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ABSTRACT 

Boundary Element Techniques are implemented in the simulation of the impregnation 

phenomenon of dual-scale porous media used in the processing of composites materials at 

both mesoscopic (filling of Representative Unitary Cells) and macroscopic scales (filling of 

cavities). Three kinds of problems are considered: 1) Simultaneous filling of channels and 

bundles to study the void formation in Representative Unitary Cells (RUC´s) at constant 

inlet pressure and constant inlet flow rate regimes, based on the Stokes-Darcy (S-D) and 

Stokes-Brinkman (S-B) formulations, 2) Filling of bundles considering fully filled 

channels, based on the Stokes-Darcy formulation, to study the dynamic evolution of voids 

(compression, motion, migration and splitting), to determine sink functions that account for 

the partial saturation effects and to analyse the influence of the saturation level on the 

effective unsaturated permeability, 3) Unidirectional filling of cavities considering the 

partial saturation effects by means of a lumped strategy, based on an Equivalent Darcy 

formulation. All numerical codes are validated with classical coupled problems free fluid-

porous media and the moving boundary simulations are compared with numerical and 

experimental results previously reported in the literature. The first kind of problem is 

tackled in Chapters 3 and 4, where tracking algorithms that generate the exact fluid front 

shape are developed, as well as a flow-direction dependent model for the capillary pressure. 

According to the numerical results, the size and shape of the voids are influenced by some 

processing, material and geometric variables, as well as by the formulation type (S-D and 

S-B), matching conditions and RUC compaction. On the other hand, Chapter 5 deals with 

part of the second problem abovementioned. Numerical results show that the dynamic 

evolution of intra-tow voids is highly influenced by the mechanical pressure, capillary 

properties and pressure gradient, which is in agreement with previous experimental works. 

Finally, part of the second problem and the whole third problem are deemed in Chapter 6, 

where multi-scale filling simulations are performed using a lumped strategy. In this chapter, 

lumped sink functions in terms of several volume-averaged variables are found by running 

several filling simulations at mesoscopic scale and using fitting models. Those functions 

are then used in the macroscopic equations to account for the influence of the sink effect in 

the behavior of the global saturation, global pressure and time evolution of the fluid front 

position, obtaining some results that are in agreement with previous works. 
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1. PRELIMINARIES. 

1.1 Introduction  

The phenomenon of infiltration of fluids into porous structures has a wide range of 

applications, from the permeation of underground soils by water and the extraction and 

filtration of oil, passing through the processing of advanced composites materials, to the 

impregnation of biological systems by several sorts of liquids. For instance, in the 

particular case of the processing of composites materials, some specific applications could 

be mentioned, namely, the filling of cavities and void formation in fibrous reinforcements, 

which are key issues in the manufacturing of parts by Liquid Composite Molding (LCM) 

processes, the infiltration of high conductivity phase-change fluids into foams for the 

development of thermal energy storage composites (TES), the fabrication of pre-

impregnated rigid cores for thermal and/or acoustic insulation, among other applications. 

According to the different orders of permeability that are present at the mesoscopic scale of 

a porous medium, such medium can be classified into single-scale or dual-scale porous 

medium. In a single scale porous medium, there is only one scale of permeability in the 

Representative Unit Cell (RUC); conversely, a dual-scale porous medium comprises two 

scales of permeability, which can be different each other by several orders of magnitude.  

In some specific situations, the macroscopic behavior of a dual-scale porous medium could 

be approximated to the one of an equivalent single-scale medium considering the 

macroscopic permeability in the modeling of the infiltration phenomenon; however, in 

other cases, the imbalances of flow that take place inside the RUC due to the dissimilar 

permeabilities of different sub-domains have a strong influence on the macroscopic 

behavior of the flow. For instance, in the particular case of fibrous reinforcements 

employed in LCM processes, a very low tow porosity and a very small space between the 

tows inside the RUC leads to a behavior analogous to a single-scale porous medium, 

contrary to what happens when the tow porosity is intermediate to high and/or the size of 

the gaps between the tows is significant [1], [2], where the flow imbalances inside the RUC 

have an important influence on the macroscopic behavior of the flow.  

The phenomenon of filling of dual-scale porous media can be divided into two main 

problems: the filling of a Representative Unit Cell (RUC) having a specific architecture and 
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regions of different permeabilities (Figure 1 b-c) [3]–[10] and the filling of cavities at 

macroscopic scale taking into account the effects produced by the imbalances of flow 

inside the RUC‘s (mesoscopic scale) (Figure 1a) [5], [8], [11]–[14]. The FEM/CV 

technique is, by far, the most used in the simulations of both kinds of problems, as it is 

shown in the Literature Review of the present work. BEM-based and mesh-free techniques 

have been used in similar problems, but most of the works using these kinds of techniques 

have not considered the anisotropy of the porous bodies inside the RUC and the moving 

boundaries (fluid fronts), being those cases the most common in the processing of 

composites because they replicate the real conditions of manufacturing of parts.  Regarding 

the works that consider the influence of the saturation level on the macroscopic filling of 

cavities and make use of BEM-based techniques, it is important to mention that most of 

them have assumed that the permeability can be represented in terms of the saturation level 

by known constitutive models [15]–[18]; this approach could be appropriate for the 

infiltration of certain types of porous media for which several experimental relationships 

permeability-saturation have been previously established (like the retention curves for soil-

water systems), but it is not applicable for other types of porous media like the ones treated 

in the present work. Thus, the influence of the saturation on the effective unsaturated 

permeability needs to be determined from the mesoscopic simulations because no 

constitutive relationships are known a priori for dual-scale fibrous reinforcements used in 

composites. 

Summarizing, the simulation of the infiltration of dual-scale porous media in the processing 

of composites materials poses several physical challenges. From the point of view of the 

mesoscopic simulations (simulations of RUC filling), there are many applications where the 

anisotropic nature of the porous bodies and the moving-boundary character of the problem 

cannot be omitted, which implies an additional complexity in the problem; besides, due to 

the non-static character of the problem (moving-boundary), both the capillary pressure in 

the fluid front and the mass transfer between subdomains of different permeabilities need to 

be considered. From the point of view of the macroscopic simulations (simulations of 

filling of porous cavities), the main challenge lies in the consideration of the influence of 

the partial saturation that takes place inside the RUC‘s (which is caused by the dual-scale 

nature of the porous medium) on the global impregnation of the cavity, taking into account 
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that constitutive equations permeability-saturation are not well-defined for dual-scale 

fibrous reinforcements. 

In view of the aforementioned aspects, the present research is addressed to the application 

of Boundary Element Techniques in the simulation of the impregnation phenomena in dual-

scale fibrous reinforcements used in the processing of composite materials. After an 

extensive literature review, it could be concluded that these techniques have not been 

implemented yet for this particular application. In general, three kind of problems are 

considered here: 1) Simultaneous filling of channels and tows, Figure 1b, to study the void 

formation in RUC‘s at constant inlet pressure and constant inlet flow rate regimes, based on 

the Stokes-Darcy and Stokes-Brinkman formulations, 2) Filling of bundles considering full 

filled channels, Figure 1c, based on the Stokes-Darcy formulation, to study the dynamic 

void evolution (compression, displacement, migration and breaking), to determine a sink 

function that accounts for the partial saturation effects and to analyse the influence of the 

saturation level on the effective unsaturated permeability, 3) Filling of cavities considering 

the partial saturation effects by mean of a lumped strategy,  Figure 1c, based on an 

Equivalent Darcy formulation. A deeper description of each one of these problems is done 

in the Introduction of each chapter of the present work.  
 

 

 
a) b) c) 

 

Figure 1 Type of filling problems in dual-scale porous media, a) Macroscopic 

problem, b) Mesoscopic problem-Simultaneous impregnation, c) Mesoscopic problem-

Fully filled channel.  
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1.2 Problem statement and justification 

The processing of composites materials is an engineering area that has aroused interest in 

the last thirty years in the scientific community. The development of new processing 

techniques and the improvement of the existing ones are tightly linked to the advancement 

of the simulation methods. In that area, one of the principal concerns is the dual-scale 

nature of some fibrous reinforcements that are used in the manufacturing of parts by Liquid 

Composite Molding (LCM), because such a nature supposes imbalances of flow inside the 

Representative Unit Cell (RUC), which, in turn, cause uncontrolled defects and could 

considerably affect the global behavior of the flow during the filling of cavities. Due to the 

increasing interest in the modeling and simulation of the filling phenomenon in dual-scale 

reinforcements, recent works have been developed in that subject using mainly FEM/CV or 

commercial FEM-based software, as it will be detailed in the Literature Review. Some 

works that make use of BEM techniques have been also developed for infiltration of porous 

media, but the partial saturation effects inside the RUC have been taken into account 

implicitly by using constitutive laws of permeability-saturation, which are not applicable in 

this case. 

As it was aforementioned, the simulations of filling of dual-scale porous media applied to 

composites processing can be classified into two main categories: mesoscopic simulations 

(Figure 1b-c) and macroscopic simulations (Figure 1a). After doing a review of 

representative researches in that area, several open issues were identified; these issues are 

the focus of the present work and can be summarized in the following questions: 

At the mesoscopic scale: 

 What is the influence of the processing, geometric and material variables on the void 

formation? 

 How does the injection regime (constant pressure or constant flow rate) affect the void 

formation? 

 Do the formulation type (Stokes-Darcy or Stokes-Brinkman) and/or the interface 

matching conditions have any influence on the void formation? 

 What is the influence of the RUC compaction on the void formation? 
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 How do the average pressure, pressure gradient and surface tension affect the dynamic 

void evolution? It is possible to remove the bubbles from the bundles towards the 

channel? Which variables are involved in that process?  

 How does the effective unsaturated permeability behave with the saturation level, 

porosity of bundle and RUC geometry? 

At the macroscopic scale: 

 How do the vacuum pressure, air entrapment parameter and capillary pressure influence 

the impregnation of dual-scale porous media at macrosocopic scale? It is possible to 

obtain a function accounting for the partial saturation effects (sink function) that 

considers these parameters? 

 How do the partial saturation effects influence the velocity and pressure fields at 

macroscopic scale?  

 What is the influence of the injection regime (constant pressure or constant flow rate) 

on the behaviour of the global saturation? 

 

The consideration of these problems using BEM-based computational simulations involves 

several numerical challenges, which are briefly mentioned in the following bullets: 

 The solution of problems of coupled sub-domains with very dissimilar permeabilities 

usually implies ill-conditioned systems and special solvers could be required. 

 The BEM solution of the anisotropic Brinkman equation is not yet a closed problem 

since several strategies can be implemented. 

 The constant flow rate regime entails a defective boundary condition, which implies a 

special treatment. 

 The consideration of the capillary effects in both the channels and the tows supposes 

others numerical challenges. Firstly, a flow direction-dependent equation for the 

capillary pressure in the porous media needs to be deduced here in order to avoid using 

experimental shape factors as done by other authors. On the other hand, the numerical 

errors associated to the calculation of the curvature of the channel fluid front can have a 

relevant influence on the calculation of the time step used to advance the moving 

interface when using a direct integration scheme. 
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 The use of a lumped strategy to tackle multiscale problems in dual-scale porous media 

implies the deduction of sink functions in terms of several variables, which in turn 

involves a considerable amount of simulations.  

 The tracking of the fluid front is not a trivial problem here since several constraints 

shall be imposed to the time step in order to avoid physical inconsistencies or the 

magnification of numerical errors. Smoothing and remeshing algorithms are also 

required.   

 

Some differences and contributions of the present research regarding other works in the 

field of composites processing can be identified in Table 1. A detailed description of these 

differences and contributions is done in the development of the subsequent chapters. 

 

Table 1 Differences and contributions of the present work regarding previous works. 

 

Type Previous works Present work 

Numerical formulation for 

modelling the void 

formation in RUC‘s  

Darcy- Darcy, with 

equivalent permeability for 

the channels. 

 

Navier Stokes equation 

modified with permeability 

and capillary source terms 

that activate in the bundles 

 

Stokes-Darcy and Stokes-

Brinkman 

Numerical technique to 

solve the governing 

equations 

Mostly FEM/CV techniques, 

which imply the use of at 

least one domain mesh 

BEM techniques, where only 

one contour mesh is required 

Numerical techniques to 

track the fluid front position 

Mostly VOF or Level Set, 

which imply the 

reconstruction of the fluid 

front by interface capturing 

schemes 

Euler integration of 

kinematic condition and  

Smoothing and remeshing 

algorithms, which brings a 

higher order accuracy of the 

fluid front shape 

Simultaneous capillary 

effects in channels and 

bundles  

Not considered to the best of 

the author‘s knowledge 
Considered 
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Influence of the flow 

orientation on the capillary 

pressure in the bundles 

It has not been considered in 

some works, whereas 

experimental shape factors 

have been used in others.  

A flow orientation-

dependent formula is 

deduced for the capillary 

pressure in the bundles. 

Influence of the type of 

formulation, Stokes-Darcy 

or Stokes-Brinkman, on the 

void formation 

Not considered before to the 

best of the author‘s 

knowledge 

Considered 

Influence of interface 

matching conditions 

channel-bundles on the void 

formation 

Not considered before to the 

best of the author‘s 

knowledge 

It is considered the influence 

of the slip coefficient for the 

Stokes-Darcy formulation 

and the jump stress 

coefficient for the Stokes-

Brinkman formulation. 

Influence of type of regime 

on the void formation at 

mesoscopic scale 

Not considered before to the 

best of the author‘s 

knowledge 

It is considered the influence 

of two types of regimes: 

Constant inlet pressure and 

constant inlet flow rate. 

Coupling between 

mesoscopic and macroscopic 

simulations using a lumped 

strategy 

The Sink function has been 

obtained in terms of the  

averaged pressure and the 

saturation degree only 

The Sink function is 

obtained in terms of the 

averaged pressure, saturation 

degree, vacuum pressure and 

air entrapment parameter, 

considering implicitly the 

capillary pressure in the 

porous media. 

Methodology to obtain the 

sink function 

Traditional methodology: 

It is prescribed a uniform 

pressure in the channels. The 

filling of the tows depends 

on the prescribed pressure 

and on the fluid front 

pressure, which are assumed 

constant during the whole 

filling. 

Proposed methodology: 

Prescription of a pressure 

gradient along the channel to 

be consistent with the fluid 

motion direction. The filling 

of the tows depends on the 

matching conditions 

between coupled domains, 

channel-bundles, and on the 

fluid front pressure, which 

varies according to the air 

compressibility, air 

dissolution and capillary 

pressure. 
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Analysis of dynamic void 

evolution: Compression, 

motion, migration and 

breaking 

Most of works have focused 

in the possible paths of void 

migration, particularly along 

the channels 

The present work is focused 

in the conditions that brings 

about the void migration 

from the bundles towards the 

channels and the subsequent 

void splitting 

 

Study of effective properties 

of dual-scale fibrous 

reinforcements 

Study of the influence of the 

bundle porosity and RUC 

geometry on the effective 

saturated permeability of 

dual-scale fibrous 

reinforcements 

Study of the influence of 

bundle porosity and RUC 

geometry on the relationship 

between the effective 

unsaturated permeability 

and the saturation degree of 

dual-scale reinforcements 

 

1.3 Literature Review 

The following Literature Review is a compilation of the principal researches that have 

focused on the study of the phenomenon of infiltration in fibrous reinforcements, and some 

other relevant works that have dealt with similar problems, whose numerical 

implementations could have a potential application in this topic. Firstly, the numerical 

techniques that have been employed to solve the governing equations of single-scale porous 

media are presented and classified into three families: domain-meshing, boundary-meshing 

and mesh-free techniques. Afterwards, a summary of some progresses in flow modeling 

and simulation in dual-scale porous media to predict formation of voids and their dynamic 

evolution is presented. Moreover, the principal numerical techniques to track the fluid front 

are briefly explained as well, and finally, a concise State of the Art on the influence of the 

voids on the mechanical properties of composites is presented. The present Literature 

Review does not give details of each work, but, as the present dissertation develops, further 

details about some works are outlined in each chapter.  

1.3.1 General concepts   

In single-scale porous media, it is only considered one scale for the impregnation 

phenomenon; hence, it is only recognized one domain at the mesoscopic scale that includes 

fibers and inter-fiber spaces as a whole for flow analysis purposes (Figure 2a). On the 

contrary, in dual-scale porous media, the scale of permeability of the channels or gaps is 
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from one up to several orders of magnitude larger than the scale of permeability of the tows 

or bundles (Figure 2b); consequently, the analysis of flow shall consider both the governing 

equations of the channels and the bundles and the interface conditions between these 

domains. In general, for the channels domain, the Navier-Stokes equation can be applied, 

and, in the particular case of small pore Reynolds numbers, which is very common in the 

processing of composites, the model can be simplified to the Stokes equation [19]. For the 

bundles or tows, the flow can be modeled using the Brinkman or the Darcy equation [20]–

[24]. 

 

 
a) b) 

Figure 2 Microphotography of fibrous reinforcements, a) Single-scale fibrous 

reinforcement, b) Dual-scale fibrous reinforcement.  

 

In dual scale porous media, they are distinguished two kinds of flows: the macroscopic 

flow and the microscopic flow. The macroscopic or principal flow takes places in the 

channels and the corresponding permeability is the macroscopic or gap permeability (the 

permeability after assuming that the bundles are impermeable). The microscopic flow takes 

place inside the bundles and it is driven by both mechanical and capillary pressure. The 

permeability associated to this impregnation is known as microscopic or tow permeability 

[25]. The unbalance between those flows entails several consequences: at the mesoscopic 

level, this unbalance is responsible for the formation of voids by mechanical entrapment of 

air; at the macroscopic level, it could originate changes in the behavior of some 

macroscopic variables due to the arising of sink and source terms in the governing 

equations [26], [27].  

1.3.2 Single-scale porous media 

Some representative works of filling simulation in single-scale porous media are presented 

because they constitute the base of the works of simulation in dual-scale fibrous 

reinforcements. 



11 
 

Domain-meshing techniques.   

Finite Difference Method (FDM) was one of the first employed for simulating the filling of 

fibrous reinforcements in the processing of composites [28], [29].  It is an adequate method 

in two-dimensional geometries with very regular boundaries, but it turns problematic as the 

geometric complexity augments; therefore, it is not usable in many industrial applications. 

Pure finite element methodologies have been also developed, but they do not enforced mass 

conservation on the boundaries between adjacent elements.  For instance, a methodology 

based on an alternate form of the mass conservation equation in terms of a fill factor and 

including temporal variations was proposed in [30]. This methodology implies the 

simultaneous transient solution of the fill factors and the pressure field, which demands 

additional computational costs regarding other finite element-based techniques, where a 

quasi-steady approach is considered, as is the case of FEM/CV techniques. 

The FEM/CV schemes are widely used in filling simulations of fibrous reinforcements.  

The principal argument of the FEM/CV schemes is to solve the governing equations for the 

pressure field by using the finite element method and to track the fluid front by considering 

filling factors in control volumes [31], [32]. There are two remarkable types of FEM/CV 

schemes, which are the base of the principal commercial software for filling of parts in 

composites: FEM/CV conforming and FEM/CV non-conforming.  

The FEM/CV conforming scheme was initially implemented at the beginning of nineties in 

[33], [34]. In this scheme, since the mass conservation is not locally preserved at the 

element level, a control volume, CV, should be assigned to each node of the FEM grid to 

enforce a mass flux balance. In the two-dimensional case, the triangular finite elements 

with hexagonal control volumes is the most common mesh configuration; the hexagons are 

conformed from the centroids of the FE triangles and from the midpoints of the edges, as it 

is shown in the Figure 3. The general steps of this scheme are the next ones [35]: 

 The control volumes (CV‘s) are generated from the finite element grid, and the porous 

volume of each CV shall be computed. 

 At the beginning of the simulation, the CV‘s contiguous to the inlet ports are 

considered completely saturated. In the subsequent time instants, the saturated region is 

determined from the filling factors of the CV‘s.  
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 Using the boundary conditions, the pressure is calculated in the nodes of the finite 

element mesh corresponding to the saturated domain. The resultant system is modified 

with the intention to annul the pressure in empty or partially filled CV‘s in order to 

impose zero pressure condition in the fluid front [36]. 

 Once the pressure is computed in all finite element nodes, pressure gradients can be 

approximated using a finite difference scheme and the velocity is then calculated by 

Darcy law. This velocity is discontinuous in the boundaries of the elements, which 

originates the necessity to use CV‘s for imposing a local mass balance [36]. 

 The net flow in a CV is computed from the contributions of the associated finite 

elements, taking into account the normal components of the velocities to the edges of 

each CV.  

 The time increment is chosen in such a way that at least one CV becomes fully 

saturated. If longer increments are used, a violation of the principle of mass 

conservation occurs, and for shorter times, the fluid front position could not be 

significantly affected [33]. 

 Once the time increment is determined, the filling factor in all control volumes can be 

updated and the fluid front position is established by mean of interface capturing 

schemes. 

 The steps are repeated until the cavity is completely filled. 

 

 

Figure 3 Triangular finite elements grid with hexagonal control volumes in the 

FEM/CV conforming technique.  

 

The FEM/CV conforming scheme is the base of the commercial software LIMS
TM

, 

developed in the University of Delaware. Some important complex simulations of filling of 

parts using this software can be found elsewhere [37]–[39].  
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Alternatively to FEM/CV conforming, a single local mass conservative CV scheme has 

been implemented for the filling of fibrous reinforcements [3]. This scheme uses non-

structured CV elements with generalized Finite Differences to evaluate the fluxes in terms 

of linear polynomial interpolation of the pressure field; no auxiliary elements in the mesh 

are required, but the convergence rate decreases regarding the one of the FEM/CV 

conforming. On the other hand, the FEM/CV non-conforming scheme has a similar 

convergence rate to the FEM/CV conforming and no auxiliary CV‘s are required since the 

Finite Elements operate also as Control Volumes [40]. In this scheme, the filling factor is 

related with the level of saturation of the finite elements and the interpolation functions of 

the pressure are selected in such a way that the continuity of velocities on the boundaries of 

the elements is achieved at expenses of obtaining discontinuous pressures with exception of 

the midpoints [40], [41]. It has been demonstrated that FEM/CV non-conforming 

algorithms converge faster than FEM/CV conforming ones if the mesh size is properly 

selected [42]. Software PAM-RTM
TM

, developed in the École Polytechnique of Montréal, 

works using the FEM/CV non-conforming scheme.  Some representative works using this 

software have been developed in [41], [43], [44]. 

 

Boundary-meshing techniques. 

Specific researches about simulations of LCM processes using boundary-meshing methods 

are not as extensive as the ones done by domain-meshing techniques. However, a 

considerable amount of similar elliptic problems of heat transfer, groundwater infiltration 

and elastic response of anisotropic materials have been modeled by the former kinds of 

techniques, and some authors have applied those procedures to the simulation of the filling 

phenomenon in LCM processes [45]–[48]. The boundary element method (BEM) has been 

applied to the simulation of the infiltration of fiber reinforced preforms in [45], [46], [48]–

[53]; in some works, it has been found that mass unbalances could arise depending on the 

number of nodes lying on the boundaries [52]–[54]. 

 

BEM techniques for homogeneous porous media . 

A second order elliptic problem in homogenous porous media was tackled by Clements 

[55], [56] using BEM and the resulting integral formulation was applied next to the 
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infiltration of single-scale reinforced preforms in [46], where the level set method proposed 

by Sethian [57] was employed to track the fluid front in isotropic media. A similar research 

was executed in [58] for homogeneous anisotropic preforms using the quasi-isotropic 

equivalent system (EIS) proposed by Adams, Russell and Refenbeld [59], by mean of 

which the anisotropic domain can be transformed into an isotropic one and the Laplace 

equation emerges in the transformed domain. 

 

BEM techniques for heterogeneous porous media. 

The change of the porosity in porous media causes the modification of all volume-averaged 

properties. In the case of the filling phenomenon of fiber reinforced preforms, the main 

property is the permeability. When spatial heterogeneities appear, a domain integral also 

appears in the integral formulation of the problem and the handling of that domain integral 

is just what distinguishes one numerical scheme from another one.  

If the porous medium is isotropic and stepwise homogeneous, the multi-zone BEM 

formulation employed in [60] can be used. In this formulation, they are considered 

localized homogeneous zones and compatibility equations are applied between these zones. 

If the medium is isotropic and the permeability varies in the space as a known function, the 

domain integral can be divided into small homogeneous sub-domain integrals that can be 

solved by numerical methods; this procedure was used for the simulation of the infiltration 

of water into underground beds [61] and its principal disadvantages is specifically the 

discretization of the domain. One remarkable work focused on the simulation of the RTM 

process with heterogeneous preforms was developed using the BEM and the perturbation 

techniques of Rangoni [62] to deal with the domain integral [45]; in that work, the 

transformed potential is expanded by mean of perturbation series, being the major 

disadvantage of this scheme the robustness added by those series. One of the most common 

methods to deal with the domain integral is the Dual Reciprocity Boundary Element 

Method (DR-BEM) proposed by Partridge, Brebbia and Wrobel [63] and employed in [64] 

for simulating the groundwater infiltration of isotropic media applied to civil constructions.  

With respect to anisotropic and heterogeneous porous media, two main ways to tackle 

second order elliptic problems by BEM are identified: 1) to develop generalized 

fundamental solutions that annul the domain integral [65], [66], where a forced function is 
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introduced in place of the Dirac delta function in the singularly forced equation, and 2) to 

use fundamental solutions of homogeneous media and treat the resulting domain integral by 

the DR-BEM [67], [68]. The assessment of the approximation functions used in the DR-

BEM for this kind of problems can be found in Zhang and Zhu [69] and Partridge [70]. 

Recent works using DR-BEM for filling of cavities in the RTM process can be found in 

[53], [71]. 

 

Mesh-free techniques. 

One meshfree technique that has been used in the simulation of the filling of single-scale 

porous media is the Method of the Natural Elements (NEM) [47], [72], where some trial 

and test functions are constructed using natural neighbor interpolants and those interpolants 

are built on the basis of the Voronoi tessellation and computed numerically by using the 

Delaunay triangulation. Among the different possibilities, the NEM allows extracting the 

shape of the saturated domain and the position of the moving interface by employing a 

cloud of nodes only [73]. The NEM is an attractive numerical alternative, because of its 

ability to integrate transport equations and its meshfree character. 

 

1.3.3 Dual-scale fibrous reinforcements 

Macro-voids and micro-voids formation. 

As it was mentioned before, in dual-scale fibrous reinforcements, the difference between 

the micro-flow and macro-flow can be significant. This difference can lead to formation of 

voids by mechanical entrapment of air; voids formed inside the bundles are named micro-

voids (Figure 4a) and voids in the channels are known as macro-voids (Figure 4b). In 

general, a high velocity of the injected liquid with respect to the capillary velocity inside 

the bundles leads to the formation of micro-voids, and a low velocity, to formation of 

macro-voids [74], as it is illustrated in the Figure 4a,b. The complexity of the simulations in 

dual-scale fibrous reinforcements lies in the consideration of two domains with different 

scales of permeability. In the channels, the flow is driven by viscous forces; in the tows, 

additional capillary forces shall be considered because of the small hydraulic diameter of 

the pores [75]. A term has been proposed in [76] to establish a relationship between the 
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capillary and viscous forces and it is called the modified capillary number,   
 , which is 

defined later. Some simulations have sought to find the optimum value of   
  that better 

produces a balance between both forces in order to minimize the void formation [44], [77]–

[82].  

 

 

a) b) 

Figure 4 Representation of void formation in dual-scale fibrous reinforcements. a) 

Microvoids inside the bundles, b) Macrovoids in the gaps. Source: Park and Lee [83] 

 

In general, the filling simulations of dual scale fibrous reinforcements have been focused 

mainly on the following problems: 1) simulation of void formation and fluid front 

imbalances at mesoscopic scale, 2) simulation of totally saturated RUC´s to determine 

effective properties, 3) simulation of compression and transport of bubbles, 4) simulation of 

the influence of the sink effect on the behavior of volume-averaged variables.  

 

Void formation and fluid front imbalances. 

Regarding the simulation of void formation and fluid front imbalances at the mesoscopic 

scale, several works have been developed for some fabrics. For example, some  simulations 

were made in [3] for two kind of positioning of warps and wefts using the Finite Volume 

Method to solve the governing equations and the FAN technique (Flow Analysis Network) 

to advance the fluid front, considering that the trapped air behaved like an ideal gas. It was 

analyzed the influence of the fiber stacking and of the anisotropy ratio of permeability on 

the final void content inside the transverse bundle. Two important conclusions were 

accomplished: as the anisotropy ratio of permeability is larger, the size of the final void 

increases, and a higher void content is obtained for the positioning Weft-Warp-Warp-Weft 

than for the positioning Weft-Warp-Weft-Warp.  Other relevant works were presented in 

[25] and [4]. In the first one [25], it was established a ratio among the time for the liquid 

inside the transverse bundle and the time for the liquid in the channels to traverse the 
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transverse bundle width, and they were established theoretical relationships between this 

ratio and the percentage and size of the voids for several values of   
 . In the second work 

[4], the model proposed in the former research was used to develop a real-time simulation 

control method in order to reduce the formation of microvoids at the end of the transverse 

bundles. In both works, the FEM/CV conforming scheme was used.  

Afterwards, the influence of the global porosity of the RUC in the void formation inside the 

transverse tow was studied in [5], [84], as well as the critical pressure for the remotion of 

the microvoids,  using the FEM/CV conforming method. This numerical method was also 

employed in [81] to study the influence of   
  and the tow porosity on the final void 

content. The authors found an optimal value for   
  that determines the transition between 

macrovoids and microvoids, in which the void content is the smallest possible. The 

influence of the combination between the Reynolds number,   , and the modified capillary 

number,   
 , on the final void content of the RUC was studied in [80] considering the 

Navier Stokes equation modified with source terms that activate only in the bundles to 

consider the permeability and capillary.  In that work, an optimum capillary number,   
 , for 

each value of   , was achieved. An optimal processing window for Reynolds numbers of 

order      and capillary numbers of order       was found. On the other hand, the 

simulation of unidirectional flow considering circular tows and radial coordinates was 

tackled in [22] using the Finite Volume method for the solution of the governing equations 

and the Volume of Fluid (VOF) to advance the interface. The authors studied the effect of 

the following variables in the fluid front positions: filling velocity, resin viscosity, inter-tow 

dimension and intra-tow dimension. 

 

Calculation of the effective permeability. 

In the simulation of dual-scale fibrous reinforcements, problems where both the tows and 

the channels are assumed to be totally saturated with liquid have been also considered. The 

main objective of that kind of simulations is to calculate the effective permeability and 

determine the influence of some geometric variables in such property. For instance, FEM 

was used in [20] to simulate single-tow and tow-tow arrangements under prescribed 

pressure gradients, using the Stokes-Brinkman approach; in that work, it was studied the 

influence of the fiber volume fraction, aspect ratio of tows, tow permeability and degree of 
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compaction on the effective permeabilities in the main directions. A similar research was 

carried out in [85], in which the influence of the type of stress matching condition on the 

effective permeabilities of 3D fibrous reinforcements was analyzed, finding an irrelevant 

influence for low porosities.  

 

Compression and transport of bubbles. 

The modeling and simulation of compression and transport of bubbles have also gained 

interest in the field of composites processing. The bubble compresses as a result of the 

pressure surrounding the tow and of the capillary pressure; on the other hand, the bubble 

transport can occur mainly by two mechanisms: dissolution of gas molecules of the trapped 

air into the liquid and the mechanical mobilization of the bubbles pursuing different paths. 

Both the bubble compression and transport have been studied in [5], [86], [87]. In some 

researches, the dissolution of the air into the liquid has been implicitly considered in the air 

pressure by introducing a lumped function that accounts for the fraction of escaped air,  , 

in terms of the relative fluid front position,   , which is defined as        ⁄ , with    and 

   as the current and initial fluid front positions inside the tow [11], [88].   

The void mobilization is another phenomenon that deserves particular attention, because 

during the injection it is likely to reach velocities that bring about high drag forces that, in 

turn, exceed the interfacial forces, leading to the displacement of voids. This displacement 

implies that there is a way to eliminate residual voids even when the void formation by 

entrapment of air is difficult to avoid. The void mobilization can take place along several 

paths: in spaces between the monofilaments of the fiber tows, from the tows towards the 

channels and along the channels between the tows. An important work considering the 

former path was presented in [89], in which the transportation of very low viscosity drops 

across an array of cylinders, imitating the void migration in an array of fibers, was 

considered. One paramount conclusion of that work is that the length of the bubbles could 

help to its mobility, because larger pressure gradients are reached as the bubble is larger 

and this helps to surpass the capillary forces. The motion of bubbles along the inter-bundle 

channels or gaps of biaxial non-crimped fabrics was studied in [90]. By means of a 

permeability network model and the Monte Carlo method, the authors concluded that the 

paths of bubble migration in the channels depends significantly on the position of the 
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threads joining the tows and on the number of fibers crossing the channels, and that the 

bubbles tends to move in the direction of the tows. In that work, it was also studied in detail 

the relationship between the local pressure gradient, the local gap size and the probability 

of free-bubble motion, bubble trapping and bubble splitting. The level set method was used 

to track the fluid front. In a subsequent work, the same authors built a 3D numerical model 

to study the creation and mobilization of voids in non-crimped fabrics and considered both 

the intra-tow and inter-tow voids movement [78]. The authors concluded that the 

movement of intra-tow voids (microvoids) is much slower than the movement of inter-tow 

voids (macrovoids). Finally, the motion of macrovoids was also considered in [4], where it 

was introduced a phenomenological factor,   , relating the liquid velocity, 〈  〉
 , and the 

void velocity, 〈  〉; according to that work, 〈  〉 is a piecewise continuous function of 

〈  〉
 , with an inflection point corresponding to the critical liquid velocity for the onset of 

void mobilization, 〈  
    〉 , which is the value of 〈  〉

  from which the void migrates along 

the channels. 

 

Simulations at macroscopic scale considering the sink effect. 

The problem of macroscopic simulations makes reference to the filling of cavities 

influenced by the sink effect, which in turn refers to the delayed absorption of the resin into 

the tows with respect to the filling of the channels. In order to consider the sink effect on 

the macroscopic fillings, a sink term,   , is considered in the macroscopic continuity 

equation. In [91], it was considered that the sink term,   , depends mainly on the pressure 

surrounding the tow, 〈  〉
 , and on the tow saturation,   , and they were established sink 

functions,       〈  〉
  , for several simple tow geometries. Some simulations using the 

sink functions,       〈  〉
  , were conducted in [13], where the principal contribution was 

the addition of ‗slave‘ elements into the original FEM/CV mesh  with the objective to deem 

the tow saturation in those elements. In this modified FEM/CV scheme, the porous volume 

of the fiber tows in the CV is represented by adding a one dimensional bar, with the same 

porous volume of the tows, to the master node of the CV. The simulation is run as usual in 

the FEM/CV conforming scheme, but two fill factors shall be distinguished for each CV: 

the fill factor in the modified CV represents the saturation of the gaps and the fill factor in 
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the ‗slave‘ bar, the saturation of the tows. This scheme has been used in [11], [25] and 

interesting results of pressure profiles have been acquired from the simulations; 

nevertheless, as it is recognized in [83],  neither the capillary pressure, nor the air 

compressibility and air solubility are taken into account using this modified scheme. A two 

phase flow model for the prediction of saturation in dual-scale fibrous reinforcements, 

which considers these three factors, was recently published [92], [93], obtaining good 

agreement with experimental observations.   

Alternative forms of the volume-averaged governing equations for partially saturated flow 

in dual-scale fibrous reinforcements were established for isothermal flows in [6] and for 

non-isothermal reactive flows in [7]; these equations were stated for two sub-domains: the 

channels and the tows.  The dynamic interaction among both sub-domains was considered 

by introducing a new quantity called the interfacial kinetic effect tensor, which includes the 

effects of the liquid absorption by the tows and the presence of slippage on the interface 

channels-tows. These equations were simplified later in [10] under certain assumptions 

with the purpose to make them tractable for LCM processes. Then, the FEM/CV 

conforming method was applied to solve those simplified governing equations at both 

macroscopic and mesoscopic scales, in order to simulate the filling phenomenon in woven 

fabrics [8], [14]. Three outstanding and interrelated researches deserve special attention in 

this regard.  In [14] it was studied the influence of the sink effect on the position of the 

global fluid front. In that work, it was employed an iterative-corrected strategy, namely, the 

fluid flow in the tows is solved at the mesoscopic scale supposing a uniform pressure in the 

surrounding channels, the velocity field in the channel-tow interfaces is computed using 

Darcy‘s law and the sink term,   , is then calculated using that velocity field. Afterwards, 

the pressure field at the macroscopic scale is calculated considering the sink term,   , and it 

is compared with the values supposed as boundary conditions at the mesoscopic scale, to be 

corrected until both pressure fields are similar. This research was extended to the non-

isothermal and reactive cases. In the processing of composites, the non-isothermal case 

happens when the resin and/or the mold are heated. This situation was simulated in [8], 

where the influence of the sink effect on the global temperature profile for several time 

instants was analyzed.  On the other hand, the reactive case refers to the consideration of 
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the resin curing during the filling of the cavity. The influence of the sink effect on the 

global degree of cure profile was studied in [94].  

 

Summary of works of modeling and simulation in dual-scale fibrous reinforcements. 

To conclude the present section, the aforementioned works about dual-scale fibrous 

reinforcements and some others are classified in the Table 2 and Table 3 in accordance 

with: the main physical assumption of filling according to Figure 5, the phenomena and/or 

properties that were analyzed, the variables that were considered, the dimension of the 

problem and the numerical techniques used for the simulation.   

