necessary to convert sensor data into

damage information.

Axiom IVb. Without intelligent feature extraction, the more sensitive a measure-

ment is to damage, the more sensitive it is to changing operational and environ-

mental conditions.

Axiom V. The length and time scales associated with damage initiation and evo-

lution dictate the required properties of the SHM sensing system.
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Axiom VI. There is a trade-off between the sensitivity to damage of an algorithm

and its noise rejection capability.

Axiom VII. The size of damage that can be detected from changes in system

dynamics is inversely proportional to the frequency range of excitation.

The integrity of the structure can be determined through a specific array of sensors

incorporated directly in the structure which can register a series of physical or me-

chanical magnitudes (damage-sensitive features) such as strain, acceleration, vibration,

etc. via on-line (real time) or off-line. Some SHM techniques like the strain-based or

vibration-based damage detection often imply the use of pattern recognition methods,

specially unsupervised pattern recognition techniques because most of the time there is

no information available of the damaged system [76].

The paradigms established for SHM and damage detection proposed by farrar et al.

[13] were followed in the present work as a guideline to construct the general method-

ology. Roughly Farrar et al. argue that it is necessary to generate a reliable baseline

of the pristine structure to obtain a robust damage detection system. Thus, if the

behavior of the structure under a combination of loads in which the structure remains

pristine are unknown, unsupervised clustering is a good way to generate such baseline.

Although, some actions have to be taken in consideration before achieving a robust

damage detection methodology:

3.1 SYSTEM EVALUATION

The operational evaluation as it can be seen in Figure 4, delimits the monitoring out-

look from the way that it will be done and how it will be accomplished. The system

evaluation has to respond to important questions that will shape the specific focus of

the SHM process in a specific application such as what the life, safety or economic justi-

fications are, how the damage is investigated, what the operational and environmental

conditions in which the system has to be monitored are, and what the limitations in

acquiring data under a specific operational conditions are.
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Figure 4. System evaluation.

3.2 ACQUISITION METHODS

This part of the methodology is based on a strategy that has to be designed taking into

account the system evaluation, the main objective here is to determine sensitive damage-

inferring sensors. The number and location of sensors is determined here. Besides, data

acquisition, hardware for transmission and storage, which depends on the sampling

frequency are selected. Sometimes the data acquisition is performed continuously, (e.g.

if a crack propagation is a concern). An example of an acquisition methods is presented

in Figure 5.

However, the amount of data will increase significantly, thus, a signal selection boundary

needs to be determined to preserve just the most relevant information. The constant

monitoring in the change of the strain field in a structure under specific load conditions

is based on this paradigm. Since the data is collected under a variety of external

circumstances, it is helpful to scale the data to support the comparison of data measured

at similar times in a specific environmental scenario.
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Figure 5. Time-domain strain signals sensing by an FBG sensor as an acquisition

method.

3.3 SENSITIVE FEATURES

Every quantity measured using an acquisition method that may indicate the presence

or not of damage can be named as a feature. Those obtained features are the elements

needed to perform a further pattern recognition process for a subsequent discrimination

between an operational condition and a damage manifestation, an example is shown

in Figure 6. The machine learning algorithm may lead to a better and faster damage

detection if there are selected appropriate features. Feature extraction and feature

selection are really important elements here.

The first one refers to a transformation of the acquired data into a new representation

which can clarify correlations that are originally hidden including damage; on the other

hand, the selection of features relies in the fact that some features are better than others

depending on the system nature. The ideal feature is the one that is really sensitive to

the presence of damage in the structure but is less or non altered when it is affected by

environmental or sub-operational conditions. A condensation of the data is necessary

if there is a handling of large datasets to retain just the most significant changes in the

system operation.
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3.4 STATISTICAL MODEL

Here the algorithms capable to manage those discovered features are treated with the

aim to identify damages in the system, as it is illustrated in Figure 7. This is the part

that has had the least attention and is still in development, specially the field concerned

on damage detection, when there is no damage information available unsupervised learn-

ing. However, developments related to detection of outliers have been constructed. In

contrast, when damage information is available the information can be treated through

an algorithm belonging to the supervised learning field. Finally the performance of

the statistical model needs to be quantified in order to determine the performance and

sensitivity of the Machine learning algorithm and the selected features.

3.5 STRAIN FIELD PATTERN RECOGNITION

The damage occurrence in a structure can change the global stiffness, hence, the strain

field may vary. The strain field can be inferred by means of the measuring of strain

signals using fiber optic sensors such as FBGs, those elements are described with more

detail in Section 4.1. Depending on the system evaluation, specific physical principles

may lead the phenomena presented in the system.
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For the validation process in this methodology, a beam in cantilever which varies in a

set of specific angles, was submitted to a cyclic flexural load and, due to the moment of

inertia’s variation in accordance to the specific angle its stiffness will change. However,

those physical variables simultaneously presented will preserve relationships and trends.

This redundancy, permits the handling of data represented by means of new virtual

variables.

In this specific case, as it was determined by Sierra et al. [77] the strain field had

a direct correlation with the damage occurrence, besides, changes in load conditions

where linear relationships are slightly conserved. In a plot of strain vs. strain between

two different sensors, a nonlinear relationship was evident as it can be seen in Figure 8.

However, the information can be adjusted linearly reducing the computational cost of

the overall process, nevertheless, loss of information may have been presented in some

cases; those relationships become a hint in a further data processing, for example, data

reduction in which the use of a linear method would lead to convenient results. However,

when damage is presented in the structure, the strain field may lead to more marked

nonlinear results, thus, more complex algorithms may be necessary to ensure reliable

information about the structure’s health.
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Figure 8. Strain field variation.

3.6 DAMAGE DETECTION

Following Rytter [78] a damage detection system has to achieve five fundamental and

hierarchical levels, the more levels are reached the better the capability of the algorithm:

1. Detection: the algorithm indicates the presence of damage.

2. Localization: the method submits information about the location of the damage.

3. Type: the method is able to determine the kind of damage presented in the

structure.

4. Extent: the method can determine the severity of the damage.

5. Prediction: the method is capable to establish the remaining lifetime of the

system.

The further idea which is not covered in this methodology is the identification of dam-

age using strain signals starting from a comparative study. This could be performed

based on the benchmarks created by the algorithm from the pristine structure and new

unknown information where damage may be present. An example of how it may work

is presented in Figure 9. The challenge relies on how pristine conditions are identified

when loads do not have a specific magnitude (as it may happen in an aircraft flying

under regular conditions), where loads are unexpected and not clearly defined.
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Here lies the importance of a structure’s baseline under regular load conditions. With

the purpose of designing the present methodology, information about strain signals from

the experiment designed by Sierra [16] (Politécnico de Madrid, Spain, 2014) presented

in Section 1.1 is taken into consideration.
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Figure 9. Damage detection.
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4 DATA ACQUISITION AND PRELIMINARY PROCESSING

4.1 FUNDAMENTALS PRINCIPLES OF SENSORS

When a load is applied to a structure, perturbations are presented, sometimes mani-

fested as damage, which can change the strain field, making the global stiffness vary.

Consequently, the strain field will always vary in the time-line, changing the magnitude

of the signals measured in a specific period of time.

A way to measure those strain changes in a structure is through the use of optical

fiber sensors called Fiber Bragg Gratings FBGs strain gages. Basically, when the light

passes through an FBG, a proportional part of the Bragg’s wavelength is reflected, as

it is illustrated in Figure 10.
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Figure 10. Bragg’s wavelength reflection.

The reflected wavelength varies proportionally with the deformation of the fiber optic

sensors which are bonded to or embedded into the structure. The Bragg’s wavelength

is given by the expression developed by Kersey et al. [79]:

λB = 2niΛ, (1)

where ni is the effective refractive index of the fiber’s core and Λ is the grating pitch.
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Furthermore, the relation between physical phenomena such as strain and/or temper-

ature and the Bragg’s wavelength is given by the following equation:

∆λB
λB

= (1− ρα)∆ε+ (1 + ξ)∆T, (2)

where the fiber photo-elastic coefficient is represented by ρα and ξ represents the thermo-

optic coefficient of the fiber. The values for ∆ε and ∆T were obtained experimentally

using the following expressions [80]:

∆ε = (803.9± 5.6)
µε
nm

(∆λ)→ kε = (0.7991± 0.0055)µε−1, (3)

∆T = (101.9± 1.2)
K

nm
(∆λ)→ kT = (6.334± 0.0074)× 10−6K−1, (4)

where kε = 1− ρα and kT = 1 + ξ.

The location and characteristics of the FBGs have to be pragmatically done, considering

the zones where high levels of stain are expected. The location criteria depends widely

on the level of understanding of the structure’s mechanical and physical behaviors.

FBGs are small and not invasive, they can be embedded using resins such as epoxy.

FBGs can be placed on the surface of the structure during or after the fabrication

of the piece with insignificant physical changes. Unlike other strain sensors such as

strain gauges that may be more precise and cheap, Kreuzer [81] proposes considerable

advantages of the FBGs:

• FBGs are lightweight and small sized.

• As it was mentioned above, FBGs and composite materials are quite easily “merge-

able”, therefore, FBGs can be an active part of a structure turning them into smart

structures considering that modern structures like some aerospace structures are

made of with composite materials.

• They have a high range of measurement, more than 10 000µε in some cases, thus

this kind of sensors are appropriate for structures that exhibit high strains.

• They have extended lifespan, besides they do not have electromagnetic interference

and corrosive vulnerability.
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• FBGs are electrically passive, they can be placed in high voltage zones or flammable

areas, consequently it is possible to attach FBGs in critical systems such as air-

crafts, wind turbines, nuclear reactors, etc. Besides, there are specific FBGs that

have been developed to operate under high temperature environments. On the

other hand, they can also operate under low temperature environments due to

their low thermal conductivity.

Moreover, FBGs sensors present questionable disadvantages such as temperature de-

pendence, thus, a temperature sensor is always required in order to perform a thermal

compensation to estimate strain measurements. FBGs exhibit high sensitivity to lateral

forces and in some cases the high stiffness of the FBGs may cause parallel forces, and

finally, nowadays the interrogators are yet considered expensive.

4.2 DATA ACQUISITION

Raw datasets of strain signals can be stored using an optical sensing interrogator

connected to the FBGs [81]. Commonly strain signals are measured in micro strain

µε units. If the strain acquisition is made in a structure without any manufacturing

defect and under regular load conditions, those signals belonging to the structure will

represent the pristine condition of the system. Otherwise, The scan frequency is limited

by the acquisition module capability. A Basic FBGs reflective signal acquisition scheme

is presented in Figure 11.

Light source

Wavelength
analyzer

Optical 
coupler

Optical fiber
line

FBG 1 FBG 2

Figure 11. Basic FBGs reflective signal acquisition scheme.
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In the experiment taken into consideration for the methodology, four optical lines were

placed on the surface of the aluminum beam, each one having eight FBGs placed in

parallel with the beam’s longitudinal axis (x axis), the location of the FBGs are pre-

sented in Figure 12. Each FBG had a periodic modulation length of 2 mm and wave-

lengths between 1510 nm and 1590 nm.

A total of 32 FBGs were used in the experiment, one of them was mechanically isolated

in order to measure temperature with the aim to perform a thermal compensation. The

first group of FBGs were placed 50 mm from the clamping ending, the rest of the groups

were placed with a spacing of 150 mm starting from the first group. A detailed view

of the FBGs distribution is presented in Figure 12. Each experiment was placed under

dynamic loads for a period of time of 410 s.

The acquisition system consisted in a four-channel Micron Optics SM130 optical fiber

interrogator and strains were measured at a sampling rate of 100 Hz. Each position was

tested twice, in order to generate validation data. The size of raw data acquired in the

experiments is presented in Table 1.

Table 1. Aluminum beam’s acquired data.

Name Pitch angle ◦ Experiment trials Number of sensors

BL 0 -8 41000 32

BL 2 -6 41002 32

BL 4 -4 41000 32

BL 6 -2 41000 32

BL 8 0 41000 32

BL 10 2 41000 32

BL 12 4 40998 32

BL 14 6 41002 32

BL 16 8 41001 32

BL 18 10 41001 32

BL 20 12 41000 32

BL 22 14 41001 32

BL 24 16 41001 32
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Figure 12. Sensors distribution (all measures are given in mm).

4.3 DATA PRELIMINARY PROCESSING

It is convenient to perform a preliminary processing of the strain signals with the aim

of enhancing the clustering performance, removing the less significant or redundant

information. The selection of representative signal characteristics has to be made in

accordance with the mechanical behavior of the structure. Thus, not every signal

recorded is meaningful for clustering.

In experiments during long periods of time under cyclic loads, large quantity of informa-

tion is stored and as a result, undesired information is usually recorded. This undesired

information is commonly known as noise and because its high frequency nature it will

occupy a large amount of space which may decrease the classification performance. The

quantity of noise is subjective and it depends on the instrument accuracy, capability,

limitations and especially on the nature of the experiment. Failure in the experimental
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model as a debonding of a sensor line or wrong manipulation may have repercussions

in the signal acquisition; those flaws unrelated with the structure’s behavior are also

known as outliers. With the intention of refining the model by detrending, averaging,

smoothing, denoising or filtering the signals, outliers can be removed from the data set

before the processing or even after it [82].

The focus of the preliminary processing may vary in accordance with the nature of

the experiment. As it was found experimentally by Sierra [16], for a suitable selection

of significant strain signals, the Signal to Noise Ratio SNR over 50 may improve the

overall classification process, therefore, for the used Micron Optics interrogator, which

has a white noise range around 1 µε, magnitudes over 50 µε are desired.

Moreover, the physical phenomena that governs the experiment structural, beam deflec-

tion, can be simplified to a state of tension/compression in the opposite faces parallel

to the principal axis, as it is presented in Figure 13. The selection of discretized max-

imum and minimum signal peaks and peaks vicinity points that represent the state of

maximum tension/compression loads avoid outliers and noise.

Max. tension

Tension

Compression

Max. compression

F
y

x

Figure 13. Structural beam deflection.

Therefore, the number of time trials required was reduced applying this process com-

monly considered as cleansing. As it is graphically exemplified in Figure 14, specific

strain information from the sensor 1 was selected for a subsequent signal handling as a

part of the outliers removing.

Furthermore, different magnitudes and scales may be determined by each sensor, since

different circumstances e.g. temperature or humidity can be presented and vary during
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Figure 14. Signal cleansing.

the recording time. The action of scaling the data allows to avoid differences that are

not relevant in the classification process; using the auto-scaling process each variable

is re-scaled to have zero mean and unity variance, this procedure is carried out in

the dimensionality reduction process, Section 5, however, technically it is part of the

preliminary processing. Following the notation of Mujica et al. [45], each sensor vector

vij is redefined as:

µ =
1

n

n∑
i=1

xij, (5)

σ2
vj =

1

n− 1

n∑
i=1

(xij − µvj)2, (6)

xij =
xij − µvj
σvj

, (7)

where µvj represents the mean and σ2
vj the variance of sensor j measurements vj, thus,

xij is the rescaled sample. Although the rescaled sample symbol is considered just like

xij for simplicity. The resultant matrices’ magnitudes are presented in Section 5.2,

Table 3, before the dimensionality reduction process of the experiment. Following the

previous action, a normality test is presented before and after the auto scaling was

performed and, as it was expected, it has variance one (see Figure 15) and mean zero
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(see Figure 16). Thus, the variance error is constant (0.0069), therefore, it can be

considered that the dataset presents homogeneity of variance.
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Figure 15. Baseline and Baseline normalized standard deviation.
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Figure 16. Baseline and Baseline normalized mean.

Further, after the auto-scaling process, a correlation between each pair of sensors, is

presented using the covariance matrix of the dataset in Table 2. Some sensors must

have to be intercorrelated to determine a unique contribution to a factor in the factor

analysis process.
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5 DIMENSIONALITY REDUCTION TECHNIQUE

5.1 THEORETICAL BACKGROUND

As it was mentioned before, through a dimensionality reduction method, it is possible

to describe a large quantity of the original dataset and project the obtained information

in a new dimensional space. The technique called factor analysis similar to PCA was

selected to perform the experiment’s dimensionality reduction. Like PCA, FA is also a

linear method, and was applied initially in the field of psychology [28]. The main goal

of FA is to describe how the original x variables in a dataset depend on a small number

of variables k, with k < x, capable to describe a large part of the observed model [83],

except for an error term due to the linear adjust.

Following the notation of Jolliffe [84], FA can represent the original variables x1, x2, . . . , xp

as a linear combination of hypothetical variables called common factors f1, f2, . . . fm,

factor loadings Λjk, where j = 1, 2, . . . , p; k = 1, 2, . . . ,m which represent the corre-

lation of each original variable with a common factor and specific factors or errors ej

Therefore, FA model can be illustrated as:

x1 = λ11f1 + λ12f2 + . . .+ Λ1mfm + e1

x2 = λ21f1 + λ22f2 + . . .+ Λ2mfm + e2
...

xp = λp1f1 + λp2f2 + . . .+ Λpmfm + ep,

(8)

then, the general equation form of FA is represented as follows,

X = Λf + e. (9)

Unlike the standard regression model, there will be different estimation techniques in

FA taking into account that at the beginning Λ and f are unknown. Therefore, there
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would not exist one best or a unique solution. After mathematical handling shown

widely in the literature as in [28, 83, 84, 32, 85], FA model can be represented in terms

of covariances following the next equation:

Σ = ΛΛ′ + Ψ, (10)

where Σ is the data covariance matrix, and Ψ the covariance of the specific factors.