 

   

a) b) c) 

Figure 5  Main physical assumptions of filling of dual-scale fibrous reinforcements.  a) 

Case 1: Simultaneous impregnation of bundles and channels , b) Case 2:  Channels 

completely filled before any impregnation takes place inside the bundles, c) Approach 

3: Channels and bundles completely filled with liquid.  
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Table 2 Summary of works of modeling and simulation in dual-scale fibrous reinforcements (1) 

Ref 

A
ss

u
m

p
ti

o
n
 Phenomena and/or properties analyzed 

Flow 

imbalance 
Macrovoid 

formation 
Microvoid 

formation 
Remotion 

of voids 
Effective 

permeability 
Compressibility 

of voids 
Void 

dissolution 

Void 

motion 

space 

between 

fibers 

Void 

motion 

from tows 

to channels 

Void 

motion 

along 

channels 
Sink 

effect 
Non-

isothermal Reactive 

Jinlian, Yi, and 

Xueming [3] 1 
  

x 
  

x 
       Koo, Il, and 

Hahn [25] 1 
 

x x 
          Gourichon et al 

[5] 2 
   

x 
    

x 
    Schell et al [81] 2 

     
x 

       DeValve and 

Pitchumani [80] 1 x x x 
  

x 
       Hwang and 

Advani [20] 3 
    

x 
        Tan and Pillai, 

[85] 3 
    

x 
        

Lundström [86] 2 
     

x x 
      J. M. Lawrence, 

Neacsu, and 

Advani [11] 
2 

     
x x 

      
Kang and 

Kolleing [89] 3 
       

x 
     Frishfelds, 

Lundström, 

Jakovics[90], 

[95] 
1                   x       

Lundström, 

Frishfelds, 

Jakovics [78] 
1                 x x       

Lee, Il Lee, and 

Kang [4] 1       x           x       
Pillai and 

Advani [91] 2                     x     
Simacek 

Advani [13] 
2                     x     

Pillai [6], [7] 2                     x x x 
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Ref 

A
ss

u
m

p
ti

o
n

 Phenomena and/or properties analyzed 

Flow 

imbalance  

Macrovoid 

formation 

Microvoid 

formation 

Remotion 

of voids 

Effective 

permeability 

Compressibilit

y of voids 

Void 

dissolution 

Void 

motion 

space 

between 

fibers 

Void 

motion 

from tows 

to channels 

Void 

motion in 

channels 

Sink 

effect 

Non-

isothermal 
Reactive 

Tan and Pillai 

[14] 
2                     x     

Tan and Pillai 

(2) [8] 
2                     x x   

Tan and Pillai 

(3)[94] 
2                     x x x 

Foley and 

Gillespie [87] 
1 x                         

Gangloff, 

Hwang , Suresh 

[96] 

3                   x       

Di Fratta et al 

[97] 
2-3          x         x      

Tahir, 

Hallströmand 

Åkermo [98] 

3         x                

Cender, 

Simacek, 

Advani [99] 

2                     x     

Haji, Saouab, 

Nawab [100] 
2-3          x           x     

Gascón et al 

[92], [93] 
2              x x      x   

Zhou, Alms and 

Advani [101] 
2                     x     

Zhou et al. 

[102] 
2                     x    

Shou, Ye and 

Fan 

[24] 

3          x              

Shou et al [23] 3         x                 

Patiño et al 

[103] 
1 x  x   x        

Patiño et al 

[104] 
1 x  x   x        
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Table 3 Summary of works of modeling and simulation in dual-scale fibrous reinforcements (2) 

Ref 
Numerical 

techniques 

Variable considered 

Dimension Fiber 

stacking 

Tow size 

and 

geometry 

Anisotropy 

ratio 

Fiber 

fraction 

of tows 

RUC 

porosity 

Viscous vs. 

Capillary 

forces 

Reynolds 

number 

Matching 

conditions 

Critical 

velocity of 

void remotion 

Global 

pressure 

Tempera

ture 

Cure 

degree 

Global 

saturation 

Jinlian, Yi, and 

Xueming [3] CV-FAN x   x                     2D 

Koo, Il, and 

Hahn [25] Na             x             2D 

Gourichon et al 

[5] 
FEM/CV

-VOF 
        x x               2D 

Schell et al [81] FEM/CV

-VOF 
      x     x             2D 

DeValve and 

Pitchumani [80] 
Ansys-

Fluent 
            x x           3D 

Hwang and 

Advani [20] 
FEM-

VOF 
x     x x       x         2D 

Tan and Pillai, 

[85] 
FEM-

VOF 
                x         3D 

Lundström [86] na       x                   2D 

J. M. Lawrence, 

Neacsu, and 

Advani [11] 
FEM/CV

-VOF 
      x           x     x 2D 

Kang and 

Kolleing [89] na       x     x             2D 

Frishfelds, 

Lundström, 

Jakovics[90], 

[95] 

Monte 

Carlo- 

Level Set 

x x         x     x       2D 

Lundström, 

Frishfelds, 

Jakovics [78] 
Monte 

Carlos- 

Level Set 

x x         x     x       3D 

Lee, Il Lee, and 

Kang [4] na           x x             2D 

Pillai and 

Advani [91] na                   x     x 2D 

Simacek Advani 

[13] 

FEM/CV

- VOF 
                  x     x 2D 

Pillai [6], [7] na                     x x x 3D 
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Ref 
Numerical 

techniques 

Phenomena and/or properties analyzed 

Dimension Fiber 

stacking 

Tow size 

and 

geometry 

Anisotropy 

ratio 

Fiber 

fraction 

of tows 

RUC 

porosity 

Viscous vs. 

Capillary 

forces 

Reynolds 

number 

Matching 

conditions 

Critical 

velocity of 

void remotion 

Global 

pressure 

Tempera

ture 

Cure 

degree 

Global 

saturation 

Tan and Pillai 

[14] 

FEM/CV

- VOF 
                  x     x 3D 

Tan and Pillai 

(2) [8] 

FEM/CV

- VOF 
                  x x   x 3D 

Tan and Pillai 

(3)[94] 
na                   x x x x 3D 

Foley and 

Gillespie [87] 

FEM-

VOF 
x x     x                 2D 

Gangloff, 

Hwang , Suresh 

[96] 

FEM/CV 

Comsol 
    x    x x       2D 

Di Fratta et al 

[97] 
na       x     x      2D 

Tahir, 

Hallströmand 

Åkermo [98] 

ANSYS 

Fluent 
   x  x x           2D 

Cender, 

Simacek, 

Advani [99] 

na      x x           2D 

Haji, Saouab, 

Nawab [100] 

FLOW 

3D/VOF 
     x            3D 

Gascón et al 

[92], [93] 
na               x 2D 

Zhou, Alms and 

Advani [101] 
na            x     x 2D 

Zhou et al. [102] na            x    x 2D 

Shou, Ye and 

Fan 

[24] 

na      x    x      2D 

Shou et al [23] Na         x        2D 

Patiño et al 

[103] 

BEM/Mark

er particle 
 x x x x x        2D 

Patiño et al 

[104] 

DR-

BEM/Mark

er particle 

     x  x      2D 
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1.3.4 Numerical techniques to track the fluid front 

The numerical techniques mentioned above deal with the solution of the pressure field 

equation and the velocities in the fluid front. Regarding the techniques to track the moving 

boundary, four of them can be emphasized here: the direct Euler integration, the volume of 

fluid, the characteristic equation technique, and the fast marching and level set techniques. 

In the direct Euler integration (Figure 6), the advancement of any node in the boundary is 

computed once the normal velocity is known, with the finite difference schemes as the most 

used. The main disadvantages of this technique are:  the numerical instabilities arising 

when two or more nodes in the boundary become very close among them, the possibility of 

crossing of points during the advancement of the fluid front and the difficulties to deal with 

encountered flows. This method is used in the present work and the problems associated to 

its implementation are dealt by mean of remeshing and smoothing algorithms and imposing 

several constraints to the time step, as it is detailed later.  

 

 

Figure 6 Direct Euler integration technique.  

 

The base of the characteristic equations technique is the transformation of the PDE that 

describes the motion of the fluid front into an ordinary differential equation. According to 

this technique, the vertical fluid front position can be described by a Hamilton-Jacobi 

equation [105], whose corresponding characteristic equations are used to track the moving 

boundary. In some parts of the fluid front, slope discontinuities are present and the 

characteristic equations have not solution (Figure 7a). In those particular cases jump 

conditions are applied to compute the velocity components in the discontinuities [105]. 

Other particular situations with this technique are the expanding corners, where there are 
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infinite ways to connect the nodes that surge from the displacement of the fluid front 

(Figure 7b); the entropy condition is applied in this situation. As the last conditions, there 

are other special conditions associated with this technique that make it difficult to 

implement.  

 

            
a) b) 

Figure 7 Typical situations requiring special conditions in the characteristic equations 

method. a) Slope discontinuities, b) Expanding corners.  

 

The fast marching method, level set method and combinations among them are interesting 

techniques for capturing the motion of interfaces; they were originally proposed by Sethian 

[57]. Their application in the fluid front tracking of filling simulations in LCM have been 

increasing for both single-scale [46], [50], [58], [106] and dual-scale preforms [78].  

The fast marching method is a boundary value formulation in terms of a function    ⃗  that 

describes the arrival time of the fluid front to a given point  ⃗; the solution surface for    ⃗  

can be obtained by solving the Eikonal equation [107]. The position of the fluid front,     , 

in a determined time instant,  , can be described as:      { ⃗       ⃗   } (Figure 8a). 

The Fast marching method is suitable for flows that always move exclusively positive or 

negative to the boundary (surface is exclusively contracting or expanding, but not both ones 

in a same problem), because a single crossing time is permitted at each grid point [57].   

The level set method is an initial value formulation, where a signed distance function,  

   ⃗   , representing the distance of any point  ⃗ to the interface      is considered [57]. 

This distance function is zero at the moving interface and can be calculated by solving a 

pure advection equation. The position of the fluid front,     , in a determined time,  , using 

the Level Set is described as:      { ⃗       ⃗     } (Figure 8b). The main advantage 

of the Level Set over the Fast Marching method is that the extended velocity can be both 
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positive and negative, which means that this method can describe both expanding and 

contracting surfaces in a same problem.  

The calculation of the extended velocity function has been deeply discussed because it is a 

key factor in the correct implementation of both methods [107], [108]. A mixed approach 

that have shown an acceptable efficiency in many problems consists on using the Fast 

Marching method to compute the extended velocity function of an interface that is being 

tracked by the Level Set method. Both the Fast Marching and the Level Set Method require 

the use of specific solvers for hyperbolic equations. Two schemes are commonly found in 

the literature [109], [110]: the Euler scheme and the Third order Runge-Kutta variation 

decreasing scheme (TVD). 

          
a) b) 

Figure 8 Fast marching and level set method for interface advancement. a) Fast 

Marching. b) Level Set. Source: Sethian [57] 

 

Finally, the volume of fluid techniques (VOF) are the most used for tracking the fluid front 

when FEM or CV are used to compute the pressure field and the normal velocities [3], [8], 

[22], [33], [40], [80], [94], [111]. In these techniques, a fluid volume fraction,   , is 

assigned to each control volume or element,  with      corresponding to the liquid phase 

and       to the gas phase, while the fluid front is located in the region where        

(Figure 9). The fluid volume fraction,   , can be determined by the solution of a pure 

advection transport equation (hyperbolic problem), which can be numerically instable due 

to the appearance of smooth shock profiles, requiring the use of specific solvers [22], [80], 

[111]. Another less rigorous but useful form to determine    is to consider the local mass 

balance at the control volumes or elements; in that case,    is also called the fill factor and 

accounts for the amount of liquid entering a control volume (conforming) or element (non-
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conforming) per unit volume [3], [8], [14], [33], [40]. Once the values of    in the control 

volumes or elements of the fluid front are known, interface capturing schemes are 

implemented to reconstruct the approximated fluid front shape, being one of the most 

applied the Flow Analysis Network (FAN) [3], [112], [113]. 

 

 

Figure 9 Volume of fluid techniques.  

 

The VOF techniques apply to mesh-fix approaches, where only one mesh is considered for 

the whole domain (saturated and non-saturated). On the contrary, in the mesh-moving 

approaches, only the saturated domain is meshed and the original mesh elements could 

evolve in size and shape (Lagrangian) or the mesh can be updated continuously (Eulerian) 

as the filling takes place [36]. In the mesh-moving approaches the mesh have element 

nodes corresponding exactly to the moving interface, allowing in this way the direct 

application of the interface dynamic condition. However, the computational cost of the 

mesh-moving Eulerian approaches could be considerably higher regarding the mesh-fix 

approaches since domain remeshing is required as the fluid front progresses, whereas, for 

the mesh-moving Lagrangian approaches, the original mesh could become significantly 

distorted and/or coarse as the filling occurs.  
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1.3.5 Influence of voids on the mechanical properties of composites materials 

The study of void formation in dual-scale fibrous reinforcements used in the processing of 

composites materials is encouraged by several reasons.  One of the most important is the 

high influence of the voids on the mechanical performance of the composites. Even though 

the present work is not aimed to simulate the mechanical response of fiber reinforced 

composites with the presence of induced voids, some works illustrating this are briefly 

presented in this subsection. 

In general, the study of the influence of the voids in the mechanical response of composite 

materials can be addressed by using analytical models, experimental tests and/or numerical 

simulations. Many authors agree about the low influence of the voids on the tensile 

properties of unidirectional, cross ply and woven fabric composites made with conventional 

reinforcements (like glass and carbon) when subjected to low strain rates [114]–[120]. 

However, for non-conventional composites or medium to high strain rate regimes, different 

results can be found in the literature.  For instance, in Protz et al. [119], non-crimp fabric 

glass/epoxy composites were manufactured using Vacuum Assisted Resin Transfer 

Molding (VARTM) and different void contents were obtained (between 0.02% and 4.53%) 

by modifying the processing conditions. The authors studied the influence of the void 

content on the tensile strength at several strain rates, namely,  ̇  [                

                ]   , concluding that this influence can be disregarded when the strain 

rate is below  ̇           , whereas for  ̇        the decrease of  the tensile strength 

with the void content is important and for the highest strain rate considered,  ̇        , 

this reduction is even more significant, which allows inferring that the tensile strength is 

more sensitive to the void content as the strain rate is higher. The influence of the voids on 

the mechanical properties of unidirectional flax fiber reinforced composites was 

experimentally investigated by Li [120], finding that the tensile strength, tensile modulus 

and ILSS are more sensitive to the void content in those kinds of composites than in glass 

and carbon reinforced composites. The influence of the void location was also studied in 

that work, concluding that the fracture modes of the composites are considerably affected 

by voids located inside the flax yarns, whereas the ILSS is highly influenced by voids 

located between the yarns. Conversely to glass and carbon reinforced composites, the 

presence of voids at the fiber/matrix interface leads to the decrease of the tensile strength.  
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Several authors are in agreement about the reduction of the interlaminar shear strength 

(ILSS) with the void content after a critical void content has been reached [114], [118], 

[121]–[124]. In Costa et al [121], the behavior of this property with the void content in 

carbon fiber reinforced composites considering two resin systems, epoxy and bismalemide, 

was studied, obtaining for both resin systems a similar critical void content (0.9%). 

Similarly, Jeong [122] and Guo et al [114] also reported the existence of a critical void 

content for the reduction of the ILSS, which is 1.11% for unidirectional carbon/epoxy 

laminates according to [114], and 0.8% for woven fabric graphite/epoxy and 1.0% for 

woven fabric graphite/polyimide laminates according to [122]. In DeAlmeida and Neto 

[123], a fracture criterion based on the Mar-Lin equation was proposed and used to define 

an acceptable void level according to the reduction of the ILSS. 

The influence of the voids on the flexural properties of composites has been widely studied 

as well. According to Guo [114], the concept of critical void content is also applicable to 

flexural properties, i.e., when a critical threshold is exceeded, the void content has a 

detrimental effect on the flexural properties. For void contents from 0.5 to 3.5%, Liu et al 

[115] concluded that the tensile modulus is practically insensitive to the void content, 

contrarily to the flexural modulus that decreases with such a content. The reduction of the 

flexural modulus,   ,  and flexural strength,    , with the void content was also reported by 

Hagstrand et al [116] in unidirectional glass/polypropylene composites beams, where a 

reduction of around 1.5% in those properties for each 1% increase in the void content was 

obtained. However, the authors also emphasized that the increase of the void content leads 

to the increase of the beam dimension and, consequently, of the moment of inertia,  , which 

in turn could bring about the increase of the bending rigidity,    , when the void content is 

below    .  

The influence of voids on the fatigue resistance of composites has been studied as well. For 

instance, Bureau and Denault [124] manufactured continuous  glass/polypropylene 

composites under different processing conditions of temperature, holding time, cooling rate 

and pressure to obtain laminates with different void contents. Several samples were 

obtained to carry out tensile, three-points bending and short beam shear tests, as well as 

flexural fatigue tests, finding that the behavior of the fatigue S-N curves is influenced by 

the void content by two reasons. The first one is that the fatigue strength coefficient is 
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directly proportional to the flexural strength, which decreases with the void content; the 

second one is that the fatigue strength exponent is inversely proportional to the ILSS, which 

decreases with the void content too. In a similar fashion, the flexural fatigue performance of 

unidirectional fiber reinforced composites produced by vacuum bag with void contents 

between 0.5% and 6% was studied by Chambers et al. [125]. According to the authors, in 

general, the void content affects the initiation and propagation of flaws, and consequently, 

the flexural fatigue performance. However, authors posed that the void content can be 

considered as a very simplistic variable to describe the influence of the voids on the fatigue 

life of the composites. For a same void content, different void sizes and locations could be 

expected, and these factors (void size and location) are strongly linked to the fatigue 

performance. The results of Chambers et al. [125]  suggested the existence of the critical 

void size (void area>0.03mm
2
) above which the influence of the voids on the flexural 

fatigue life is more significant. The authors also concluded that voids located at the 

midplane of the laminate have a more important influence on the fatigue life. 

According to Zhang [126], the impact resistance could be also affected by the void content.  

Impact tests in carbon/epoxy laminates with three porosity levels were conducted by the 

authors, finding that, for the same impact energy, the dent depth and damage area 

significantly increases with the void content, whereas the Tensile Strength After Impact 

(TAI) slightly decreases.  

The computational mechanics has noticeably contributed to the comprehension of the 

interaction between the voids and the mechanical response of the composite. Finite Element 

Analyses (FEA) of Representative Unitary Cells (RUC´s) with induced voids and being 

subjected to normal and shear loadings were performed by Huang and Talreja [117] with 

the purpose to determine the relationship between the void characteristics and the effective 

elastic constants. The FEA model was validated using a problem that admits analytical 

solution based on the theory of Mori-Tanaka, and then it was used to carry out a parametric 

study. According to the numerical results, the void content has an important effect on the 

out-of-plane modulus, whereas the in-plane moduli are less significant affected. For a 

constant void content, the void shape also influences the properties, with the flat voids 

having a positive effect on the in-plane moduli, but a negative one on the out-of-plane 

stiffness, and the long voids reducing the out-of-plane modulus, but having a negligible 
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effect on the in-plane stiffness. On the other hand, the effect of voids on the fracture 

behavior of woven fabric composites was numerically studied by Ricota et al. [127]. The 

beam-on-elastic-foundation theory was modified by the authors to account for the 

transverse shear effect and material orthotropy, and the resulting model was used to 

calculate the Mode I Strain Energy Release Rate (SERR) in a double cantilever beam 

(DCB) with the voids placed ahead of the crack tip. Two-dimensional finite element 

analyses were carried out to validate the analytical model. The influence of the size, shape 

and location of voids on the SERR was investigated, concluding that the increase of the 

void size and the decrease of the distance between the void and the crack tip for all kinds of 

voids considered, as well as the increase of the void aspect ratio for elongated voids, lead to 

the increase of the SERR. 

Finite Element Analyses (FEA) of the mechanical response of RUC‘s with different fiber 

volume fractions and void contents were also conducted by Dong [118] considering the 

properties of carbon/epoxy composites. The influence of the void content on the properties 

of laminae and laminates was studied, finding that the transverse properties of laminae 

(transverse modulus, in-plane shear modulus, transverse tensile strength, transverse 

compressive strength and in-plane shear strength) are significantly affected by the void 

content, as well as it is the ILSS of the laminate. The influence of the void content on the 

longitudinal modulus and longitudinal strength of the laminae is almost insignificant, 

confirming previous results.  Regarding the effective tensile strength and effective modulus 

of the laminate, the critical void content from which these properties reduce depends on the 

stacking sequence. As reasonable, for laminates conformed with plies predominantly 

oriented along or in a direction close to the loading axis, the reduction of the mentioned 

properties with the void content could not be significant.   
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1.4 Objectives 

General objective.  

Implement BEM techniques in the simulation of the impregnation phenomena of dual-scale 

porous media used in the processing of composites materials.  

Specific objectives. 

• Analyze the influence of processing, material and geometric variables on the void 

formation by mechanical entrapment of air, by mean of the simulation of simultaneous 

filling of RUC‘s. 

• Analyze the influence of the type of formulation for coupled problems free fluid-porous 

media (Stokes-Darcy and Stokes-Brinkman) and of the interface matching conditions on 

the void formation process, by mean of the simulation of simultaneous filling of RUC‘s. 

• Devise a new methodology to determine the influence of macroscopic parameters on the 

saturation rate of the bundles during the RUC filling, and, in this way, determine sink 

functions to be used in macroscopic problems (filling of cavities). 

• Determine the influence of the RUC geometry on the relationship between the effective 

unsaturated permeability and the saturation degree, by mean of filling simulations 

assuming full filled channels. 

• Study the critical conditions associated to the compressibility, motion, migration and 

splitting of the bubbles formed in the bundles, by mean of filling simulations assuming 

full filled channels. 

• Analyze the influence of processing parameters in the filling of cavities considering the 

partial saturation of the RUC‘s (sink effect) at both constant pressure and constant flow 

rate regimes. 

 

1.5 Methodology 

The present work is developed in six main stages. The first two stages correspond to 

Chapters 1 and 2, respectively. In the present Chapter 1, the problem statement, literature 

review, objectives and methodology are presented, whereas in the Chapter 2 the theoretical 

background supporting this work is summarized.  
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The third stage tackles the simulation of simultaneous filling of channels and bundles inside 

the RUC using two formulations, Stokes-Darcy and Stokes-Brinkman. This stage is aimed 

to study the influence of processing, geometric and material variables, as well as the 

influence of the formulation type (Stokes-Darcy and Stokes-Brinkman) and interface 

matching conditions on the size, shape and location of voids formed by mechanical 

entrapment of air at mesoscopic scale.  In this stage two types of numerical codes are 

developed: codes to solve the governing equations and codes to track the fluid front. 

Regarding to the first kind of codes, BEM-based algorithms for Stokes-Darcy and Stokes-

Brinkman problems are developed, and the validation of such algorithms is done with 

classical problems admitting analytical solutions. Once the validation has been done, the 

codes are implemented in moving-boundary problems applied to the processing of 

composites and results are compared with previous works. This stage is developed in 

Chapters 3 and 4. 

In the fourth stage it is considered the impregnation of bundles inside the RUC when the 

channel is totally filled with liquid using the Stokes-Darcy formulation. The goals of this 

stage can be summarized as follow: 1) study the dynamic evolution of voids formed inside 

the transverse bundle, considering the processes of compression, motion, migration and 

splitting, 2) devise a new methodology for determining a sink function in terms of 

macroscopic parameters in order to conduct macroscopic simulations in the following 

stage, 3) determine the influence of the RUC geometry on the curves of effective 

unsaturated permeability against saturation degree. The Stokes-Darcy code developed in 

the Stage 3 is adapted to the particular problems of this fourth stage, where considerable 

amount of simulations are required with the purpose to deduce sink functions from the fit 

model that describes the behaviour of the saturation rate in terms of several macroscopic 

variables. This stage is developed in Chapters 5 and part of Chapter 6. 

The stage 5 is devoted to the unidirectional filling of cavities taking into account the partial 

saturation of the RUC’s using an Equivalent Darcy formulation. The main purpose of this 

stage is to analyse the influence of the inlet pressure, inlet flow rate, vacuum pressure and 

air entrapment parameter on the behaviour of the global saturation in dual scale fibrous 

reinforcements. The sink functions obtained in Stage 4 are used to deal with the multiscale 

coupling between the macroscopic and mesoscopic fillings by means of a lumped strategy. 
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A DR-BEM code for the solution of Poisson type equations with non-linear terms is 

developed. This code is validated with an analytical solution of a simple macroscopic 

problem at constant inlet pressure regime. The assessment of the ability of the sink 

functions to predict physically consistent macroscopic results is done by comparing the 

numerical pressure profile with previous experimental works. This stage is developed in the 

last part of Chapter 6. In the last stage, Chapter 7 presents the concluding remarks, 

contributions and future works.   
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2. THEORETICAL BACKGROUND 

In the present section some general concepts and equations supporting this research are 

succinctly presented, but the specific conceptual, mathematical and numerical frameworks 

of each topic are presented in the next chapters for sake of clarity. Firstly, the general 

description of Liquid Composites Molding (LCM) processes is done, identifying the 

principal stages and advantages of these processes. Then, the deduction of the governing 

laws of dual-scale fibrous reinforcements from the volume-averaging method is briefly 

presented in order to identify the physical considerations that lead to the Darcy and 

Brinkman equations in its different forms at mesoscopic and macroscopic scale. The 

principal kinds of permeabilities found in scientific literature and the general formulae for 

the calculation of the capillary pressure in open channels and porous media are exposed 

thereupon and, finally, the deduction of the boundary integral formulations for the Laplace 

and Stokes equation is concisely shown. Some concepts and equations presented here are 

repeated in the following chapters to make easier the reading.  

2.1 Liquid Composites Molding 

The processing techniques of composites materials can be grouped into two families: open 

molding techniques and closed molding techniques. In the first ones, the part is 

manufactured in a one-side mold, while in the second ones, mold and counter-mold are 

required. Examples of open molding techniques are [128]: hand lay up, spray up, filament 

winding, vacuum bagging, centrifugation, among others. On the other hand, in the family of 

closed molding techniques, the Liquid Composites Molding (LCM) techniques can be 

highlighted. In the LCM techniques, the dried fibrous reinforcements, which can be 

previously preformed by mean of binders, heat and/or radiation (Figure 10a), are positioned 

into a cavity (Figure 10b) and then they are compacted by the counter-mold (Figure 10c); 

these reinforcements assume the shape of the cavity and are deformed, according to their 

drapeability, due to the compaction pressure (Figure 10b-c); then, a pressure-driven and/or 

vacuum-driven resin flow is injected to fill the void spaces, process in which the capillary 

pressure and/or gravity can play an important role (Figure 10d). Subsequently, the total 

resin curing takes place (Figure 10e), the part is removed from the mold and finishing 

operations could be required (Figure 10f). Both the injected resin and the molds can be 
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heated to facilitate the processes of impregnation, compaction and curing. The most 

common LCM techniques are [129]:  Resin Transfer Molding (RTM), Vacuum Assisted 

Resin Transfer Molding (VARTM), Structural Reaction Injection Molding (S-RIM), Co-

Injection Resin Transfer Molding (CIRTM),  Seemann‘s Composites Resin Infusion 

Molding (SCRIM), RTM light, Compresion Resin Transfer Molding (CRTM) and Resin 

Infusion between Double Flexible Tooling (RIDFT). The LCM techniques are massively 

used in many industrial sectors: aerospace, aeronautical, military, transport, construction, 

naval, sport equipment, safety, alternative energies, among others. The massive acceptance 

of LCM techniques in the industry is supported by the advantages of these techniques with 

respect to other ones, some of which are briefly mentioned in the following bullets: 

 The dimensional control of the parts is very good. 

 The surface finishing of the pieces is excellent. 

 These techniques allow using many kinds of high-performance fibrous reinforcements 

and resins not usable in other processes. 

 High fiber contents can be reached with these techniques, which imply parts with better 

mechanical properties. 

 These techniques allow controlling the void formation and remotion by modifying 

material, geometric and processing parameters that are more complicated or even not 

possible to control in other techniques. 

 The manufacturing speed is faster than in other techniques, as the open molding 

techniques for example. 

 These techniques allow incorporating different kinds of fibrous reinforcements at 

several orientations to obtain pieces with mechanical properties fitted to almost any 

application.    

 Almost any kind of cores can be used in the manufacturing of parts with these 

techniques, allowing in this way the fabrication of lightweight structures, thermal, 

acoustic and electric insulated panels, impact-resistant arrangements, among others. 

 These techniques are environmentally friendly since the styrene emissions are 

manageable and the waste of material is lower with respect to other techniques. 
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 Flexibility in the geometrical design is one of the most important features of these 

techniques, that is, parts of complex geometries can be obtained because the addition of 

inserts and the integration of several complex cavities are allowable with LCM.  

  

 

                  
a) b) 

  

 

       
c) d) 

 

 

         

e) f) 

Figure 10 General stages of LCM . a) Preforming of fibers (Optional), b) Fiber 

positioning, c) Compaction, d) Resin injection, e) Resin curing, f) Demolding and 

finishing.   
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2.2 Modeling of dual-scale fibrous reinforcements  

2.2.1 Governing equations of porous media 

Volume-averaged quantities.  

In a porous medium, a Representative Unit Cell (RUC), named also Representative 

Elementary Volume (REV), is a portion of the space associated to each point, Q, that is 

used to describe the volume-averaged properties of the medium, as shown in Figure 11.  

The RUC shall be large enough to average out the local variations of the properties under 

certain scales constraints, but small enough to prevent averaging out long range variations. 

The RUC must be much smaller than the total domain of the macroscopic problem, but 

bigger than the individual pores of the medium [130], as it is also shown in Figure 11, 

where it is observed that three phases can coexist into a RUC, namely, solid, liquid and gas. 

 

Figure 11 General scheme of a Representative Unit Cell (RUC).  

 

The properties or physical variables of the points inside the RUC can be averaged with 

respect to the total RUC volume or to the volume of one phase. Therefore, three types of 

averages can be defined for any property or variable    ⃗    [130]: 
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 Spatial average: The average of the values of    ⃗    in all points of the RUC regarding 

the total volume of the RUC,     . 

〈 〉  
 

    
∫    ⃗     
    

  (1a) 

 Phase average of phase β: The average of the values of    ⃗    in the points belonging 

to phase β regarding the total volume of the RUC,     . 

〈  〉  
 

    
∫    ⃗        

   (1b) 

 Intrinsic phase average of phase β: The average of the values of    ⃗    in the points 

belonging to phase β regarding the total volume of the phase  ,    

〈  〉
  

 

  
∫    ⃗        

   (1c) 

The relationship between  〈  〉 and 〈  〉
   is as follows:  

〈  〉    〈  〉
  (2), 

where          ⁄  is the porosity of the phase  . 

The following theorems are very useful in the deduction of the volume-averaged 

conservation equations for porous media [131]: 

Theorem of phase volume-averaged gradient for scalar quantities,   : 

〈
   

   
〉  

 〈  〉

   
 

 

    
∫      ̂

     
  (3a) 

Theorem of phase volume-averaged divergence for vector quantities,    
: 

〈
    

   
〉  

 〈   
〉

   
 

 

    
∫    

   ̂
     

  
(3b) 

Theorem of phase volume-averaged time derivative for scalar quantities,   : 

〈
   

  
〉  

 〈  〉

  
 

 

    
∫     

 
 
   ̂

     
   (3c), 

where    ̂
 and   

 
 

 represent the      component of the normal vector and of the 

deformation velocity of the contour of the phase  , whereas    is the area of such contour.  

 

Mass conservation equation. 

The general form of the volume-averaged mass conservation equation for the phase   is as 

follows: 
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〈
   

  
〉  〈

 (     )

   
〉     

(4), 

where    and    
 are the density and     component of the pointwise velocity in the phase 

 , respectively. If the boundaries of the phase   are not deformable, the application of 

theorems 3b and 3c to the terms of Eq. 4 leads to the following equation: 

 〈  〉

  
 

 〈     
〉

   
  

 

    
∫      

   ̂
     

   
(5), 

 

Momentum conservation equation. 

If the phase   is non-deformable, the general form of the volume-averaged momentum 

equation is as follows: 

 〈     
〉

  
 〈

 (        
)

   
〉  〈

 (    
)

   
〉  〈     

〉      
(6), 

where     
 and    

 are the pointwise Cauchy stress tensor and body acceleration, which are 

defined as: 

    
          (

    

   
 

    

   
)   

(7a) 

   
  

     

   
  (7b), 

where   and   stand for the gravity and height with respect to a reference system, whereas 

   is the fluid viscosity in the phase   . 

If the theorems of 3a and 3b are applied in Eq.6, the equation 7b is substituted in the 

resulting expression and the terms are properly associated, the following is obtained:  

 〈     
〉

  
 

 〈        
〉

   
 

 〈    
〉

   
   

 〈  〉

   
 

 

    
[(∫      

   
   ̂

     
)  

 

  
 (∫     

   ̂
     

)    ∫      ̂
     

]      

(8) 

 

Then, the substitution of the Eq.7a into 8 and the application of theorems 3a and 3b 

generate the next equation: 

 〈     
〉

  
 

 〈        
〉

   
 

 〈  〉

   
      

  〈   
〉

   
    

  〈   
〉

     
   

 〈  〉

   
 (9) 
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[(∫      

   
   ̂

     
)  (∫     

   ̂
     

)    ∫      ̂
     

 

  
 

   
(∫    

   ̂
    

   ̂
     

)]          

Considering the Eq.2, the phase-volume averaged pressure can be written as  

〈  〉    〈  〉
  and the pressure gradient can be expanded as: 

 〈  〉

   
   

 〈  〉 

   
 〈  〉

    

   
  (10) 

By doing      in Eq.3a, it is obtained that  〈  〉    ⁄        ⁄ ∫    ̂
     

, and 

Eq.10 can be written as:  

 〈  〉

   
   

 〈  〉 

   
 

〈  〉 

    
∫    ̂

     
  (11) 

From (11) in (9), applying index contraction and associating, the next equation is obtained: 

 〈     
〉

  
 

 〈        
〉

   
   

 〈  〉 

   
   

  〈   
〉

   
    

  〈   
〉

     
   

 〈  〉

   
 

 

    
[(∫      

   
   ̂

     
)  (∫     

   ̂
     

)    ∫      ̂
     

 

  
 

   
(∫    

   ̂
    

   ̂
     

)  〈  〉
 ∫    ̂

     
]      

(12) 

 

Under certain scales constraints, which are mentioned and applied in Chapter 6 and 

explained in detail in [130], the inertial effects in the porous medium can be neglected, and 

the firsts two terms of Eq.12 can be dropped, as well as the first integral appearing in such a 

equation. After some terms association, the following is obtained: 

  
 〈  〉 

   
   

  〈   
〉

   
    

  〈   
〉

     
   

 〈  〉

   
 

 

    
* (∫     

   
̂      

)  

  ∫      ̂
     

 〈  〉
 ∫    

̂      
+  

  

    

 

   
(∫    

   
̂     

   ̂
     

)           

(13) 

By defining the viscous drag interaction force as: 

   
 

 

    
* (∫     

   ̂
     

)    ∫      ̂
     

 〈  〉
 ∫    ̂

     
+  

    (    
)
  

〈   
〉          

(14), 

the Eq.13 is reduced to: 
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 〈  〉 

   
   

  〈   
〉

   
    

  〈   
〉

     
   

 〈  〉

   
     (    

)
  

〈   
〉  

  

    

 

   
(∫    

   ̂
    

   ̂
     

)         

(15) 

where (    
)
  

 is the inverse of the permeability tensor of the phase  ,     
. 

2.2.2 Governing equations for dual-scale porous media at mesoscopic scale 

At mesoscopic scale, several approaches can be identified in the literature for the flow 

modeling in the channels and bundles inside the RUC (See Figure 1b,c). The bundles are 

usually conceived as single-scale porous media containing two phases behind the fluid 

front: liquid (l) and solid (s) [6], [7], [12]. Considering incompressible resin, non-

deformable and impenetrable fibers and neglecting gravitational effects, Eq.5 and Eq.15 for 

    reduce to: 

 〈   
〉

   
    (16a) 

  
 〈  〉

 

   
   

  〈   
〉

   
      (    

)
  

〈   
〉         (16b) 

Eq. 16b is the Brinkman law that can be also written as: 

 〈  〉
 

   
     

  〈   
〉

   
      (    

)
  

〈   
〉         (17), 

where          ⁄  is the effective viscosity, which, theoretically, is the ratio between the 

real liquid viscosity and the porosity, but that can assume another values according to the 

matching conditions between the channels and the tows as shown in Chapter 4.  

Eq.17 can reduce to the Darcy law under the following scale restrictions:          
     

and         [130], where   is the characteristic length of the macroscopic saturated 

domain, whereas      and    are the characteristic lengths of the RUC and the fluid phase, 

respectively, as shown in Figure 11 (    in this case since the air is not considered). In 

Figure 12 two RUC‘s with the same fluid porosity,   , are considered, with the first one 

satisfying the second Darcy restriction, i.e.,        , while the second one does not. This 

means that the Darcy simplification is not strictly associated to the value of the porosity,   , 

but to the pore distribution itself, with higher probability to be complied when    is low. 

For instance, as mentioned by [6], the Darcy simplification is not possible if the RUC‘s 
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comprise the interface channel-bundle. In the present work, the flow modeling in the tows 

is carried out by the Darcy law in Chapter 3 and by the Brinkman law in Chapter 4.   

 

 

Figure 12 RUC’s with the same porosity modeled with different laws (Darcy and 

Brinkman).  

 

For the channels, the flow modeling can be carried out using the Navier-Stokes equation, 

which considerably simplifies to the Stokes equation when the channel Reynolds number is 

small. This is the situation considered here given the usual conditions of LCM processes. 

Other authors have modeled the flow in the channels using the Darcy law with an 

equivalent permeability [3], [25], [79].  This last approach is compared with the 

implemented Stokes-Darcy approach in Chapter 3. 