Assuming T as an orthogonal matrix, Λ and Ψ are initially calculated using the equation

Λ∗ = ΛT which after an algebraic handling result in ΛΛ′. A unique initial solution can

be found, placing some restrictions over Λ. Therefore multiplying the orthogonal matrix

T to the initial solution, other solutions can be determined when Λ is rotated until a

particular “best” solution is found.

Varimax [86], Quartimax [87] and Promax [88] are common rotation matrices used by

mostly all popular computer packages [84]. Using multivariate normality of f and e,

more precise values of Ψ and Λ can be estimated using the maximum likelihood by an

iterative process as it was explained by Lawley [32].

Selecting a number of factors desired to rotate will reduce the dimension of the original

dataset. In consequence, there is a number of eigenvalues which describe the infor-

mation retained, related to the selected number of factors. There are several rules to

determining the amount of factors necessary to describe a reliable quantity of the orig-

inal information. The most common method is called “eigenvalues greater than one”

rule [89], the main goal is based on retaining the factors with eigenvalue greater than

one, those factors may perform the best description of the original samples.

Other rules also included in PCA, are focused on keeping the factors in which the

cumulative variance describes more than the 80% of the original variance [89]. In

addition, there is also a graphic method called the “scree plot” in which the factors

before the breaking point have to be retained, as it can be seen in Figure 17. Those

rules are going to be verified using a statistical software program.

The aim with the present methodology is to group the common factors that keep a

relation between variables, since further on it was necessary to cluster the common

factors using the density based algorithm which works in a two-dimensional space, it

was necessary to retain two common factors. Moreover, it was possible to graphically

represent the formed clusters.
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Figure 17. Scree plot example.

It was expected that variables related in between due to the preservation of the difference

in magnitude among signals in a lower space, and in consequence, a large quantity of

the original information could be described. Therefore, those signals represented in a

new dimensional space by the common factors should fall in a same cluster.
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Figure 18. Dimensionality reduction.

Following the Mujica et al. [45] notation, the original data set D is a Dm×n matrix,

with m time instants or experimental trials and n variables (sensors). Before the dimen-

sionality reduction, the rows (experimental trials) must have been randomly combined.

When FA is applied to the experimental matrix, the dataset can be represented in a

lower dimension of Dm×2 elements, selecting the first two common factors. Each row
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of the new matrix will result in a point of (x, y) coordinates that can be clustered and

represented graphically, see Figure 18.

5.2 CASE OF STUDY

Each pitch angle was represented by the most significant data after the preliminary

processing described in Section 4. Every pitch angle matrix was concatenated in a

biggest matrix and was considered as the baseline matrix Dm×n. Each row in the

baseline matrix (aluminum beam’s dataset) Dm×n was randomly arranged with the aim

to recreate a real case scenario in which unknown load magnitudes appear arbitrarily. In

Table 3 the pertinent size of each pitch angle’s matrix after the preliminary processing

is shown.

Table 3. Aluminum beam dataset.

Name Pitch angle ◦ Relevant trials Number of sensors

BL 0 -8 1609 31

BL 2 -6 1609 31

BL 4 -4 1609 31

BL 6 -2 1609 31

BL 8 0 1609 31

BL 10 2 1610 31

BL 12 4 1609 31

BL 14 6 1611 31

BL 16 8 1611 31

BL 18 10 1612 31

BL 20 12 1612 31

BL 22 14 1612 31

BL 24 16 1613 31

TOTAL 20935 31

As a result, a matrix with 20935 of the most representative experimental trials belonging

to each pitch angle and 31 sensors was created; the size of the matrix was determined
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as D20935×31. The 31 sensors were assumed as 31 dimensions as it was explained in

Section 5.1. Hence, the beam’s dataset was treated as a high dimensionality problem,

thus, the importance of using a precise dimensionality reduction technique. As it was

mentioned above, the dimensionality reduction technique was performed to project

those 31 dimensions in a lower space.

The first two rotation matrices Varimax, (see Figure 19) and Quartimax (see Figure 20)

are orthogonal and they seemed to be similar in terms of point group’s spatial location.

It was evident that in the two-dimensional space the dimensionality reduction algorithm

projects well-separated specific group of points. Most of those groups appeared to

have a tendency to the second common factor; the plot of the factor loadings Λjk

presented in Subsection 5.1 represented with their specific number would indicate a

hidden relationship of each sensor to a common factor.

Although the rotation matrices results are similar, the Promax projection which is an

oblique method, was selected for the dimensionality reduction given that it performed a

most balanced projection of the original information with two common factors retained.

In consequence, it could be easier to interpret. Besides, it was evident that performing

this projection resulted in well-separated and condensed groups that could contain the

information of a particular pitch angle, as it is represented in the Promax rotation

matrix Figure 21.
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Figure 19. Varimax rotation matrices.

12 well-discretized groups emerged when the common factors were scattered in all of

the rotation matrices, as it can be seen in Figures 19, 20 and 21. However, the shape of
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Figure 20. Quartimax rotation matrices.
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Figure 21. Promax rotation matrices.

the group of points established by the Varimax rotation, Figure 22 and the Quartimax

rotation, Figure 23, seemed to be elongated and not as condensed as the one shown by

the Promax rotation.

In contrast to the first two rotation matrices, the Promax rotation seemed to carry out

a most condensed projection of the beam’s strain signals in a lower dimension, as it can

be confirmed in Figure 24. The groups generated by this rotation were well-distributed

in the spatial location and also had a more likely spherical shaped form. This could

result in an easier pattern recognition clustering, having in mind that, the clustering

algorithm used in this methodology works in a two-dimensional space under special
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conditions discussed in detail in Section 6.
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Figure 22. Varimax group shape.
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Figure 23. Quartimax group shape.

To guarantee that the reduced matrix D20935×2 adequately represents the original infor-

mation some rules had to be achieved. Those rules were mentioned before in Subsection

5.1 and included an analysis of the variance and eigenvalues of each common factor of the

dimensionality reduced information D20935×2. The original information may be graphi-

cally represented with just two common factors in a two dimensional space depending

on the percentage of retained available information.

As it is shown in Table 4 it was just necessary to retain two common factors to describe

the 99.234 % of the original information. Moreover, the first two common factors had
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Figure 24. Promax group shape.

a eigenvalue greater than 1, the common factor 1 had an eigenvalue of 25.277 and the

common factor 2 an eigenvalue of 5.485. Therefore, the rules established to determine

the performance of the dimensionality reduction technique were notably reached, and

a large quantity of the original information was able to be handled with high reliability

in a two-dimensional space.

Furthermore, the scree plot, (see Figure 25), clarified the FA performance detailed in

Table 4, illustrating the capacity of FA to retain large amounts of information. After

the second factor a breaking point was easily recognizable in the scree plot and then

the eigenvalues had an asymptotic behavior close to zero.
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Figure 25. Beam dataset’s scree plot.
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Table 4. Eigenvalues greater than one.

Common factor Eigenvalue Percent of variance Cumulative percentage

1 25.2775 81.54 81.540

2 5.4852 17.694 99.234

3 0.2065 0.666 99.900

4 0.0126 0.041 99.941

5 0.0060 0.019 99.960

6 0.0054 0.017 99.978

7 0.0017 0.006 99.983

8 0.0008 0.003 99.986

9 0.0008 0.003 99.989

10 0.0007 0.002 99.991

11 0.0006 0.002 99.993

12 0.0005 0.001 99.994

13 0.0003 0.001 99.995

14 0.0003 0.001 99.996

15 0.0002 0.001 99.997

16 0.0002 0.001 99.998

17 0.0002 0.001 99.998

18 0.0001 0 99.998

19 0.0001 0 99.999

20 0.0001 0 99.999

21 0.0001 0 99.999

22 0.0001 0 99.999

23 0 0 100

24 0 0 100

25 0 0 100

26 0 0 100

27 0 0 100

28 0 0 100

29 0 0 100

30 0 0 100

31 0 0 100
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6 AUTOMATIC CLUSTERING EMPLOYING THE DBSCAN

ALGORITHM

6.1 DBSCAN ALGORITHM

The DBSCAN clustering algorithm, is an unsupervised algorithm created by Ester et

al. [90]. The selection of the DBSCAN algorithm was based on its ability to determine

clusters without predefined class labels. DBSCAN often offers a superior performance

than known techniques such as k-means or hierarchical algorithms given that it is not

necessary to determine the number of desired groups previously. DBSCAN configura-

tion parameters are minimal since it was designed to perform an unsupervised clustering

as an exploratory search for features in large datasets; besides, it was developed to keep

a low computational cost with a time complexity of O(n log n) and O(n2) in the worst

case [91].