 

2.2.3 Governing equations for dual-scale porous media at macroscopic scale  

At macroscopic scale, two approaches to model the unsaturated filling of cavities can be 

mentioned. In the first one, a fluid phase    , including both liquid     and gas    , is 

considered,  and the gas density and velocity are neglected, obtaining the following mass 

conservation equation from Eq. 5 for incompressible liquids: 

   

  
 

 〈   
〉

   
  

 

    
∫    

   ̂
     

  (18) 

By defining the saturation as the ratio between the volume of the liquid and volume of the 

fluid phase,       ⁄ , considering that          ⁄  and taking into account the 

impermeability and non-deformability of the fibers, i.e.,    
   in   , Eq.18 can be 

written as:  
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 〈   
〉

   
    (19), 

where    is the porosity of the fluid phase, which remains constant.  

Doing     in Eq.15, considering the mentioned assumptions, neglecting the gravitational 

effects and applying the Darcy scale constraints, the following momentum equation is 

obtained: 

〈   
〉   

    

  

 〈  〉
 

   
  (20), 

As 〈   
〉  〈   

〉 and considering that both the permeability and the capillary pressure shall 

be considered function of the saturation,  , Eq.20 can be substituted into Eq.19 to obtain the 

well-known Richards equation: 

  
  

  
 

 

   
(
    

   

  

 〈  〉
    

   
)      (21), 

where     
    is also known as the effective unsaturated permeability, which is studied in 

Chapter 6 of this work. 

The second approach for the macroscopic modeling of dual-scale porous media, which is 

employed in the present work, was proposed by [6]. Two phases are considered: the 

channels or gaps (g), which are assumed to be initially filled of liquid, and bundles or tows 

(t), which are considered initially empty (See Figure 1c). The mass conservation equation 

can be obtained from Eq. 5 by doing    , considering an incompressible fluid, assuming 

non-deformable tows and representing the gap-tow interface as   : 

 〈   
〉

   
       

(22), 

where          ⁄ ∫     
    
̂        

 is the sink term that arises in this approach 

considering that the tows are permeable. 

On the other hand, the momentum equation is achieved from Eq.15 by doing    . 

Substituting Eq.22 in the resulting equation, neglecting gravitational effects and organizing 

terms, the following is obtained: 

 〈  〉 

   
      

  〈   
〉

   
    (    

)
  

〈   
〉       

 

   
       

(23), 
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where      
     ⁄  is the effective viscosity in the gaps or channels, while     

            ⁄ ∫     
    
̂      

    
̂        

 is interfacial kinetic effects tensor. 

According to [6], Eq.23 is the equivalent Brinkman equation for dual-scale porous media. 

The second term of this equation can be dropped under the same two scale restrictions 

abovementioned (See Figure 11 and Figure 12) applied to the gap phase; the second 

restriction reads        , with    as the characteristic length of the gaps. According to 

[6], [14], the last term of Eq.23 is likely to become important in regions where the gradient 

of    is very large, but for woven fabrics, the not consideration of this term is an initial 

good approximation that significantly simplifies the problem. Details about the scale 

restrictions that shall be complied here to use the Darcy law in the macroscopic modeling 

are shown Chapter 6.  

 

2.3 Permeability and capillary 

Permeability. 

The permeability is the property that indicates the easiness of impregnation of fibrous 

reinforcements. Several kinds of permeabilities can be identified according to the approach 

used to study the impregnation phenomenon. The permeability obtained from experimental 

unidirectional or radial injections is known as the apparent permeability,     , since the 

mathematical model is based on the simple continuity and Darcy laws for single-scale 

porous media, which is not necessarily valid for dual-scale porous media where the delayed 

absorption of resin into the tows (sink term) shall be considered, as shown in Eq.22. Tests 

to determine      can be classified into two main families: saturated and unsaturated tests. 

In the former ones, the preform is totally filled with the injection liquid at constant flow 

rate,     , and two values of pressure,    and   , are obtained in points separated by a 

distance    , in order to calculate the apparent saturated permeability,         ,  as follows:   

          
    

 

    

     
  (24), 

where   and   are the fluid viscosity and cross section area of the mold. On the other hand, 

in the unsaturated tests, which are usually conducted at constant pressure,     , the 

permeability is calculated according to the fluid front positions in the time. In unidirectional 
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injections, the apparent unsaturated permeability can be calculated in three ways as follows 

[132]: 

Apparent unsaturated elemental permeability: 

        
     

  

 
 (

                 

       
 

                 

       
)  (

        

        
)   (25a) 

 

Apparent unsaturated pointwise permeability: 

        
      

   [       ]
 

    (        )
   (25b) 

 

Apparent unsaturated interpolated permeability: 

        
        

∑ .        √  (        )/
 
   

 ∑   (        )
 
   

   (25c) 

where   and     are the global porosity of the preform and the fluid front pressure, 

respectively, while         and           represent the fluid front position in times    and 

    , respectively. On the other hand, in radial injections, the apparent unsaturated 

permeabilities in the principal directions are calculated using the following equation [133], 

[134]: 

         
       *   

  (   (
   

  
)   )    

 +  
  

 (        )  
        (26a) 

         
       *   

  (   (
   

  
)   )    

 +  
  

 (        )  
    (26b), 

where     and     are the fluid front positions in the principal  directions of permeability (  

and  ), while    and    represent the dimensions of the inlet port in the principal directions 

of permeability.   

As the modeling of dual-scale fibrous reinforcements using the apparent permeabilities 

could be inaccurate, others types of theoretical and numerical models are required 

according to the governing laws presented in Sections 2.2.2 and 2.2.3. At mesoscopic scale 

(filling of RUC‘s), if the tows are considered as a bank of aligned circular fibers, several 

models can be used to compute the main tow permeabilities,    and    [23], [24], [102], 

[135], with the Gebart model [135] as one of the most accepted: 

        
     (    )

 
(      

 )⁄         (27a) 
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   (√        ⁄   )

   
      (27b), 

where         is the fiber volume fraction of the tow, with    as the tow porosity, 

whereas the parameters      and        depends on the type of fibers arrangement. 

The modeling of the filling in dual-scale fibrous reinforcements at macroscopic scale using 

the Richards equation, Eq.21, requires to known a relationship between the effective 

unsaturated permeability,        , and the saturation,  . For the infiltration of soils, some 

empirical relationships have been established [136], [137], as well as for the infiltration of 

non-woven preforms [138]–[140], however, for woven or cross ply fabrics, as the ones 

considered here, no empirical relationships between         and   are known in the 

literature. It is important to mention that when    ,      is called the effective saturated, 

absolute or intrinsic permeability,         , whose behavior in dual-scale fibrous 

reinforcement has been previously studied by several authors [20], [23], [24], [85], [98]. In 

the ideal case,                   (Eq. 24). Another common term found in composites 

literature is the relative permeability,      , as defined by: 

      
       

        
   (28), 

On the other hand, the macroscopic modeling of dual-scale fibrous reinforcements using 

the approach of Pillai [6], Eq.(23), implies to know the gap or channel permeability,   , 

which is not dependent on the channels saturation since it is assumed that channels are 

totally filled with liquid before the impregnation of the bundles occurs at any RUC. This 

permeability indicates the easiness of impregnation of the network conformed by the 

channels assuming impermeable tows and can be determined from numerical simulations at 

mesoscopic scale by prescribing a pressure gradient in the RUC and applying a Stokes-

Darcy formulation, as done in Chapter 6. The permeability of complex cell-structures has 

been determined from numerical simulations in [139], [141]–[143]; in the present work, the 

gap permeability,   , is determined in Chapter 6 for a simpler RUC geometry using the 

BEM results.   

Other type of permeability that is very common in the scientific literature is the effective 

permeability in the direction determined by an angle   ; this permeability can be computed 

in terms of the principal permeabilities,    and   , as follows [144]: 



50 
 

         
     

                       
  (29), 

where    is the angle between the given direction vector and the major axis of permeability. 

 

Capillary. 

The capillary pressure is the pressure difference existing across the interface separating two 

immiscible fluids generated by the difference between the adhesive and cohesive forces. In 

an open channel, the expression for the capillary pressure can be obtained straightforwardly 

by considering a differential element of the interface, as shown in Figure 13.  

 

 

Figure 13 Balance of forces in the interface liquid-gas in open channels.  

 

The forces equilibrium equation is as follows: 

    (         )
 
  (           )   (           ) (30), 

where   is the surface tension in the interface liquid-gas. Considering that          

because   is very small and taking into account that             ⁄    ⁄  and         

    ⁄    ⁄ , the following is obtained after solving for      in Eq.30: 

      (
 

  
 

 

  
)  (31), 

or in terms of the curvatures,    and   : 

               (32), 
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The sign of the capillary pressure in the numerical implementation depends either on the 

sign of the curvatures and on the orientation of the normal vector along the interface. In this 

work, the curvature is calculated in the wetting phase and the normals are outwardly 

oriented from this phase towards the non-wetting phase; hence, the sign of Eq.32 is 

changed in the kinematic condition applied to the channel fluid front. 

In porous media, the deduction of expressions for      is not so trivial considering that  

     depends on the architecture of the porous medium and the flow orientation. In a bank 

of parallel fibers, when the flow goes along the fibers direction, it is supposed that the inter-

fiber spaces act as capillary tubes having an equivalent capillary ratio,    , as it can be 

appreciated in Figure 14. 

 

 
Figure 14 Balance of forces in the interface liquid-gas in capillary tubes.  

 

The force equilibrium equation in this case is as follows: 

         
               (33), 

with   as the contact angle. Solving for     , the well-known Young-Laplace equation for 

capillary tubes is obtained: 

     
        

   
  (34), 

where the equivalent capillary ratio can be approximated as               ⁄ , with    

as the fiber radius, leading to the following expression: 

     
              

    
  (35) 

In a similar fashion, it can be demonstrated that the capillary pressure for flow across a 

bank of aligned fibers (perpendicular to fibers) is: 
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   (36) 

When the flow goes oblique to fibers, the calculation of      has been tackled by 

introducing experimental shape factors in the Young Laplace equation in such a way that 

     ranges between the values defined by Eqs. (35) and (36) [75], [145]–[147]. In the 

present thesis, a flow direction-dependent formula for the capillary pressure not 

incorporating empirical factors is obtained based on the work of Massodi and Pillai [148], 

in which a general formula for      in terms of microstructure parameters was deduced on 

the basis of the energy balance principle. The expression obtained for       is presented in 

Chapter 3. 

It is important to remind that empirical relationships between      and   are required for 

the solution of the Richards equation. This topic is out of the scope of the present work, but 

could be addressed in future researches using BEM simulation. The treatment of this 

particular issue in non-woven samples can be found in [138]–[140].  

 

2.4 Boundary Element Techniques  

The deduction of the boundary integral formulations for the Laplace and Stokes equations 

is briefly presented here since these formulations are used in the BEM solution of coupled 

Stokes-Darcy problems for isotropic porous media, being this the simplest case. The BEM 

formulation for the solution of coupled Stokes-Darcy problems for anisotropic porous 

media is presented in Chapter 3, while the DR-BEM formulation for coupled Stokes-

Brinkman problems is shown Chapter 4. In Chapter 6, the DR-BEM formulation to solve 

multi-scale problems of partially saturated flow using a lumped strategy is presented. 

2.4.1 Green identities and reciprocal relation  

Laplace equation [149] 

For any pair of twice differentiable functions,   and  , the following is valid: 

 

   
( 

  

   
)   

   

   
  

  

   

  

   
  (37), 

which can be rewritten as follows: 
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( 

  

   
)  

  

   

  

   
  (38), 

Eq.38 is known as the First Green Identity. If the functions   and   are interchanged in 

Eq.38 and the resulting expression is subtracted from Eq.37, the Second Green Identity is 

obtained: 

 
   

   
   

   

   
  

 

   
( 

  

   
  

  

   
)  (39) 

If the functions   and   satisfies the Laplace equation, the left hand side terms of Eq.(39) 

vanish, obtaining the reciprocal relation for the Laplace equation: 

 

   
( 

  

   
  

  

   
)      (40), 

Stokes equation [150] 

Two independent velocity fields satisfying mass conservation,    and   
 , and pressure 

fields,    and   
 ,  with corresponding stress tensors     and     

 , are considered. Similarly 

to Eq.37, the following is valid: 

 

   
(  

    )    
     

   
 

   
 

   
     (41) 

Applying the definition of stress tensor, i.e.,            (      ⁄        ⁄ ), in the 

last term of the Eq.41, the following is obtained:  

 

   
(  

    )    
     

   
  

   
 

   
     

   
 

   
(
   

   
 

   

   
)   (42), 

where the second right-hand side term is dropped applying index contraction and mass 

conservation, i.e.,  (   
    ⁄ )         

    ⁄    . Reorganizing, the counterpart 

expression of Eq.38 is obtained as follows: 
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(
   

   
 

   

   
)   (43), 

and following a similar procedure to the mentioned above for the Laplace equation, the 

counterpart of Eq.39 and the reciprocal relation for the Stokes equation are gotten as 

follows: 
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 )   (44) 

 

   
(  

          
 )     (45) 
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It is important to highlight that Eq.45 is valid provided that both solutions satisfied the 

Stokes equation. 

2.4.2 Boundary integral formulations 

Laplace equation [149] 

The singularly forced Laplace equation in 2D is defined as: 

    

   
 
   ( ⃗   ⃗)     (46),  

where   ( ⃗   ⃗) is the Dirac delta function in two-dimensions,  ⃗ is the field point and  ⃗ is 

the source point. The function    satisfies the Laplace equation everywhere with exception 

of the point  ⃗, where it is singular. The solution of the Eq.46 in unbounded domains is the 

free space Green‘s function and is given by: 

  ( ⃗  ⃗)   
 

  
       (47),  

with   | ⃗   ⃗| as the distance between the field and source point. 

In the Eq.39, it is considered that     and      , with   as a solution of the Laplace 

equation, i.e.,       
 ⁄   . Additionally, considering that        

 ⁄     ( ⃗   ⃗) from 

Eq.46, the Eq.39 becomes: 

    ( ⃗   ⃗)  
 

   
.   ⃗ 

   ( ⃗  ⃗⃗)

   
   ( ⃗  ⃗)

    ⃗ 

   
/  (48) 

Taking the integral of Eq.48 over the domain   and applying the divergence theorem in the 

right-hand side terms, the following equation is obtained: 

∫    ( ⃗   ⃗)  
 

 ∫   ( ⃗  ⃗)   ⃗   
 

 ∫   ( ⃗  ⃗)   ⃗   ̂   
  (49), 

where   ̂ is the outward normal vector,   ( ⃗  ⃗)  (   ( ⃗  ⃗)    ⁄ )  ̂ and  ( ⃗  ⃗)  

(  ( ⃗  ⃗)    ⁄ )  ̂. The first right hand side integral is the Single Layer Potential (SLP), 

while the second one is the Double Layer Potential (DLP). For interior and exterior points, 

the integral of the left hand side can be dealt using the Dirac delta properties, whereas for 

points lying on the boundary, the continuous and discontinuous properties of SLP and DLP 

needs to be considered. After solving the left hand side integral, the next expression is 

obtained: 
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 ( ⃗) ( ⃗)  ∫   ( ⃗  ⃗)   ⃗   
 

 ∫   ( ⃗  ⃗)   ⃗   ̂   
  (50), 

where: 

 ( ⃗)  {

         ⃗⃗⃗             

      ⁄           ⃗⃗⃗                            

         ⃗⃗⃗             

 

with   as the solid angle that has a value of     for smooth boundaries.   

 

Stokes equation [150] 

The singularly forced Stokes equation in 2D is defined as: 

    
 

   
   ( ⃗   ⃗)      (51),  

or equivalently as: 

 
   

   
  

    
 

   
    ( ⃗   ⃗)      (52),  

The velocity and pressure fields,   
  and   , as well as the stress tensor    

 , corresponding 

to the solution of Eqs. 51 and 52, along with the solution of mass conservation equation, are 

the fundamental solutions, which represent the Stokes flow solution when a point force is 

applied in the point  ⃗. In Eq.51,    is a vector indicating the strength and magnitude of the 

applied force. The fundamental solutions are given by: 

 

For the velocity: 

  
 ( ⃗  ⃗)  

 

   
   ( ⃗   ⃗)     (53a)  

For the pressure: 

  ( ⃗  ⃗)  
 

  
  ( ⃗   ⃗)     (53b)  

For the stress tensor: 

   
 ( ⃗  ⃗)  

 

  
    ( ⃗   ⃗)     (53c),  

 

where    ( ⃗   ⃗),   ( ⃗   ⃗) and     ( ⃗   ⃗) are the Green‘s functions. In the case of 

unbounded domains (free-space), the Green‘s functions in 2D are as follows: 
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For the velocity: 

   ( ⃗   ⃗)    (
 

 
)     

  ̂  ̂

     (54a)  

For the pressure: 

  ( ⃗   ⃗)   
  ̂

  
   (54b)  

For the stress tensor: 

    ( ⃗   ⃗)     ( ⃗   ⃗)     .
    ( ⃗  ⃗⃗)

   
 

    ( ⃗  ⃗⃗)

   
/    

  ̂  ̂  ̂

      (54c),  

where   ̂        and   | ⃗   ⃗|. 

 

In the Eq.44,   
  and    

  are taken as the fundamental solutions defined in Eqs.53a and 53c, 

while     and     are considered solution of the Stokes equation. Therefore, the following is 

valid:        ⁄    and     
    ⁄     ( ⃗   ⃗)   from Eq.51. Taking into account the 

symmetry property of the stress tensor, it is also valid:        ⁄    and     
    ⁄  

   ( ⃗   ⃗)  . As Eq.44 is scalar, it is possible to interchange indexes in the left hand side 

terms, i.e.,     and    . Besides, as the vector    is arbitrary, it can be set to one. These 

considerations lead to the following vector equation: 

  ( ⃗   ⃗)   
 

   
.

 

   
   ( ⃗   ⃗)     ⃗      ⃗ 

 

  
    ( ⃗   ⃗)/  (55)  

 

Taking the integral of Eq.55 over the domain   and applying the divergence theorem in the 

right-hand side terms, the following equation is obtained: 

∫   ( ⃗   ⃗)   
   ∫

 

   
   ( ⃗   ⃗)     ⃗   ̂   

 ∫     ⃗ 
 

  
    ( ⃗   ⃗)

 
  ̂     (56), 

which can be rewritten, considering the symmetry property of the stress tensor, of the 

Green‘s functions for the velocity and of the Green‘s functions for the stress tensor, i.e., 

       ,        , and          , and relabeling indexes (       ), as follows: 

∫   ( ⃗   ⃗)   
   ∫

 

   
   ( ⃗   ⃗)     ⃗   ̂   

 ∫     ⃗ 
 

  
    ( ⃗   ⃗)

 
  ̂      (57) 

 

Considering the definition of the traction vector,         ̂, and the following terms: 
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( ⃗  ⃗)   

 

   
   ( ⃗   ⃗)   (58a) 

   ( ⃗  ⃗)   
 

  
    ( ⃗   ⃗)  ̂  

 

  
    ( ⃗   ⃗)  ̂  (58b), 

the Eq.57 can be rewritten as:  

∫   ( ⃗   ⃗)   
   ∫    ( ⃗  ⃗)    ⃗  

   ∫   
 
( ⃗  ⃗)    ⃗    

  (59) 

with the first integral of the right hand side as the Double Layer Potential (DLP) and the 

second one as the Single Layer Potential (SLP). In a similar fashion as the Laplace 

equation, the left hand side integral can be solved using the properties of the Dirac delta 

function and the properties of SLP and DLP, obtaining the next expression:   

   ( ⃗)  ( ⃗)  ∫    ( ⃗  ⃗)    ⃗ 
 

   ∫   
 
( ⃗  ⃗)    ⃗   

 

  (60), 

where: 

   ( ⃗)  {

           ⃗⃗⃗             

      ⁄             ⃗⃗⃗                            

         ⃗⃗⃗             

 

with   as the solid angle that has a value of     for smooth boundaries.  
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3.  VOID FORMATION IN DUAL-SCALE FIBROUS REINFORCEMENTS 

BASED ON THE STOKES-DARCY FORMULATION


 

3.1 Introduction 

In the processing of composites materials many kinds of fibrous reinforcements have two 

well-differentiated domains at the mesoscopic scale, channels and tows. Some authors have 

modeled the filling of these fibrous reinforcements considering that both flow regions are 

governed by the Darcy law, with the scale of permeability of the channels considerably 

larger than the scale of permeability of the tows [3], [4], [14], [25]. In this type of approach 

the low Reynolds number flow, creeping flow, inside the thin channels is approximated by 

the Hele-Shaw cross average flow with an equivalent permeability. By using this 

approximation some details of the interface process between the two media, channels and 

tows, are lost, allowing only mass conservation and continuity of pressure across the media.  

An alternative approach, and more robust, is to model the flow in the channels as a Stokes 

flow, and the flow in the porous tows using the Darcy law (see [19], [23], [24], [100]), with 

the corresponding coupling conditions between the two flow regions. This type of 

mathematical formulation will be used in this chapter. Besides, the solid phase is 

considered as non-deformable, the injected fluid is Newtonian and incompressible, inertial 

effects are neglected (creeping flow), the tow porosity is constant and the permeability 

changes according to the fibers orientation (anisotropic porous media).  

The problem of simulation of the impregnation process of fibrous reinforcements at the 

mesoscopic scale comprises two general aspects: the solution of the coupled governing 

equations of the flow field and the advancement of the fluid front. The numerical 

simulation of both aspects has been previously considered in the literature using different 

numerical techniques, being one of the most popular the FEM/CV conforming technique 

(among others see [8], [13], [14], [33], [38]), where the Finite Element Method (FEM) is 

used to solve the governing equations and obtain the nodal values of the pressure field. 

Since this type of FEM approach does not preserve locally mass conservation at the 

element level, each Finite Element is internally subdivided and coupled with the neighbors‘ 

                                                           


 The results of the present chapter were published in: Iván David Patiño Arcila, Henry Power, César Nieto Londoño, Whady 

Felipe Flórez Escobar, "Boundary element simulation of void formation in fibrous reinforcements based on the Stokes-Darcy 

formulation". Published in: Switzerland, Computer Methods In Applied Mechanics And Engineering,  ISSN: 0045-7825  ed: 
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subdivisions to form a local Control Volume (CV), i.e., one CV for each FEM node, as it 

was shown in Figure 3. In each CV a filling factor,  , is evaluated from the mass flux 

balance and the fluid front position is determined by interface capturing schemes. Several 

of these schemes have been proposed in the literature; among them, the Flow Analysis 

Network (FAN) approach, originally proposed by Tadmor et al.[151], considers that each 

value of   is associated to the center node of the corresponding CV, and that the position of 

the fluid front is determined by a weighted average value of the distances between the 

neighbor CV‘s nodes in term of their corresponding nodal vales of  .   

Alternatively to the use of a FEM/CV conforming approach, a single CV formulation 

allows the nodal values of the pressure field as well as the mass flux balance at each CV to 

be determined without the need of creating auxiliary elements for a given discretization. 

Since this type of approach is locally mass conservative, this is achieved at the expense of 

lowering the convergence rate of the numerical solution in comparison with a FEM 

simulation; see for instance Jinlian et al.[3], where a CV/FAN approach is used to study the 

mechanism of void formation during RUC filling processes. The CV formulation of Jinlian 

et al. [3] uses non-structured CV elements with a generalized Finite Difference (FD) 

approach to evaluate the surface fluxes in terms of linear polynomial interpolation of the 

pressure field. To keep the rate of convergence of the FEM/CV approach without the need 

of defining auxiliary elements for the mass flux balance, it is possible to use a 

nonconforming FEM formulation, which is locally mass conservative, allowing the 

evaluation of the filling factor,  , at each element of the FEM discretization and the 

corresponding position of the fluid front [40]. 

For the tracking of the fluid front, instead of evaluating a filling factor   by mass 

conservation balance at each element, it is possible to solve a pure advection transport 

equation defined for both phases, liquid and air, with the fluid properties (viscosity in this 

case) given as a weighted average in terms of the volume of fluid fraction,   , whose value 

also ranges between 0 and 1. As a hyperbolic problem, solution of    admits smooth shock 

profiles, requiring the use of specific solvers. This technique, which is usually known 

simply as VOF, has been previously used in the literature together with FEM and CV 

techniques, see for example [111] for FEM/VOF and [22] and [80] for CV/VOF 

simulations. Level Set formulations can be also considered for the tracking of the fluid 
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front, where a signed distance function,  , which is the solution of a pure advection 

transport equation, needs to be found, in such a way that in the filled region    , in the 

empty region      and in the moving interface    . Specific solvers need to be used as 

well to solve the corresponding hyperbolic problem, and particularly, it is necessary to 

avoid, as possible, numerical diffusion that will disperse the position of the interface. In 

[106] a nonconforming FEM/Level-Set approach is presented for the numerical simulation 

of resin transfer moulding process (RTM) in order to study race-tracking effects and macro-

void formation in complex geometries.  

In contrast with mesh-moving schemes, where at each time step the mesh is refined and 

forced to have elements nodes at the moving interface, in the above mesh-fix approaches it 

is not possible to impose directly the interface dynamic condition, which consists on the 

balance of surface forces (capillary tension). In some cases, those surface forces can be 

considered as volume forces that are introduced into the original momentum equation and 

are smoothly distributed around the fluid front [80]. Another alternative is the use of 

enhanced FEM interpolations, as those ones used in fracture mechanics, where the interface 

dynamic condition is imposed inside the elements containing the fluid front. In [106], this 

type of enhanced or extended FEM approach (XFEM) was adapted to the nonconforming 

FEM/Level-Set solution of the RTM process.  

In the present chapter, the phenomenon of impregnation of the RUC is simulated by the 

Boundary Element Method (BEM). In contrast with the FEM/CV techniques or any other 

domain discretization approach, the BEM only requires the use of a mesh along the contour 

of each sub-domain and not the use of internal elements, which is convenient when dealing 

with moving boundary problems. In this approach it is also possible to implement directly 

the dynamic interface condition at those boundary elements belonging to the fluid front.  

Although the BEM technique is very popular to solve coupled Stokes-Darcy problems, to 

the best of the author‘s knowledge, this method has not been implemented yet in the 

simulation of void formation in fibrous reinforcements. The BEM has been previously used 

in the filling at the macroscopic scale considering a single-scale porous medium, see for 

instance [46], [50], where a level set approach is used to track the fluid front position. In 

our numerical scheme, a direct integration of the interface kinematic condition is used to 

advance the fluid front (Euler method), instead of solving an auxiliary hyperbolic problem. 
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In this way both interface boundary conditions at the fluid front, dynamic and kinematic, 

are satisfied simultaneously in the numerical solution. This tracking methodology assures a 

higher order accuracy of the fluid front shape when compared with the abovementioned 

techniques. 

The free boundary nature of the present problem implies the existence of some aspects not 

considered in other types of coupled Stokes-Darcy flow problems: 

 The flow cannot be assumed primordially unidirectional and the mass exchange 

between the sub-domains cannot be disregarded a priori, meaning that Saffman‘s 

simplication of the slip condition at the interface between the Stokes and Darcy flow 

media is not necessarily valid in the present case. Consequently, the general Beavers-

Joseph slip condition needs to be considered and the tangential component of the Darcy 

pressure gradient, which is usually neglected by other authors [152], [153], needs to be 

evaluated numerically. 

 Some authors have taken a constant capillary pressure for the porous medium [14], 

[80], [81] and others have considered the change of that pressure with the flow 

orientation by introducing experimental shape factors [145], [146]. In the present 

chapter, a general expression based on the energy balance principle that was proposed 

by Pillai and Massodi [148] is adapted to the particular case of a porous medium 

consisting on aligned micro-cylinders, in such a way that the shape factor is computed 

theoretically and no experimental parameters are required. 

 In the simulation of dual-scale porous media for the processing of composites, the effect 

of capillary forces  in the channel flow region, which is associated to the curvature of 

the moving front (See Chapter 2), is not usually considered [3], [13], [22], [80], [81]. 

This simplification is valid provided that the viscous forces exceed the capillary ones by 

several orders of magnitudes. However, when the injection pressure or flow rate leads 

to small modified capillary numbers,   
 , the capillary forces in the channel can have an 

important influence in the impregnation process, and they need to be taken into account 

in the simulation, as it is the case of the lowest value of   
  considered here. 

In the first part of this chapter, the developed BEM code is validated with an analytical 

solution of a simple Stokes-Darcy coupled problem, which was developed here by using the 

lubrication approximation for the channel flow and the Equivalent Isotropic System 
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transformation (EIS) for the anisotropic porous medium. Having validated the proposed 

numerical scheme, two types of RUC filling problems are considered: The first one consists 

on the simulation at constant pressure regime of the simultaneous filling of the channels 

and tows that are present inside the RUC. The main objective of this simulation is to 

compare the obtained BEM results with those ones found by Jinlian et al.[3] with the 

CV/FAN approach. The second case, where a constant inlet flow rate is considered, 

consists on a parametric study to determine the influence of processing, geometric and 

material parameters on the size, shape and location of the voids formed by mechanical 

entrapment of air. The parameters studied in the analysis are: modified capillary number, 

tow porosity, width of the transverse tow, fluid penetrativity and RUC porosity. In both 

cases, a simplified two-dimensional geometry of the RUC is analyzed. Although a rigorous 

study of the impregnation process at the mesoscopic framework implies the modeling of 

three dimensional flows, many authors have considered 2D geometries [3], [4], [22]–[25], 

[81] to simplify their numerical analysis, but capturing the behavior of the main processes. 

The particular geometry chosen in the present chapter is the same as the one considered in 

[3], which is an adequate simplification of the longitudinal sections of multilayer cross-ply 

fabrics. Additionally, according to Jinlian et.al [3], this simplification is also suitable for 

multilayer woven fabrics when the configuration is Warp-Weft-Warp-Weft and the crimp 

degree is low.  

3.2 Governing equations, boundary and matching conditions 

When the Reynolds number and the permeability are small, the coupling problem between 

the fluid in the channel and the fluid in the porous medium can be defined by a Stokes-

Darcy formulation as: 

For the channel (Stokes domain): 

 (         ⁄ )       ⁄     (61a) 

      ⁄     (61b) 

 

For the porous medium (Darcy flow in the principal directions of permeability): 

〈  〉       ⁄   ( 〈  〉
    ⁄ )   (62a) 

 〈  〉    ⁄       (62b), 
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where           are the     component of the velocity field and the fluid pressure in the 

channel flow, 〈  〉  and 〈  〉
  are the     component of the volume-averaged velocity field  

and volume-averaged fluid pressure at the porous space (tow),    is the     component of 

the anisotropic permeability and   is the liquid viscosity, with a corresponding pore 

velocity given by 〈  〉      where    represents the tow porosity (for more details see 

[130]). From now on, the volume-averaged symbols are omitted for sake of simplicity, but 

it is convenient to bear in mind that both the velocity and the pressure in the porous 

medium are not pointwise quantities, but volume-averaged quantities instead.  

The architecture of the porous medium is considered as a bank of aligned micro-cylinders, 

and, under this assumption, the main components of the permeability can be computed 

using the model proposed by Gebart [135]:  

      
  (    )

 
(      

 )⁄  (63a) 

     (√        ⁄   )
   

  
   (63b), 

where    and    are the fiber radius and the fiber volume fraction, respectively. The 

parameters      and        depend on the type of array. In this case, a hexagonal array is 

considered and these parameters are as follows: 

       (64a) 

     (  √ )⁄    (64b) 

        ( √ )⁄  (64c) 

The following matching conditions between the Stokes and Darcy domains are considered: 

 Continuity of normal velocities: 

  
   

 ̂    
   

 ̂   (65), 

with the normal vector,  ̂ , outwardly oriented from the Stokes domain,  and where 

    stands for Stokes and     for Darcy. 

 Jump of tangential velocities: this condition has been widely discussed in the literature 

[154], [155], but the most common is the slip condition of Beavers-Joseph that reads 

[156], [157]: 

 (
   

   
 

   

   
)
   

 ̂  ̂  
  

√      ⁄
(  

   
   

   
) ̂    

(66), 
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where   is the slip coefficient,  ̂  is the tangential vector and   is the permeability 

tensor. The slip coefficient,  , is usually found by mean of experiments, but when the 

ratio between the height of the porous medium and the square root of the permeability 

is very high, a good approximation for this coefficient is [158]:  

   (  
  ⁄ )⁄   (67), 

The Beavers-Joseph condition could be simplified to the Saffman condition by 

neglecting the Darcy velocity,   
   

, in the Eq.66 [159]; the main advantage of Saffman 

condition is that it is expressed in terms of only variables in the Stokes domain. 

However, as it was pointed out by Cao et al. [156], Saffman‘s  assumptions omitting 

the Darcian term in the Eq.66 are not applicable for all cases. Firstly, the Saffman‘s 

simplification implies unidirectional flow in straight interfaces where no mass exchange 

takes place between the two media, and, secondly, this approximation requires the 

isotropic condition of the porous medium, although some authors have implemented it 

successfully in non-isotropic media under periodic conditions [154], [160]. Due to the 

lack of strong basis to justify the applicability of such simplifications in all cases treated 

here, it is reasonable to take the original Beavers-Joseph condition, Eq.66. 

 Continuity of surface tractions: 

 ̂    
   

 ̂         (68), 

where    
   

 is the Cauchy stress tensor in the Stokes domain and      is the pressure in 

the Darcy domain. 

 

On the other hand, the boundary conditions can be classified into three types:  

 Inlet conditions: Two different types of conditions at the inlet are considered, namely, 

constant pressure and constant flow rate. In the case of constant inlet pressure, the 

conditions are as follows: 

At the Stokes domain: 

       ̅̅ ̅̅   ̂,        (69), 

At the Darcy domain: 

     ̅̅ ̅̅  (70), 



65 
 

where    is the surface traction in the horizontal direction and    ̅̅ ̅̅  stands for the 

prescribed inlet pressure. For the constant flow regime, the inlet boundary conditions are 

given by the total flow rate,  ̅   ̅     ̅   , with corresponding contributions: 

At the Stokes domain: 

 ̅    ∫          
   ,         (71) 

At the Darcy domain: 

 ̅    ∫      ⁄       ̂⁄    
    
      (72), 

where    is the effective permeability in the normal direction (See Eq.29), while      
   

 

and     
   

 represents the total inlet areas of the Stokes and Darcy domains, respectively.  

 No-flux conditions: they are specified at the boundaries where symmetry is defined.  

 Moving interface conditions: Kinematic and dynamic conditions at the moving 

boundaries between the liquid and air phases (fluid fronts) are: 

Kinematic condition: 

     ⁄     ̂  (     ̂) ̂   (at the Stokes and Darcy domain) (73) 

Dynamic condition: 

        ̂       ̂  (at the Stokes domain)            (74a) 

             (at the Darcy domain)   (74b), 

where      is the air pressure obeying the perfect gas law and      is the capillary pressure. 

In the interface kinematic condition at the porous medium, the normal fluid front velocity is 

given by the normal component of the pore velocity as follows: 

    [       ⁄ ]       ⁄   ̂   (75) 

At the interface between the Stokes flow and the air, the capillary pressure is computed as: 

               ̂ , where   and   are the liquid surface tension and curvatures of 

the moving boundaries, respectively. On the other hand, in the porous medium, the 

capillary pressure depends on the contact angle    , surface tension    , architecture of the 

porous medium and orientation of the flow with respect to the fiber axis    . Recently, it 

was proposed the following general formula to approximate the capillary pressure in porous 

media on the basis of the energy-balance principle [148]:  

                  ⁄   (76a) 



66 
 

     (            ⁄ )         ⁄    (76b), 

where        is the cross sectional area of the solid particles in the flow direction and        

is the wetted perimeter of the solid particles, as shown in Figure 15 for the tow architecture 

considered here.   

 

Figure 15 Scheme of capillary impregnation of longitudinal bundles.  

 

The capillary pressure at any point of the longitudinal tow depends on the angle between 

the direction of the moving fluid front and the fiber axis,   (Figure 15). If the flow 

infiltrates the tow in parallel or oblique direction, as shown in Figure 15,        and        

are approximated as the sectional area and perimeter of a truncated circular cylinder using 

the Gauss-Kummer series for the perimeter of the resulting ellipse [161]. Therefore, for 

       , equations for        and        are as follows: 

            
        (77a) 

            (        ) (  ∑ (
   
 

)
 

 
   (

        

        
)
  

)  
(77b), 

where    is the number of fibers inside the tows . When the flow is parallel to the fibers 

     , the Eqs. 77a and 77b reduces to the same equations employed by [145], [162]. If 

the impregnation occurs perpendicular to the fibers        , the following expressions 

are used: 

               (78a) 

             (78b), 

where    represents the length of the fibers. On the other hand, for the transverse tow is 

assumed that the fluid front moves inward perpendicular to the fibers and the mean 

capillary pressure given by Neacsu et al. [163]  is used: 
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       (   ⁄ ) [   (      )     (      )] (
  

 
        √  ⁄ )⁄   (79a) 

     ⁄   (79b) 

        ⁄      (79c) 

          ⁄   (79d), 

where        is the mean capillary pressure and    is the half-distance between fibers. The 

ratio   is known as the relative spacing ratio, which, for hexagonal arrays, can be computed 

as: 

  √ ( √       )⁄     (80) 

On the other hand, it is important to point out that the mean capillary pressure in the model 

of Neacsu et al [163] is computed in a range between two limits of the local angular 

coordinate of the contact point between the meniscus and the fiber,  , taking the origin in 

the center of the fiber. The inferior limit appearing in Eq.79d,     , is a negative angle 

corresponding to the instant when the meniscus first touches the surface of two neighboring 

fibers, whereas the superior limit of Eq.79c,     , is reached when the flow is transferred to 

the next concentric layers of fibers. For more details, see [163]. 

Given the surface only mesh discretization required in the BEM employed in this work, all 

of the above boundary and interface conditions can be directly imposed into the 

corresponding surface integral representational formula of the Stokes and Darcy flows.  

  

3.3 Integral equation formulations and numerical techniques 

The boundary integral formulations for the Stokes [164] and Darcy anisotropic [56], [58], 

[149] equations are given in terms of the corresponding Green‘s integral formulae:  

            ∫          
         ∫   

 
     

 
          (81) 

           ∫          
 

          ∫          
 

             (82), 

where: 

        ⁄     , with   as the solid angle at the source point, whose value is      for 

points located over a smooth contour. For points located inside the domain,        . In a 

similar fashion,       is equal to   for points over a smooth surface and to 1, for points 
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inside the domain. On the other hand, the superscript     represents the Equivalent 

Isotropic System (EIS) that is obtained after scaling the x and y coordinates of the original 

system in terms of the anisotropic ratio of permeability,     ⁄ , as it is shown in Appendix 

A. 

The integral kernels in Eq.81 and Eq.82 are given in terms of the corresponding 

fundamental solutions, which are the following: 

  
        

 

  
[  (

 

 
)     

       (     )

  
]   

          
 

 

       (     )            

    

           
 

  
          

           
 

       
[   

    
      

 ̂       
    

      
 ̂   ]   

   ‖     ⁄    ⁄   ̂      ⁄    ⁄   ̂‖   

  |   |  

   |     |,    

where   (   in the EIS system) and   (   in the EIS system) are the source and field points, 

respectively, with  the integrals containing the fundamental solutions    
       (Stokes) and 

          (Darcy) corresponding to the Single Layer Potential (SLP), and those ones 

containing          (Stokes) and           (Darcy) to the Double Layer Potential (DLP). 

The factor    comes from the transformation of the normal vectors, as shown in Appendix 

A. As it is demonstrated in Appendix A, the Eq.82 can be also written in the original 

coordinate system with fundamental solutions given by:  

         
 

  
         

        
  

  

   

   
       ̂     

 

       
[         ̂             ̂   ]  

   *     ⁄  
 

        
       ⁄  

 

        
 +

   

  

         
  ⁄   

In both the Darcy and Stokes domain, the boundary and the physical variables are 

discretized using quadratic isoparametric interpolation. At the corners, discontinuous shape 

functions with a collocation factor of          are used [165].  To compute the integrals, 
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standard Gaussian quadrature is used. The  singularities of the integrals of the DLP  are 

treated using the Rigid Body Motion principle [149], [150]  and the singular integrals of the 

SLP using the Telles transformation [166]. After the discretization of the contour and 

variables of the problem, systems of linear algebraic equations are obtained, which can be 

written in matrix form as:  

[ ]       

   
 ⃗⃗  [ ]       

   
 ⃗  (83) 

[ ]     

   
 ⃗  [ ]     

   
 ⃗    (84), 

where    and    are the total number of points of the boundary in the Stokes and Darcy 

domains, respectively. In Eq.83,  ⃗⃗ and  ⃗ are the velocity and traction vectors, respectively, 

whereas in Eq.84,  ⃗ and  ⃗ represent the pressure and normal derivative of pressure, 

respectively. 

The matching conditions between Stokes and Darcy flows specified in Section 3.2 can be 

implemented directly in terms of the fluid velocities and Stokes shear stresses, using the 

corresponding interpolation functions. In the Beavers-Joseph slip condition, Eq.66, the only 

physical variable that cannot be expressed directly as a local projection of variables 

appearing in the integral equations, Eq.81 and Eq.82,  is the Darcy velocity,   
   

. However, 

by using the Darcy‘s law and approximating the pressure gradient with Lagrange 

interpolation functions for quadratic elements,      , the tangential projection of the Darcy 

velocity can be expressed as: 

  
   

 ̂        ⁄        ⁄   ̂  (        ⁄ )    (85) 

with   [    ]  By imposing the boundary and matching conditions, a well-posed system 

of equations is obtained for the constant pressure regime, whereas for the constant flow 

regime an additional equation needs to be considered, as will be discussed later.  In both 

cases, the final system of algebraic equations is solved using a Singular Value 

Decomposition (SVD) algorithm [167], [168]. The main reason to use a SVD solver is due 

to the coupling of two systems of integral equations where the resulting matrix system after 

discretization is composed by elements of significant differences in magnitude (ill-

conditioning) and not easy to solve by a simple direct solver like Gauss elimination.     

The numerical technique used to track the moving boundaries is based on a first order Euler 

integration of the kinematic condition, Eq.73. As an explicit time stepping-algorithm is 
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used, the time step needs to be restricted to small values, with magnitudes decreasing as the 

capillary number decreases. As the fluid penetrates the RUC, the fluid front evolves in 

shape and size, requiring the use of a remeshing algorithm to describe the moving front as 

time progresses. Besides, since in the BEM formulation of the problem two different 

surface integral equations are used to represent the solution, corresponding to the Stokes 

(channel) and Darcy (tows) flows, it is necessary that, during the time evolution, a point at 

the fluid front in one domain does not cross into the other domain, requiring the addition of 

a geometrical constrain to the time step,   . The details of the fluid front tracking technique 

implemented here can be seen in Appendix C. 

Although quadratic isoparametric BEM elements always gives higher precision than 

constant or linear elements, the nodes at the edge of the quadratic elements have a slightly 

higher accuracy than the middle one, resulting, in our case, in similar differences on the 

accuracy of the predicted interface velocity at those element nodes. In the case where 

surface tension effect is negligible, and therefore the interface curvature is not important in 

the filling process, these very small differences will only affect the evolution of the moving 

front after a very long time. However, when surface tension effect is dominant and the 

interface curvature needs to be considered, these differences can affect the evolution of the 

interface due to the errors in the evaluation of the interface curvature. Consequently, when 

quadratic isoparametric BEM is implemented for the solution of moving boundary 

problems, it is always recommended to employ a surface smoothing algorithm after a series 

of time steps, recursively, to mitigate this difference in accuracy between the element 

nodes. The numerical details of this algorithm are also presented in Appendix C. 

After updating the position of the fluid front, the redistribution and remeshing of the 

interface elements is carried out by fitting parametric cubic splines along the newly 

positioned interface nodes, from where the length of the interface is directly obtained by 

integration of the corresponding spline curves. The splines are forced to be perpendicular to 

the boundaries where the symmetric condition is prescribed and its slope is kept continuous 

in the interfaces between the subdomains (i.e. channels and bundles). 

In an evolution point   , both the unit normal vector,  ̂ , and the curvature,   , are 

computed numerically using the following fourth-order lagrangian polynomial [169]: 

(  
 )

 
   ⁄ (  

       
       

      
   )          (86) 
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(89) 

Once the meshes of the moving boundaries have been reconstructed at the current time step 

and the normal and curvatures have been computed, the BEM algorithm is used to calculate 

the velocity at the moving boundary and the cycle is repeated again in a quasi-static 

approach given the low Reynolds approximation of the problem. 

The velocity and pressure fields in the two flow regions, channels and tows, are post-

processing calculations that can be carried out once the systems defined by Eq.81 and 

Eq.82 are solved. The fluid velocity inside the channel is computed using Eq.81 with 

       . The integral representation for the pressure is used to compute the pressure field 

inside the channel [149]: 

       ∫          
  ̂            ∫         

          (90) 

where          
 

    
        is the fundamental solution for the pressure equation and 

         
 

  
*
   

   
 

  
              + is the gradient of        . 

In the porous medium, the pressure field inside the domain is obtained from Eq.82 with 

      , while the pressure gradient is found by taking the directional derivative of Eq.82, 

as follows: 

      

   
  ∫

          

   
  

          ∫
          

   
  

           (91) 

The velocities in the interior points of the porous media are given by the Darcy‘s law, in 

terms of the pressure gradient, Eq.91. 

3.4 Results and discussion 

3.4.1 Validation of the BEM code for Stokes-Darcy problems 

To verify the developed numerical code, the coupled Stokes-Darcy problem of Figure 16 

that admits an analytical solution is considered. The problem is defined by two parallel 

domains totally saturated, with the upper one as an anisotropic homogeneous porous 

medium with the principal directions of permeability coinciding with the   and   axes and 
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      , and the lower domain as a thin channel. The slip coefficient given by Eq. 67 is 

      . 

 

Figure 16 Scheme of coupled problem Stokes-Darcy with analytical solution.  

 

For this particular problem, an analytical solution in terms of power series was developed 

here and it is detailed in the Appendix B. The goal of the solution is to predict the pressure 

and velocity fields in both the Darcy and the Stokes domain.  

The L
2
 relative error norms between the analytical and the BEM solutions for the pressure, 

 , and velocities,    and   , are shown in the Table 4. Three factors are considered for the 

analysis of these errors: the mesh size    , the anisotropic ratio      ⁄  , keeping constant 

the longitudinal permeability at             , and the slip coefficient    . The mesh 

size is reported as      , where         is the total height of the domain (See 

Figure 16) and   represents the size of one quadratic element. The meshgrid for the internal 

points is uniformly distributed and constructed from the extension of the points of the 

contour mesh.  

According to Table 4, the maximum error for a determined mesh size is always obtained for 

the horizontal velocity,   , when     ⁄      and       , but this error decreases as the 

mesh is finer. In general, the refinement of the mesh leads to the reduction of the L
2
 error in 

all situations, which means that the BEM code converges to the analytical solution; 

however, the order of convergence is not necessarily the same in all cases. For instance, in 

the Figure 17a, they are presented the power fit curves for the data of 

                                    for the pressure, considering       ; the orders 

of convergence,   , which are the exponents of the power regression equations, are 

presented as well. As the anisotropic ratio,     ⁄ , departures from one, namely, from the 

isotropic condition, the L
2
 error increases; furthermore, the order of convergence,   , drops 
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as     ⁄  increases. The same plot type for the horizontal velocity is presented in the 

Figure 17b. In that case, the reduction of the anisotropic ratio,      ⁄ , brings about the 

increase of the L
2
 error and the reduction of the order of convergence. The vertical 

velocities,   ,  are not considered in the present convergence analysis since they are very 

close to zero, however, as observed in the Table 4, the accuracy corresponding to    is 

acceptable enough in all situations. On the other hand, the influence of the slip coefficient, 

 , on the accuracy and convergence of the BEM algorithm for   and    is represented in 

Figure 17c and Figure 17d, respectively, taking     ⁄    . For the pressure, this 

influence is insignificant (Figure 17c); conversely, in the case of the horizontal velocity, the 

accuracy diminishes as the slip coefficient,  , is lower and the highest order of convergence 

is achieved for        (Figure 17d).  

 

Table 4 Assessment of accuracy of the BEM algorithm for Stokes-Darcy problem 

 

Mesh 

size 

(h) 

Variable 

L
2
 relative error norms 

K1/K2=0.1 K1/K2=1 K1/K2=10 K1/K2=100 

γ = 

1.29 

γ = 

0.1 

γ = 

0.01 

γ = 

1.29 

γ = 

0.1 

γ = 

0.01 

γ = 

1.29 

γ = 

0.1 

γ = 

0.01 

γ = 

1.29 

γ = 

0.1 

γ = 

0.01 

1,00 

E-01 

  
4.93 

E-02 

4.91

E-02 

4.90

E-02 

4.78

E-02 

4.78

E-02 

4.77

E-02 

5.04

E-02 

5.04

E-02 

5.03

E-02 

5.70

E-02 

5.70

E-02 

5.70 

E-02 

   
1.64 

E-02 

9.46

E-02 

1.77

E-01 

1.04

E-02 

5.12

E-02 

1.49

E-01 

9.61

E-03 

4.01

E-02 

1.36

E-01 

9.54

E-03 

3.87

E-02 

1.34 

E-01 

   
4.22 

E-02 

4.11

E-02 

3.95

E-02 

4.79

E-02 

4.81

E-02 

4.98

E-02 

4.94

E-02 

4.97

E-02 

5.42

E-02 

5.10

E-02 

5.18

E-02 

6.28 

E-02 

5,00 

E-02 

  
3.11 

E-02 

3.11

E-02 

3.10

E-02 

3.07

E-02 

3.07

E-02 

3.07

E-02 

3.33

E-02 

3.34

E-02 

3.34

E-02 

4.24

E-02 

4.24

E-02 

4.24 

E-02 

   
1.15 

E-02 

6.85

E-02 

1.26

E-01 

6.51

E-03 

3.72

E-02 

1.07

E-01 

5.65

E-03 

2.91

E-02 

9.76

E-02 

5.60

E-03 

2.81

E-02 

9.62 

E-02 

   
4.20 

E-02 

4.09

E-02 

3.95

E-02 

4.77

E-02 

4.79

E-02 

4.92

E-02 

4.92

E-02 

4.92

E-02 

4.96

E-02 

5.02

E-02 

5.03

E-02 

5.27 

E-02 

3,33 

E-02 

  
2.43 

E-02 

2.42

E-02 

2.43

E-02 

2.38

E-02 

2.38

E-02 

2.39

E-02 

2.61

E-02 

2.61

E-02 

2.61

E-02 

3.37

E-02 

3.37

E-02 

3.37 

E-02 

   
9.88 

E-03 

5.96

E-02 

1.09

E-01 

5.26

E-03 

3.24

E-02 

9.26

E-02 

4.39

E-03 

2.54

E-02 

8.48

E-02 

4.39

E-03 

2.45

E-02 

8.36 

E-02 

   
4.16 

E-02 

4.02

E-02 

3.78

E-02 

4.73

E-02 

4.72

E-02 

4.71

E-02 

4.91

E-02 

4.91

E-02 

4.93

E-02 

4.99

E-02 

5.00

E-02 

5.09 

E-02 
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2,50 

E-02 

  
2.01 

E-02 

2.00

E-02 

2.00

E-02 

1.96

E-02 

1.97

E-02 

1.97

E-02 

2.18

E-02 

2.19

E-02 

2.19

E-02 

2.97

E-02 

2.97

E-02 

2.97 

E-02 

   
8.46 

E-03 

5.11

E-02 

9.30

E-02 

4.44

E-03 

2.78

E-02 

7.91

E-02 

3.65

E-03 

2.18

E-02 

7.25

E-02 

3.72

E-03 

2.10

E-02 

7.14 

E-02 

   
3.63 

E-02 

3.41

E-02 

3.13

E-02 

4.44

E-02 

4.35

E-02 

3.99

E-02 

4.90

E-02 

4.91

E-02 

4.92

E-02 

4.98

E-02 

4.98

E-02 

5.01 

E-02 

 

  

a)                                                                          b) 

  

c)                                                                          d)              

Figure 17 Convergence of BEM solution for Stokes-Darcy problem. a) For the 

pressure, varying K1/K2. b) For the horizontal velocity, varying K1/K2.c) For the 

pressure, varying γ. d) For the horizontal velocity, varying γ.  

 

In the present chapter, the slip coefficients that are used in the free-boundary simulations 

are calculated using the Eq.67 and have an order of magnitude of     . Considering the 

results achieved for        in the Table 4, it is expected to obtain an acceptable accuracy 

for those free-boundary simulations, even for the coarser mesh evaluated here, i.e., 

        . In order to define the adequate mesh size for the free-boundary simulations, 

both the L
2
 relative error norms and the execution times need to be considered. The CPU 

times for all mesh sizes considered here, with an Intel Pentium 2.1 GHz and 2GB of 

memory, are shown in the Figure 18. Primarily, it is important to mention that the 

increments of the elapsed time with the mesh refinement for the free-boundary problems of 
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the next sub-sections will be larger than the ones appreciated in the Figure 18, because the 

refinement of the mesh inexorably entails lower time intervals,   , for the advancement of 

the moving boundaries due to the CFL condition and to the restrictions for    described in 

the Appendix C. Therefore, it is convenient to evaluate, using the present results, the 

improvement of the accuracy in light of the raise of the execution time. For example, taking 

      ,  if the mesh size is reduced from          to         , the average 

relative reduction of the    error is       for the pressure and        for the horizontal 

velocity, at the expense of an increment in the CPU time of 6.49 times; in that case, the 

refinement of the mesh could be justified. Conversely, to change the mesh-size from 

         to             could be considered impractical because it would imply 

an increment of the CPU time of 23.40 times to reduce the error in        for the pressure 

and        for the horizontal velocity. Taking this in mind, the mesh-size is taken as 

         in the free-boundary simulations, where the mesh is fine enough to allow 

approximating the fluid front shape by parametric cubic splines adequately (Appendix C.), 

but not too much fine in order to obtain reasonable execution times. In the Figure 19a,b, the 

BEM contour plots of the pressure and the streamlines, for     ⁄    ,        and the 

selected mesh-size           , are compared with the analytical solution, obtaining a 

satisfactory agreement. 

 

 

Figure 18 Execution time vs. Mesh-size for Stokes-Darcy problem.  



76 
 

 

a) 

 

 

b) 

Figure 19 Comparison between analytical and BEM solution taking h=5×10-2, 

K1⁄K2=10 and γ=1.29. a) Contour plots of pressure. b) Streamlines.  

 

3.4.2 Comparison with CV/FAN approach. 

Problem statement. 

In the particular case of fabrics used as reinforcements in composite materials, with the 

flow moving in the warp direction, the RUC has three distinguishable domains: channels, 

longitudinal bundles (warps) and transverse bundles (wefts). When a simultaneous filling 
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takes place inside the RUC, the flow is driven by a combination of viscous, capillary and 

gravity forces, and the imbalances between the flow in the channels and the flow in the 

porous media (warps and wefts) lead to the formation of voids by entrapment of air. This 

sub-section is devoted to the description of the filling stages of the RUC until the void 

formation and to the comparison between the present BEM results and previous CV/FAN 

solutions in order to establish the influence of the mathematical model, numerical 

techniques and matching conditions used in both simulations. 

Two modes of RUC for multilayer woven fabrics were considered by Jinlian et al. [3]. The 

Mode I consists on a simultaneous stacking of warps and wefts and it is the one considered 

here because of its geometrical simplicity (Figure 20). There are three major differences 

between the present approach and the one by Jinlian et al. [3]. Firstly, in the present 

approach, the flow in the channel is considered a 2D Stokes viscous incompressible flow, 

instead of a Darcy flow with an equivalent permeability. This is probably one of the 

principal differences between both approaches since the Darcy flow in the channel is an 

approximation of the real 2D flow field. This approximation is the source of the second 

main difference between the two mathematical formulations. In the Darcy-Darcy 

formulation of [3], the matching conditions between the channels and the porous media are 

defined by continuity of pressure and normal fluxes, without defining any condition for the 

tangential velocities. In the Stokes-Darcy formulation of the present work, the matching 

conditions are totally defined in terms of the velocities and surface tractions, Eqs. 65, 66 

and 68. The other important difference between the two approaches is the numerical 

technique used to track the fluid front. In the present BEM formulation the position of the 

moving boundary is directly obtained by the Euler integration of the kinematic condition,  

Eq.73, after imposing the dynamic condition, which, in this sub-section, is given by the 

continuity between the liquid and air pressures, i.e.,         in Eqs.74a and 74b, to be 

consistent with the work of Jinlian et al. [3]. On the other hand, the FAN scheme is used in 

[3] to track the moving boundary. This scheme is a volume of fluid approximation that does 

not determine the exact position of the moving boundary, but an average location instead. 

Reproduction of the conditions used in [3] requires a constant injection pressure of 

        and an air pressure of        . In both approaches, after the void is formed, the 

air is assumed to obey the ideal gas law and, for a volume fiber content of        , using 
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Eqs. 63a and 63b, the main tow permeabilities are                 and         

       . In the present example the fluid viscosity is               and the 

comparison is given in terms of    and    , where    is the time normalized with respect to 

the total filling time (total time is             for CV/FAN and             for 

BEM) and    stands for the area of the void over the cross section area of the weft. 

Symmetry conditions are prescribed along the half-height of the warps.   

 

 

Figure 20 Mode I of the RUC configuration used in Jinlian et al.  

Source: Jinlian et al [3] 

 

Filling of the first channel. 

Comparison of the time evolution of the filling process is presented in Figure 21, showing 

some similarities and discrepancies among both approaches. In the first instants of filling of 

the BEM simulation (Figure 21a), taking the maximum fluid front position in the channel 

and the minimum in the warp, the channel flow is ahead of the flow in the warp by a 

distance equivalent to       of the RUC‘s length. As the filling progresses, this separation 

increases due to the difference in flow resistance between both media, as it can be 

appreciated in the Figure 21b, where the distance between both flows is        of the 

RUC‘s length. The first important dissimilarity between the BEM and the CV/FAN 

approaches can be identified after comparing the Figure 21b to Figure 21c, which have the 

same fluid front position in the channel. The normalized time for the CV/FAN simulation is  

            , whereas for the BEM simulation is              . Considering the 

total filling times (            for CV/FAN and             for BEM), this means 

that the modeling of the free fluid in the channel as a darcian fluid with an equivalent 

permeability could lead to underestimated fluid front velocities in comparison with the real 

Stokes flow.  
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Impregnation of tows until flow reaches the second channel. 

The BEM code predicts an arrival time of the channel fluid front to the weft of     

          (Figure 21d), which is only a small fraction of the total filling time. After this 

time, the fluid front velocity decreases in nearly two orders of magnitude as the fluid 

impregnates the weft, as can be inferred from the time evolution reported in Figure 21d, 

Figure 21e, Figure 21g and Figure 21h (BEM), and Figure 21f and Figure 21i (CV/FAN). 

After the flow has reached the weft, one of the main differences between both simulations 

occurs at the warps, where the average fluid front position predicted by the BEM approach 

is always behind the CV/FAN one (Figure 21e vs. Figure 21f and Figure 21h vs. Figure 

21i). There are two main reasons for such a difference, due to the two main simplifications 

considered in the CV/FAN approach. Firstly, in the early instants of filling, the slip 

condition between the channel and porous medium in BEM, not considered in CV/FAN, 

results in a delay of the porous medium flow with respect to the channel flow for BEM 

(Figure 21a and Figure 21b), which causes the delay in the subsequent instants. Besides, 

and probably more significant, the simplified weighted-averaged displacement of the 

moving front in the CV/FAN approach instead of the direct time integration of the 

kinematic condition used in the BEM approach, results in a faster fluid front motion in the 

porous region for CV/FAN, with an almost straight shaped interface at the warp instead of 

the resulting concave shaped interface predicted by BEM. It is important to highlight that 

the form of the fluid front in the weft is clearly concave for both approaches. 

During the weft impregnation, the normalized time,   , for any fluid front position is 

longer in BEM than in CV/FAN. For instance, in the instant corresponding to Figure 21e 

and Figure 21f,       of the filling time has elapsed in the BEM simulation, while in 

CV/FAN,      . When the flow reaches the other edge of the weft, as it is depicted in 

Figure 21h (BEM) and Figure 21i (CV/FAN), the BEM code predicts an arrival time 

equivalent to 75.7% of the total filling time, which is 15.74% larger than the value 

predicted by CV/FAN. Besides, it is relevant to mention that the minimum position of the 

fluid front in the weft is much farther away from the right edge of the weft in the BEM 

simulation than in the CV/FAN one, leading to the formation of a larger void in the BEM 

simulation. 
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Filtration from the warp towards the second channel and void formation. 

When the fluid percolates from the warps towards the second channel, the fronts coming 

from both warps encounter each other and an air void is trapped inside the weft, as it can be 

seen in Figure 21j, where the normalized time is              according to the BEM 

code. Once these fluid fronts merge one another, the trapped air is compressed until the 

equilibrium is attained, Figure 21k (BEM) and Figure 21l (CV/FAN). In this process of 

void compressibility, the BEM code predicts that the bubble is predominantly compacted 

toward the right edge of the weft (Figure 21k) and not in both directions, as it is predicted 

by CV/FAN (Figure 21l); this induces a final position of the void in the BEM solution that 

is very close to the right extreme of the weft, which is coherent with other experimental and 

numerical researches [3], [4], [25], [170], [171]. The BEM simulation predicts a larger void 

than the one predicted by CV/FAN; the final void size is equivalent to      of the area of 

weft cross section for CV/FAN, whereas to       for BEM. With respect to the bubble 

shape, the CV/FAN approach predicts a triangular shaped bubble, whereas the BEM one, 

an elliptical shaped bubble. 
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Figure 21 Comparison of filling instants between BEM and CV/FAN simulations.  
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Variation in void size with the anisotropy ratio,     ⁄ . 

As it was pointed out by Jinlian et al [3], the anisotropy ratio of permeability      ⁄   has a 

relevant influence on the final void size, with larger voids as     ⁄  increases. In the Table 

5, it is reported the comparison between the void size predicted by the two approaches for 

three of the anisotropy ratios considered by Jinlian et al [3]. As expected, the voids 

predicted by BEM are larger than those ones predicted by CV/FAN for all cases, due to the 

reason commented above, however it is worth noting that the BEM approach is in 

agreement with the CV/FAN one in the sense that it predicts an increase of the void size 

with the increase of the anisotropy ratio,     ⁄ .  

 

Table 5 Variation of the final void size with the anisotropy degree, K1 ⁄ K2  

 

Anisotropy degree 
Area of void/Area of tow´s 

cross section (CV/FAN) 

Area of void/Area of 

tow´s cross section 

(BEM) 

10 0.5% 1.3% 

20 3.3% 10.5 % 

30 5.8% 16.6% 

 

Times of the filling stages. 

To finish the present sub-section, Figure 22 represents the filling process of the RUC 

predicted by BEM divided into four stages with their corresponding fraction of time: filling 

of the first channel, impregnation of tows until the flow reaches the second channel, 

filtration from the warps towards the second channel until void formation, and compression 

of void until the equilibrium. The time taking place in each stage is reported as a percentage 

of the total filling time. As expected, the longest process corresponds to the impregnation of 

the tows until the flow reaches the second channel, and the shortest, to the filling of the first 

channel.  It is worth noting that the void compression until the equilibrium takes more time 

than its formation once the flow is infiltrated from the warps towards the second channel. 
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Figure 22 Stages of the filling of the RUC.  

 

3.4.3 Influence of processing, geometric and material variables on the void 

formation. 

Problem statement and results of RUC filling. 

The viscous effects in the RUC impregnation are associated to the prescribed inlet 

conditions (pressure or flow rate), while the capillary effects to the surface tension and 

contact angle. The modified capillary number is used in the literature to relate both types of 

effects: 

  
  〈  〉

       ⁄  (92), 

with 〈  〉
  as the pore velocity and                 ⁄   as the fluid penetrativity, which 

depends on the contact angle    , surface tension     and viscosity    . Some authors have 

used the superficial velocity for computing   
  instead of the pore velocity [44], [81], but 

others agree that the last one is more consistent with the phenomenon of partial saturation 

of the RUC because of the inclusion of a geometry-dependent property, that is, the porosity 

[75], [89], [172]. When the filling problem is analyzed in a macroscopic framework, the 

pore velocity is defined as the average velocity inside the RUC with respect to the porous 

volume of the RUC, namely, 〈  〉
  (∫         

)   ⁄ , with    as the pointwise velocity of 

the liquid inside the RUC and    as the porous volume of the RUC. On the other hand, in 

the filling of RUC‘s at mesoscopic scale, 〈  〉
  is given by the average inlet pore velocity 
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of the RUC conceived as a single pore unit, as it was considered in the works of DeValve 

and Pitchumani [80] and Schell at el. [81]. Therefore, 〈  〉
  is computed here as: 

〈  〉
     ⁄  (93), 

with   given as the total inlet flow rate and    as an equivalent inlet porous area of the 

unit-width RUC, given by            , where     is the height of the channel and 

         is the height of the longitudinal tow (warp); see Figure 23 where the half-

height of the tows is represented. The areal porosity of the tow is taken equal to the 

volumetric porosity,   . 

In the present section, a constant inlet flow rate is assumed in order to maintain a constant 

value of   
  during the filling process. However, the prescribed flow rate is a defective 

boundary condition in the sense that the inlet flow rates at the channel (    ) and at the 

porous media  (    ) are unknown a priori [173], [174], but the total flow rate,        

    , is known instead (See Figure 23). To deal with this indeterminacy, it is imposed a 

uniform inlet pressure that changes in time during the filling process in order to keep 

constant the total flow rate. In this way, the inlet boundary condition prescribed at the 

warps is uniform pressure, i.e.,       ̅     , and, at the channel, the conditions are 

uniform normal surface tractions together with zero vertical velocity, i.e.,  ̂     ̂  

  ̅     ,     , with the value of the inlet pressure,   ̅     , as an unknown function of 

the time to be determined. To complete the problem, the balance of fluxes at the inlet is 

taken into account: 

              

 ∫   
   

  
  
    ∫   

   
  

  
    ∫   

   
  

  
    ∫        ⁄         ⁄       

  
     

(94), 

where   is the total inlet flow rate,      is the inlet flow rate of the channel,     is the inlet 

flow rate of the warp,   
   

 is the inlet area of the channel,   
   

 is the inlet porous area of 

the warp,    
   

 is the inlet velocity in the channel,   
   

 is the inlet pore velocity of the warp 

and       ⁄      is the pressure gradient in the horizontal direction at the inlet of the warp. 
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The flow rates appearing in Eq. 94 can be expressed numerically in terms of the values of 

  
   

 and      ⁄      in the nodes of the quadratic isoparametric elements. In general, the 

flow rate entering a quadratic element     can be approximated as follows:  

For Stokes domain: 

     (∫      
 

  
 | |  )

   

(  
   

)
 

   

          (Sum on    ) 
(95a), 

For Darcy domain: 

     (     ⁄  ∫      
 

  
 | |  )

   

(      ⁄  
 
   

)
   

          (Sum on    )  
(95b), 

where (  
   

)
 

   

 and (      ⁄  
 
   

)
   

 represent the horizontal velocity in the channel inlet 

and the pressure gradient in the warp inlet for the node     of the element    . Therefore, the 

total inlet flow rate is   ∑          
   , where        stands for the total number of 

elements of the inlet. After grouping the common nodes, this rate can be expressed in terms 

of the horizontal velocity for the channel and of the pressure gradient in x-direction for the 

warps. On that basis, the form of the matrix system corresponding to Eq.94 is the next: 

  (    ⃗⃗⃗⃗ ⃗⃗⃗⃗ )
      

   
(  

   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
)
    

   
  

 (    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )
      

   
(      ⁄     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )

    
   

  
    (96), 

where     ⃗⃗⃗⃗ ⃗⃗⃗⃗  is a row vector for the Stokes domain in terms of integrals of interpolation 

functions, while     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a row vector for the Darcy domain in terms of integrals of 

interpolation functions,    and  ; on the other hand,     
   

 is the number of nodes at the 

channel inlet boundary,     
   

 is the number of nodes at the warp inlet boundary,   
   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

 is a 

column vector containing the inlet velocities at the nodes of the Stokes domain and 

      ⁄     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a column vector containing the pressure gradients in x-direction at the 

nodes of the Darcy domain. Considering the Eq. 96, a well-posed but probably still ill-

conditioned problem is obtained at each time instant.  

In this section, several simulations of the RUC filling process are carried out at constant 

flow regime in order to study the influence of geometric, material and processing variables 

on the void formation. The RUC geometry is the same as the one represented in Figure 20 

and it can be characterized by the total height and length of the RUC,   and  , respectively, 

and by the height and width of the weft,     and  , respectively, as shown in Figure 23. 
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Additionally, two non-dimensional ratios are defined as      ⁄  and         , where 

   is modified here by changing the width of the weft, while        for all simulations. 

Values of                         and               are considered 

for the RUC and the liquid has a viscosity of            and a density of   

         ⁄ . The selected data are representative of the geometry of highly compacted 

fibrous reinforcements and the properties of liquids used in Liquid Composite Molding 

(LCM). Considering a hexagonal array of fibers in the tows, the tow porosity,   , can be 

computed as follows: 

         
 ( √ (    )

 
)⁄    (97), 

whereas the RUC or global porosity,     , defined as the total porous volume (porous 

volume of the warps and weft plus the volume of the channels) divided by the total volume 

of the RUC, can be calculated as: 

                                 (98). 

The parameters that characterize the void formed are also represented in Figure 23. The 

void content is expressed as the area of the bubble over the area of the weft, its location, as 

the ratio          , with       as the distance from the bubble tip to the rear (right) edge of 

the weft, and its shape, as the aspect ratio of the equivalent ellipse,      . Three different 

modified capillary numbers,   
 , are taking into account and for each one of them it is 

studied the influence on the void characterization of the following variables: tow porosity 

    ,  ratio between the weft width and the RUC length     , RUC porosity        and 

fluid penetrativity (      ).  

 

 

Figure 23 Scheme of the problem of filling of the RUC at constant flow rate.  
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To carry out the parametric study, a reference case is defined, and it is denoted as Serie 1. 

Some parameters are fixed and others are determined from the fixed ones (computed 

parameters). The fixed parameters are: radius of fiber (  ), half-distance between fibers 

   , length and height of the RUC (  and   , respectively), width and height of the weft (  

and     , respectively), surface tension     and contact angle    ; the computed parameters 

are: tow porosity     , main tow permeabilities            , slip coefficient    , RUC 

porosity        and fluid penetrativity         . The corresponding values for the reference 

case, Serie 1, are given in Table 6.  

Three additional cases, Series 2, 3 and 4, are  taken into account by changing one or two of 

the fixed parameters shown in Table 6, in such a way that in Serie 2, the parameter   is 

changed to       , resulting in the modification of the next parameters:        , 

               ,                 and       . In Serie 3 the width of the 

transverse tow (weft) is increased, leading to       , while in Serie 4,   and   are 

changed to         and 20 degrees, respectively, bringing about a change in the fluid 

penetrativity,                     . In each one of the series, the following modified 

capillary numbers are considered:   
              

            and   
      .  

From the comparison between the results of these series, the effect of the different 

parameters on the void size, shape and location are analyzed. The plots of RUC filling of 

the mentioned series are shown in Figure 24a-l. In all series considered, no void formation 

is observed inside the RUC when   
           , i.e., at the lower inlet flow rate, as it 

can be observed in Figure 24a to Figure 24d. The results of the simulations of the 

parametric study are summarized in Table 7. 
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Table 6 Simulation data for the reference case (Serie 1) in Stokes-Darcy formulation 

 
Fixed parameters 

Radius of 

the 

fibers,    

(μm) 

Half-distance 

between fibers,  

(μm) 

Ratio among the 

width of transverse 

tow and length of 

RUC (b1) 

Ratio among the 

height of transverse 

tow and height of 

RUC (b2) 

Surface 

tension, 

  
(mN/m) 

Contact 

angle,   

(degrees) 

10 5 0.5 0.5 15 30 

Computed parameters 

Porosity of the 

tow for 

hexagonal array, 

   

Porosity 

of the 

RUC, 

     

K1 (m
2
) K2 (m

2
) 

Slip 

coefficient, 

  

Fluid 

penetrativity, 

      (m/s) 

0.6 0.70 1.98E-11 4.14E-12 1.29 1.30E-1 

 

 

Table 7 Void characterization of all simulations of parametric study Stokes-Darcy 

(Note: for Ca*=6.03×10-2 no void formation was obtained) 

 

Modified capillary 

number,   
  

Series 
Void size: 

Abubble/(w.Hch) 

Void 

shape: 

a/b 

Void 

location: 

ledge/w 

  
            

1 1,54E-02 1,98 6,67E-04 

2 1,25E-02 2,03 6,67E-04 

3 9,94E-03 1,84 1,90E-03 

4 1,11E-02 2,06 4,00E-03 

  
       

1 2,45E-02 1,11 6,00E-03 

2 1,39E-02 2,05 1,33E-04 

3 1,06E-02 1,80 9,52E-04 

4 1,55E-02 1,41 3,33E-03 
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Figure 24 Simulations for the parametric study using Stokes-Darcy.  
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Influence of parameters on the void size. 

The semi-log plot of                   
  is shown in Figure 25a, where it can be observed 

that for a given Serie, the void content increases as   
  increases, which can be confirmed in 

other experimental works. For instance, according to the experimental results in [44], [77], 

[175], there exists an optimal value of the modified capillary number,       
 , where the 

void content is the lowest and, from that optimal point onward, the microvoids (voids 

formed in the bundles) are larger as   
  is higher (Figure 25b,c),  validating the present 

results. Besides, the values represented in Figure 25a fit well to logarithmic curves, as it can 

be confirmed by the R
2
 value of the fit curves, and this behavior is in agreement with other 

numerical and experimental researches [25], [44], [75], [77], [81], see for instance Figure 

25b,c. However, it is important to mention that, according to [80], [81], [175], the behavior 

of the microvoid size with   
  is not necessarily monotonic increasing for all values of   

  

greater than       
   because it is possible to obtain a value of   

  from which the void 

compression is the most relevant process and the microvoid size reduces with    
 . This is 

out of the scope of the present work, but could be addressed in future researches using the 

numerical code developed here to run simulations at higher modified capillary numbers,   
 . 

 

 

 

a) 
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b)                                                                               c)         

Figure 25 Plot of  Void Content vs. Ca
*
. a) BEM simulations (Author), b) 

Experimental results of Kang, Lee & Hahn [25] c) Experimental results of Leclerc & 

Ruiz [77] 

 

The largest void contents correspond to Serie 1 and the smallest ones, to Serie 3, as can be 

seen in Table 7 for both cases of   
  where void formation occurs. The difference between 

these series is the width of the weft, expressed as the ratio    (See Figure 23), i.e., the void 

is smaller as the weft is wider. It is important to remind that the void content, as expressed 

here, represents the fraction of the weft area that is not saturated and that is considered 

ineffective to support mechanical loads. Bearing this in mind, it can be concluded that the 

increment of the width of the weft is beneficial for the mechanical performance of the 

composite not only because it implies a higher global fiber volume content, but also 

because it promotes a lower void content during the processing at constant flow rate 

regime. The reduction of the void size with the increase of the weft width is due to the 

higher inlet pressures that are required for the wider weft cases since the fluid front travels 

a longer distance before reaching the right edge of the weft, resulting in a higher pressure 

field for a given value of   ,  which induces a higher saturation of the weft when the fluid 

percolates from the warps towards the channels, and a larger void compression. This can be 

seen by comparing the zones of void formation of the Series 1 and 3 for   
      , which 

are represented in Figure 26a and Figure 26c, respectively. In these figures, as well as in 

Figure 26b that corresponds to the zone of void formation for Serie 2 and   
      , three 

fluid fronts are highlighted in different colors, namely: 1) when the flow starts the 

migration towards the channel (green), 2) when the fluid fronts encounter one another 

(blue) and 3) when the partial equilibrium is reached in the bubble (violet). For the instant 

corresponding to fluid front 1 (green), the unsaturated area of the weft for the Serie 3 
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(Figure 26c) is greater than for Serie 1 (Figure 26a), but when the filling evolves from 1 

(green) to 2 (blue), the reduction in the void size is       for Serie 1 and       for Serie 

3, and this leads to a smaller bubble for the wider weft, Serie 3, when the fluid fronts 

encounter one another. The compression of the air, expressed as the reduction of the void 

volume and that takes places between the fluid fronts 2 (blue) and 3 (violet), is:        for 

Serie 1 and       for Serie 3. Accordingly, the causes of the difference between the void 

size of Series 1 and 3 are: 1) the flow inside the weft advances more in Serie 3 than in Serie 

1 in the time elapsed between the onset of liquid migration towards the channel (green) and 

the merging of the fluid fronts (blue), 2) the void compression until the partial equilibrium 

(blue to violet) is larger for Serie 3 than for Serie 1, as it becomes evident when compared 

the equilibrium pressures of the bubble of both series, which are shown in Figure 26a and 

Figure 26c.  