DBSCAN works detecting a common density of points in a two-dimensional euclidean

space (in this case the dimensionality reduced baseline D20935×2). It is considered that

such density will be greater with points related in between than in surrounded zones out

of the generated cluster. DBSCAN selects a random point and measures the distance

between the random point and a next point, and so on successively with the other

points.

The algorithm correlates the points belonging to the dataset depending on the initial

parameters configuration Eps and MinPts. The value of Eps and MinPts have to be

designated as input parameters. The Eps input parameter manages a circle radius in

which a specific density is desired, and the MinPts parameter determines a minimum

number of points desired in the circle.

Several distance measurements have been considered for the association of points, de-

pending on their similarity or dissimilarity (being one the opposite of the other mea-
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sure). Even though, like several clustering algorithms including DBSCAN work using

the Euclidean distance proximity measure, there are different measurement alterna-

tives, here are presented some of the most common proximity measurements between

two points which can be used in similar applications:

• Minkowski distance: the Minkowski distance can be assumed as a generalization

of the Manhattan and Euclidean distance,

distx,y =

(
n∑
i=1

|xi − yi|p
)1/p

(11)

where, xi, yi belong to a vector X and are coordinates of x, y with p > 0.

• City block or Manhattan distance: the Manhattan norm is defined as:

distx,y =
n∑
i=1

|xi − yi| (12)

where, xi, yi belong to a vector X and are coordinates of x, y with p = 1.

• Euclidean distance: the squared Euclidean distance can be represented as:

distx,y =

√√√√ n∑
i=1

(xi − yi)2 (13)

where, xi, yi belong to a vector X and are coordinates of x, y with p > 2.

• Mahalanobis distance: let define C as the covariance matrix of the variables

analyzed, the Mahalanobis distance was defined to measure differences among mean

vectors:

dist2x,y = (xi − yi)C−1(xi − yi)′ (14)

where, Where xi, yi belong to a vector X and are coordinates of x, y.

• Cosine similarity: the cosine similarity has a close relation with the inner product

and is defined as:

cosdistx,y =
xTi yi
‖xi‖‖yi‖

(15)

where, xi, yi belong to a vector X and are coordinates of x, y.

Following the original notation created by Ester et al. [90], DBSCAN algorithm follows

six basics rules for clustering a dataset D :

• Eps-neigborhood of a point p, denoted as Neps(p), is defined by Neps(p) = {q ∈
D|dist(p, q) ≤ Eps}.
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• A point p is directly density-reachable from a point q if

1. p ∈ NEps(q) and

2. |NEps(q)| ≤MinPts ‘Core point condition‘.

In this circumstance the core point condition is symmetric, (see Figure 26).

• A point p is density-reachable from a point q if there is a chain of points

p1, . . . , pn, p1 = q, pn = p such that pi+1 is directly density-reachable from pi, (see

Figure 27).

• A point p is density-connected to a point q with regard to Eps and MinPts if

exists a point o such that p and q are density-reachable from o with regard to Eps

and MinPts, (see Figure 28).

• A Cluster is a non-empty subgroup of D with regard to Eps and MinPts in which

the following conditions are satisfied,

– ∀p, q if p ∈ C and q is density-reachable from p, then q ∈ C,

– (2) ∀p, q ∈ C : p is density connected with q.

• Noise is defined as a set of points in D that do not belong to any cluster Ci, i.e.

noise = {p ∈ D|∀i : p 6∈ Ci}.

x y

Figure 26. Directly density-reachable.

x2 x3

x

y

Figure 27. Density-reachable.
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Figure 28. Density-connected.

6.2 SELECTION OF THE INPUT PARAMETERS Eps AND MinPts

The biggest drawback in the DBSCAN algorithm is the selection of an appropriate

set of input parameters Eps and MinPts in a particular density of points. For a good

performance of the DBSCAN algorithm, input parameters have to be adjusted properly

with regards to a specific dataset D; in this special case the D20935×2 dataset with a

Promax matrix rotation, (see Figure 29).
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Figure 29. Aluminum beam’s dataset graph.

Thus, it was necessary to set up a strategy with the aim to select the DBSCAN’s initial

parameters depending on the scatter and the space location of the points. The selection

of the initial input parameters Eps and MinPts deliberately, becomes the classification

algorithm less “automatized”; besides the performance and the accuracy of clustering

can substantially decrease. Automatizing the selection of the input parameters may

avoid the seeking of values by trial-and-error.
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Afterwards it was generated a simple dataset to show the influence on the variation

of the parameters Eps and MinPts. The two-dimensional dataset had two defined

condensed shape clusters, as it can be seen in Figure 30, each group contains 50 points.

There was a notable separation between the two clusters, thus, the groups are easily

recognizable. The objective with this example was to illustrate the impact of the initial

input parameters, varying one parameter while the other was fixed.
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Figure 30. Two clusters artificial dataset.

As it can be seen in Figure 30 the points are spread in a space with a horizontal scale

variation between 0 and 0.7 units and a vertical scale variation between 0.52 and 0.7

units. Therefore, a clue of an initial size for the Eps parameter could be around the

scale of those values. As it was mentioned above, the parameter MinPts determines a

minimum number of points into the circle formed by Eps, thus, in large datasets this

parameter may not have the same impact in the final clustering than the Eps parameter.

Each clustering figure presented bellow will indicate every formed group in a different

gray scale and a CL label; if noise is detected it will be represented with an asterisk,

besides, the selected Eps parameter is also represented graphically with a circle.

6.2.1 Eps variation

The value of Eps will vary starting in 1 until 0.01 and the value of MinPts is fixed in

10. In the first test belonging to Figure 31, one cluster was generated, the diameter of

the Eps was too big, thus the input parameters were not well tuned. In the second test
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belonging to Figure 32, two clusters were generated, the diameter of Eps is convenient

and and there was no presence of noise. In the third test belonging to Figure 33, there

were no clusters generated, and in the other side the presence of noise was massive.

 

 
CL1

Figure 31. Eps=1 MinPts=10

 

 
CL1
CL2

Figure 32. Eps=0.1 MinPts=10
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Figure 33. Eps=0.01 MinPts=10

6.2.2 MinPts variation

Taking into consideration that the maximum number of points in a cluster is 50, it

was convenient to have MinPts tested using descendant values between 20 and 1; the

parameter Eps was fixed in 0.1. In the first test belonging to Figure 34, two clusters

were generated, the parameter MinPts defined worked well and there was no presence of

noise. Figure 32, test 2 in this case, is the natural descendant variation in this Section

with Eps=0.1 and MinPts=10 as initial parameters. Two clusters were generated, the

parameter MinPts defined worked well and and there was no presence of noise.

In the third test belonging to Figure 35, two clusters were generated, the parameter

MinPts defined worked well and there was no presence of noise. In the fourth test

belonging to Figure 36, two clusters were generated, the parameter MinPts defined

worked well and there was no presence of noise.

As it is demonstrated, the output information provided by the DBSCAN algorithm

seemed to be more sensitive to a change in the results due to the parameter Eps,

hence it was evident that a strategy to automatically determine the parameter Eps was

needed. Thus, Section 6.4 is dedicated to develop a solution for to this drawback.
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CL2

Figure 34. Eps=0.1 MinPts=20
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Figure 35. Eps=0.1 MinPts=5

6.3 DEFINITION OF MinPts

A development carried out by Gaonkar et al. [92] is one of those efforts to improve the

automatism of the DBSCAN algorithm. In this article a technique to automatically

determine the parameter Eps was evaluated. However, the authors proposed a brief
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Figure 36. Eps=0.1 MinPts=1

way to determine the parameter MinPts ; nevertheless, in the present methodology the

determination of the parameter MinPts was slightly altered having in mind that some

changes delivered better result.

The machine learning function nearest neighbor, permits the discovering of distances

using the Euclidean distance between a selected point and the leftover points in a

specific dataset D; this function also may defines the densities contained in the specific

dataset D. Therefore, those values may become possible Eps values. Those values are

also treated further in Section 6.5 as a part of the methodology to chose the best Eps

value. The selection of MinPts is represented as follows:

MinPts =
n∑
i=1

di, (16)

where di is the i-th value of each density measured in the neighborhood of a point

content in a specific dataset D with n number of experiments.
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6.4 DEFINITION OF Eps USING A GENETIC ALGORITHM

Due to the simplicity in terms of computational cost, computer implementation, and

automatism of the DBSCAN algorithm, scientists have made efforts with new techniques

to include new characteristics to the DBSCAN algorithm with the aim of a better overall

performance.