     

a)                                                                        b) 

 

c)  

Figure 26 Detail of zones of void formation for Ca
*
=1.21. 

a) Serie 1, b) Serie 2, c) Serie 3.  
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To determine the influence of the tow porosity,   , Serie 1           and Serie 2     

      are compared one another. As can be noticed from Table 7, the reduction of the tow 

porosity from         to         causes the decrease on the void size, as it is also 

observed when compared Figure 26a and 26b. This is a consequence of several things: 1) 

the reduction of the anisotropy ratio,     ⁄ , when the tow porosity,   , decreases, 2) the 

higher saturation of the weft for         when the fluid percolates from the warps 

towards the channel, 3) the lowering in the magnitude of the permeability as the porosity is 

reduced, and the concurrent increase of the inlet pressure in order to keep a constant inlet 

flow rate, which results in a higher void compression after the bubble is formed due to the 

higher values of the liquid pressure surrounding the bubble. In order to explain these 

causes, Figure 26a and Figure 26b are compared. When the flow starts the migration 

towards the channel (green line), the unsaturated area of the weft is larger in the case of 

       , which boosts the formation of a larger initial void. A possible explanation for 

this is that the anisotropic ratio,     ⁄ , is larger for        ; considering that the 

advancement of the fluid front at the warp-weft interface is ruled by both    and   , 

whereas the advancement of the fluid front at the symmetric plane of the weft is almost 

exclusively ruled by     the increase of     ⁄  causes a larger separation between both 

fluid fronts during the whole filling for        ; this in turn leads to a larger unsaturated 

zone for        . This corroborates the results obtained in Table 5, where the void size 

increases as     ⁄  is higher. On the other hand, the filled area in the weft between 1 

(green) and 2 (blue) is larger for        . To explain this, it is important to take account 

that the change of    has a double effect on the fluid motion in fibrous reinforcements: as    

is lower, the permeability decreases and this causes the flow to move slower; but, on the 

other hand, the reduction of    increases the radial capillary pressure in the weft, whereby 

the fluid front velocity increases. In the present case, the second effect, added to the fact 

that the filtration velocity from the warps into the channel is lower for         due to the 

lower transverse permeability,   , causes a greater reduction in the unsaturated area 

between the fluid fronts 1 (green) and 2 (blue) for        , leading to a smaller initial 

void in the instant when channel fluid fronts merge one another. Finally, once the bubble 

has been formed, the bubble compression is bigger for         by two reasons: 1) higher 

fluid pressures are obtained for the lower porosity at the same value of   
 , 2) the higher 
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capillary pressures obtained for         also produces a higher wicking effect inward to 

the bubble, which benefits the reduction of the void size. As expected, a higher equilibrium 

pressure of the bubble is obtained for the lower porosity,        . 

It is important to mention that the behavior of the void size with    obtained here is not in 

accordance with the results reported in [81], where the increment of    generates smaller 

bubbles, but there is a relevant difference between the RUC geometry of that work and the 

one contemplated here. In that work, Schell and Deleglise [81] consider that the weft 

perimeter is totally surrounded by the free fluid, whereas, in the present work, a free fluid 

channel is not taken into account between the warps and the weft, emulating in this way a 

highly compacted preform. This suggests that the influence    on the final void size 

depends on the level of compaction of the RUC, but shall be confirmed in further 

researches.  

By comparing Series 1 and 4 in Table 7 for both values of   
 , it can be concluded that the 

increment of        reduces the final void content. This confirms the importance to use low 

viscosity and highly compatible liquids (liquids with high surface tension and low contact 

angle with fibers) in LCM processes. On the other hand, according to Eq.98, the RUC 

porosity,     , is modified by changing    and/or   . Therefore, as can be concluded from 

results of Table 7, the reduction of     , by increasing    or by decreasing   , causes a 

lower final void content.  

 

Influence of parameters on the void shape. 

According to Figure 24e-l, the void geometry can be almost circular, oval or cylindrical, 

depending on the Serie considered and on the value of   
 . These kinds of void geometries 

have been previously visualized in experimental works using optical microscopy (OM) and 

image analysis  [170], [176], [177], which proves that the present results are coherent with 

the real void shapes obtained in LCM processes. It is important to mention that, in general, 

the void aspect ratio can have a significant influence on some mechanical properties of the 

composite, as the interlaminar shear strength [178], [179], fracture toughness [127], out-

plane modulus [117], among others, being therefore interesting to address some 

conclusions about the influence of the parameters studied here on this ratio. 
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Comparison between Series 1 and 2 for both cases of   
  (See Table 7) shows an increment 

of the void aspect ratio when    decreases, being more significant for   
      , as can be 

also seen in Figure 26a and Figure 26b. On the other hand, by comparing Series 1 and 3, it 

can be concluded that the increase of    results in the increase of the void aspect ratio for 

  
       (as seen in Figure 26a and Figure 26c), whereas a contrary behavior is obtained 

for   
           . From the above results follow that a reduction on the RUC 

porosity,     , due to a decrease of   , causes an increment of the void aspect ratio for both 

values of   
 , whereas the increase in the void aspect ratio due to reduction in     , in 

virtue of the increase of   , is only observed for   
      . Finally, it can be inferred by 

comparison of Series 1 and 4, for both values of   
 , that an increment on        results in a 

higher void aspect ratio, but this increment is more notorious for   
      . In general, the 

comparison of all Series reveals that the void aspect ratio is more sensitivity to the 

variations of the parameters studied here for the larger capillary number,   
      . 

According to Table 7, for cases with         (Series 1,3 and 4), the aspect ratio of the 

void reduces with the increment of   
 . On the other hand, for         (Serie 2), a reverse 

behavior is observed, i.e., the increase of   
  results in the increase of the void aspect ratio, 

although this increase is not significant. It is worth noting that the shape of the void is 

closely related to the void size (See Figure 26a-c); as the void size is smaller its aspect ratio 

tends to increase because the bubble undergoes a greater compression in the vertical than in 

the horizontal direction. This result is in agreement with previous experimental results, 

where the reduction of the void‘s height with the void content is also reported, see [117].  

Influence of parameters on the void location. 

According to Table 7, the void location, expressed as           (See Figure 23), is not 

considerably affected by the parameters studied here. In general, the final void is always 

located at the rear (right) edge of the weft, which is in agreement with other results [3], [4]. 

3.4.4 Analysis of capillary-driven and pressure-driven flow fields 

Inlet pressure history. 

During the filling of the first channel at the lowest capillary number,   
            

(Figure 27b and Figure 28a), before the front reaches the weft, the flow is driven by the 

surface tractions of the moving front. Figure 27b presents the detailed behavior of the 
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almost constant pressure region of the inlet pressure history shown in Figure 27a. At these 

times, the inlet pressures correspond to small negative values, while the pressures at the 

fluid front in the channel (see Figure 28a) are given by larger negative values due to the 

curvature of the moving interface (surface tension effect). The difference between the 

pressures at the fluid front and at the inlet induces negative pressure gradients in the 

direction of the fluid motion. A similar behavior occurs during these times at the warps, 

where the fluid motion is driven by the capillary pressure (compare inlet pressures of 

Figure 27b to fluid front pressures of upper part of Figure 28a). When the channel flow 

arrives to the low permeable weft, the inlet pressure increases significantly due to the high 

resistance encountered, reaching a maximum value of             at the end of the 

simulation (see Figure 27a). In this case, in both the warps and wefts, the flow is driven by 

the inlet pressure rather than by the capillary pressure of the fluid front (compare inlet 

pressures of Figure 27a after flow reaches the weft to the capillary pressures in the warps 

and wefts appearing in Figure 28b).  

The evolution of the moving front for the largest capillary number,   
      , shows 

significant differences with respect to the previous case. In Figure 29a,b, it is reported the 

variation of the inlet pressure with time to keep a total inlet flux of              , 

which corresponds to   
      . Figure 29b shows the zoom of the inlet pressure evolution 

in the time during the filling of the first channel, until the moving front reaches the weft. In 

this case, the pressure of the moving front in the channel resulting from the surface tension 

effect (Figure 30a) is smaller than the inlet pressure (Figure 29b), and consequently, in 

contrast with the previous case, the flow in the channel during this period is pressure-driven 

instead of capillary-driven. As observed, the shape of the fluid front in the channel changes 

from concave in the case of capillary-driven flow (i.e., low   
 , see Figure 28a) to convex in 

the pressure-driven flow (i.e., high   
 , see Figure 30a). On the other hand, for    

      , 

the flow in the warp, before the weft is impregnated, is primarily driven by the capillary 

pressure, as it was the case of the low   
 , with negative capillary pressures of order of      

in the fluid front (see upper part of Figure 30a), while the inlet pressures are positive and of 

the order      (see Figure 29b). As in the case of low   
 , after the fluid front in the 

channel has reached the weft, an important increment of the inlet pressure is noticed (see 

Figure 29a) and the flows in both warps and weft are driven by the imposed inlet pressure 
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(magnitudes of negative capillary pressures are smaller than the inlet pressure), which in 

turn achieves a maximum value of             ; compare pressures of Figure 29a after 

flow reaches the weft to pressures of Figure 30b. 

    

a)  b)  

Figure 27 Inlet pressure vs.Time for Ca
*
=6.03×10-2 . a) Total filling, b) Before the flow 

reaches the weft.  

 

  

a)   

  

b)  

Figure 28 Capillary pressure at the flow front for Ca
*
=6.03×10-2

, a) Before flow 

reaches the weft, b) After flow reaches the weft.  
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a)  b)  

Figure 29 Inlet pressure vs. Time for Ca
*
=1.21. a) Total filling, b) Before flow reaches 

the weft.  

 

  

a)  

 

b)  

Figure 30 Capillary pressure at the flow front for Ca
*
=1.21. a) Before flow reaches the 

weft, b) After flow reaches the weft.  
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Inlet velocity profiles in the channel and warps 

The inlet velocity profiles in the channel and warps are reported in Figure 31 in the case of 

low   
  for several time instants, corresponding to three profiles when the fluid front is still 

in the channel without reaching the weft, one profile when the front arrives to the weft and 

another profile when the front is impregnating the weft. On the other hand, Figure 32 shows 

the inlet velocity profiles for the case of high   
  at five different time instants, two 

corresponding to instants when the fluid front is still in the channel, one instant when the 

flow arrives at the weft and two when the fluid front is inside the weft. It is important to 

realize that in the case of   
       (Figure 32), all velocity profiles in the channel are 

convex-shaped, different to the convolute-shaped profiles obtained at the beginning of the 

filling in the case of low   
  (Figure 31). This happens because in the case of   

      , the 

fluid motion in the channel is always pressure-driven, while in the other case,   
       

    , it is capillary-driven before the fluid front reaches the weft, as explained before. 

 

 

Figure 31 Inlet velocity profiles for Ca
*
=6.03×10-2

 at several time instants.  

 



100 
 

 

Figure 32 Inlet velocity profiles for Ca
*
=1.21 at several time instants.  

 

 

Inlet flow rates distribution 

Figure 33 reports the time evolution of the inlet flow rates in the channel and warps, with a 

resulting total inlet flow rate of                , which corresponds to    
       

    . As it can be observed, during the filling process of the first channel, the inlet flow 

rate in the channel increases monotonically, whereas the one in the warp decreases. At the 

time when the fluid front arrives to the weft, there is a sudden decrease in the channel flow 

rate and a concurrent increase in the warp flow rate, after which, there is a slight increase in 

the channel flow rate and an equivalent decrease in the warp flow rate, with the channel 

flow rate always larger than the warp one. On the other hand, Figure 34 presents the time 

evolution of the inlet flow rate at the channel and warps, with a corresponding total inlet 

flux of                   
       . The general behavior is similar to the case of the 

low capillary number in the sense that the channel flow rate is always above the warps one 

and an abrupt change occurs in both rates when the fluid front arrives to the weft (Figure 33 

and Figure 34), but, in the case of   
      , the channel and warp fluxes remains almost 

constant before the flow reaches the weft (Figure 34) instead of the monotonous variation 

observed for the low capillary number situation (Figure 33).  
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Figure 33 Inlet flow rate distribution in the time for Ca
*
=6.03×10-2

.  

 

 

 

Figure 34 Inlet flow rate distribution in the time for Ca
*
=1.21.  

 

 



102 
 

Velocity fields. 

The velocity fields for   
            in two filling instants are represented in Figure 

35 and Figure 36, where some graphics are off-scale for sake of clarity.  In the first instant, 

Figure 35, the flow has not reached the weft, and two domains are partially saturated: the 

first channel and the warp (Figure 35a).  Three detailed zones are considered for each 

domain, which are clearly identified in Figure 35b for the channel and Figure 35c for the 

warp. The details for the channel, Figure 35d, Figure 35e and Figure 35f, show that the 

change in the velocity direction from the inlet to the fluid front is more pronounced as the 

points are closer to the interface with the warp. For instance, in the Figure 35f, the 

horizontal component of the velocity vectors is larger than the vertical one for all points, 

whereas in the Figure 35d, which corresponds to the zone near the interface with the warp, 

the vertical component is zero at the inlet, but it becomes very important as the points 

approximate to the fluid front, where it is also observed that the magnitude of the velocity 

is greater with respect to the inlet velocities. A similar behavior can be observed for the 

warp, see Figure 35g to Figure 35i, i.e., both the magnitude and the direction of the velocity 

vectors change more from the inlet to the fluid front in the zone near the interface with the 

channel. In this first case, the mass exchange between both domains, channel and warp, 

takes place from the channel towards the warp (Figure 35j).   

The second case is presented in Figure 36, where the fluid front is impregnating the warp 

and the weft, while the channel is totally filled with liquid (Figure 36a). The identification 

of the details of the channel, warp and weft is shown in Figure 36b, Figure 36c and Figure 

36d, respectively. For the channel, according to Figure 36e to Figure 36i, a substantial 

amount of fluid entering the channel displaces towards the transition zone channel-warp-

weft, which originates an important change in the velocity direction in all zones of the filled 

channel. The significant increase in the magnitudes of the velocity in points close to or 

lying on the interface channel-warp, Figure 36e, is an indication of the considerable amount 

of fluid coming from the inferior zones, Figure 36h and Figure 36i. For the warp domain, 

the velocity is practically horizontal in the neighborhood of the symmetric boundary 

(Figure 36j and Figure 36l), but the velocity direction is altered as the points are closer to 

the interfaces with the channel and with the weft due to the mass transfer (Figure 36j and 

Figure 36k) and to the fluid front (Figure 36m); in the detail 1 of the warp (Figure 36j), it is 
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also appreciated that the magnitude of the velocity is lower as the points are closer to the 

interface with the channel. For the weft, in a similar fashion as for the warp, the velocity is 

almost horizontal in the neighborhood of the symmetric boundary, and its direction varies 

considerably in points nearby to the interface with the warp and to the fluid front (Figure 

36n and Figure 36o). For the interface channel-warp, Figure 36p, the mass transfer takes 

place from the warp towards the channel only in points near the inlet, however, the mass 

transfer is reversed in one point along this interface and the percolation of fluid from the 

channel towards the warp increases until the transition point channel-warp-weft, where the 

mass exchange reaches its maximum. The net mass transfer in the channel-warp interface 

occurs from the channel into warp. After the transition point channel-warp-weft is reached, 

Figure 36p, the mass transfer from the weft into warp decreases until it is reversed, in such 

a way that in the fluid front the mass transfer from the warp into the weft reaches its 

maximum.   
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Figure 35 Velocity field for Ca
*
=6.03×10

-2
 before the flow reaches the weft.  
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Figure 36 Velocity field for Ca
*
=6.03×10

-2
 after the flow reaches the weft 

 

The velocity fields for   
       for two filling instants are represented in Figure 37 and 

Figure 38.  For the first case, Figure 37, in the same way as for   
           ,  three 

detailed zones are considered for each domain, which are clearly identified in Figure 37b 

for the channel and Figure 37c for the warp. As in the case of the lowest capillary number, 

  
           , the change of the velocity direction from the inlet to the fluid front is 
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more notorious as the points are closer to the interface with the warp (Compare Figure 37d, 

Figure 37e and Figure 37f), but an important difference can be identified between the 

velocity vectors in the channel fluid front of the present case,   
      , and the ones of 

the case of   
           : in the present case the normal component of the channel 

fluid front velocity is considerably greater than the tangential component for all points (See 

Figure 37d, Figure 37e and Figure 37f) in such a way that the advancement of the fluid front 

is almost totally determined by the magnitude of the velocity; on the other hand, for  

  
           , the tangential component of the channel fluid front velocity is relevant 

in some points (Figure 35d, Figure 35e and Figure 35f) and this component does not 

contribute to the fluid front advancement according to the kinematic condition, Eq. 73.   

According to Figure 37g to Figure 37i, in the warp, both the magnitude and the direction of 

the velocity vectors change more from the inlet to the fluid front in the zone nearby to or 

along the interface channel-warp; in this interface, the largest velocities are obtained near 

the fluid front (Figure 37g). As in the case of   
           , the mass exchange 

between both domains, channel and warp, takes place from the channel towards the warp 

(Figure 37j), but, in this case of   
      , the tangential component of the interfacial 

velocity is more important (Figure 37j) than for   
            where it is negligible in 

all points (Figure 35j). 

The second filling instant for   
       is presented in Figure 38, where it can be 

appreciated that the general behavior of the velocity field is very similar to the second case 

of   
            (Figure 36), even though the velocity vectors are not the same. 
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Figure 37 Velocity field for Ca
*
=1.21 before the flow reaches de the weft 
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Figure 38 Velocity field for Ca
*
=1.21 after the flow reaches de the weft 

 

3.5 Conclusions 

In this chapter, the BEM method has been implemented for the simulation of void 

formation in dual-scale fibrous reinforcements using a Stokes-Darcy formulation. 
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Comparison of the BEM numerical results with the analytical solution of a simple coupled 

problem free fluid-porous media was carried out, showing good agreement between them. 

In general, the developed BEM code converges to the analytical solution as the mesh is 

finer and the accuracy is acceptable for the kind of problem treated here. 

Two types of RUC filling problems were considered. The first one consisted on the 

simulation of the simultaneous filling of the channels and tows at constant pressure regime. 

The main objective of this simulation was to compare the present BEM results with those 

ones previously reported in the literature using a CV/FAN approach. Several differences 

between both results were identified: the filling times at the instants before the fluid front 

reaches the weft are overestimated by the CV/FAN scheme, due to the approximation of the 

channel flow as a Darcian flow with an equivalent permeability. On the other hand, when 

the fluid front is impregnating the weft the filling times are underestimated by the CV/FAN 

approach, with a predicted almost straight shaped fluid front in the warps instead of the 

concave shaped one obtained by BEM. These differences were attributed to the slip 

matching condition considered in the BEM approach, not taken into account in the 

CV/FAN, and to the differences between the tracking techniques used to update the 

position of the moving boundary. Both approaches predicted that the void size increases as 

    ⁄  is higher, but larger voids were obtained with the BEM approach.  

The second case consisted on a parametric study of a filling process at constant flow rate, in 

order to determine the influence of processing, geometric and material parameters on the 

size, shape and location of the voids formed by mechanical air entrapment. According to 

the results, it can be concluded that the driving forces of the fluid motion depend on the 

magnitude of the capillary number,   
 , and on the location of the fluid front. At   

  

         , and when the fluid front has not reached the weft, the flow is capillary-driven 

in both the warps and the channel, however, at   
      , the capillary pressure is the 

principal driving force for the flow in the warps, whereas the inlet pressure is the major 

force driving the flow in the channel. When the fluid front is impregnating the weft, the 

inlet pressure is the main driving force for the two capillary numbers. Besides, the value of 

  
  also determines whether the void is formed or not, in such a way that for   

       and 

  
            the numerical simulation predicted void formation, contrarily to the case 

of   
            where no void formation was obtained. 
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A summary of the major conclusions of the present parametric study can be outlined as: 

 The void size is greater as   
  is higher for given values of   ,   ,      and       .  

 The void location is not significantly affected by any of the parameters considered here. 

In general, void is always formed at the right edge of the weft. 

 For a constant   
 , the reduction of the RUC porosity,     , in virtue of the increment of 

   or of the reduction of   , as well as the increment of the fluid penetrativity,       , 

lead to the formation of smaller voids. 

 The relationship between the considered parameters and the void shape depends on   
 . 

For both   
                  

      , the increase of        leads to a higher 

aspect ratio. In general, the void aspect ratio tends to increase as the void is smaller 

since the void undergoes a greater compression in the vertical than in the horizontal 

direction. 

Generally speaking, the velocity fields for   
            and   

       have some 

similarities and differences among them. When the fluid is still impregnating the first 

channel, for both values of   
 , the velocity directions in the warp and channel are more 

affected as the points are closer to the interface warp-channel, in which the mass transfer 

occurs from the channel towards the warp in all points belonging to it. While the tangential 

velocity at the fluid front for    
            is relevant, it is virtually negligible for 

  
      . Regarding the tangential velocity at the interface channel-warp, a contrary 

behavior was obtained, namely, it is important for   
      , whereas insignificant for 

  
           . On the other hand, when the fluid front is impregnating the weft and the 

first channel is totally filled of liquid, the velocity vectors are not exactly the same for both 

values of   
 , but the behavior of the velocity fields is similar in several aspects: 1) the 

global mass transfer reaches its maximum in the neighborhood of the transition channel-

warp-weft, 2)  the mass transfer at the interface channel-warp takes place from the warp 

towards the channel in points close to the inlet, but it is reversed in a certain point along 

this interface, in such a way that the net mass transfer occurs from the channel towards the 

warp, 3) the mass transfer iat the interface warp-weft takes place from the weft towards the 

warp in the transition channel-warp-weft, it decreases along this interface and then it is 

reversed, in such a way that in the neighborhood of the fluid front, the mass transfer from 

the warp towards the weft reaches its maximum.  
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4. VOID FORMATION IN DUAL-SCALE FIBROUS REINFORCEMENTS  

BASED ON THE STOKES-BRINKMAN FORMULATION

 

4.1 Introduction 

Under the following assumptions: the solid phase is stationary, the fluid is newtonian and 

incompressible, the inertial effects can be neglected, a quasi-static approach can be 

considered and the tow porosity is constant inside the RUC, the momentum equation in the 

porous media (tows or bundles) can be simplified into the Brinkman equation. 

Additionally, it is important to remind that Darcy equation can be achieved as long as two 

length-scale restrictions are satisfied, namely,          
    and        , where      

     and    are the characteristic lengths of the volume averaged quantities, of the RUC 

and of the fluid phase, respectively. The averages implicit in the Brinkman equation can be 

viewed as averages over an ensemble of different scales of the porous medium that 

interpolate between the Stokes and Darcy equations. On small length scales, the pressure 

gradient balances the Laplacian of the velocity and the flow is essentially viscous, Stokes 

flow, while over larger length scales, the velocity is slowly varying and the pressure 

gradient balances the average velocity as it does in Darcy's law (for more details see 

Durlofsky and Brady [180]).  

Krotkiewski et al [181], using a direct numerical simulation of the flow field in 

homogeneous two dimensional porous media having characteristic length   and 

macroscopic permeability  , found that the Stokes solution is dominant for        , 

Darcy law is representative of the flow field if           , while for           

  , the Brinkman approximation should be used to account for the transition between both 

flow regimes, Stokes and Darcy. According to these authors, the use of the Brinkman law is 

necessary in dual-scale porous media when the ratio between the effective saturated 

permeability,         , and the permeability of the porous media (tows in this case),   , is 

lower than the unity. However, this ratio is not the unique criterion to establish whether the 

Brinkman or the Darcy approximation is more convenient and the matching conditions of 

the coupled problem play a major role in the selection of the momentum equation for the 

                                                           
 The results of the present chapter were published in: Iván David Patiño Arcila, Henry Power, César Nieto Londoño, Whady 

Felipe Flórez Escobar, "Stokes-Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a 

BEM/DR-BEM simulation". Published in:  Germany. Computational Mechanics, ISSN: 1432-0924, v.59, First On-line, p.1 - 23,2017 
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porous medium. If the Brinkman equation is used, the matching conditions on the interface 

channels-tows can be put explicitly in terms of the components of the vectors of velocity 

and traction because the order of this equation is the same as the order of the Stokes 

equation;  on the other hand, if the Darcy law is employed, a slip condition for the 

tangential velocities shall be considered along the interface channel-tows [157], [159], 

which implies the use of a dimensionless slip coefficient,  , which, in turn, involves 

experimental tests or models for its estimation that are still matter of controversy. 

In the Stokes-Brinkman approach the continuity of the velocity field is always considered 

and two types of conditions could be employed for the tractions: continuous [182] and 

jump stress [183], [184]. The continuity of stress was initially used by [182], [185], 

however a jump stress matching condition was proposed later in [183] based on the non-

local form of the volume-averaged momentum equation for the analysis of the interface 

region between the channel and the porous medium. By means of experiments, Ochoa-

Tapia and Whitaker [184] found that for unidirectional flow in parallel domains, the jump 

stress tensor has the form         , where   is a jump stress coefficient ranging between 

   and      [20]. However, Phillipe Angot [186] demonstrated mathematically that well-

posedness of the Stokes-Brinkman problem is only possible when    . The theoretical 

estimation of the value of   was developed in [187], [188], where it was established that   

depends on the porosity of the porous medium in the inter-region channel-tow,    . The 

physical meaning of   at the micro-scale is still debatable, but some works have 

demonstrated that this coefficient is related to the excess quantities for     and for the ratio 

       along the interface between the free fluid and the porous medium, and that these 

quantities vary with the position of the interface region and lead to changes in the viscosity 

and in the drag force (friction) [189]. In a work focused in the prediction of the effective 

saturated permeability,         ,  of dual-scale fibrous reinforcements [20], it was taken 

      for all simulations, concluding that the type of matching condition used for the 

tractions (continuity or jump) has a strong influence on the boundary layer thickness in the 

porous medium for unidirectional flow in parallel domains, but a non-significant influence 

on         , which is dependent on the pore geometry. In this point, it is relevant to mention 

that the study of the pore geometry dependency of the effective saturated permeability,  

        , could be a complicated and computationally expensive task, but some recent 
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efforts have been addressed to reduce the computational cost without compromising the 

accuracy. For instance, a multiscale framework relating          with some microstructural 

attributes extracted by X-Ray tomography was proposed in [190], where several 

computational techniques were efficiently combined (Level Set, Graph Theory and Lattice 

Boltzman/Finite Element) to determine the tortuosity, porosity and homogenized effective 

permeability at the specimen scale. The particular problem solved  in [20] by FEM is also 

considered here for validation of the numerical technique implemented. 

The Brinkman equation includes an effective viscosity term,     , to consider the viscous 

diffusion not deemed in the Darcy‘s law. In order to explain the meaning of this term, it is 

necessary to consider that the volume averaging method allows describing the porous 

medium flow in terms of averages of the local quantities by means of the Darcy-Brinkman 

equation, which is given by Eq. 99c considering       , where   is the real fluid 

viscosity. The expression        is valid provided that a non-slip condition on the 

interfaces between the fluid and solid phases of the porous medium is considered, as done 

in the traditional volume-averaging method. However, the non-coincidence between      

and   has been demonstrated in several experimental, numerical and theoretical works, 

suggesting that the non-slip condition is not necessarily valid in all cases. For instance, 

Givler and Altobelli [191]  experimentally found that      is 7.5 times the value of   for 

high-porous open cell foams and moderate Reynolds numbers, whereas Starov and 

Zhdanov [192] studied the dependency of      on the porosity and particle size in porous 

media composed of equally sized spherical particles, finding that       can be lower or 

larger than  . On the other hand, the numerical flow simulations conducted by [193] in 3D 

regular arrays of cubes showed that        , whereas those ones executed by [194] 

indicated that         in order to match the Brinkman equation with the numerical 

solutions in the boundary layer developed in the porous medium domain when it is in 

contact with a free-fluid domain.  A very illustrative theoretical work was published by 

[195], where it was demonstrated that the effective viscosity,     , is different to the fluid 

viscosity,  , when a slip condition at the fluid-solid interface of the porous medium is 

considered. Using an up-scaling procedure, a boundary-value problem to compute      was 

obtained in that work, achieving important conclusions. In general, the effective viscosity is 
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different to the fluid viscosity, i.e,        , because it is a term that ‗absorbs‘ the 

microscale variations of the velocity gradient when a variationless velocity gradient model 

is used at macroscopic scale. Furthermore, as the prescribed slip coefficient at the fluid-

solid interface increases, the boundary layer thickness decreases and a non-slip condition 

tends to be reached, in such a way that  in the limit when the slip coefficient tends to 

infinity,       .  

The estimation of the effective viscosity term,     , in the Brinkman equation is known to 

depend on the geometry of the porous medium and the interface matching condition. For an 

array of cylinders, an acceptable approximation for      is to assume that        when 

the continuous stress condition is used, while         ⁄  is a better approximation when 

the jump stress condition is employed [20], [196], [197], where    represents the tow 

porosity. 

In the present section, simulations of RUC fillings of dual-scale fibrous reinforcements are 

carried out using BEM-based techniques. For the channel domain, pure BEM for Stokes is 

applied, whereas for the porous domain, three approaches are implemented: pure BEM for 

Darcy, pure BEM for isotropic Brinkman (BEM-ISO) and DR-BEM for Brinkman. Firstly, 

the last two approaches are validated by comparison with a benchmark analytical solution 

used previously in the literature to assess the robustness of FEM-based numerical solutions 

of flow problems in dual-scale porous media [20], [85]. Additionally, the solutions of 

simple isotropic problems using these two approaches are compared one another in order to 

determine which of the following strategies is better to deal with the more complex free-

boundary problems: 1) to use an only-boundary integral formulation for the Brinkman 

equation, which implies fundamental solutions for anisotropic domains that entail 

numerical complexity, or 2) to use a boundary-domain integral formulation for the 

Brinkman equation in terms of the Stokes fundamental solutions, where the domain integral 

is transformed into a boundary integral using the Dual Reciprocity Boundary Element 

Method (DR-BEM). To the best of the author‘s knowledge, the comparison between these 

two strategies has not been done yet in any other work. 

The developed BEM numerical schemes are then used to simulate the simultaneous filling 

of channels and tows inside the RUC at constant pressure regime with the purpose of 

analyzing the influence of the matching conditions, at several capillary ratios (    ), on the 



117 
 

void formation. This type of filling problem has been previously considered in the literature 

using different formulations and numerical techniques.  For instance, Gourichon et al. [5] 

studied the influence of the RUC porosity in the formation of voids using a Darcy-Darcy 

formulation and the FEM/CV conforming method. On the other hand, Schell et al [81] 

studied the influence of the tow porosity,   , on the final void content using the same 

formulation and numerical technique as [5], while the problem of unidirectional filling 

considering circular tows and radial coordinates was tackled in [22] using a Stokes-

Brinkman formulation and the Finite Volume method, where it was studied the effect of the 

filling velocity, resin viscosity, inter-tow dimension and intra-tow dimension on the shape 

of the fluid front. Considering the mentioned works and some other publications in the 

composites area solving Stokes-Brinkman by domain-meshing techniques [20], [23], [24], 

[85], [96], it is important to emphasize the main advantages of the BEM approach 

employed here: firstly, the use of BEM-based techniques does not imply any mesh 

discretization of the problem domain, and, secondly, the tracking technique used here 

(Appendix C) assures a higher order accuracy of the shape of the fluid front regarding other 

techniques like the Volume of Fluid (VOF) [36], [111] or the Level Set Method [46], [50], 

[58].  

From the viewpoint of the physical analysis, the principal contributions of this chapter are 

summarized as follows: 

 The study of the influence of two types of Stokes-Brinkman matching conditions, 

continuous stress and jump stress, on the void formation process is carried out. Other 

works have analyzed the influence of these conditions on the effective saturated 

permeability,         [20], [85], but not on the size, shape and location of the voids 

formed by mechanical entrapment of air.  

 The processes of the void formation using Stokes-Brinkman and Stokes-Darcy 

formulations are compared each other in this chapter, which has not been presented 

before to the best of the author‘s knowledge.  

 The influence of the RUC compaction on the void formation is also investigated here 

and the results are compared with previous works. 

In this chapter, it is considered a 2D RUC geometry emulating a longitudinal plane of a 

cross ply fabric (Figure 39). The unidirectional filling of 3D RUC‘s of fabrics has been 
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recently considered by superposition of 2D simulations at several longitudinal planes of the 

RUC, showing good agreement with experimental results [80]. Therefore, it can be inferred 

that the parametric study of the 2D geometry represented in the Figure 39 can be useful to 

understand the influence of some factors on the void formation in cross ply fabrics using 

the Stokes- Brinkman formulation.  

 

 

Figure 39 Scheme of RUC for the problem of simultaneous filling using the Stokes-

Brinkman formulation.  

 

4.2 Governing equations, matching conditions and boundary conditions 

In the Stokes-Brinkman formulation, the governing equations are the following (volume-

averaged symbols are omitted): 

Mass conservation (For all domains): 

   

   
    (99a) 

Momentum for the Stokes domain (Channels flow): 

 (
    

     
)  

  

   
     (99b) 

Momentum for the Brinkman domain (Porous media flow): 

    
    

      
 

  

   
 

 

  
    (99c) 

Here   ,  ,  ,      and    represent the velocity vector, pressure, liquid viscosity, effective 

viscosity and main permeabilities, respectively. The next non-dimensional variables are 

defined for the length, velocity, time and pressure [198], [199]: 
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For all domains: 

 ̂      ⁄  (100a) 

 ̂        ⁄  (100b) 

 ̂          ⁄  ⁄  (100c) 

For the Stokes domain (Channels flow): 

 ̂  
 

        ⁄
  (100d) 

For the Brinkman domain (Porous media flow): 

 ̂  
 

           ⁄
   (100d) 

where    and      are the characteristic length and the maximum velocity of the problem, 

respectively. In terms of these characteristic values, the non-dimensional form of Eqs. 99a-

c is the following: 

  ̂ 

  ̂ 
      (101a) 

   ̂ 

  ̂  ̂ 
 

  ̂

  ̂ 
     (101b) 

   ̂ 

  ̂   ̂ 
 

  ̂

  ̂ 
   

  ̂   (101c), 

where   
      

 ⁄        (       )⁄  is the inverse of the Darcian number,    
 , in the 

principal direction    .  

The non-dimensional matching conditions for the Stokes-Brinkman problem are as follows 

[186]: 

 Continuity of velocities: 

 ̂ 
   

  ̂ 
   

 (102) 

 Normal and tangential component of the jump of stress: 

( ̂ 
   

 (     ⁄ ) ̂ 
   

) ̂   
  

√  
   ̂ 

   
 ̂   (103a) 

( ̂ 
   

 (     ⁄ ) ̂ 
   

) ̂   
  

√  
   ̂ 

    ̂    (103b) 

where     and     represent the Stokes and Brinkman domain, respectively, whereas 

 ̂ 
   

           ⁄      ̂   and  ̂ 
   

 (  (        )⁄ )    ̂   are defined as the 

dimensionless traction vectors, with     as the Newtonian stress tensor. Here    and    are 

the effective permeabilities in the normal and tangential direction at the interface channel-
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tows, respectively, with the effective permeability in any orientation,   , given by Eq.29. 

On the other hand,    and    are the normal and tangential jump coefficients.  It is very 

important to mention that some authors consider that the minus sign of the right hand side 

term of Eqs. 103a,b is implicit in the stress jump coefficients,    and    [20], [85].  

In the present chapter, the RUC filling is carried out at constant inlet pressure for all cases. 

Therefore, the non-dimensional inlet boundary conditions are as follows: 

At the Stokes domain: 

 ̂ 
   

     ̅̅ ̅̅          ⁄   
   ̂

,  ̂ 
   

    (104a) 

At the Brinkman domain: 

 ̂ 
   

     ̅̅ ̅̅   (        )  
   ̂

⁄ ,  ̂ 
   

    (104b) 

where    ̅̅ ̅̅  represents the prescribed inlet pressure. No-flux condition,  ̂  ̂     and zero 

traction in the tangential direction,  ̂  ̂   , are used in boundaries where symmetry is 

specified. At the fluid fronts, kinematic and dynamic boundary conditions are defined. The 

former condition is equivalent to Eq.73 in non-dimensional form, whereas the dynamic 

condition accounts for the discontinuities of normal stress due to the capillary pressure, 

    ; these conditions have the next form: 

Kinematic condition (For all domains): 

  ̂   ̂⁄   ̂  ̂   ( ̂    ̂) ̂    (105a) 

Dynamic condition (At the Stokes domain): 

 ̂ 
   

   (         )        ⁄  ̂    (105b) 

Dynamic condition (At the Brinkman domain): 

 ̂ 
   

   (         ) (        )⁄  ̂  (105c) 

where  ̂  is the outwardly oriented normal vector of the fluid front,      is the air pressure 

in the fluid front and  ̂  is the dimensionless normal pore velocity, defined as the 

dimensionless normal Darcy velocity divided by the tow porosity,    [75], [130].  The same 

mathematical model used in Chapter 3 for the calculation of      in the channel and tows, 

Eqs. 76 to 80, can be applied in the present case. The main permeabilities of the tows,    

and   , can be also computed using the Gebart model [135], which was previously 

presented in Chapter 3, Eqs. 63 and 64. 
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The Stokes-Darcy formulation is also considered in the present chapter only for comparison 

purposes with the Stokes-Brinkman formulation. In dimensionless form, the Darcy 

equation is as follows:  

 ̂     
 (

  ̂

  ̂ 
)    (106), 

where   
         ⁄  is the non-dimensional permeability in the principal direction     and 

 ̂            ⁄  ⁄  is the non-dimensional pressure, while  ̂  and  ̂  were defined in Eqs. 

100a and 100b, respectively. The matching and boundary conditions for the Stokes-Darcy 

formulation shown in Chapter 3, Eqs. 65 to 70, are applicable in this case in non-

dimensional form.  

 

4.3 Integral equation formulations and numerical techniques 

Three numerical approaches are considered to deal with the governing equations presented 

in Section 4.2. For the Stokes-Brinkman problem, both pure BEM for isotropic porous 

domains and DR-BEM for isotropic and anisotropic porous domains are implemented. For 

the Stokes-Darcy problem of this chapter, the pure BEM formulation presented in Chapter 

3, Eqs. 81 to 85, is applied as well. 

The integral formulation for the isotropic Brinkman equation has the same form as for the 

Stokes equation, Eq. 81, with fundamental solutions given by [200], [201]: 

  
       

 

  
[              

       (     )

  ]    (107a) 

          
 

  
[
(     )  ̂

  
      

         ̂

  
         

         ̂

  
      

       (     )         ̂

       ]  

(107b), 

where: 

     

       [                  ] 

       [                     ] 

                    

                         

                           ,   
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with             and       as the modified Bessel functions of second class, of order 

zero, one and two, respectively. In the kernels corresponding to the fundamental solutions 

represented in Eqs. 107a and 107b, singularities of order       and       arise, 

respectively, when    . These singularities cannot be tackled using Rigid Body Motion, 

but a decomposition method instead. This method is described in [202] and has been 

implemented successfully by other authors in Stokes-Brinkman problems [200], [201].  In 

this method, the Brinkman fundamental solutions are decomposed into two parts: 

  
         

            
            (108a) 

            
            

             (108b), 

where the first right-hand side terms of the Eqs.108a and 108b are the Stokes fundamental 

solutions for velocity and traction, respectively, and the last ones are complementary terms. 

The singularities associated to the Stokes fundamental solutions,   
          and    

        , 

are treated as mentioned in Chapter 3, while the Telles transformation [166] is used to deal 

with the weak singularities of the complementary terms,   
          and    

        . 

The explicit forms of   
          and     

         are obtained after expanding in power 

series the modified Bessel functions of second class that appear in the Brinkman 

fundamental solutions, Eqs. 107a,b, and subtracting the Stokes fundamental solutions, 

  
          and    

          resulting in: 

  
          

 

  
2   0 (   

 

 
   (

 

 
))   ∑

   

        
.(

    

    
)  (     

   

          )  
 

        
/1  

 ̂   ̂

  
0∑

   

        
.(

  

   
)       

 

      
  

   

  

   
       /13    

(109a) 

   
         

 

  
2
  ̂

   ̂ *∑
   

          
(

 

   
       

 

       
 

 

   
  (
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   +  

(
 ̂ 

    ̂  
  ̂  ̂

     ) 0∑
   

        
.

     

      
 

   

   
      / 
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  0∑
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(109b), 
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where           and            ∑    ⁄   
    , with              as the Euler 

constant. The last pure BEM formulation, referred as BEM-ISO in the present work, can be 

also used in anisotropic porous domains when the flow is unidirectional, taking the 

equivalent permeability in the flow direction as calculated by Eq.29. Moreover, Kohr and 

Sekar [203] deduced Green functions for the anisotropic Brinkman equation in the Fourier 

space, which reduce to the ones employed here when       (isotropic domain). An 

alternative approach for anisotropic Brinkman consists on structure this equation as a 

Stokes equation with a non-homogeneous term, which is treated using DR-BEM [63]. The 

integral formulation in that case is as follows: 

            

∫          
         ∫   

      
 

         ∫   
      

 
           

(110) 

In the present DR-BEM implementation, the non-homogeneous term,         
      , is 

approximated using Radial Basis Function (RBF) interpolation given by Augmented Thin 

Plate Splines (ATPS). The augmented part of a generalized thin plate spline of order   is a 

polynomial of order     that is added to obtain an invertible interpolation matrix [204]. 

In the present work,      and the form of the ATPS is as follows: 

      

{
 

 
                [       ]

                             
                            
                         }

 

 
     (111), 

where    is the  number of boundary points,    is the number of interior points and 

        |    | is the distance between the field points,  , and the trial points,   . 

Accordingly, the non-homogeneous term can be expanded as follows: 

      ∑   
     

    
       
   ,                (112), 

where   
  represent the approximation coefficients in the direction    . The ATPS 

represented in Eq. 111 requires the addition of orthogonality conditions, as shown in the 

following equation: 

∑   
      

    ∑   
      

     
  ∑   

      
     

      (113) 

 

After substituting Eq.112 into Eq.110, the integral representation takes the following form: 
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∫          
         ∫   

      
 

         

∑   
 ∫   

      
 

    
       

       
        

(114) 

The transformation of the domain integrals into boundary integrals is accomplished by 

defining the following auxiliary Stokes field: 

  ̂ 
    

   
    (115a) 

 
   ̂ 

    

      
 

  ̂    

   
           (115b), 

with the particular solutions for the ATPS  given in [205], [206]. The substitution of the 

auxiliary field defined in Eqs.115a,b into Eq. 114 and the application of the Green‘s 

identities in the domain integral,  lead to the following boundary-only integral 

representation: 

            

∫          
         ∫   

      
 

         ∑   
 (       ̂ 

        
       
   

∫          
 ̂ 

           ∫   
      

 
 ̂ 

    
      )      

(116), 

where the coefficients   
  are achieved by collocation of    boundary nodes and    

internal nodes according to Eq. 112; in other words,  Eq.112 can be written in vector form 

as   ⃗⃗⃗⃗  [ ]  ⃗⃗ ⃗⃗ , from which   ⃗⃗ ⃗⃗  [ ]    ⃗⃗⃗⃗ , with      . 

The treatment of the singularities arising in the kernels     and   
 
, the contour and 

variables discretization, and the solution of the final matrix system are carried out as done 

in Chapter 3. In the DR-BEM formulation of the Stokes-Brinkman problem, the coordinate 

systems of the saturated porous domains (warps and weft in this case) are continuously 

updated as the fluid front advances, in such way that each coordinate system is located in 

the corresponding centroid of each saturated domain to avoid the increment of the condition 

number of the final system as the filling takes place. As in Chapter 3, the technique 

described in Appendix C. is used to track the moving fronts. In this case the magnitude of 

the time step decreases as the capillary ratio,     , increases. The normal vector and 

curvatures of the moving interface are updated using Eqs. 86 to 89. 
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4.4 Results and discussion 

4.4.1 Validation and comparison of the BEM approaches for Stokes-Brinkman 

problems 

Two problems admitting analytical solutions are considered to validate and compare the 

Stokes-Brinkman approaches implemented here.  The first problem is sketched in Figure 

40a and it consists on a pressure-driven, fully developed flow in an isotropic porous 

medium with no slip and no penetration conditions in the walls. The non-dimensional 

analytical solution for the velocity profile is given by: 

 ̂   ̂     
  ̂     

   ̂  (    ⁄     ̂   ̂⁄  )  (117a) 

   (    ⁄     ̂   ̂⁄  )               ⁄   (117b) 

   (    ⁄     ̂   ̂⁄  )      (117c), 

where  ̂  is the dimensionless horizontal velocity and   ̂   ̂⁄  is the dimensionless pressure 

gradient. In this case, the characteristic length is taken as     , where   is the total 

height of the domain (Figure 40a). 

         

a) b) 

Figure 40 Scheme of problems of Brinkman admitting analytical solutions. a) Only 

Brinkman. b) Coupled Stokes-Brinkman.  

 

Data to run the simulations of this first problem are summarized in Table 8, in which the 

mesh-size is reported as      , where   represents the size of one quadratic element. 

The plots of L
2
 relative error norm vs. Meshsize are presented in Figure 41a-d, where a 

power convergence is obtained for both BEM-ISO and DR-BEM. In general, the L
2
 relative 

error norm is greater in BEM-ISO than in DR-BEM for any combination of mesh-size     

and   . Additionally, BEM-ISO diverges for         , which means that this 
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approach is not suitable for small permeabilities and/or large ratios of      ⁄ .  For both 

approaches, the accuracy increases as the coefficient    decreases and, for a determined 

value of   , the convergence order,   , is higher in DR-BEM, which implies another 

advantage of this scheme with respect to BEM-ISO.  

Analytical and numerical results for             are compared in Figure 42, where it 

is confirmed that BEM-ISO is much less accurate than DR-BEM for high values of   . As 

expected, the velocity profile tends to flatten as the flow approximates to the darcian 

regime and this behavior is well predicted by DR-BEM, but not by BEM-ISO. 

 

Table 8 Data to run the simulations of Brinkman problem of Fig 40a 
Geometric 

data 
Material data 

Processing 

data 
Meshsize 

  

    
   

    
  

       
     

       
   

   ̅̅ ̅̅  

     
    ̅̅ ̅̅ ̅̅  

     
  

   

     

   

     
        

   

    

   

    
                

    
      

    
      

    
      

    
      

 

  

a) b) 

  

c) d) 

Figure 41 Plot of convergence for Brinkman problem of Fig 40a. a) χ
2
=[0.1,1]  

b) χ2
=[1,10], c) χ

2
=[1×102

,1×103
 ]  (DR-BEM), d) χ

2
=1×102

  (BEM-ISO).  
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Figure 42 Graphical comparison between analytical and numerical solutions for 

Brinkman problem of Fig.40a with h=5.00×10-2
.  

 

The second problem considered in this section is represented in Figure 40b. It is a coupled 

Stokes-Brinkman problem that has been used by other authors to validate FEM-based 

algorithms [20], [85], [96]. In this problem, the inlet and outlet are subjected to pressure 

boundary conditions and the upper and lower boundaries, to symmetry boundary 

conditions. Both continuous and jump stress matching conditions at the interface between 

the two layers are considered.  The analytical solution for the velocity profiles is given by 

Eqs. 118a,b and it is only valid provided that the boundary layer thickness of the Brinkman 

flow is smaller than the height of the porous medium, in such a way that the solution tends 

to a Darcy flow in the lower part of the porous medium domain. 

Analytical solution for the Stokes domain: 

  
 ̂  ̂  

 ( ̂  ⁄ ) ( ̂   ̂  ̂⁄ )    ̂   ̂⁄    ( ̂      ⁄ )√   (   √ )   ̂   ̂⁄   ⁄  

         (   (   √ ) )⁄    ̂   ̂⁄       

(118a) 

Analytical solution for the Brinkman domain: 

  
 ̂  ̂  

   (    )⁄    ̂   ̂⁄    
(118b), 
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{[( ̂      ⁄ )√      ̂   ̂⁄      (    )⁄    ̂   ̂⁄   ] (   √ )⁄  

   (    )⁄    ̂   ̂⁄   }  (√   ⁄  ̂  )     

where        ⁄ .  

Data to run simulations of this second problem are given in the Table 9. 

 

Table 9 Data to run the simulations of Stokes-Brinkman problem of Fig 40b 
Geometric 

data 
Material data 

Processing 

data 
Meshsize 

             
  

       
     

       
     

   ̅̅ ̅̅  

     
    ̅̅ ̅̅ ̅̅  

     
  

   

     

   

     
        

   

    

   

    

   

    
   0 0.5 1       

    
  

     

    
  

     

    
  

     

    
  

     

 

The plots of L
2
 relative error norm vs. Meshsize are represented in Figure 43a-c for the 

BEM-ISO approach and Figure 43d-g for the DR-BEM approach. In general, DR-BEM is 

more accurate than BEM-ISO in all situations. In fact, for         , BEM-ISO does 

not converge. For BEM-ISO, the convergence order,   , increases as   is increased for 

         (Figure 43a), but for          (Figure 43b) and       (Figure 43c) 

an opposite behavior is obtained. In the three plots of convergence of BEM-ISO (Figure 

43a-c), it is observed that the L
2
 relative error norm diminishes with the increase of  , and, 

when compared Figure 43b and Figure 43c, it is also worth noting that the L
2
 relative error 

norm is not as sensitive to the parameter    as it is to the parameter  , for    between  

       and   . 

The plots of convergence for DR-BEM are shown in Figure 43d-g. According to Figure 

43d to Figure 43f, from          to         ,  the order of convergence,   ,  is 

greater as     decreases for a constant value of  ; on the other hand, a contrary behavior is 

observed from          (Figure 43f) to       (Figure 43g). If the jump coefficient, 

 , and the mesh-size,  , are kept constants, the L
2
 relative error decreases with the 

reduction of   , which is reasonable because in the DR-BEM formulation the 

approximation error of the non-homogeneous term has a stronger influence on the results as 

   is larger. Another thing to notice in the plots of convergence of DR-BEM is the 

reduction of the L
2
 relative error norm with the increase of   for          (Figure 
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43d)            (Figure 43e) and          (Figure 43f); for       (Figure 

43g), an opposite behavior is found. The last aspect to highlight in Figure 43e-g is the 

reduction of the convergence order with   for                   and      .  

   

  

a) b) 

  

c) 

  

d) e) 
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f) g) 

Figure 43 Plot of convergence for Stokes-Brinkman problem of Fig. 40b. a) χ
2
=1×103

  

(BEM-ISO) b) χ2
=1×102

  (BEM-ISO), c) χ
2
=18 (BEM-ISO), d) χ

2
=1×104

  (DR-BEM), 

e)  χ
2
=1×103

  (DR-BEM) , f) χ
2
=1×102

 (DR-BEM), g) χ
2
=18 (DR-BEM). 

 

The analytical and numerical results for             are compared in Figure 44a-d, 

where it is confirmed that the DR-BEM solution is more accurate than the BEM-ISO. In 

general, the increase of the jump stress coefficient,  , reduces the velocities in the Stokes 

domain, being this reduction more important as    decreases (See for example Figure 44d). 

As expected, for a constant  , the thickness of the boundary layer increases with the 

reduction of   . On the other hand, the increase of    reduces the boundary layer thickness 

and this reduction is more notorious as    decreases. The same conclusions were reached in 

[85] using a FEM-based method1, which means that the present approaches are consistent 

with other results.  

It is important to remember that BEM-ISO and DR-BEM are different numerical 

approaches to obtain the fluid flow solution only in the porous domain. For the coupled 

Stokes-Brinkman problem of Figure 40b, pure BEM was used to solve the governing 

equations in the channel domain in all cases. Considering this and having concluded that 

DR-BEM is more suitable for this particular case, the numerical formulation used in this 

chapter to solve the subsequent Stokes-Brinkman problems is referred as BEM/DR-BEM 

from now on.  

 

                                                           
1
 The authors presented the formula of the stress jump condition with the minus sign implicit in the coefficient  . Thus, 

  assumes a different sign with respect to the one of the present work, but both models are equivalent each other. 
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a) 

 
b) 

 
c) 
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d) 

Figure 44 Graphical comparison between analytical and numerical solutions for 

Stokes-Brinkman problem of Fig. 40b with  h=5.00×10-2. a) χ
2
=1×104

, b) χ2
=1×103

, 

c) χ2
=1×102

, d) χ
2
=18. 

 

The problem represented in Figure 40b was also solved in [20] using a modified Brinkman 

approach that reduces to the Stokes flow in the channel domain. In that approach, the stress 

jump condition is incorporated by a level-set formulation and the numerical solution is 

obtained by the Finite Element Method (FEM). The authors considered the following 

parameters in the simulations:      ,      ,         ⁄  with       , and 

         , where   is the permeability of the porous medium in the flow direction. 

Considering a characteristic length of     , the inverse Darcian number is         

    in this problem. Four mesh-sizes were evaluated,        ,         ,   

       and          , using a uniform distribution of a regular mesh of square 

elements over the entire domain, with     as the length of the side of one square element, 

obtaining a total number of elements in each case equal to       . In a similar fashion, in 

the present BEM/DR-BEM scheme,     represents the size of one quadratic element of the 

contour mesh, which leads to                ⁄ ,          ⁄      and 

        ⁄        ⁄    , with    as the number of boundary elements of the whole 

domain (Stokes and Brinkman), whereas    and    are the boundary and interior trial 

points in the Brinkman domain, respectively. The characteristics of the meshes for this 

particular case and the corresponding L
2
 relative error norms of the BEM/DR-BEM 

solution are presented in Table 10.  
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Table 10. Characteristics of meshes and L
2
 relative error norms of BEM/DR-BEM 

solution 

Element 

size, 

       

FEM scheme BEM/DR-BEM scheme 

Number of 

uniformly 

distributed 

elements 

Number of boundary 

elements for the whole 

domain 

(Stokes+Brinkman) 

Number of trial 

points in the 

boundaries of the 

Brinkman domain 

Number of trial 

points in the 

interior of the 

Brinkman domain 

L
2
 

relative 

error 

norm 

0.1 10 23 28 9 1.01E-01 

0.05 40 46 52 57 1.35E-02 

0.01 1000 230 244 1881 9.89E-04 

0.005 4000 460 484 7761 3.21E-04 

 

According to [207], the application of the Finite Element Method (FEM) to fluid flow 

problems implies the use of mixed formulations where multiple field variables shall be 

considered, like the velocity and pressure in the case of an incompressible fluid flow. In 

such a cases, the discretization scheme of the domain should fulfill three conditions with 

the purpose to assure the solvability, stability and optimality of the FEM solution, namely, 

consistency, ellipticity and Inf-Sup condition, being the last one the most difficult to satisfy 

due to the choice of numerical constants to be introduced in the FEM formulation or to the 

modification of the original FEM scheme in order to satisfy implicitly such a condition. 

The statement of the Inf-Sup condition depends on the problem being analyzed; in the case 

of Stokes-Darcy problems, this condition is detailed in [208]. For both Stokes and 

Brinkman flows, some distorted FEM meshes could not satisfy the Inf-Sup condition, 

resulting in spurious pressure modes (for more details see [207]). On the other hand, in the 

present BEM/DR-BEM formulation for Stokes/Brinkman problems, in both flow fields, 

spurious pressure modes are not possible due to the unique relationship between the 

velocity and pressure fundamental solutions in the integral formulation of the problems. 

However, significant numerical errors and inaccuracy can be found by using very distorted 

BEM meshes, due to  the ill conditioning of the global matrix system and/or the 

appearance of near-singularities in the numerical integrations. Therefore, in our scheme, it 

is convenient to avoid a distorted mesh, i.e., a mesh having adjacent elements with very 

dissimilar sizes, to preserve the accuracy of the solution. As mentioned in Appendix C., 

since the points at the fluid front are not uniformly spaced just after the fluid front 

advancement, a remeshing algorithm is implemented with the purpose to obtain a balanced 

mesh in every time instant and avoid in this way the loss of accuracy in the solution.  
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The comparison of the present BEM/DR-BEM scheme with the FEM scheme of [20] is 

shown in Figure 45a,b, where a semi-log plot is adopted in order to distinguish the 

velocities in the porous domain, which can be several orders of magnitude lower than the 

velocities in the channel. In the present BEM/DR-BEM scheme, the positions of the interior 

trial points for the RBF interpolation are determined by an extension of the boundary mesh 

points into the domain, with exception of the points close to the corners. In both BEM/DR-

BEM and FEM schemes, the numerical solution converges satisfactorily to the analytical 

one, obtaining very accurate solutions for the two finer meshes,          and   

       ; however, a domain mesh is required in the FEM instead of the only boundary 

discretization used in BEM/DR-BEM, which represents an advantage of the last one. Two 

main differences between the two numerical schemes can be observed. Firstly, the 

BEM/DR-BEM shows high accuracy in the Stokes velocity profile, channel flow, for all 

mesh sizes, while the Brinkman velocity profile is over-predicted for the coarser meshes. 

On the other hand, the FEM scheme always predicts an accurate velocity profile in the 

porous medium (Brinkman), but the velocity profile in the channel (Stokes) is under-

predicted for the coarser meshes. As commented in [20], the observed behavior in the FEM 

solution is due to the interpolation scheme used in the level-set formulation. To be more 

specific, it is necessary to mention that a single equivalent momentum equation for the 

coupled Stokes-Brinkman domain was considered in [20], which is essentially a Stokes 

equation modified with permeability and jump stress terms to account for the fluid flow in 

the porous medium and the stress matching condition in the interface, respectively.  

Additionally, the domain geometry was defined by a level set function,  , where     at 

the interface,     at the free-fluid domain and     at the porous medium. When 

| |      , with        as the half thickness of the diffuse interfacial region, an interpolation 

functions is defined to express the permeability and jump stress terms as a function of   

and     , and the errors of such interpolation led to greater numerical errors in the Stokes 

velocity profile than in the Brinkman one, as explained in [20].  On the other hand, the 

observed behavior of the numerical solution with the mesh size in the BEM/DR-BEM 

approach is due to the approximation error on the evaluation of the volume integral in the 

integral representation formula used to represent the Brinkman flow, Eq.110. As mentioned 

before, in the case of the Stokes flow an exact only-boundary integral formulation is 
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known, Eq.81, requiring only the discretization of the boundary integral densities,    and   , 

without any additional approximation. The discretization of the densities,    and   , is also 

required in Eq.110, besides the corresponding approximation of the volume integral. The 

transformation of the domain integral appearing in Eq.110 into the boundary integrals 

arising in Eq.116 by DR-BEM involves the interpolation of the non-homogeneous term, 

     , using Augmented Thin Plate Splines (ATPS) as shown in Eq.112. In this case, the 

approximation error of such interpolation, which is greater as the permeability is lower 

and/or the mesh is coarser, is the principal error source of the Brinkman velocity profiles.  

It is worth-mentioning that in the BEM/DR-BEM results no oscillations are present in 

points close to the interface Stokes-Brinkman for any mesh-size, contrary to the FEM 

scheme used in [20] where oscillations can be noticed for the coarser meshes (See details of 

Figure 45a and Figure 45b). 

The Stokes-Brinkman simulations of the following sections are conducted using the 

BEM/DR-BEM scheme with a mesh-size of     ⁄           , with corresponding 

L
2
 relative error norms of order       for    ranging between     and     according to 

the last analyses.  

 

   

a) b) 

Figure 45 Velocity profiles for coupled Stokes-Brinkman problem at several mesh 

sizes. a) BEM/DR-BEM approach (Author). b) FEM approach [20]. 
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4.4.2 Simulation data and void characterization 

Simulations considered in the following sections are classified into five different series. 

Series 1 to 4 provide different data to be used in the simulations performed with the Stokes-

Brinkman formulation, while Serie 5 defines the data of the simulations run with the 

Stokes-Darcy formulation. The parameters of the Serie 1, which is taken as the reference 

case, are presented in Table 11, where the fixed parameters are prescribed values and the 

computed parameters are determined from the former ones. The geometrical parameters of 

the RUC considered in this chapter are represented in Figure 39.  The jump coefficient,  , 

of the simulations of Serie 1 is calculated using the model of Valdés-Parada et al. [187], 

[188] together with the Larson-Hidgon coefficient in the inter-region channel-tow,    

[209] : 

  
    

   

 √          
  (119a) 

                   
        (119b), 

where the porosity of the inter-region channel-tow,    , is approximated as the porosity of 

the bundle,   , and it is considered that         ⁄ . In simulations of Serie 2, the jump 

coefficient is changed to      , which corresponds to the approximation considered in 

[20], where         ⁄ . For Serie 3, the RUC is compacted and the following parameters 

are changed with respect to Serie 1:               ,              ,    

          and              (See Figure 39). In Serie 4, the continuous stress 

condition is considered taking     and       . Considering a characteristic length 

equal to the tow height, i.e.,       (See Figure 39), to be consistent with the 

characteristic lengths of the benchmark problems of Figure 40a,b, the inverse Darcian 

numbers in the principal directions for the Series 1 and 2 are   
           and 

  
          ; for Serie 3 (compacted domain) the corresponding values are   

  

         and   
          , whereas for Serie 4 (continuous stress case), they are 

  
           and   

          . For simulations of Serie 5, a Stokes-Darcy 

approach is taking into account and therefore, the jump stress coefficient,  , is not 

applicable in such case, but the slip coefficient,  , which is approximated as    (  
  ⁄ )⁄  

[158]. As a constant pressure regime is considered in all simulations, the imbalance 
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between viscous and capillary forces is quantified by mean of the capillary ratio,      

           ⁄  [11], where          and      stand for the maximum capillary pressure and 

inlet pressure, respectively. For Series 1,2,3 and 5, three different capillary ratios are 

contemplated:                         and            , whereas for Serie 

3 only the lower value of      is taking into account, i.e,            . The following 

results are acquired from each simulation:  

 Size, shape and location of voids, expressed as (See Figure 46): 

                 
  ⁄    (120a) 

                  ⁄   (120b) 

        ⁄  (120c) 

                   ⁄  (120d), 

where       is the void area,                is the RUC area,      is the RUC 

length,     and     are the semi-major and semi-minor axes of the ellipse 

circumscribing the void,    is the semi-major axis of the weft,  and       is the distance 

between the front edge of the weft and rear edge of the void (See Figure 46). When the 

size of voids of two different domains are compared one another, either        or 

        could be used indistinctively as long as both      and      remain constant; 

otherwise, it is convenient to take into account both        and         in the analysis. 

For example, if the influence of the RUC compaction is going to be study, both 

variables should be considered since they do not necessarily have the same meaning 

because      is modified when the RUC is compacted.  

 Real, dimensionless and normalized times for several filling instants: The 

dimensionless time was defined in Eq.100c, while the normalized time is defined as  

            ⁄ , where           is the total filling time of the RUC. In the simulations of 

the following sections, two adjacent RUC‘s are considered and the filling stops when 

the partial equilibrium of the bubble formed in the second RUC has been reached. 

 RUC‘s saturation vs. Normalized time.  

 Velocity profiles at inlets, fluid fronts and interfaces. 

 Compression of the voids, defined by the compressibility ratio: 
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    (121), 

where      
  and      

 
 stand for the initial and final volume of the void, respectively. 

 

Table 11 Simulation data for the reference case (Serie 1) in Stokes-Brinkman 

formulation 
Fixed parameters 

Radius 

of the 

fibers, 

  (μm) 

Half-

distance 

between 

fibers,   

(μm) 

Length 

of the 

RUC, 

     

(m) 

Height 

of the 

RUC, 

     

(m) 

Height 

of the 

warps, 

   (m) 

Major 

axis of 

wefts, 

   (m) 

Minor 

axis of 

wefts, 

   (m) 

Surface 

tension, 

  
(    ) 

Contact 

angle,    

(degrees) 

Real 

viscosity, 

  (Pa.s) 

20 11 
   

      

   
      

   
      

   
      

   
      

15 30 0.1 

Calculated parameters 

Porosity of the tow 

for hexagonal 

array,    
K1 (m

2
) K2 (m

2
) 

Jump stress 

coefficient,   

Fluid 

penetrativity, 

       (m/s) 

Effective viscosity, 

     (Pa.s) 

0.62 1.02 E-10 2.10E-11 1.24 1.30E-1 0.16 

 

 

 

Figure 46 Scheme of void characterization 

 

 

4.4.3 Comparison between Stokes-Darcy and Stokes-Brinkman approaches 

Despite the most of cases in composites processing involve low  permeability tows and, 

therefore, are prone to be modeled by the Darcy approximation, some authors prefer to use 

the Brinkman equation in its original form [20], [85], [96], since it is possible to impose 

explicitly the matching conditions at the channel-tow interface in terms of the interfacial 
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velocity and traction components, considering that the Brinkman and Stokes partial 

differential equations are of the same order. As expected, several authors have used the 

Darcy equation to model the flow in the tows  [3], [8], [103], but, considering that this is a 

first order partial differential equation, a slip matching condition for the tangential 

velocities in the channel-tow interface has to be imposed as shown in Chapter  3 and the 

value of the slip coefficient,  , appearing in that condition is not a closed problem.  

Considering that both approaches, Stokes-Brinkman and Stokes-Darcy, have been used in 

the literature and are consistent with the problem dealt here, the present section is devoted 

to compare the results of void formation obtained by both of them, namely, Serie 1 for 

Stokes-Brinkman and Serie 5 for Stokes-Darcy.  It is important to mention that a coupled 

solution system is considered for both approaches, i.e., the equations of the free-fluid and 

porous medium domains, as well as the matching conditions, are directly included in a 

single solution system, which could be ill-conditioned as mentioned before. In other works, 

decoupled strategies have been used for the solution of Stokes-Darcy problems, such as: 

iterative subdomain methods [210],  Lagrange multipliers [211], two-grid method [212], 

among others. For instance, Mu and Zhu [208], who used the  Saffman matching condition 

for the tangential velocities, proposed and assessed a decoupling FEM methodology based 

on interface approximations via temporal extrapolation for non-stationary cases. This 

methodology allows solving two decoupled sub-problems independently by invoking 

conventional Stokes and Darcy solvers.  After analyzing the behavior of the convergence 

rate and approximation errors with the time step and element size regarding a coupled 

strategy, it was concluded that the proposed methodology is computationally effective for 

this kind of problems. In future works, decoupled strategies could be implemented using 

BEM.  

 

Comparison of the RUC filling process for            . 

In Figure 47, they are compared several filling instants of the Stokes-Darcy (S-D) and 

Stokes-Brinkman (S-B) approaches for            ; in each instant, the fluid front 

position along the channel is the same for both approaches, S-D and S-B, but different 

evolution times are predicted. First filling instant looks very similar for both approaches 

(Figure 47a vs. Figure 47b), but S-D predicts a slightly greater time than S-B. As expected 
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for            , the fluid fronts in the channels exceed the fluid front in the tows and 

the first weft is surrounded by the liquid. At the filling instant of Figure 47c and Figure 47d, 

when the liquid at the channel is approximately half the way along the first weft, 6.57% of 

the total filling time has elapsed according to S-D, whereas S-B predicts a value of 5.78%. 

Additionally, the minimum position of the fluid front in both the warps and the weft is 

larger for S-D. When the channel fluid fronts totally surround the first weft and merge one 

another, the air is trapped and the void compression occurs. According to Figure 47e and 

Figure 47f, the fluid fronts in the warps and the weft for S-D are ahead with respect to S-B, 

and this causes a smaller initial bubble for S-D.  Moreover, the real arrival time to this 

position is longer for S-B, but the normalized time is shorter instead. This last feature is 

common for all the cases analyzed in Figure 47a-h, where the normalized times of the fluid 

front evolution are always shorter for the S-B simulation. In the Figure 47g and Figure 47h, 

it is important to realize that for both simulations, S-D and S-B, the maximum position of 

the channel fluid front is almost 80% of the total length of the domain, while the time has 

not reached 60% of the total filling time. This is a manifestation of the reduction of the 

saturation rate regarding the initial one, as it will be confirmed later. When the channel 

fluid fronts totally surround the second weft, they merge one another again and the second 

bubble is formed. This bubble undergoes a compression until the partial equilibrium is 

attained (Figure 47i and Figure 47j). In this case, S-D predicts a smaller void and a lower 

void aspect ratio than S-B in both wefts, as it can be confirmed in Table 12 for        

    . In general, the influence of the formulation type, S-D or S-B, on the void location is 

not as significant as the influence on the void size and shape. 



141 
 

 

Figure 47 Comparison of void formation between Stokes-Brinkman with β=1.24 and 

Stokes-Darcy with γ=1.27, for Ccap=1×10-2
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Void size difference between the first and second weft. 

For            , the bubble of the first weft is smaller than the one of the second weft 

for both approaches, S-B (Figure 47i) and S-D (Figure 47j). To explain this, the details of 

void formation for S-D and S-B are shown in the Figure 48a-d, where the fluid fronts 

corresponding to the instants of flow merging (blue) and bubble equilibrium (violet) are 

highlighted in different colors The comparison between these fluid fronts (blue and violet) 

in each figure is an indication of the void compression. Accordingly, in the first weft 

(Figure 48a for S-B and Figure 48b for S-D) the void compression is higher than in the 

second weft (Figure 48c for S-B and Figure 48d for S-D) for both approaches, and this is the 

main cause of the size difference between the final voids; for the first weft the 

compressibility ratio is         for S-B and         for S-D, whereas, for the second 

one, it is          for S-B and         for S-D. This is reasonable since higher 

pressures are reached in the neighborhood of the first bubble because it is closer to the inlet 

of the RUC.  

The RUC fillings for the other two capillary ratios studied here (            and 

           ) are presented in Figure 49a-d. In those cases, the relationship between 

the size of the first and second void is opposite to the one described above (       

    ), that is, the second void is smaller than the first one. This apparent unexpected 

behavior is well predicted by both the S-D and the S-B approach and it is due to the 

relationship between the capillary and viscous forces, and to the void compression.  In 

general, during the filling of two adjacent RUC‘s at constant pressure regime, the velocities 

of the channel fluid fronts surrounding the first weft are greater than those ones surrounding 

the second weft because the saturated domain is smaller in the first case, which represents a 

lower flow resistance, and the inlet pressure is kept constant during the whole injection. 

Considering this and the fact that the capillary forces promote the weft impregnation, the 

separation between the channel fluid front surrounding the weft and the fluid front inside 

the weft tends to be inferior for the second weft as the capillary effects are more relevant, 

i.e., as       is larger. Considering that for             and             the 

capillary effects are more important than for            , it is expected a greater fluid 

infiltration in the second weft than in the first one before the channel fluid fronts merge one 
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another, leading to a smaller initial void size in the second weft regarding the one in the 

first weft in the cases of              and            . Additionally, the void 

compression is lower for those cases with respect to the case of             since the 

inlet pressures are lower as well, and the initial and final void sizes are almost the same for 

both wefts (See Figure 50a and Figure 50b, corresponding to the case of             

for S-B). As the initial and final void sizes are very similar for both wefts (low void 

compressibility), and considering that the initial void size is smaller in the second weft due 

to the greater infiltration of liquid into this weft before the channel fluid fronts merge each 

other, it is reasonable to obtain smaller voids in the second weft.  

 

 

Figure 48 Detail of void formation for Stokes-Darcy and Stokes-Brinkman 

formulations and Ccap=1×10-2
. a) First weft (Stokes-Brinkman, β=1.24), b) First weft 

(Stokes-Darcy, γ=1.27), c) Second weft (Stokes-Brinkman, β=1.24), d) Second weft 

(Stokes-Darcy, γ=1.27) 
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a) 

 

 

b) 

 

 

c) 
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d) 

Figure 49 Total fillings of RUC’s in S-D and S-B for Ccap=1×10-1
  and  Ccap=5×10-1

,a) 

Ccap=1×10-1
  (Stokes-Brinkman, β=1.24), b) Ccap=1×10-1

  (Stokes-Darcy, γ=1.27),  c) 

Ccap=5×10-1
  (Stokes-Brinkman, β=1.24), d) Ccap=5×10-1

  (Stokes-Darcy, γ=1.27). 

 

 

   
a) b) 

Figure 50 Detail of void formation for Ccap=1×10-1
 in Stokes-Brinkman approach 

with β=1.24 . a) First weft, b) Second weft 

 

 

Results of void characterization. 

The characterization of the final voids is shown in Table 12. Both approaches, S-D and S-B, 

predict a similar behavior of the void size and shape with the capillary ratio,     . The 

largest voids of the first weft are obtained for             and the smallest ones for 

           , with the void size corresponding to             in between them. 

On the other hand, for the second weft, the void is always smaller as      is higher, with no 

void formation,        , for             when using the S-B approach (See Figure 

49c), while the S-D predicts the formation of a very small bubble (See Figure 49d). 

Regarding the void shape, the increase of      generates bubbles with a higher aspect ratio 

for the first and second weft in both approaches, S-B and S-D. 
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Table 12 Characterization of final voids for S-B with β=1.24 and S-D with γ=1.27 

Approach 
Capillary 

ratio 

Void of first weft Void of second weft 

      Shape Location       Shape Location 

Stokes-

Brinkman 

1.00E-02 7.58E-03 2.34E+00 9.48E-01 9.87E-03 1.93E+00 9.35E-01 

1.00E-01 1.08E-02 2.84E+00 9.83E-01 6.55E-03 3.32E+00 9.87E-01 

5.00E-01 1.97E-03 4.24E+00 9.65E-01 0.00E+00 NA NA 

Stokes-

Darcy 

1.00E-02 5.08E-03 2.10E+00 9.32E-01 8.01E-03 1.86E+00 9.46E-01 

1.00E-01 1.07E-02 3.10E+00 9.84E-01 7.34E-03 3.59E+00 9.91E-01 

5.00E-01 4.94E-03 4.17E+00 9.78E-01 2.45E-03 5.21E+00 9.66E-01 

 

Comparison of saturation curves. 

The global saturation curves predicted by the S-D and S-B approaches for the three 

capillary ratios are compared in Figure 51a, where it can be seen a similar general behavior 

for all curves. In the Figure 51b, the S-D curve for             is showed to describe 

the general behavior of the curves of Figure 51a and several filling instants are highlighted 

using marker points that are numerated from 0 to 5. According to Figure 51b, the highest  

saturation rate, i.e., the slope of the curve, is reached at the beginning of the injection (from 

0 to 1), but when the fluid front arrives to the first weft (point 1), the saturation rate 

decreases until the merging of the fluid fronts (from 1 to 2) due to the flow resistance 

exerted by the first weft. When the channel fluid fronts have surrounded the first weft and 

encountered one another, an increase in the saturation rate can be noticed (point 2) and this 

rate is kept almost constant until the arrival of the fluid front to the second weft (from 2 to 

3), moment from which the saturation rate progressively decreases again until the second 

merging of the fluid fronts (from 3 to 4) due to the resistance exerted by the second weft. In 

point (4), saturation rate barely increases, and from (4) to the end of simulation (5), 

saturation rate is essentially constant. The nearly constant saturation rate between 2 and 3, 

as well as between 4 and 5, is expected since no porous obstacles are present in the channel 

in those intervals, in contrast with what happens in the intervals from 1 to 2 and  from 3 to 

4, where the saturation rate decreases due to the presence of the first and second weft, 

respectively.  
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According to Figure 51a, for             and            , the saturation curves 

of both approaches (S-D and S-B) are almost similar, but the final saturation is slightly 

higher for S-D (See detail in Figure 51a). The highest differences between the predicted 

saturation curves of both approaches (S-D and S-B) are found for            , i.e, 

when the capillary effects are the most important; in this case, the final RUC saturation is 

barely higher for the S-B scheme (See detail in Figure 51a).   