A brief state of the art with regard to the selection of initial parameters for DBSCAN is

presented bellow. An automatic selection of the parameter Eps developed by Gaonkar

and Sawant [92] using the k-dist graph to determine different densities into a specific

dataset D. Kumar and Reddy [93] developed a methodology based on Group meth-

ods called G-DBSCAN, accelerating the neighbor searching in a specific dataset D.

Patwary et al. [94] presented an methodology called PDSDBSCAN using graph algo-

rithms concepts. Furthermore, a tree-based approach was implemented to generate the

clusters.

Xiong et al. [95] presented a DBSCAN modification called DBSCAN-DLP based on

density levels partitioning. An algorithm based on DBSCAN called I-DBSCAN was

developed by Zhou et al. [96] this paper presented a methodology to determine the

initial parameters Eps and MinPts analyzing statistics properties from a density dis-

tribution matrix called DISTn×n. Some other works related to DBSCAN include

the ST-DBSCAN[97], DSets-DBSCAN [98], C-DBSCAN [99], BDE-DBSCAN [100],

E-DBSCAN [101] and PACA-DBSCAN [102].

In the present methodology, a GA was implemented to enhance the performance of

DBSCAN by automatic definition of the parameter Eps for a specific dataset D. GA

are techniques of optimization which are inspired by natural selection. GA simulates

the natural evolution allowing a population of a particular number of individuals to

evolve in a specific form under a variety of conditions or rules to a state that maximizes

a fitness function [103]. In other words, the main goal is to reach the specific solution

through a fitness value.

Following the article published by Srinivas and Patnaik [104], the most common actions

to perform a GA involve:

• The encoding mechanism, which is the base of a GA, represents the information
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to be optimized in a data string, the encoding type in which the data string is

defined depends on the nature of the problem. Some of the most common encoding

methods involve the use of integer numbers or binary arrays.

• The fitness function is the function to be optimized, each chromosome which rep-

resents strings of information (e.g. strings of binary numbers representing possible

solutions to a problem) has to be analyzed using the fitness function with the aim

to preserve the arrays with better results.

• The selection method emulates the nature’s mechanism of survival, this technique

may vary depending on the problem to be solved or optimized, the most common

alternatives for a selection method include a tournament selection, a rank-based

selection, elitist strategies, steady-state selection and a proportionate selection

scheme in which a roulette wheel selection scheme may be included.

• The crossover process consists in the selection of random fraction of elements be-

longing to a chromosome and perform an exchange of those elements among selected

chromosomes.

• Finally after crossover, some chromosomes can be exposed to a mutation. The mu-

tation consists in changing a fraction of elements belonging to a randomly selected

chromosome with new information randomly selected from a specific population.

The parameter Eps has a large influence over the performance of the DBSCAN al-

gorithm since it has a direct connection with the typical density of the dataset. De-

termining an adequate Eps value for a specific dataset could significantly increase the

automation process, accuracy and reduce processing time. In this methodology con-

struction DBSCAN was automatized by a GA based on the Lin et al. [105] scheme.

The initial population of the genetic algorithm was determined using the nearest neigh-

bor function, which determines the densities associated to a particular dataset D, mea-

suring the distances between a selected point and the leftover points. Those distances

can be defined as the most common radii associated to a specific dataset D, therefore

the initial population was made up with 50 radii between the average radius ravg and

the maximum radius rmax.

Each chromosome is made up of genes, which contains a section of information in

particular. In this case, the chromosomes of the initial population had two different

genes, one gene was composed by a point pi from the common factors dataset Dm×2

with x, y coordinates and the other one had a radius ri found using the nearest neighbor
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function. Hence, the chromosome could be a combination of real numbers as it is

represented bellow:

Table 5. GA chromosome.

x y radius

25.8035 6.3917 0.5184

The fitness function was formed by three principal components:

coverage ratio CR:

CR =
|Sp1,r1 ∪ Sp2,r2 . . . ∪ Spn,rn|

|D|
, (17)

sum of density SD:

SD =
n∑
i=1

|Spi,ri|
|r2i |

, (18)

and duplicate ratio DR:

DR =

∑n
i=1 |Spi,ri|

|Sp1,r1 ∪ Sp2,r2 . . . ∪ Spn,rn|
, (19)

then, the fitness function was determined by the following general equation:

F =
CR× SD

DR
, (20)

where each Spi,ri represent a set of points with center pi radius ri.

There were selected radii with maximum values including their belonging points, avoid-

ing redundant points, this is known as the tournament method. In this methodology,

half of the initial chromosomes was replaced after each sample was evaluated with the

fitness function.

Every time that it was needed a random procedure in the crossover and mutation

procedures was performed using the Mersenne Twister algorithm created by Matsumoto
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and Nishimura [106] which generates uniform pseudo-random numbers, this algorithm

has a computational cost on O(P n), where P is the degree of the polynomial.

Besides, for better comprehension, replaced positions can be identified in tables by

the bold text. The crossover operation was applied selecting randomly cross positions

between points and radii.

The crossover process was performed as follows:

Table 6. GA before crossover.

x y radius

25.8035 6.3917 0.5184

16.4488 10.5420 0.2024

12.5300 10 0.1022

The crossover process was made by fixing the point coordinates and randomly varying

radii positions, the fitter chromosomes offsprings, could result as follows:

Table 7. GA after crossover.

x y radius

25.8035 6.3917 0.2024

16.4488 10.5420 0.1022

12.5300 10 0.5184

The mutation process was carried out replacing radii values from some selected chro-

mosomes with new ones in random positions, the new radii values could be larger than

the maximum value of the initial population but not less than the lower value. In the

same way, points with center pi were replaced with new values in random positions.

An example of the mutation process is indicated in Table ?? and Table 9. In the

mutation not every chromosome was modified, some of them just changed the radius

or the point pi belonging to the initial population.

A new family of chromosomes emerged after the previous processes related to the genetic

algorithm and were evaluated over and over again using the fitness function with the

aim to improve the information inside each chromosome until a solution converged in
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Table 8. GA before mutation.

x y radius

25.8035 6.3917 0.2024

16.4488 10.5420 0.1022

12.5300 10 0.5184

Table 9. GA after mutation.

x y radius

25.8035 6.3917 0.2024

16.4488 10.5420 0.1529

8.5240 16.3920 0.5184

a specific value. In this case, 50 iterations of the sequential process were necessary to

guarantee a reliable convergence.

Finally, the best radii selected by the GA could be used as the Eps desired in a specific

dataset D. Moreover, with the use of the automatically selected Eps the DBSCAN

algorithm should perform an accurate and faster clustering performance.

6.5 EXPERIMENTAL EVALUATION

To validate the genetic DBSCAN algorithm, seven different datasets were used; one

of them was presented in Subsection 6.2, Figure 30, the rest of them are free access

artificial datasets, which are specially designed with the aim of test pattern recognition

algorithms under development. Datasets are available on-line at [107].

The overall precision was evaluated using the expressions proposed by Fawcett [108]:

TP =
positives correctly classified

total positives
, (21)
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FP =
negatives correctly classified

total positives
, (22)

where TP are the true positives detected points, and FP the false positive detected

points, thus the precision is calculated as follows:

precision =
TP

TP + FP
(23)

6.5.1 Two clusters

The two clusters dataset, (see Figure 37), was created in the development of this

methodology. It has 100 points and two classes marked with a number into the dashed

boxes for user guidance.

1

2

Figure 37. Two clusters.

As a result two clusters were discovered as it can be seen in Figure 38, the initial

parameters Eps=0.0392 and MinPts=6.485 were defined automatically. The elapsed

time was 0.236 s.
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Figure 38. Two clusters DBSCAN clustering results.

6.5.2 Aggregation

The Aggregation dataset (see Figure 39) was developed by Gionis et al. [109]. It has

788 points and seven classes marked with a number into the dashed boxes for user

guidance.

1 2 3
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6
7

Figure 39. Aggregation.

As a result eight clusters were discovered as it can be seen in Figure 40, the initial

parameters Eps=1.130 and MinPts=5.498 were defined automatically. The elapsed
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Figure 40. Aggregation DBSCAN clustering results.

time was 0.337 s.

6.5.3 Dim 32 and Dim 64

The high dimensionality datasets (DimSets) Dim 32 and Dim 64 were synthetically

generated in the framework of the work development by Fränti et al. [110], the Dim

32 dataset has 32 dimensions, 1024 points and 16 classes, the Dim 64 dataset has 64

dimensions, 1024 points and 16 classes.