 

 

a) 

 

b) 

Figure 51 Saturation curves for S-D and S-B formulations.a) Comparisson Stokes-

Brinkman with β=1.24  vs. Stokes-Darcy with γ=1.27, b) Stokes-Darcy for Ccap=1×10-1
 



148 
 

4.4.4 Influence of matching conditions on the void formation for the Stokes-Brinkman 

approach. 

Influence of the jump stress coefficient. 

The influence of the jump stress coefficient,  , on the void formation can be studied by 

comparing results of Series 1          and 2         . For Serie 2, the total RUC 

fillings are shown in Figure 52a-c, where, in the case of             (Figure 52a), the 

fluid fronts with the same positions in the channel as the ones reported in the first column 

of Figure 47 for the Serie 1, are highlighted in black color. In general, the real, 

dimensionless and normalized arrival times corresponding to these positions are shorter for 

      .  

As it can observed in the Table 13, the behavior of the void size with       in the case of  

       is similar to the one previously obtained for       , that is,  the void size does 

not vary monotonically with      in the first weft, but it does in the second weft, in which 

the increase of      brings about the reduction of the void size. According to Table 13, 

when void is formed, smaller voids are obtained in both wefts for       , being this 

difference less significant for             in the first weft. The total void size, which 

is the sum of the void size of both wefts, is thereby also lower for       . Although the 

size of the first bubble is not a monotonic function of      for both values of   , the size of 

the second bubble is a decreasing monotonic function of     ,  and the resulting total void 

size also decreases with     . This last behavior is in agreement with results previously 

reported in the literature [11], where unidirectional macroscopic simulations were carried 

out using the software LIMS and it was found that the saturated length corresponding to the 

arrival of the fluid front to the extreme of a cavity is larger as      increases, which, from a 

mesoscopic viewpoint, can be interpreted as the reduction of the total void size with the 

increment of      for a determined position along the cavity.  

In general, the void shapes obtained in this work are physically consistent with some 

experimental works. For instance, Hamidi el al [170], [213], [214] studied the void 

morphology in the Resin Transfer Molding process (RTM), obtaining that the bubbles 

formed inside the bundles can be cigar-shaped, i.e., bubbles with a very high aspect ratio 

(See Figure 53a, Figure 49d-second weft, Figure 52b-second weft), elliptical bubbles with a 
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lower aspect ratio tan the previous ones (See Figure 53b, Figure 49a, Figure 49b, Figure 

52a, Figure 52b-first weft), and, in less proportion, almost circular bubbles having an aspect 

ratio close to one (See Figure 53c, Figure 54).  According to the results of Table 14, the 

behavior of the shape of the first and second bubbles with       in the case of        is 

similar as for       , that is, the aspect ratio increases with      . For             , 

the aspect ratio of the first and second bubble does not considerably change with  , while 

for            , a significant reduction of the aspect ratio with   can be noticed for 

each bubble. In the case of             , only the first bubble is formed for both 

values of   and the aspect ratio increases with  . The BEM/DR-BEM results do not reveal 

a relevant influence of   and      on the location of the void, which is always formed at 

the rear edge of the weft, in agreement with the experimental research of Hamidi et al. 

[170], where radial injections in a circular mold were conducted, finding that the most of 

voids were formed at the rear edge of the wefts corresponding to the flow direction, both 

inside the tow and in the transition tow-channel. Other numerical works have also predicted 

the void formation at the extreme of the weft [3], [25], [171]. 

In summary, it can be concluded that the process of void formation by mechanical 

entrapment of air is defined by a dynamic balance between the inlet and capillary pressures, 

which is characterized by the capillary ratio,     . The void size and shape are also 

influenced by the magnitude of     , as well as by the value of the jump stress coefficient, 

 . On the other hand, the void location appears to be independent on both      and  , since 

the voids are always located at the rear edge of the wefts, which is in agreement with 

previous numerical and experimental works. 
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a) 

 

b) 

 

c) 

Figure 52 Total fillings of RUC’s for Stokes-Brinkman with β=0.7. a) Ccap=1×10-2
, b) 

Ccap=1×10-1
, c) Ccap=5×10-1
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Table 13 Influence of β and  Ccap  on the void size 

Capillary 

ratio 

Void size 

First weft Second weft Total  

β=1.24 β=0.70 β=1.24 β=0.70 β=1.24 β=0.70 

1.00E-02 7.582E-03 6.573E-03 9.866E-03 8.796E-03 1.745E-02 1.537E-02 

1.00E-01 1.077E-02 1.039E-02 6.548E-03 2.150E-03 1.732E-02 1.254E-02 

5.00E-01 1.973E-03 1.927E-03 0.000E+00 0.000E+00 1.973E-03 1.927E-03 

 

 

     

a) b) c) 

Figure 53 Optical microscopic images of voids formed inside bundles, a) Cigar-shaped 

bubbles, b) Elliptical bubbles, c) Almost circular bubbles. Source: Hamidi et al [170] 

 

 

Table 14 Influence of β and  Ccap  on the void shape. 

Capillary 

ratio 

Void aspect ratio 

First weft Second weft 

β=1.24 β=0.70 β=1.24 β=0.70 

1.00E-02 2.34 2.22 1.93 1.90 

1.00E-01 2.84 3.19 3.32 4.18 

5.00E-01 4.24 3.48 NA NA 

 

Comparison of void size between continuous-stress and jump-stress simulations. 

The influence of the type of interface condition on the void formation for             

is studied by comparing results of Serie 2 (stress jump condition,      ) and Serie 4 

(continuous stress condition,    ).  The total RUC filling for the continuous stress 

condition is represented in Figure 54, where the fluid fronts having the same positions in 

the channels as those ones shown in Figure 52a are highlighted with the corresponding 

black arrows. The comparison between both simulations (Figure 52a vs. Figure 54) 

indicates that,  for a same fluid front position in the channel, the positions of the fluid front 
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in the warps and wefts are more advanced in the continuous-stress case     ), and 

consequently, the initial size of the first and second bubbles, corresponding to the instants 

when the channel fluid front completely encloses the first and second weft, respectively, is 

smaller in the continuous stress condition.   The initial and final void size for the first weft 

in the jump-stress condition, Figure 52a, are                 and            

    , respectively; on the other hand, these values for the continuous-stress condition, 

Figure 54, are                 and                . Thus, the compressibility 

ratio is         for the jump-stress case and         for the continuous stress case. 

Accordingly, the void compression does not have a relevant influence in the difference 

between the final void sizes of these two cases (continuous-stress and jump-stress) since it 

is almost the same, and the principal cause of this difference is the initial void size, which is 

smaller in the case of    , leading to a smaller final void size in such a case. A similar 

behavior can be appreciated for the void size in the second weft, namely, the initial void is 

smaller in the continuous-stress case and the compressibility ratio is almost the same for 

both cases (continuous-stress and jump-stress); the difference between the final void sizes 

of these two cases for the second weft is even higher than for the first weft, in such a way 

that for the jump-stress condition, the final void size is                 and for the 

continuous-stress condition is                .  

 

 

 

Figure 54 Total filling of the RUC for the continuous-stress condition and Ccap=1×10-2
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Comparison of saturation curves between continuous-stress and jump-stress simulations. 

Saturation curves are very important since they allow describing quantitatively how the 

behavior of the saturated volume is in the time or in the space, and they can be useful for 

comparing two or more filling processes at several filling instants. The saturation curves for 

the continuous (C-S) and jump stress (J-S) filling processes are compared in Figure 55. For 

any value of the normalized time,             ⁄ , the saturation is higher in the C-S 

simulation, but the general behavior of both curves is very similar to the one presented in 

Figure 51b. In both curves, the same representative filling instants shown in Figure 51b are 

indicated with arrows. The saturation difference between the C-S and J-S simulations for 

any filling instant   can be written as: 

     
       

    
    (122), 

where   
     and   

    
 stand for the RUC saturation at the instant “i” in C-S and J-S, 

respectively. The absolute change of the saturation difference,   , between two filling 

instants, i and j, is represented as follows: 
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(123b), 

where           
  

 is the change of the saturated volume in the channels between instants i 

and j,         
  

 is the change of the saturated volume in the warps,         
  

 is the change of 

saturated volume in the first weft  and        
  

 is the change of saturated volume in the 

second weft. It is very important to take into account that    is not referred to the saturation 

difference for a determined value of the normalized time,   , but to the saturation difference 

for the filling instants highlighted in Figure 55, which do not necessarily have the same 

normalized times in both curves. 

In the first filling instant (point 1), when the flow reaches the first weft, the RUC saturation 

is very similar for both simulations, C-S and J-S, because it is primarily determined by the 

saturation of the channel, which is almost the same in both cases. So, when the fluid front 

reaches the first weft,    is very small, namely,           . During the impregnation of 
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the first weft (from 1 to 2),    increases until the merging of the channel fluid fronts (point 

2). This happens because (       
  )

    
 (       

  )
    

 between the arrival of the fluid 

front to the first weft and the merging of the channel fluid fronts; in other words, this 

happens because the first weft saturates more in C-S than in J-S when the fluid surrounds it 

(from 1 to 2). Therefore, in the flow merging instant (point 2), the saturation difference 

between C-S and J-S has increased to          .  

The change of the saturated volume of the first weft between the flow merging instant and 

the arrival of the fluid front to the second weft (from 2 to 3), can be expressed as        
   

      
   

       
   

, where       
   

 is the initial volume of the bubble (void volume at instant 2) 

and       
   

 is the volume of the bubble at the  instant when fluid front reaches the second 

weft (void volume at instant 3). From the definition of the compressibility ratio,  , in 

Eq.121, it is obtained that        
               

 , where        is the compression of the 

void between instants 2 and 3. According to results presented above, the compression of the 

void is very similar in the C-S and J-S simulations, so, it can inferred that (       
  )

    
 

(       
  )

    
 because the initial void volume,       

   
, is greater for the J-S simulation. 

Accordingly, if (       
  )

    
 (       

  )
    

, and considering that            
        

           
        and (       

  )
    

 (       
  )

    
 according to the simulation results, 

it is achieved that            according to Eq.123b, which means a lower saturation 

difference between C-S and J-S,   , at the moment when the flow reaches the second weft 

(point 3) than the one previously obtained at the moment of the fluid front merging (point 

2). So, when the fluid front arrives to second weft (point 3),          , which is lower 

than the difference obtained for the instant 2. 

The behavior of    between the arrival of the fluid front to the second weft and the second 

merging of the channel fluid fronts (from to 3 to 4), considering that            
        

           
        and (       

  )
    

 (       
  )

    
 according to the simulation results, 

is determined by the following differences (See Eq. 123b):        
   (       

  )
    

 

(       
  )

    
 and        

   (       
  )

    
 (       

  )
    

. Accordingly, if       
   

      
  ,    should increase. Considering that the change of saturation associated to the 
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compression of the void in the first weft is larger for J-S, i.e.,       
    , as it was 

previously demonstrated, it is a necessary but not sufficient condition that       
     in 

order to obtain an increment in   . This condition is satisfied in this case due to the larger 

infiltration occurring in the second weft for the C-S condition, as it was mentioned before. 

Additionally, considering that the change of the saturated volume in the first weft due to the 

void compression,        
  , is negligible with respect to the change of the saturated volume 

in the second weft,        
  , in both C-S and J-S, the behavior of    between the instants 3 

and 4 is primarily determined by the change of the saturation in the second weft, which is 

larger for the C-S condition (      
    ), leading to an  increment of    (See instant 4). 

Hence, when the channel flows merge again each other (Point 4),          , which is a 

higher saturation difference between C-S and J-S than the one obtained when the flow 

arrives to the second weft (Point 3),          . At the end of the simulation, the RUC 

saturation is         for C-S and         for J-S (See filling instant 5).  

 

 

Figure 55 . Comparison of saturation curves for continuous and jump stress 

conditions and Ccap=1×10-2
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Comparison of interfacial velocities between continuous-stress and jump-stress 

simulations. 

The change of the matching condition can also modify the velocity along the interface 

channels-tows. The velocity vectors along this interface for the J-S and C-S conditions are 

shown in the Figure 56a-f, corresponding to filling instants having the same fluid front 

position in the channel.  As it is logic, the velocities of the channel domain are greater than 

those ones of the tows domains, warp and weft (Figure 56a,b). Along the interface channel-

warp, in both C-S (Figure 56d) and J-S (Figure 56c), the magnitude of the velocity 

increases from the inlet towards the fluid front and the net mass transfer occurs from the 

channel towards the warp. In the interface channel-weft, in the neighborhood of the left 

extreme of the weft, both C-S (Figure 56f) and J-S (Figure 56e) simulations predict a mass 

transfer taking place primarily from the weft into the channel;  then, the mass transfer 

direction is reversed and it reaches its peaks in points close to the fluid front. The total mass 

transfer from the channel towards the weft is considerably larger than the mass transfer in 

the contrary direction for both simulations, C-S and J-S. 

 

 

a) 

 

b) 

 

 

c) 

 

d) 
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e) 

 

f) 

Figure 56 Velocity vectors for jump-stress and continuous-stress conditions along the 

interface channel-tows. a) Velocity vectors for jump-stress, b) Velocity vectors for 

continuous-stress, c) Velocity vectors for interface channel-warp (Jump-stress), d) 

Velocity vectors for interface channel-warp (Continuous-stress), e) Velocity vectors 

for interface channel-weft (Jump-stress), f) Velocity vectors for interface channel-weft 

(Continuous-stress). 

 

The comparison between the velocity profiles along the interface channel-warps is shown 

in Figure 57a, in which it can be observed that the normal velocity is inferior to the 

tangential velocity in all positions along the interface for both C-S and J-S conditions. For 

any position along the interface, the C-S tangential velocity is greater than the J-S 

tangential velocity, while the difference between the normal velocities of C-S and J-S 

depends on the position along the interface, but, in general, it not so significant, which is in 

agreement with the relatively small difference between the warp saturations of  C-S and J-S 

during the filling process of the first weft (from point 1 to 2 in Figure 55).  

On the other hand, the velocity profiles for the interface channel-weft are shown in Figure 

57b, where it can be observed that for both C-S and J-S, in points near to the left extreme of 

the weft (corresponding to the left extreme of the plot), negative normal velocities are 

obtained (which correspond to the mass transfer from the weft towards the channel, see  

Figure 56f and Figure 56e), and there is an increment of the tangential velocity that is more 

notorious in the C-S simulation, being this increment the main cause by which the 

tangential velocities in C-S remain above the tangential velocities in J-S for all positions 

along the interface.  For the C-S simulation, once the direction of the mass transfer is 

reversed (positive normal velocities), the normal velocity undergoes an increment along all 

interface positions until the fluid front (the fluid front corresponds to the right extreme of 

the plot), whereas the tangential velocity increases until certain point nearby the fluid front 

and then decreases. On the other hand, for the J-S simulation, once the mass transfer 
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direction changes, the normal and tangential velocities increase first and then they are 

subjected to a small reduction and subsequent increment until a certain point nearby the 

fluid front; this increment is kept for the normal velocity, but the tangential velocity 

decreases instead.  In the neighborhood of the fluid front, the increment of the normal 

velocity and the decrease of the tangential one are more notorious for the C-S simulation. 

According to Figure 57b, the mass transfer from the channel into the weft is greater for C-

S, which is in agreement with the previous analysis of Figure 55, where a higher saturation 

of the first weft between instants 1 and 2 was obtained for C-S. 

 

 

a) 

 

b) 

Figure 57 Interfacial velocity profiles for continuous-stress and jump-stress 

conditions. a) Velocity profiles for interface channel-warp, b) Velocity profiles for 

interface channel-weft 
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4.4.5 Influence of RUC compaction on void formation 

Statement of problem of void compaction. 

A typical compaction curve of fibrous reinforcements is shown in Figure 58 [128], [215], 

[216]. Three zones can be distinguished in this curve and the fiber volume fractions 

delimiting these zones (           ) depend on the RUC architecture, fiber material and 

ply stacking. In the first zone, the dominant phenomenon is the nesting, which causes 

changes in the inter-tow space, in the aspect ratio of the tows and, probably, the shearing 

deformation of the tows. In the second zone, in addition to the nesting, the tow fibers could 

undergo an axial deformation, changing their aspect ratio. The third zone is dominated by 

the bending deformation of the tows, where a breakage of fibers can occur. In the present 

work, it is only considered the nesting of the RUC expressed as the reduction of the inter-

tow distance and the change of the aspect ratio of the tows, and it is considered that the 

tows are always in contact with the liquid of the channels.  

 

Figure 58 Typical compaction curve of fibrous reinforcements 

 

Influence of RUC compaction on the RUC filling process. 

For            , the comparison between the first column of Figure 47 and the Figure 

59a allows establishing the influence of the RUC compaction in the filling times and in the 

fluid front shapes considering the same fluid front positions in the channel, which are 

highlighted with black color in Figure 59a. In the following analysis, R-D stands for the 

reference domain considered in Figure 47 and C-D  stands for the compacted domain of 

Figure 59a. For the first filling instant (Figure 47a and first fluid front highlighted in Figure 
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59a), the real, non-dimensional and normalized times are longer in C-D. This is reasonable 

because after the fluid front reaches the first weft, the fluid front velocity in the channels 

decreases due to the mass transfer from the channels towards the first weft, and in the 

compacted domain, C-D, this event takes place first because the left extreme of the first 

weft is closer to the RUC inlet. For the second filling instant (Figure 47c and second fluid 

front highlighted in Figure 59a), the times are still longer in C-D, in which             

have elapsed to this position, whereas             is the time elapsed for R-D. In the 

filling that occurs between the second and third instants, with the third filling instant 

corresponding to Figure 47e and the third fluid front highlighted in Figure 59a, the fluid 

front in the first weft advances more in the C-D simulation because the weft is more 

flattened in the compacted domain, and, in consequence, the initial void is smaller for C-D. 

The initial void size for R-D is                 , which corresponds to       

         , whereas, for C-D, this value is                             

       . After the void compression, the final void size is still smaller for the C-D 

simulation, in which                                   in contrast to the final 

void size for the R-D simulation,                                  .  

The real and normalized times in the third and fourth fluid front positions are still greater 

for C-D (compare Figure 47e to the third fluid front highlighted in Figure 59a, and Figure 

47g to fourth highlighted position of Figure 59a). In the fourth fluid front, 70.7% of the 

total filling time has elapsed for C-D and 54.7% for R-D, which means that the fluid front 

in the channels is decelerating more in R-D than in C-D. From the fourth fluid front to the 

instant when channel fluid fronts have totally surrounded the second weft, the change of 

saturation in the weft is higher for C-D, which leads to the generation of a smaller initial 

void in the compacted domain. The initial void size is                        

           for R-D and                                  for C-D. In R-D 

the compressibility ratio of the bubble is         and the final void size is      

                            ; on the other hand, the compression of the bubble is 

larger for C-D,        , and the final void is thereby smaller,           

                       . The total filling time is longer in C-D than in R-D, i.e., the 

RUC impregnation process is slower in the compacted domain. 
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a) 

 

 

b) 

 

 

c) 

Figure 59 Total fillings of compacted RUC’s for Stokes-Brinkman with β=1.24. a) 

Ccap=1×10-2
, b) Ccap=1×10-1

, c) Ccap=5×10-1
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The influence of the inter-tow space on the fluid front positions has been studied in [22], 

where a geometry consisting on two concentric domains, namely, a channel surrounding a 

tow, was considered. As it is shown in Figure 60a, in which the half distance between the 

tows, h, is represented from         upwards, Yang et al.[22] found that the reduction 

of the inter-tow distance, i.e., the compaction of the RUC, reduces the difference between 

the maximum position of the fluid front at the channel and the minimum position of the 

fluid front at the tow for a certain filling instant. In Figure 60b the minimum fluid front 

positions at the warps of R-D and C-D for the filling instants analyzed here are compared. 

As observed, these positions are always larger for C-D. Bearing in mind that the maximum 

position of the channel fluid front is the same in both simulations, R-D and C-D, in each 

filling instant, this implies a smaller difference between the minimum fluid front position at 

the warps and the maximum fluid front position at the channel for the compacted domain 

(C-D) in each filling instant. This is in agreement with the results presented in Figure 60a 

taking into account that the inter-tow dimensions of the compacted domain, C-D, are 

smaller than those ones of the reference domain, R-D. 

 

a) 

 

b) 

Figure 60 Influence of RUC compaction on fluid front positions. a) Influence of inter-

tow distance on fluid front positions according to Yang et al [22] b) Comparison 

between the minimum fluid front positions in the warps of C-D and R-D (Author) 
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Influence of the RUC compaction on the voids characteristics. 

The influence of the RUC compaction on the void characteristics can be determined by 

comparing results of Serie 1 and 3. According to Table 15, for a constant value of     , 

smaller voids are obtained for the compacted domain (C-D) in both wefts. From an 

experimental viewpoint, the influence of the compaction of fibrous reinforcements on the 

void content is still debatable. To make reference to experimental works, it is important to 

consider that the RUC compaction leads to the increase of the global fiber volume content, 

  . Bearing this in mind, whereas an increase of the void content with    was obtained in 

hemp fiber reinforced polyethylene terephthalate composites by Madsen el al. [217], which 

is not in agreement with the present results, Shah et.al [218] found a reduction of the void 

content with    for flax reinforced and jute reinforced unsaturated polyester composites, 

coinciding with the present results. 

According to Table 15, for the first weft, the void size decreases with the increment of      

for the compacted domain (C-D), whereas the relationship between the void size and      

is not monotonic for the reference domain (R-D) as commented before. The void size of the 

second weft and the total void size have the same behavior with      for C-D and R-D, i.e., 

they decrease as      increases. 

The void shapes obtained in Figure 59a-c are also physically consistent with the ones 

observed in Hamidi el al [170], [213], [214], see Figure 53a-c. According to Table 16, for 

the first weft and            , the void aspect ratio is barely smaller for C-D, while 

for              and             the increase of the void aspect ratio with the 

RUC compaction is important. For the second weft, the RUC compaction causes the 

increase of the void aspect ratio for both             and            . No void 

formation is obtained in the second weft for             in both cases (R-D and C-D), 

while the bubble formed in the first weft for C-D and             is very small as can 

be appreciated in Figure 59c. The location of the final void, when formed, is not 

considerably affected by the RUC compaction. 
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Table 15 Influence of compaction and  Ccap on the void size. 

Capillary 

ratio 

Void size 

First weft Second weft Total 

R-D C-D R-D C-D R-D C-D 

1.00E-02 7.582E-03 4.883E-03 9.866E-03 5.230E-03 1.745E-02 1.011E-02 

1.00E-01 1.077E-02 2.134E-03 6.548E-03 2.572E-03 1.732E-02 4.707E-03 

5.00E-01 1.973E-03 3.338E-05 0.000E+00 0.0000E+00 1.973E-03 3.338E-05 

 

Table 16 Influence of compaction and  Ccap on the void shape. 

Capillary 

ratio 

Void aspect ratio 

First weft Second weft 

R-D C-D R-D C-D 

1.00E-02 2.34 2.24 1.93 2.33 

1.00E-01 2.84 3.80 3.32 4.41 

5.00E-01 4.24 13.35 NA NA 

 

4.5 Conclusions 

In this chapter, BEM techniques have been implemented for the simulation of void 

formation in fibrous reinforcements using a Stokes-Brinkman formulation. Firstly, in order 

to define which numerical approach was more appropriate to deal with the Brinkman 

equation, pure BEM (referred here as BEM-ISO) or DR-BEM, two problems with 

analytical solutions were solved numerically using both approaches and the solutions were 

compared each other, obtaining that DR-BEM is more accurate, has better convergence 

orders and is even suitable for darcian regimes where the pure BEM approach diverges. 

Both numerical solutions, pure BEM and DR-BEM, predicted the increase of the error with 

   and, for the Stokes-Brinkman problem admitting analytical solution, they also predicted 

the reduction of the Stokes velocity and of the boundary layer thickness with the increase of 

  and   , which is in agreement with other results [85]. For    [              

    ], the DR-BEM solution is more accurate as   increases and the convergence order 

reduces with   . Having demonstrated the superior performance of DR-BEM for the 

solution of the Brinkman equation and considering that pure BEM is always employed for 

the channel domain, the present numerical formulation was name as BEM/DR-BEM. 
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The numerical solution obtained with the present BEM/DR-BEM formulation for the 

Stokes-Brinkman problem was compared with the FEM solution of [20], finding that both 

ones converge satisfactorily to the analytical solution, with more notorious errors in the 

Brinkman domain than in the Stokes domain in BEM/DR-BEM, contrarily to the FEM 

solution where the errors in the Stokes domain are greater. Conversely to the FEM 

approach, no numerical oscillations in the boundary layer were gotten with the present 

BEM/DR-BEM formulation. 

The problem of void formation during the filling of two adjacent RUC‘s, for three different 

capillary ratios,      [                    ], was tackled using two 

formulations: Stokes-Darcy (S-D) and Stokes-Brinkman (S-B), which predicted the same 

general behavior of the void size and shape with     . Accordingly, for the first weft, the 

change of void size with      is not monotonous, since the largest voids were obtained for 

            and the smallest ones, for            , whereas for the second weft, 

the void is smaller as      is higher; regarding the void shape, the aspect ratio increases 

with      for both wefts. On the other hand, for a same value of     , similar saturation 

curves were obtained with S-D and S-B, with exception of the case where the capillary 

effects are more relevant, i.e.,            . In the case where capillary effects are not 

significant, i.e.,            , S-D predicted smaller voids and lower aspect ratios than 

S-B for both wefts.  

According to the BEM/DR-BEM results, void size and shape are also influenced by the 

matching conditions Stokes-Brinkman. When using the jump stress condition (J-S), the 

smallest voids at both wefts were obtained for the lowest value of the jump stress 

coefficient,      , for all values of     , with exception of the second weft when 

           , where no void formation was obtained; regarding the void shape, a single 

relationship between the coefficient   and the void aspect ratio was not reached for all 

values of      and both wefts. The general behavior of the void size and aspect ratio with 

     in both wefts, which was described above, did not change with  , as well as the 

decreasing behavior of the total void content with     . On the other hand, for        

    , the lowest void content was obtained for the continuous-stress case (C-S), and this is 

coherent with the larger saturation obtained in C-S with respect to J-S for all filling 
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instants, despite both saturations curves, C-S and J-S, showed a similar general behavior. 

According to the BEM/DR-BEM results, for the specific filling instant where interfacial 

velocities were analyzed, the net mass transfer takes place from the channel towards the 

warps and from the channel towards the weft in both C-S and J-S, with the net mass 

transfer channel-warps in C-S barely superior to the one in J-S, and the net mass-transfer 

channel-weft in C-S considerably greater than the one in J-S. Along the interface channel-

warp the tangential velocities are larger than the normal ones for both C-S and J-S, with the 

C-S tangential velocities greater than the J-S ones. For the interface channel-weft, this last 

conclusion is also valid, namely, tangential velocities are greater in C-S. 

The BEM/DR-BEM results also showed that the RUC compaction generates smaller voids 

for both wefts and all values of     , with exception of the second weft when        

    , where no void formation was obtained in both the original domain (R-D) and the 

compacted domain (C-D). Moreover, the impregnation process of the C-D is slower than 

the one of the R-D. The RUC compaction also modifies the general behavior of the void 

size with      in the first weft regarding the original domain (R-D), since a decreasing 

relationship is obtained, i.e., the void is smaller as      increases. On the other hand, 

BEM/DR-BEM results also revealed that the RUC compaction causes the increase of the 

void aspect ratio in the first weft for              and            , and in the 

second weft, for              and            .  
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5. DYNAMIC VOID EVOLUTION IN DUAL-SCALE FIBROUS 

REINFORCEMENTS USING THE STOKES-DARCY FORMULATION

 

5.1 Introduction 

In dual-scale fibrous reinforcements, once the voids are formed, several processes can take 

place in such voids, like compression, displacement, migration and splitting. The physical 

assumptions and governing laws of each process depend on the zone where the bubble is 

located. For channel voids (macrovoids or inter-tow voids), Lundstromg [86] supposes a 

spherical bubble that experiences a compression governed by the ideal gas law, where the 

capillary pressure needs to be considered and the void shape does not change when 

compressed. On the other hand, the displacement of macrovoids along the channels has 

been studied in both numerical [4], [78], [79], [95], [96] and experimental works [4], [89], 

[219], [220], where it has been mentioned that this process is mainly governed by drag and 

adhesion forces. The former type of forces makes reference to the pressure difference 

between both extremes of the bubble, while the second one, to the interfacial adhesion 

between the bubbles and the walls of the domain, which, in the present case, represent the 

contour of the tows. According to Kang and Koelling [89] if the void is smaller than the 

inter-tow space (channel) it tends to be spherical to minimize the free surface energy and it 

moves easily until it reaches a constriction, where a minimum pressure gradient is required 

to induce the movement according to [221], [222]. On the other hand, if the frontal section 

of the bubble is equal to the inter-tow space, the bubble tends to be cylindrical as its volume 

increases [89]. The bubble length has a double effect in its mobility [86], [89], [222]: as the 

bubble is larger, the pressure difference is higher, promoting the bubble‘s motion, but the 

contact surface with the tows increases, as well as the interfacial forces, which make more 

difficult the bubble‘s motion. Strictly speaking, the motion of macrovoids along the 

channels depends mainly on the pressure difference, the frontal area, perimeter and length 

of the bubble, the surface tension at the liquid-gas interface, the liquid viscosity, the 

advancing and receding contact angles and the architecture of the channels [221], [222]. 

                                                           


  The results of the present chapter are intended to be published in: Iván David Patiño Arcila, Henry Power, César Nieto 

Londoño, Whady Felipe Flórez Escobar, “Boundary Element Method for the dynamic evolution of intra-tow voids in fibrous 

reinforcements using a Stokes-Darcy approach”, to be submitted (In preparation). 
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Since some of these parameters are difficult to determine experimentally, some 

phenomenological models have been proposed to relate the average liquid velocity, 〈  〉
 , 

which can be straightforwardly measured, and the void velocity [4], [79], [222], 〈  〉, with 

the piecewise function proposed by Lee et al [4], [79] as one of the most cited in the 

literature. In that model, a critical liquid velocity for the onset of void mobilization, 

〈  
    〉 , is proposed, in such a way that the void motion can be neglected below this 

critical value.  

The bubbles formed inside the tows (microvoids or intra-tow voids), which are the principal 

focus of the present chapter, can also undergo several processes. The microvoid 

compression takes place by the overall effect of the pressure of the liquid surrounding the 

tow, the air pressure at the fluid front, which in turns depends on the initial air pressure, 

bubble volume and air dissolution, and the capillary pressure.  According to Park and Lee 

[79], the process of microvoids compression in dual-scale fibrous reinforcements is 

considerably more delayed than the corresponding macrovoids compression due to the 

dissimilar permeabilities of the tows and channels; in general, almost any void process 

occurring inside the tows is more delayed than the corresponding process occurring in the 

channels, as it is also appreciated here in Section 5.3.1. As it was mentioned in [79], and 

confirmed in this work, the compression of the bubble inside the tow takes place provided 

that the air pressure at the fluid front is lower than the average liquid pressure surrounding 

the tow plus the magnitude of the capillary pressure, otherwise, the bubble moves inside the 

tow without changing its volume and could migrate towards the channels.  

The conditions that lead to the void migration from the tow towards the channel have been 

studied in different numerical and experimental works. For instance, Lundstrom et al. [223] 

introduced the concept of critical bubble volume according to which the bubble compresses 

until a critical value where it is able to migrate into the channels as a result of the high 

pressure, and then it is transported along the channels. This concept was brought up later in 

the experimental work of Guorichon et al. [175] to explain the reduction of the microvoid 

content with the modified capillary number,   
 , in constant flow rate injections, after 

reaching a certain value of the inlet pressure; this value of pressure was identified as the 

critical pressure for the onset of void migration,   ; for pressures below this value, no void 

migration is obtained. The concept of critical pressure was used in the development of a 
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numerical model to predict the dynamic void content in macroscopic simulations in Liquid 

Composites Molding processes (LCM) [5], [84], where the FEM/CV conforming technique 

was used to solve the governing equations. The critical pressure,   , was taken as an input 

parameter  that modifies the equivalent fiber volume fraction appearing in the calculation of 

the fill factor of the Control Volumes (CV‘s), in such a way that when the pressure is 

greater than     in the CV, the equivalent fiber volume fraction is set to its initial value in 

order to consider the void elimination out of the tow. According to Yamaleev and Mohan 

[224], the increase of the liquid pressure not only favors the reduction of the void content 

because of the void compression, but also because it promotes the air dissolution into the 

liquid by molecular diffusion.  

The void migration model presented in [79] suggests that the pressure gradient,     ⁄ , is 

the same in the macropore (inter-tow space) and in the micropore (intra-tow porous space), 

and that the void migration is related with this pressure gradient and, consequently, with the 

average liquid velocity, 〈  〉
 . On the other hand, Lundstrom et al. [78] used the Monte 

Carlo method to solve the bubble transport equations and the Level Set Method to track the 

fluid front, finding that the wettability of the fibers favors the motion of  the microvoids 

from the tows towards the channels and that the gas diffusion is the principal mechanism of 

microvoids elimination in points far upstream of the fluid front.  

In the present chapter the Boundary Element Method (BEM) is applied in the problem of 

the dynamic evolution of voids formed in dual-scale fibrous reinforcements using a Stokes-

Darcy formulation. The processes of compression, displacement, migration and splitting of 

intra-tow voids are analyzed at the mesoscopic level, i.e, considering the filling in a 

Representative Unitary Cell (RUC). It is assumed that the channel is fully filled of liquid 

before any infiltration can take place inside the tows, as it has been assumed in other works 

devoted to the filling simulations in LCM processes [8], [13], [14], [102], [225], [226]. This 

assumption is valid provided that the channel viscous velocity is considerably larger than 

the tow capillary velocity at the fluid front, which is more realistic when the channel is 

significantly more permeable than the tows and the injection pressure or flow rate are high 

enough to neglect the capillary effects at the macroscopic fluid front. This is a common 

particular case in real applications of LCM processes. The principal contributions of the 

present chapter can be summarized as follows: 
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 The simulation of void motion at both macroscopic and mesoscopic scales has been 

tackled by several numerical techniques: FEM/CV conforming [5], [79], [84], Monte 

Carlo Method [78], FEM/CV non-conforming [41], among others. The works using 

FEM/CV techniques require the domain discretization, whereas the present BEM 

approach only requires the use of a mesh along the contour of the problem. 

Additionally, as mentioned before, the tracking of the fluid front in FEM/CV 

techniques is carried out by assigning a fill factor to each control volume (CV) and 

using interface capturing schemes to approximate the shape of the fluid front. On the 

other hand, the numerical technique used to track the fluid front in [78] is the Level Set 

Method, where specific solvers for hyperbolic equations are required to find a signed 

distance function; additionally, a domain mesh is required and the accuracy of the fluid 

front position depends on the refinement of that mesh, in whose points the extended 

velocities need to be calculated [108]. The present numerical scheme to track the fluid 

front, see Appendix C, is much simpler, computational cheaper and assures a higher 

order accuracy of the fluid front shape since the fluid front position is directly obtained 

from the velocity field of the moving interface. 

 To the best of the author‘s knowledge, the migration of the bubbles from the tows 

towards the channel at the mesoscopic scale has not been directly simulated, but 

considered in macroscopic simulations by stochastic approaches [78], 

phenomenological models involving experimental tests  [4], [79], or experimental 

parameters, like the critical pressure, that  account for the void migration in 

macroscopic simulations and are introduced as input parameters in the numerical codes 

[5], [84].  In the present chapter, the migration and splitting of intra-tow bubbles is 

simulated at the mesoscopic scale using BEM, and the influence of the average pressure 

(〈  〉
 ), pressure gradient      ⁄    and surface tension     on those processes is 

studied as well. Additionally, the behavior of the source term associated to the void 

migration is also analyzed, as well as the behavior of the ratio between the average void 

migration velocity, 〈    〉, and the average liquid velocity in the channel, 〈  〉
 . This 

ratio is important because it relates a variable that is difficult to measure, namely, the 

void migration velocity, with a straightforwardly measurable variable, namely, the 

average liquid velocity in the channel. 
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 In the composites area, when it is assumed that the channels are totally filled with liquid 

before the infiltration of the tows takes place, most of authors suppose a uniform 

pressure for the liquid in the channels in the mesoscopic simulations [8], [13], [14], 

[102], [225], [226]. This assumption is not physically consistent with the fact that the 

fluid in the channels is actually moving. Additionally, the processes of displacement at 

constant volume, migration and subsequent splitting of the intra-tow bubbles are not 

possible under this assumption since the fluid front moves towards the center of the 

tows, no matter the direction of the fluid velocity in the channels, causing that the 

bubbles remain trapped or disappear depending on the air entrapment parameter 

considered [11]. Some experimental and numerical researches have confirmed that the 

bubbles are not necessarily located at the center of tows and can even migrate towards 

the channel depending on the liquid pressure gradient and the internal pressure of the 

void [3], [25], [171], [175], [220], [227]. In the present chapter, the channel and tows 

are modeled using the Stokes and Darcy equations, respectively, a pressure gradient is 

considered along the RUC length and the matching conditions between the tows and the 

channels determine the filling of the former ones. In this way, descentered bubbles are 

formed inside the tows and the displacement, migration and splitting of those bubbles 

are possible, which is more consistent with the experimental researches. 