The dimensionality reduction process was carried out using the FA algorithm proposed

by the present methodology, where the first two common factors generated shown con-

densed groups belonging to a probable cluster which are easily recognizable. 10 common

factors were necessary to represent the 90.1 % of the Dim 32 information and 15 com-

mon factors were necessary to represent the 99.9 % of the Dim 64 information. Anyhow,

just the first two common factors are graphically represented in Figures 41 and 42 in

order to be classified using the DBSCAN algorithm.

As a result 14 clusters were discovered in the Dim 32 dataset as it can be seen in Figure

43, the initial parameters Eps=0.112 and MinPts=10.055 were defined automatically.

The elapsed time was 0.487 s. 16 clusters were discovered in the Dim 64 dataset as it

can be seen in Figure 44, the initial parameters Eps=0.077 and MinPts=4.670 were
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Figure 41. Dim 32.
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Figure 42. Dim 64.

defined automatically. The elapsed time was 0.544 s.

6.5.4 Flame

The Flame dataset, (see Figure 45), was developed by Fu and Medico [111]. It has 240

points and two classes marked with a number into the dashed boxes for user guidance.
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Figure 43. Dim 32 DBSCAN clustering results.
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Figure 44. Dim 64 DBSCAN clustering results.

As a result one cluster was discovered as it can be seen in Figure 46, the initial param-

eters Eps=1.244 and MinPts=5.871 were defined automatically. The elapsed time was

0.204 s.
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Figure 45. Flame.

Noise
CL #1

Figure 46. Flame DBSCAN clustering results.

6.5.5 r15

The r15 dataset,(see Figure 47), was developed by Veenman [112]. It has 600 points

and and 15 classes marked with a number into the dashed boxes for user guidance.

As a result eight clusters were discovered as it can be seen in Figure 46, the initial

parameters Eps=0.617 and MinPts=1.043 were defined automatically. The elapsed

time was 0.314 s. The algorithm was not capable of discrete points among the core
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Figure 47. r15.
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Figure 48. r15 DBSCAN clustering results.

groups, it recognized them as a one big cluster due to a characteristic of the DBSCAN

algorithm named as density reachable presented in Section 6.

6.5.6 Jaine

The Jaine dataset, (see Figure 49), was developed by Jain and Law [113], it has 373

points and two classes marked with a number into the dashed boxes for user guidance.
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Figure 49. Jain.

Noise
CL #1
CL #2

Figure 50. Jain DBSCAN clustering results.

As a result two clusters were discovered as it can be seen in Figure 50, the initial

parameters Eps=2.544 and MinPts=5.228 were defined automatically. The elapsed

time was 0.288 s.

Well condensed datasets such as Dim 32, Dim64, and Aggregation reveal a fine out-

come from the automatic processing of the algorithm with a superior level of preci-

sion; otherwise, the Flame, R15 and Jain datasets due their fuzzy nature presented
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a drawback for the algorithm, where the algorithm’s precision decreases considerably.

Clustering results are condensed in Table 10 including the overall precision.

Table 10. Artificial datasets.

Dataset Number of points Features Clusters C Precision %

Two clusters 100 2 2 99

Aggregation 788 7 8 95.304

Dim 32 1024 16 14 87.304

Dim 64 1024 16 16 99.902

Flame 240 2 1 34.165

R15 600 15 8 53.167

Jain 373 2 2 80.428
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7 IMPLEMENTATION IN A COMPUTER PROGRAMMING

The implementation carried out for the unsupervised classification methodology in-

cluded the preliminary processing, processing and post-processing. It was performed

using Matlab R2014a numerical programing software for Windows 7 in an Intel Core i7,

2.2 GHz processor, 6 GB of RAM and 500 GB hard drive PC. This automatized proce-

dure is part of the SHM methodology called statistical model development. There were

taken in consideration a combination of pre-established Matlab functions and the use

of scripts based on the unsupervised clustering theory.

D

Figure 51. General algorithm flow chart.

The strain matrices were preliminary processed using techniques which included removing

undesired information (cleansing), reduction techniques such FA and signal filters which

allowed to keep just important features of each signal, thus, just the most representa-

tive information of a structural behavior in particular was presented. For the processing
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step, the scripts belonging to the DBSCAN and the GA for the Eps parameter deter-

mination were implemented in a programming language.

After data were clustered into a particular group, post-processing actions were per-

formed to determine the processed signals belonging accuracy. Each row of a specific

dataset Dn×2 were labeled within their related cluster, (e.g. if a group of points belongs

to the cluster 1, they are labeled with a number one and so on with the other generated

groups). with the use of the software’s tools it was possible to create figures desired for

a better comprehension of the clustering performance.

Following a general pseudocode of the overall methodology is presented:
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8 RESULTS, COMPUTATIONAL COMPLEXITY AND PRECISION

After confirming the methodology notable performance with condensed datasets, the

clustering methodology could be tested with an acceptable performance using the

experimental dataset (the dimensionality reduced aluminum beam’s dataset D20935×2).

The parameter Eps=0.011 was defined automatically by the genetic algorithm presented

in Section 6.4 and the parameter MinPts=13.934 was found using the corresponding

equation presented in Section 6.3.

The algorithm was able to find 12 clusters, from 13 original classes belonging to the

pitch angles. A total of 20932 points were clustered into 12 different clusters and 3

points were identified as noise, each formed cluster can be identified in a specific scale

of gray, Figure 52.
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Figure 52. Beam’s dataset DBSCAN clustering results.

In the specific case of the aluminum beam, the load was always normal to the cross
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section plane, parallel to the y axis. As it is proposed by the beam theory under elastic

deformations, when the pitch angle changed under specific loads, the moment of inertia

varied, and because the deflection is inversely proportional to the moment of inertia

the aluminum’s beam strain field could have changed. The maximum deflection of the

beam can be determined using the following equation:

δmax =
PL3

3EI
, (24)

where P is a specific load, L the distance measured between a reference fixed point and

a specific load, E the Young’s modulus, and I moment of inertia of the cross-sectional

area. The variation of the moment of inertia related to some pitch angles is presented

in Figure 53.

Furthermore, the beam’s stiffness can be considered as the combination of the Young’s

modulus and the moment of inertia. In some pitch angles the stiffness was relatively

low given that there was a significant change in the moment of inertia in addition to a

relatively low Young’s modulus. Therefore, due to the previous conditions, a group of

well-defined clusters was easily detected by the algorithm.

Figure 53. Variation of the moment of inertia.
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8.1 FA+GA-DBSCAN and DS2L-SOM performance comparison

In order to summarize the overall methodology presented in this work, it was named as

FA+GA-DBSCAN. The intention of this Section was to contrast the performance and

computational complexity taking into account the dataset from the aluminum’s beam.

The comparison was performed using the results obtained with the FA+GA-DBSCAN

and a well proven methodology named DS2L-SOM proposed by Sierra [16].

This comparison allowed to have a benchmark for the performance of the FA+GA-

DBSCAN considering that the algorithm presented by Sierra derived reliable results.

This comparison was carried out using two common applications for algorithm classi-

fication assessment such as the confusion matrix and the ROC curves presented in the

following Subsections 8.1.1 and 8.1.2.

The comparison was performed using Matlab R2014a numerical programing software

for Windows 10 in an Intel Core i7, 2.6 GHz processor, 16 GB of RAM and 1 TB hard

drive PC. The algorithms were analyzed running the same dataset. The aluminum

beam’s dataset D20935×2, which has 13 known groups, was the dataset selected for the

performance evaluation. Each algorithm was run for six trials in order to create trends

on time and precision and avoid compilation anomalies.

As a result, both algorithms seemed to perform a stable and fast classification, deriving

on similar results, thus the overall precision as it is discussed in the following Sections

8.1.1 and 8.1.2. However, the computational cost had a notable difference between

algorithms. The running time of the overall process for both algorithms is presented in

Figure 54.

It was evident that the FA+GA-DBSCAN achieved the best, classifying more than

20000 signal projections in a quarter of a second. As it can be identified in Figure 54, the

average computational cost of the DS2L-SOM was 31.459 s almost twice in comparison

with the FA+GA-DBSCAN which had an average processing time of 16.576 s.

This remarkable computational time was achieved taken into account that the DBSCAN

algorithm performance remains under the O(n log n). Nevertheless, the selection of

accurate initial parameters, in which the function nearest neighbor was involved, may

have reduced the computational complexity of the overall process to O(n+ nd), where
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d is the maximum number of distance computations related to the function nearest

neighbor as it was stated by Kumar and Reddy [93] in a similar approach.
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Figure 54. FA+GA-DBSCAN and DS2L-SOM time complexity.

8.1.1 Confusion matrix

The main objective of the confusion matrix is to determine a correlation between the

clusters found by the classification algorithm and the original groups. The precision of

the FA+GA-DBSCAN and th DS2L-SOM was determined with the use of a confusion

matrix. The correlation of each original signal with a clustered point was defined into

it.

The confusion matrix for the FA+GA-DBSCAN algorithm is represented in Table 11

and for the DS2L-SOM in Table 12. The overall performance of the FA+GA-DBSCAN

classifier was remarkable, however the performance of the DS2L-SOM was also notable,

both with precisions over 90 %. The precision of the FA+GA-DBSCAN was slightly

poorest than the DS2L-SOM, the first one had an overall precision of 92.285 % and the

last one a precision of 92.291 %, both of them were calculated with the equation 23

presented in Section 6.5.

The cause of the decreased algorithms precision is related to the cluster number 9 (CL9),

which contains signal information about two specific classes (pitch angles) 8◦ and 10◦,

this phenomenon appeared to be similar in both algorithms. These two original pitch
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angles were not as mechanically different as expected, since the inferred strain field

could have been similar. The classifiers were not able to determine a difference between

classes, in this case their strain magnitudes were particularly almost equal.

Table 11. FA+GA-DBSCAN confusion matrix.

Clusters found

Baseline Pitch angle C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Noise True positives

BL 0 -8 1609 0 0 0 0 0 0 0 0 0 0 0 0 1609

BL 2 -6 0 1609 0 0 0 0 0 0 0 0 0 0 0 1609

BL 4 -4 0 0 1609 0 0 0 0 0 0 0 0 0 0 1609

BL 6 -2 0 0 0 1609 0 0 0 0 0 0 0 0 0 1609

BL 8 0 0 0 0 0 1609 0 0 0 0 0 0 0 0 1609

BL 10 2 0 0 0 0 0 1610 0 0 0 0 0 0 0 1610

BL 12 4 0 0 0 0 0 0 1609 0 0 0 0 0 0 1609

BL 14 6 0 0 0 0 0 0 0 1610 0 0 0 0 1 1610

BL 16 8 0 0 0 0 0 0 0 0 1611 0 0 0 0 1611

BL 18 10 0 0 0 0 0 0 0 0 1612 0 0 0 0 0

BL 20 12 0 0 0 0 0 0 0 0 0 1611 0 0 1 1611

BL 22 14 0 0 0 0 0 0 0 0 0 0 1612 0 0 1612

BL 24 16 0 0 0 0 0 0 0 0 0 0 0 1612 1 1612

Total 1609 1609 1609 1609 1609 1610 1609 1610 3223 1611 1612 1612 3 20935

Table 12. DS2L-SOM confusion matrix.
Clusters found

Baseline Pitch angle C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Noise True positives

BL 0 -8 1609 0 0 0 0 0 0 0 0 0 0 0 0 1609

BL 2 -6 0 1609 0 0 0 0 0 0 0 0 0 0 0 1609

BL 4 -4 0 0 1609 0 0 0 0 0 0 0 0 0 0 1609

BL 6 -2 0 0 0 1609 0 0 0 0 0 0 0 0 0 1609

BL 8 0 0 0 0 0 1609 0 0 0 0 0 0 0 0 1609

BL 10 2 0 0 0 0 0 1610 0 0 0 0 0 0 0 1610

BL 12 4 0 0 0 0 0 0 1609 0 0 0 0 0 0 1609

BL 14 6 0 0 0 0 0 0 0 1611 0 0 0 0 0 1611

BL 16 8 0 0 0 0 0 0 0 0 1611 0 0 0 0 1611

BL 18 10 0 0 0 0 0 0 0 0 1612 0 0 0 0 0

BL 20 12 0 0 0 0 0 0 0 0 0 1612 0 0 0 1612

BL 22 14 0 0 0 0 0 0 0 0 0 0 1610 0 2 1610

BL 24 16 0 0 0 0 0 0 0 0 0 0 0 1613 0 1613

Total 1609 1609 1609 1609 1609 1610 1609 1611 3223 1612 1610 1613 2 20935

8.1.2 Receiving Operating Curves ROC

Recently, the ROC graphs have had an increase on their application to determine the

classifiers’ performance due to the lack of proper and simple metrics [108]. Mainly, the

ROC graphs can determine how many data points are clustered as true positives, if the

sample is positive and it is clustered as positive and false positives, if the sample is

positive and it is clustered as negative. Moreover, the classification capability of the
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algorithm can be determined visualizing the Area Under the Curve AUC in the ROC

graph.

To understand the capability of the classifier, it is just necessary to represent graphically

the true positives vs. the false positives. As it was found by Fawcett [108], the classifi-

cation algorithms achieve their highest accuracy if the AUC remains around 70 %. For

the DS2L-SOM the AUC index was 70.829 %, and the FA+GA-DBSCAN AUC index

was 74.982 %. The curves ROC of both methodologies are presented graphically in

Figure 55 for the DBSCAN methodology and Figure 56 for the DS2L-SOM technique.

In this particular case the AUC of the DS2L-SOM and the FA+GA-DBSCAN algorithm

remains around 70 %, however, the AUC FA+GA-DBSCAN is slightly superior. Hence,

the FA+GA-DBSCAN algorithm was not over-trained, and the results obtained so far

by the methodology were reliable.
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Figure 55. FA+GA-DBSCAN ROC curve.
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9 TEST OF THE FA+GA-DBSCAN IN A REAL CASE

At this point the methodology was able to be tested in a real case with unknown struc-

tural operational conditions. An electric powered UAV designed by Sierra et al. [114],

with a rectangular beam made of CFRP skin and a wooden core which is part of the

wing main structure was taken into consideration. The wing’s beam was instrumented

with FBGs sensors to gather strain signals datasets. The UAV have a wingspan of 4 m

and a take off weight TOW of 13 kg. A general overview of the prototype for strain

signal acquisitions is presented in Figure 57.

Figure 57. Strain signals acquisition prototype.

The aim with the instrumented wing was to validate the performance of damage identi-

fication methodologies in a real case. Hence, the necessity to create techniques such as

FA+GA-DBSCAN, to generate natural clusters as an exploratory development based

on the obtainment of strain signals related to regular operational conditions.

The idea with this UAV was to develop methodologies capable to automatically detect

damage. This UAV was considered as a prototype for strain signal acquisition and it

belongs to a project sponsored by the Universidad Pontificia Bolivariana UPB under
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the science and technological production plan UPB Innova and the UPB’s School of

Aeronautics with name “Desarrollo de un sistema remoto de adquisición y transmisión

de medidas de deformación en una aeronave con el fin de inferir la integridad de la

estructura”.

The UAV had an acquisition system consisting of a 6 kHz one channel miniaturized

Ibsen Photonics interrogator. Further, the prototype wing’s beam was instrumented

with 20 FBGs with a wavelength range between 1525 nm and 1570 nm, with the aim

to perform a thermal compensation, an external temperature sensor was carried inside

the PixHawk flight controller hardware’s speed sensor located close to the aircraft wing

main beam.

Five FBGs were embedded on the top face of the beam, the same number of FBGs

were embedded on the bottom face of the beam; the intention of these configurations

was to obtain tension/compression strain measurements. Moreover, five sensors were

embedded in a −45◦ configuration on the beam’s left face; additionally, other five FBGs

were embedded in a 45◦ on the right face; the purpose of these arrangements was to

obtain torsion strain measurements. The general arrangement of FBGs is presented in

Figure 58.

9.1 Preliminary processing and dimensionality reduction

A preliminary processing was performed in the same way as the one explained in the

Section 4. Different actuations were performed by the aircraft’s pilot on land in a semi-

controlled manner. The remote pilot executes a flight control movement, e.g. a right

turn slip, the flight control will performs the actuation under a set of velocity and angle

orientation parameters.

A dataset of D195431×20 was gathered from a regular operation flight. Besides, a smaller

dataset of D77883×20 was extracted for data validation. For this experimental case, there

were selected 15000 representative experiment trials from the D195431×20 matrix, hence,

the input dataset was a D15000×20 matrix.

Successively, the dimensionality reduction was carried out using the same methodology
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Figure 58. Instrumented beam (all measures are given in mm).

than the one explained in Section 5. The rotation matrices Varimax, Quartimax and

Promax, were considered for this experiment. Varimax and Promax rotation matrices

projected strain signal information in more spread points but into condensed groups,

that could be considered as clusters by the DBSCAN, however, the nature of the pro-

jections were fuzzy.

The aircraft’s beam beneath regular operational conditions, was submitted under a

diversity of maneuvers, including pitch angles from −15◦ to 15◦ and roll angles from

−30◦ to 30◦. The air-stream which passes through the wing, induces a variation on

upper and lower pressures due to the chamber in the airfoil profile, which derives in a

resultant force. Nevertheless, in regular flight conditions, the resultant force will act in

the center of pressure of the body, which accordingly to Matthews [115] is a point in

the section where there is no pitching moment and where the aerodynamic forces will

act.

The lift force is defined as the force totally perpendicular to the relative wind, yet, the
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drag force, is perpendicular to it. Consequently, if the UAV is flying, the resultant force

between the lift and drag forces is an upward force. Moreover, in a regular flight, the

direction of the resultant force will be nearly normal, inclined backward on the airfoil

section. Hence, the direction of the resultant force will also be nearly normal to the

wing’s beam.

Relative wind

Resultant force

Resultant force 
in the beam

Drag

Lift

Center of
pressure Chord line

Angle of
attack

Figure 59. Wing beam section’s resultant force.

Although, there were induced torsion loads or load variations since the aircraft is sub-

mitted under environmental conditions. Those variations could have been considered

insignificant, reason why it can be assumed that the beam experimented almost the

same load conditions during the entire flight. For clarity Figure 59 is presented. In

addition, the stiffness of the CFRP is considerably higher compared with the aluminum

beam, hence, the explanation of why the experimental dataset projected into a two

dimensional space had a fuzzy nature where it was not simple to determine point group

patterns related to operational conditions.

However, the Varimax rotation was selected since the formed groups seemed to have a

more rounded, condensed shapes and besides, it is the most common rotation matrix.

Figures 60 and 61 represent the Varimax and Promax rotation successively. The Quar-

timax rotation preserved condensed groups, however, there could have been a loss of

information since there was not a pronounced segregation among formed groups as it

can be seen in Figure 62. Further, clustering the Quartimax rotated factors may derive

in a over grouping of operational conditions.

After the covariances study was performed, the ideal number of common factors to
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Figure 60. Varimax rotation Prototype signals.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Common factor 1

C
o
m

m
o
n
 f

ac
to

r 
2

Figure 61. Promax rotation Prototype signals.

retain was three. Those three factors describe the 95.144 % of the original information.

However, the DBSCAN algorithm works in a two-dimensional space, thus, there was a

percentage of information which was lost in this procedure. The information retained

for the first two common factors was 88.09 %. Although the rule of the eigenvalues

greater than one was not fully respected, the information retained was close to the

90 %.
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Figure 62. Quartimax rotation Prototype signals.

9.2 Data processing and results

With the use of the GA-DBSCAN algorithm, 1576 clusters were found and the DBSCAN

initial parameters were automatically defined Eps = 0.011436 and MinPts = 1.1437.

It was clear that at the beginning, the data clustering, Figure 63 could be confused

because of the large quantity of clusters generated. However, not every discovered

cluster was meaningful, since the size of a large quantity of clusters was small.

Thus, it was necessary to have a discrimination of the larger clusters which had a

high probability of relationship with an operational condition. Finally, 4342 points

were marked as noise by the clustering algorithm; it is important to highlight this

action performed the DBSCAN algorithm, since the algorithm helped in the cleansing

selecting unrelated and spread signals as noise.

10 large clusters were selected because of their significant relationship among strain

signals, and are represented graphically in Figure 64. Those clusters may have rep-

resented the relevant strain field information related to operational conditions of the

aircraft, and may be used as part of a baseline for a further analysis using a damage

detection algorithm, employing the concepts explained in Section 3.6. The resultant

clusters are presented below in Table 13 and represented graphically in Figure 64. The

overall processing time was 308.399 s.
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Figure 63. FA+GA-DBSCAN Prototype signal clustering.
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Figure 64. FA+GA-DBSCAN Prototype resultant clusters.
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Table 13. Resultant clusters

Cluster Name Experiment trials Number of sensors

C11 1635 20

C3 1085 20

C20 580 20

C73 307 20

C76 204 20

C12 171 20

C19 146 20

C38 139 20

C25 114 20

C61 103 20
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CONCLUSIONS

Damage detection techniques under the SHM paradigm, require a handling of large

quantity of information in which machine learning methodologies are involved, where a

synergy of multidisciplinary processes and novel unsupervised and supervised learning

algorithms are needed. The implementation of damage detection techniques in real

world problems, leads to execute strategies to create or modify vanguard AI algorithms

understanding the accepted SHM fundamental axioms proposed by Worden and Farrar

[75].

This work tried out a new methodology proposed for automatic operational condition

identification in the framework of the SHM. To complete the proposed methodology,

an experiment carried out by Sierra [16] was considered. The experiment consisted in

an aluminum beam instrumented with FBGs placed in cantilever under dynamic loads

in 13 different operational conditions. A variety of algorithms belonging to the field

of Machine learning were taken into account. A system evaluation and a preliminary

process were performed to remove outliers.

The use of an accurate preliminary process technique in relation to the physical phenom-

ena enhanced the clustering performance, since it generated clearer groups and remove

unnecessary information. A dimensionality reduction technique called factor analysis

was explored to perform a dimensionality reduction of the beam’s baseline data. The

beam’s data was projected in a two-dimensional space for a further clustering process.

The FA technique seemed to have a solid ability to match specific loads with strain

signals in a randomized environment. FA can be considered as an alternative for PCA

in the dimensionality reduction process, in which its properties can be explored for

handling information in multidimensional datasets.

An unsupervised classifier DBSCAN was employed for grouping the reduced information

from the FA process. The Machine learning function nearest neighbor was meaningful

in the initial parameters MinPts and Eps determination. Further, the DBSCAN al-
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gorithm was automatized with a genetic algorithm looking for determining the initial

parameter Eps. The handling of a genetic algorithm improved the DBSCAN capabili-

ties substantially; due to the automation of the DBSCAN with a GA, it was possible

to infer a variety of structural behaviors presented in an experimental procedure with

an aluminum beam given the effect of different discrete loads.

A total of 12 different operational conditions were identified in an unsupervised way.

The experimental results lay bare that due to the action of the genetic algorithm the

selection of an automatized MinPts lead to specific clusters that could have been op-

timum in size, rejecting specific signals as outliers since DBSCAN is also capable of

detecting noise. Under this terms, the algorithm had an overall precision of 92.285 %.

The precision of the algorithm in an exploratory clustering was remarkable. In the same

way, a comparison made with a well-proven methodology, left clear that the the com-

putational complexity of the FA+GA-DBSCAN was extraordinary, reducing almost in

a half the processing time.

Moreover, as it was presented above, FA+GA-DBSCAN algorithm had more sensitiv-

ity for clustering detection in condensed datasets, and a loss of accuracy was identified

when fuzzy datasets were handled. Hence, it is suggested to perform a dataset clus-

tering in such way that the datasets remain in the most condensed form possible. In

rigid structures, the methodology may have decreased in the ability to detect different

structural behaviors due to the lack of a considerable difference in the strain field among

specific loads.

Further, the stiffness of a structure in cantilever submitted under dynamic loads was

an underlying factor in the methodology for the dimensionality reduction and strain

signal data classification processes. Two factors had a direct incidence in the structure’s

deflection, the cross section’s moment of inertia and the material stiffness. Although

the cross section’s moment of inertia varies by operational conditions, if the material

stiffens is relatively high, that change in the moment of inertia will be insignificant in

proportion to the overall stiffness.

An evidence of the previous state, was observed when data were projected using FA.

When the aluminum beam’s dataset was projected, clear and defined groups emerged;

Otherwise, when the dataset belonging to a more rigid structure such as the UAV

dataset, derived in more fuzzy and scattered projection of points.
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Finally, some commentaries are presented:

• Non-linear dimensionality reduction methods may perform better projections of

dataset, however, nowadays there are some inconveniences doing this, such as the

increasing of the computational complexity, or an over-fitting of the generated

features, which may increase the number of false positives.

• A density based clustering algorithm in a three-dimensional space, may improve

the clustering process, considering that, a projection of data in a three-dimensional

space may preserve a greater percentage of the original information.

• Other way to enhance the performance of the density based algorithm, could be,

developing a strategy to clustering depending on local densities, some works about

such kind of methodology have been explored before.

• It could be a good idea to implement a fuzzy classification algorithm, in a semi-

supervised learning methodology, which would improve the quality of the classifi-

cation, however the precision of the generated baseline may decrease.

• Considering that the presented methodology presents a relatively low computa-

tional complexity, it could be implemented on-line in a system, such as the UAV.

It could woks into a damage detection scheme, discriminating damages or anoma-

lies.

• More sophisticated machine learning techniques are being developed at present,

they could work together with simple, precise and sometimes free access classifiers,

to upgrade their capabilities. Such as in the case of the GA-DBSCAN algorithm.
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