 

5.2 Mathematical model and numerical techniques 

The governing equations and matching conditions for the Stokes-Darcy formulation, which 

were presented in Eqs. 61-62 and 65-68, are applicable in this case. On the other hand, the 

boundary conditions can be classified into three types in the present case (See Figure 61):  

 Inlet and outlet conditions at the Stokes domain (channel or gap):  

  
           ̂,        (124a) 

  
            ̂,        (124b), 

where   
    and   

    are the inlet and outlet surface tractions in the horizontal direction, 

while      and      stand for the prescribed inlet and outlet pressures of the RUC. 

 No penetration conditions at the Darcy domains (tows): 

    ̂⁄     (125) 



172 
 

 Free-surface conditions at the both domains: these conditions are applied at the moving 

boundaries between the liquid and air phases, which correspond to the fluid fronts 

inside the tows and to the bubble front in the channel when the void migration is 

present. Kinematic and dynamic conditions shown in Eqs.73 and 74a-b, respectively, 

are applied. Capillary pressures in the fluid fronts in the tows and in the bubble front in 

the channel when migration occurs, are computed as it was exposed in Chapter 3.  

The Gebart‘s model [135] is also applied in this case for the calculation of the main tow 

permeabilities,     and   , see Eqs.63a,b and 64a-c. 

The integral equation formulations and all numerical considerations exposed in Section 3.3 

are applicable as well to this particular problem. 

 

5.3 Results 

5.3.1 Stokes-Darcy approach for filling of tows assuming fully filled channels 

Description of the problem. 

The RUC geometry and boundary conditions considered here are shown in Figure 61, 

where three domains can be clearly differentiated: longitudinal tows (warps), transverse 

tow (weft) and channel. In dual-scale porous media, subscript     is commonly used to 

represent the tow domain, whereas     is employed to represent the channel domain since 

this is also referred in the literature as the gap domain [6], [8], [10]. The channels are totally 

filled with liquid while the tows impregnation occurs, and pressure boundary conditions are 

prescribed at the inlet and outlet of the RUC, generating a pressure gradient along the RUC 

length, which is the principal difference with previous works that have assumed fully filled 

channels, in which a uniform channel pressure has been considered instead [8], [13], [14], 

[102], [225], [226]. In this chapter, a full compressibility is deemed for the air inside the 

weft and the total saturation is thus not possible. For the warps, on the contrary, the air 

compression is not taken into account because it is considered that the air can displace 

towards the adjacent RUC in the flow direction considering that, when the problem is 

conceived at the macroscopic frame (filling of cavities), this adjacent RUC is less saturated 

than the analyzed RUC. Contrary to other works, the vacuum pressure,     , is considered 
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here since it is usually applied in LCM processes and considerably facilitates the void 

compression.  

The BEM code employed here was previously validated in Chapter 3 with the analytical 

solution of a coupled problem Stokes-Darcy developed in Appendix B. 

 

 

Figure 61 Scheme of the mesoscopic problem assuming full-filled channels 

 

 

Simulation data. 

To illustrate the principal differences between the classical approach, where the channel 

flow is not modeled and a uniform pressure is supposed in the channel, and the present 

approach, where the channel flow is modeled by the Stokes equation and it is prescribed a 

pressure gradient along the RUC, two BEM simulations are compared each other (Figure 

62a-c and Figure 63a-k). In both simulations, for each instant of filling, they are shown the 

normalized time, i.e., the ratio between the real time and the total time of simulation 

      ⁄  , the warps saturation (       , weft saturation (       and total tows saturation 

(   ; the   and   coordinates are reported in non-dimensional form as           and  

         . The geometric and material inputs of both simulation are the same and they 

are shown in Table 17, where     ,     ,   ,    ,   ,  ,   ,   ,  ,   ,    and    stand for 

the height of the RUC, length of the RUC, height of the channel or gap, semi-major axis of 

the weft, semi-minor axis of the weft, liquid viscosity, major permeability, minor 

permeability, surface tension, contact angle, fiber radius and tow porosity. In Table 17 it is 
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also observed that in the classical approach (Figure 62a-c) a uniform channel pressure of 

〈  〉
          is prescribed, while in the present one (Figure 63a-k), inlet and outlet 

pressures of               and                are considered, which originate a 

pressure gradient along the RUC of     ⁄                , with a corresponding 

average pressure of 〈  〉
         , coinciding with the average pressure of the other 

approach. For the classical approach, Figure 62a-c, the air pressure is the atmospheric and it 

remains constant during the whole filling due to the full air dissolution assumption; in the 

current approach, Figure 63a-k, a vacuum pressure of              is taken into 

account and it remains constant in the warps due to the above exposed reasons, but changes 

in the weft in virtue of the air compression.  

 

Table 17 Simulations data for comparison between the classical and the present 

approach for tows filling assuming full filled channels 

 

Geometric and material data  
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Processing data 

Classical 

approach 
Present Stokes-Darcy approach 

〈  〉
   (kPa)     (kPa)      (kPa) 

    ⁄  
(kPa/m) 

〈  〉
   (kPa)      (kPa) 

122 125.5 118.5          122 -75 

 

Simulation of filling with the classical approach. 

Several filling instants of the simulation with the classical approach are shown in the Figure 

62a-c. As it is observed, the fluid front moves uniformly in the warps and the weft, towards 

the edges and towards the center of the RUC, respectively, which is logic since the pressure 

is the same in all points of the interface channel-tows. In this case, the warps saturate first 

(Figure 62b) and then, the total saturation is reached once the weft is completely filled 

(Figure 62c). Thus, according to this approach, the air in the weft escapes as the filling 

takes place (full air dissolution) and this leads to the total saturation of the RUC. However, 

this is an ideal case that does not necessarily correspond to the real process. The real 
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behavior of the air inside the bundles is still an open problem. According to the 

experimental research of Neacsu et al [228], this behavior ranges between the two extreme 

scenarios compared in this section: full air compressibility and full air dissolution. To 

consider the effects of air compressibility and air dissolution at the same time, experimental 

tests are required in order to determine a lumped function for the fraction of escaped air 

[163], [228], and this is out of the scope of the present work. However, as shown later, the 

assumption of full air compressibility allows considering the processes of bubble migration 

and splitting (which are not present in the situation of full air dissolution), coinciding with 

other experimental results that have reported the presence of those processes in the 

processing of composites by Liquid Composites Molding, LCM  [175], [220], [223], [229].  

 

   

a) b) 

 
c) 

Figure 62 Instants of tow filling with the traditional approach. a) Warps and weft 

unsaturated, b) Total saturation of warps, c) Total saturation of the RUC 

 

Simulation of filling with the current Stokes-Darcy approach. 

For the current Stokes-Darcy approach, assuming full air compression in the weft, several 

instants of filling are represented in the Figure 63a-k. In the classical approach, under the 

assumption of full air dissolution, the void formation is not possible (Figure 62a-c), but, in 

the present case, three stages can be clearly identified in the dynamic void evolution in 
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Figure 63a-k: compression, displacement and migration. In the first stage (compression), 

conversely to the other approach, the fluid fronts in the warps are not parallel to the 

superior and inferior edges of the RUC, and the fluid front in the weft is slightly 

decentered, as it can be noticed by comparing the datatips of the Figure 63a among them. 

This phenomenon is logic because the inlet pressure is higher than the outlet pressure to be 

consistent with the flow direction in the channel; for larger pressure gradients, this 

phenomenon is more notorious. The filling of the warps occurs at a time instant equivalent 

to      of the total time of the simulation, but the permeation of the weft still remains in 

this time (Figure 63b). When the pressure of the trapped air inside the weft has reached the 

value of the average pressure of the liquid surrounding the weft plus the magnitude of 

capillary pressure, the air compression stops and the onset of void mobilization takes place 

(green line in Figure 63c). From this time instant until the onset of void migration, the 

change of the weft saturation,      , is negligible and an equilibrium saturation,   
  

, is 

achieved, because the bubble moves towards the right extreme of the weft, changing its 

shape, without changing its volume (Figure 63d to Figure 63g). The details of Figure 63d 

and Figure 63f are shown in Figure 63e and Figure 63g, respectively, and are off-scale for 

visualization purposes; in these details the void displacement is represented by green lines. 

Small changes of       during this process of void displacement are caused by numerical 

errors in the tracking of the fluid front, but they can be neglected. It is important to notice 

that, according to the BEM results, the compression of the void until the equilibrium 

saturation,   
  

, is reached  (Figure 63a to Figure 63c) takes less time than the motion of the 

void towards the right edge of the weft (Figure 63d to Figure 63g). The first phenomenon 

lasts       of the total simulation time, whereas the second one takes almost the 

remaining time, namely,      .  

As it can be observed in Figure 63f, when the flow reaches the right extreme of the weft, 

the normalized time is      ⁄             , which is almost the unity because the 

time elapsed from this point until the end of the simulation, which corresponds to the 

partial migration of the bubble from the weft towards the channel, is much shorter than the 

times of the other two phenomena undergone before by the bubble  (compression and 

displacement at constant volume), given that the order of magnitude of the velocities in the 

channel is considerably larger than the order of magnitude of the velocities inside the tows 
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due to the dissimilar permeabilities of these domains. The process of void migration can be 

seen in Figure 63h to Figure 63k. This process is governed by the difference between the 

capillary forces on the bubble surface and the pressure forces of the compressed air. The 

capillary forces depend on the surface tension,  , and on the curvature of the bubble 

surface,  , while the air pressure,     , decreases as the bubble expands in the channel. As 

observed in Figure 63k, the bubble tends to be ovoid-shaped in this case. The influence of 

the average pressure, pressure gradient and surface tension on the migration and splitting of 

the bubble is analyzed in the Section 5.3.2.   

 

 

a) 

   

b) c) 
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d) 

 

 

e) 

 

f) 
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g) 

 

h) 

 

 

i) 
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j) 

 

k) 

Figure 63 Instants of tows filling with the current Stokes-Darcy approach assuming 

full air compressibility. a) Warps and weft unsaturated, b) Total saturation of warps, 

c) Instant of end of compression and onset of void mobilization, d) Motion towards 

right extreme of the weft, e) Detail  of Figure 63d, f) Arrival of bubble to right 

extreme of the weft and onset of void migration, g) Detail of Figure 63f, h) Stage 1 of 

void migration, i) Stage 2 of void migration, j) Stage 3 of void migration (until bubble 

is in the neighborhood of the RUC’s edge), k) Detail of void migration 
 

Velocity fields and streamlines when the bubble is compressing. 

The velocity fields and streamlines when the bubble is compressing inside the weft and the 

warps are totally saturated, that is, there is not mass transfer from the channels into the 

warps, are shown in the Figure 64a-h, where some figures are off-scale for visualization 

purposes. Several features can be identified in the Figure 64a-c for the channel domain. 

Firstly, the velocity vectors at the interface with the weft are almost tangential to such 

interface (See Figure 64b and Figure 64c), which means that the magnitude of the normal 
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penetration velocity into the weft is very small in comparison with the tangential velocity. 

It is also important to highlight the increment in the magnitude of the velocity with the 

reduction of the inter-tow space (Figure 64a-c) because this indicates that the effect of this 

reduction in the velocity field is more relevant than the effect of the liquid absorption into 

the tows that reduces the velocity magnitude along the RUC. Regarding the streamlines, the 

BEM code predicts that the inferior ones (nearby the lower edge of Figure 64a) tend to 

concentrate in the symmetric boundary as the inter-tow space reduces. In general, when a 

streamline traverse the whole RUC, it ends in a lower vertical position with respect to its 

starting vertical position and this is more notorious as the streamlines are closer to the 

symmetric boundary.  

On the other hand, for the weft domain (Figure 64d-h) it can be appreciated that the 

velocity in the interface channel-weft is essentially normal to the interface; this means that 

the tangential Darcy velocity appearing in Eq. 66,   
   

, is negligible in this particular case. 

It is also worth noting, by comparing the magnitudes of the velocity vectors along the 

interface channel-weft (Figure 64d), that the mass transfer is greater as the inter-tow space 

is lower, in such a way that the normal velocities at the interface channel-weft are larger in 

points close to the center of the weft, whereas they are smaller in the neighborhoods of the 

right and left edges of the weft. The mass transfer in the left half of the weft is barely 

greater than the mass transfer in the right half, but this difference is enough to generate a 

decentered bubble, as it was shown in the Figure 63a. As it can be appreciated in Figure 

64h, most of the streamlines whose starting point has a horizontal position beyond the 

horizontal limits defined by the fluid front, converge in the right and left extremes of such a 

fluid front, and the starting points of these streamlines coincide with the points of low mass 

transfer, as it can be noticed by comparing Figure 64d and Figure 64h.  
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h) 

Figure 64 Velocity field and streamlines when bubble is compressing. a) Velocity field 

and streamlines for the channel domain, b) Detail 1 of Fig. 64a, c) Detail 2 of Fig. 64a, 

d) Velocity field for the weft domain, e) Detail 1 of Fig. 64d, f) Detail 2 of Fig. 64d, g) 

Detail 3 of Fig. 64d, h) Streamlines for the weft domain 

 

Velocity fields and streamlines when the bubble is migrating. 

The velocity fields and streamlines when the bubble migration occurs are represented in 

Figure 65a-g.  For the channel domain (Figure 65a,b), it can be appreciated that the highest 

velocities are obtained in the region of bubble migration, which means that the average air 

migration velocity, 〈    〉, is greater than the average liquid velocity in the channel, 〈  〉
 , 

for this particular case. However, this is not always the situation as it is shown later in 

Section 5.3.2. As observed in Figure 65a, the streamlines starting in the inlet boundary 

(violet lines) encounter with those ones starting in the contour of the partially escaped 

bubble (red lines) and this causes the accumulation of the former ones in the right inferior 

zone of the RUC. In the Figure 65a, likewise to the formerly commented case of void 

compression in the weft (Figure 64a), a high density of streamlines can be observed in the 

symmetric boundary of the RUC when the inter-tow distance is the smallest, namely, in the 

half of the RUC. On the other hand, for the weft domain (Figure 65c-f), the velocity 

magnitudes are larger in points whose horizontal position is between the horizontal limits 

defined by the fluid front, as in the last case analyzed (Figure 64d-g). In this case, the most 

of streamlines starting in the zone of low mass transfer at the channel-weft interface, where 

the normal velocities are smaller, converge in the left extreme of the fluid front (See Figure 

65c). According to Figure 65g, in the right extreme of the weft, some streamlines are very 
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short since the interface channel-weft, where the streamlines start, is adjacent to the fluid 

front, where the streamlines finish.  
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f) 
 

 
g) 
 

Figure 65 Velocity field and streamlines when bubble is partially escaping. a) Velocity 

field and streamlines for the channel domain, b) Detail  of Fig. 65a, c) Velocity field 

and streamlines for the weft domain, d) Detail 1 of Fig. 65c, e) Detail 2 of Fig. 65c, f) 

Detail 3 of Fig. 65c, g) Detail 4 of Fig. 65c 

 

 

5.3.2 Dynamic evolution of intra-tow void 

Definition of the problem. 

Two mechanism of transport of intra-tow voids are notable in dual-scale fibrous 

reinforcements: molecular diffusion and migration [230]. The first mechanism has been 

modeled by introducing an air entrapment parameter that takes into account the fraction of 

escaped air through the liquid [11]. The second mechanism is the mechanical migration of 

voids occurring from the tows towards the channels, which is the situation studied here.   
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The intra-tow void migration in dual scale fibrous reinforcements has been studied in [4], 

[5], [78], [79], [84], [175], [220]–[222], [230], [231]; there are several aspects that can be 

identified in those works and are the key to address the present analysis. Firstly, the void 

migration strongly depends on the balance between the interfacial and pressure forces on 

the bubble surface [221], [222], [230], [231]. The modification of the interfacial forces can 

be carried out by changing the surface tension of the liquid,  ; on the other hand, the air 

pressure inside the bubble,     , in the onset of void migration is the same as the pressure 

when the bubble reaches the equilibrium saturation,   
  

, thereby depending on the history 

of void compression, which in turn depends on the average pressure, 〈  〉
 , pressure 

gradient,     ⁄ , and fluid penetrativity,                 ⁄ . This last variable,       , 

relates the capillary and viscous forces intervening in the impregnation of the tows. It is 

important to mention that the air pressure inside the bubble decreases or increases obeying 

the ideal gas law, depending on the bubble expansion or compression, thereby changing the 

importance of the interfacial forces with respect to the pressure ones as the bubble evolves. 

Another common aspect that has been considered in [4], [78], [79], [219], [222] is the 

relationship between the void velocity and the channel liquid velocity, being this last one 

directly related with the pressure gradient. For voids moving freely along the channels, 

some phenomenological models relating both velocities have been proposed [4], [79], 

[219], but, to the best of the author‘s knowledge, not too much effort has been focused in 

studying the relationship between the void migration velocity and the channel liquid 

velocity when the void moves from the tows towards channel. This relationship is concisely 

studied as part of the present analysis. Additionally, the effect of the change of the pressure 

gradient (which modifies the average liquid velocity) on the void migration is studied as 

well. 

The third factor found in some researches is referred to the existence of a critical pressure 

for the void elimination,    [5], [84], [175]. The concept of critical pressure,   , was 

considered in [5], where the influence of this pressure on the saturation curves in 

macroscopic simulations was studied. To explain better this concept, one plot of [5] is 

extracted in Figure 66, where some saturation curves of constant flow rate injections in 

unidireccional cavities are represented.  As it is observed in some curves, the unsaturated 

volume stabilizes at determined time instant, in which the critical pressure for void 
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elimination is reached. As the inlet flow rate is higher, the critical pressure,   , is reached 

faster; when    is achieved, the premise in [5] is that the air entrapment and air elimination 

rates are the same, generating a constant unsaturated volume until the cavity is totally filled, 

which happens when      ⁄    in Figure 66; from that moment onwards the unsaturated 

volume decreases due to the compression of the existing voids, until the equilibrium is 

attained in the voids. The concept of critical pressure for void elimination was also 

implemented in [81] in mesoscopic simulations and experimentally confirmed by [84]. In 

the present simulations, it is evaluated if the change of the average pressure in the channel,  

〈  〉
 , could favor the void migration from the weft towards the channel to verify the 

concept of critical pressure.  

In this Section 5.3.2, several cases are considered to analyze the influence of the 

aforementioned variables in the process of void migration. 

 

Figure 66 Plot of Unsaturated Volume vs. t ⁄ tinj  for several inlet flow rates. Source: 

Guorichon et al [5] 

 

Case 1 of reference. 

The geometric data (                              ) of the simulation of this Case 1 

are given in Table 17. The material and processing data are the following:           , 

        ,       ,              ,              , 〈  〉
         and  

    ⁄                . In the Figure 67a-e, it is detailed the bubble front evolution 

when the partial migration of air occurs, where it is observed that the bubble is ovoid-

shaped at the end of the simulation (Figure 67e) like the one obtained in Figure 63k. In each 
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time instant, it is reported the ratio between the average air migration velocity, 〈    〉, and 

the intrinsic phase volume-averaged gap velocity (referred in this chapter as the average 

liquid velocity for sake of simplicity), 〈  〉
 , which is defined as follows: 

   
〈    〉

〈  〉 
 

(∫               
)     ⁄

(∫            
)   ⁄

  (126), 

where        is the pointswise horizontal liquid velocity in the gap or channel domain,     

is the total area of the channel domain,       is the bubble front in the channel, i.e., the air-

liquid interface in the channel, and         
     ̂ 

    is the pointwise air migration 

velocity, with  ̂ 
    and   

     as the     components of the normal vector and of the air 

velocity, respectively, at the interface     . Additionally, in Figure 67a-e, they are reported 

the air pressure,     , and the normalized air migration rate defined as 〈  
 〉     

〈  
 〉 〈  

 〉   ⁄ , where 〈  
 〉 is the source term that appears in the void convection equation, 

Eq.129 [4], [79] and 〈  
 〉    is the maximum value of  〈  

 〉 during the whole simulation. 

In this case, 〈  
 〉  accounts for the rate of air added from the tow into the channel per unit 

of  RUC volume, as follows: 

〈  
 〉        ⁄  ∫    

       ̂ 
        

 
   
   (127), 

where      is the total volume of the RUC and    
  is the area of the portion of the channel-

tow interface where air migration occurs, while    
     and   ̂ 

     are the     components 

of the air velocity and normal vector, respectively, at the channel-tow interface. 

Considering mass conservation on the domain corresponding to the migrating bubble, the 

source term, 〈  
 〉, can be computed here as follows: 

〈  
 〉        ⁄  ∫               

  (128), 

To understand better the meaning of 〈  
 〉, it is necessary to consider Eq. 129, which is a 

macroscopic, convective-type equation that has been used by several authors to model the 

air content in the gaps or channels, 〈  〉 [4], [79]. In this equation, 〈  
 〉 is the volume-

averaged void velocity in the channel, which, according to experimental works [4], [89], 

[219], is closely related to the average liquid velocity in the channel, 〈  〉
 , as shown in 

Figure 68,  where it is observed that after the average liquid velocity, 〈  〉
 ,  reaches a 

critical value, i.e., 〈  〉
  〈  

    〉 , voids start moving faster along the channels than the 
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liquid. On the other hand, in Eq. 129, 〈  
 〉 is a source term that takes into account the 

contributions of air into the channel or gap domain, which can be made by the initial air 

content of the liquid, the evaporation of chemical volatile gases and/or the migration of air 

from the tows towards the channel, being the last one the contribution analyzed here.  

 〈  〉

  
 

 

   
(〈  

 〉〈  〉)  〈  
 〉   (129) 

Summarizing, the source term, 〈  
 〉, indicates the amount of air passing from the tow 

toward the channel (Eq.127), while the ratio    represents how fast this air migration 

happens with respect to the average liquid velocity (Eq.126). In Figure 67a-e, the reported 

results of     ,    and 〈  
 〉     in each figure correspond to the last bubble front. 

 

    
a) b) 

 

    
c) d) 
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e) 

Figure 67 Instants of air migration from the tows towards the channel for the Case 1 

(Reported values of  Pair, r1 and 〈Sg
v
〉norm in each figure correspond to the last bubble 

front). a)  t ⁄ ttotal =0.112, b)  t ⁄ ttotal =0.476, c)  t ⁄ ttotal =0.765, d)  t ⁄ ttotal =0.922, e)  

t⁄ttotal =1.0 

 

 

 
Figure 68 Relationship between the void velocity in channel, 〈uv〉 and the resin 

velocity, 〈ug〉
g
. Source: Park et al. [79] 

 

 

Having clarified the meaning of    and 〈  
 〉    , the evolution of these quantities in the 

normalized time,        ⁄ , is represented in the Figure 69a and Figure 69b, respectively, 

where the initial time instant corresponds to the onset of void migration and        is the 

total time of simulation of the void evolution in the channel.  According to Figure 69a, the 

ratio    is initially less than one, which means that void migrates at a lower average velocity 
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than the average liquid velocity in the channels. However,    increases so that the air 

migration velocity becomes faster than the liquid velocity after        ⁄       , 

approximately. Then, the increment of    continues until         ⁄       ; in this time 

instant, 〈    〉 is 1.581 times greater than 〈  〉
 . The behavior of     between         ⁄  

      and        ⁄        can be characterized by having a zone where    is almost 

constant, another one where an oscillation is noticed and a peak point where    reaches its 

maximum value.  In this peak point, 〈    〉 is 1.718 times greater than 〈  〉
 . After this 

point,    decreases with the time and it becomes less than one again in        ⁄       , 

approximately. At the end of the simulation, 〈    〉 is 0.639 times the value of 〈  〉
 .  

On the other hand, the Figure 69b represents the behavior of the normalized void migration 

rate, 〈  
 〉    , with the normalized time,        ⁄ . At the beginning of the simulation, 

〈  
 〉     slightly increases until        ⁄       . From        ⁄        to        ⁄  

     , three well-differentiated zones of almost constant increment of 〈  
 〉     can be 

observed. After        ⁄       , the increment of 〈  
 〉     is more pronounced until it 

reaches practically the maximum value in        ⁄       , remaining essentially constant 

until         ⁄      . Thereupon, 〈  
 〉     decreases until the end of the simulation.  

 

       

a) b) 

Figure 69 Behavior of r1  and 〈Sg
v
〉norm   in the time for the Case 1. a) Plot r1  vs. t⁄ttotal  

for Case 1, b) Plot of 〈Sg
v
〉norm  vs. t ⁄ ttotal   for Case 1 
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Two important things are worth noting in the curves of Figure 69a,b. If the ratios    of 

Figure 69a are compared to the ratios 〈  〉 〈  〉
 ⁄  obtained from Figure 68, it can be 

concluded that the ratio between the void velocity and the average liquid velocity in the 

channel is considerably higher when the voids move freely along the channels, i.e., after the 

critical velocity, 〈  
    〉 , has been reached (Figure 68), than when they migrate from the 

tows towards the channel (Figure 69a). In other words, it can be asserted that, for a certain 

liquid velocity, the process of void migration from the tows towards the channel is 

considerably slower than the process of void motion freely along the channels, which is 

agreement with the results obtained by Lundstrom et al [78].  

The second aspect to be noticed in Figure 69a and Figure 69b is that the reduction of    and 

〈  
 〉     with        ⁄  at the end of these curves poses the question whether it is possible 

or not to obtain negative values of    and 〈  
 〉     under other conditions, which would 

denote a contraction of the bubble. To tackle this issue, the surface tension of the liquid is 

modified to           and another simulation is run in the Case 2 keeping constant 

the other data.  

 

Case 2: Increase of the surface tension of the liquid,   

For the case where the liquid has a surface tension of            several instants of the 

void evolution are shown in the Figure 70a-d. As in Figure 67a-d, the reported values of 

    ,    and 〈  
 〉     in each figure correspond to the last bubble front. A bubble expansion 

can be noticed in the Figure 70a, where the last front of the bubble corresponds to the 

normalized time        ⁄       , in which the air pressure is               , while 

         and 〈  
 〉      , that is, the void migration rate reaches its peak in this point. 

From the beginning of the air migration until this instant, the air pressure continuously 

reduces because of the expansion of the void. Then, in the first four bubble fronts of the 

Figure 70b (green lines), the bubble is still expanding in almost all directions, but, in the 

fifth bubble front (red line), an important contraction in some points of the bubble contour 

can be appreciated. The time where this localized contraction occurs is        ⁄       , 

with corresponding values of              ,          and 〈  
 〉          , which 

means that the void is migrating at a lower velocity with respect to the average liquid 
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velocity and it is still increasing in volume, but this expansion is decelerating. The bubble 

continues expanding, each time slower, until        ⁄        (See Figure 71a,b). The 

bubble evolution from        ⁄        until        ⁄        is shown in Figure 70c, 

where, for a better understanding, the void evolution is represented from the darker to the 

lighter line. The values of the     ,    and 〈  
 〉     for the bubble fronts of this figure are: 

     [                           ],      [                        ], 

〈  
 〉     [                        ]. The increment of the air pressure in these 

instants indicates that the bubble is compressing, but the zero values of    and 〈  
 〉     

corresponding to the last instant (lighter line in Figure 70c), where        ⁄       , 

indicate that the bubble will undergo an expansion just after this time.  It is important to 

mention that the negative values of    and 〈  
 〉     in the three intermediate instants of 

Figure 70c mean that the net air flow rate has been reversed, thereby going from the 

channel towards the tows (bubble contraction). In the last part of the simulation, which is 

shown in Figure 70d and where the bubble evolution is also represented from the darker to 

the lighter line, one cycle of expansion and another of contraction take place, and, contrary 

to the bubble observed in Figure 67e, the final bubble tends to be long drop-shaped. The 

last analysis allows concluding that when the interfacial forces on the bubble surface are 

relevant with respect to the pressure ones, the surface tension of the injected liquid has an 

important influence on the dynamic evolution (expansion and compression cycles) and 

shape of the intra-tow voids that migrate from the tows towards the channel. 

  
a) b) 
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c) d) 

 

Figure 70 Instants of air migration from the tows towards the channel for Case 2, 

λ=16mN/m (Reported values of Pair, r1 and 〈Sg
v〉norm in each figure correspond to the 

last bubble front). a)  From t ⁄ ttotal =0 to t ⁄ ttotal =0.325, b)  From t⁄ ttotal =0.363 to t⁄ ttotal 

=0.423, c) From t⁄ ttotal =0.504 to t⁄ ttotal =0.692, d)  From t⁄ ttotal =0.764 to t⁄ ttotal =1.0 

 

The plots of              ⁄  and 〈  
 〉               ⁄  for the simulation of the Figure 70 are 

represented in Figure 71a and Figure 71b, respectively. The general behavior of these 

curves until        ⁄        is very similar to the behavior obtained for the curves of 

Figure 69a and Figure 69b, respectively. Afterwards,    and  〈  
 〉     can assume negative 

values, which means that the void is compressing. Then, these quantities become positive 

again, from         ⁄        to        ⁄       , which indicates one cycle of bubble 

expansion, and finally, they are negatives again, from        ⁄        to the end of the 

simulation, corresponding to a cycle of bubble contraction. The Figure 71a shows that 

〈    〉 can exceed 〈  〉
  only in some time instants of the first cycle of bubble expansion; 

the maximum value of 〈    〉 is 1.696 times the value of 〈  〉
 . It is important to remark 

that during the bubble contraction cycles of Figure 71a, the magnitude of the average air 

velocity, |〈    〉|, always remains lower than the liquid velocity, 〈  〉
 . On the other hand, 

Figure 71b has the same cycles of bubble expansion and contraction as Figure 71a and the 

slopes appearing in that figure account for the acceleration or deceleration of the bubble 

expansion or contraction. Several zones can be distinguished in Figure 71b. For the first 

cycle of bubble expansion, the maximum increments of the void expansion rate 
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(acceleration) arise between         ⁄        and        ⁄       , and the maximum 

decelerations ensue immediately after, between         ⁄        and        ⁄       , 

approximately.  In the first cycle of bubble contraction, the increment of the void 

compression rate takes place between        ⁄        and        ⁄       , whereas this 

rate diminishes between        ⁄        and         ⁄       . In this last time instant, as 

it was abovementioned in the analysis of Figure 70, the second cycle of bubble expansion 

starts and it is characterized by a pronounced acceleration and the subsequent deceleration. 

Then the void compression takes place again in        ⁄        until the end of the 

simulation. 

    

a) b) 

Figure 71 Behavior of r1 and 〈Sg
v〉norm   in the time for the Case 2, λ=16 mN/m.  a) Plot 

r1 vs. t ⁄ttotal  , b) Plot of 〈Sg
v〉norm  vs. t ⁄ttotal    

 

Case 3: Void migration is not possible 

As it was aforementioned, most of authors have found that the void migration is highly 

dependent on the balance between the interfacial and pressure forces. If the last simulation, 

Case 2, is run with a surface tension of         , BEM results predict that the air 

pressure of the trapped bubble is not high enough to induce the partial void migration. This 

phenomenon is represented in Figure 72, where the small initial domain that is intentionally 

generated to assess if there is or not void migration corresponds to the outer bubble front, 

and the arrows represent the direction of the bubble motion. As it can be observed, as the 

simulation develops, the bubble front gets back and the initial domain shrinks, which can 
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be interpreted as the impossibility of the trapped bubble to migrate from the tow towards 

the channel. It can be concluded that the surface tension,  , has two opposite effects in the 

impregnation of dual-scale fibrous reinforcements: it promotes the infiltration of the tows 

because as   is greater, the capillary pressure is also greater, but, conversely, an increment 

of    causes a greater opposition to the void migration.  

 

 

Figure 72 Representation of not void migration for λ=20mN/m, 〈Pg〉
g
=102kPa and   

ΔP⁄Δx=5.83×103
 kPa/m 

 

Case 4: Modification of the pressure gradient,     ⁄ . 

Several authors coincide that the increment of the pressure gradient could favor the intra-

tow void migration [78], [86], [220]–[222], [230]. In a recent experimental work, Vilá et al. 

[220] used the X-ray computed tomography to study the void transport in vacuum assisted 

infiltration processes, finding that the intra-tow voids are more prone to migrate as the 

pressure gradient is high enough to overcome the capillary forces; they also observed that 

very small voids can still remain trapped inside the tow once the larger void has been 

removed. 

In the present case, it is evaluated if the increment of the pressure gradient induces the void 

migration for the case considered in Figure 72, where the liquid surface tension is    

       and no void migration is possible.  Accordingly, the pressure gradient is 

increased from     ⁄                 to     ⁄                 and the 
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average pressure is kept constant in 〈  〉
        , by prescribing                and  

             ; the initial domain of this simulation corresponds to the arrival of the 

bubble to the edge of the weft (just before a possible void migration occurs). 

According to Figure 73a, when the pressure gradient increases as done here, the bubble 

trapped inside the tow barely compresses (see black arrow), thereby leading to a small 

increment in the air pressure from            to           . In Figure 73a the red line is 

the front of the bubble that is not able to migrate when the original pressure gradient is 

hold, namely, when     ⁄                , while the green line is the front 

corresponding to the small compression undergone by the bubble when the pressure 

gradient is increased to     ⁄                . Then, once the small contraction of 

the void takes place, the bubble displaces again towards the right extreme of the weft and 

the void expansion in the channel is possible in this case, as it can be confirmed in Figure 

73b and Figure 73c. Additionally, the bubble experiences a contraction until its splitting 

(breaking), which occurs before it arrives to the right edge of the RUC, as it can be 

appreciated in Figure 73d, where the bubble evolution is represented from the darker to the 

lighter line.  Considering that the increment of the pressure gradient along the RUC induces 

a higher average liquid velocity in the channel, 〈  〉
 , it can be concluded that, at the 

macroscopic scale, the increment of 〈  〉
  could promote the void elimination, which is in 

agreement with previous works [78], [86], [220]–[222], [230]. 

After the void splitting, the simulation continues using the same parameters. The results of 

Figure 74a-h show a process of stepwise void elimination, where several stages of 

compression-displacement-migration-splitting occur successively, leading to a smaller void 

inside the weft. In this case, two of these stages are presented and the graphical comparison 

between the initial and the final bubble inside the weft after three splittings is presented in 

Figure 74i, where it can be noticed a small reduction in the void size.  This indicates that, 

according to the present BEM results, the void elimination from the tows towards the 

channels in dual-scale fibrous reinforcements can be considered a slow pulsating process, 

but further experimental and numerical works shall be done to confirm this conclusion. 
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a) 

 

b) 

  
c) d) 

 

Figure 73 Effect of increment of the pressure gradient, ΔP⁄Δx, on the void migration. 

a) Small compression of the bubble, b) Displacement and expansion of the bubble, c) 

Expansion of the bubble, d) Contraction and splitting of the bubble (From darker to 

lighter line). 
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a) b) 

 

   
c) d) 

 

   
e) f) 
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g) h) 

 

 
i) 

Figure 74 Process of stepwise void elimination. a) Initial splitting, b) Second stage of 

compression, c) Second stage of mobilization towards the right extreme of the weft, d) 

Second stage of void migration, e) Second migration and subsequent splitting,  f) 

Third stage of compression (red lines and red arrow)  and subsequent mobilization 

towards the right extreme of the weft (green lines and green arrow), g) Third stage of 

void migration, h) Third migration and subsequent splitting, i) Comparison between 

the initial (green line) and the final (red line) bubble inside the weft after three 

splittings. 

 

Case 5: Modification of the average pressure, 〈  〉
  

In this last case, it is evaluated if the increase of the average pressure, 〈  〉
 , can lead to the 

migration of the bubble considering the same surface tension as in Case 3 (         , 

where void migration is not possible (see Figure 72). A simulation with initial domain 

corresponding to the arrival of the bubble to the right edge of the weft is performed, 
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considering a higher average channel pressure of 〈  〉
        , which is obtained by 

prescribing               and                ; notice that the pressure gradient of 

Case 3,     ⁄                , is kept constant. The first effect of this change, 

contrary to the Case 4 (which corresponds to the increment of the pressure gradient with 

respect to the Case 3), is an important compression experienced by the void (Figure 75a), 

which leads to an important increment of the air pressure, from            to 

          , in such a way that when the compressed void displaces towards the right 

extreme of the weft (Figure 75b), the pressure allows surpassing the interfacial forces and 

the void migration occurs for the same pressure gradient and surface tension of the Case 3, 

as shown in Figure 75c. In this case, a continuous bubble expansion is maintained until the 

bubble is near the right edge of the RUC.  This result confirms that the increment of 〈  〉
  

above a determined value, which is called by some authors the critical pressure [5], [81], 

[84], could lead to the migration of the voids formed inside the tow.   

  
a) b) 
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c) 

Figure 75 Effect of increment of average pressure, 〈Pg〉
g
, on the void migration. a) 

Bubble contraction, b) Bubble displacement, c) Migration of the bubble 

5.4 Conclusions 

In this chapter, the BEM method has been implemented for the simulation of the dynamic 

evolution of intra-tow voids in dual-scale fibrous reinforcements at mesoscopic scale, using 

a Stokes-Darcy formulation. As in other works, the assumption of fully filled channels was 

considered, but, instead of considering a constant channel pressure, a pressure gradient was 

prescribed along the RUC length to be consistent with the fluid motion. This simple 

modification allowed contemplating some bubble processes not taken into account in the 

traditional approach, namely, displacement at constant volume, migration and splitting 

(breaking). According to the BEM results, the processes occurring inside the tows, 

compression and displacement, are much slower than those ones occurring in the channel, 

migration and splitting, which is coherent with the larger velocities obtained in the channel 

regarding the velocities inside the tows; moreover, for the RUC geometry and the cases 

deemed here, the BEM code predicts that the process of void displacement inside the tow 

takes more time than the void compression. The analysis of the velocity field and 

streamlines allowed concluding that, at the interface channel-weft, for the cases considered 

here, the tangential Darcy velocity is negligible and the mass transfer from the channel 

towards the weft is not uniform along this interface, being greater in points whose 

horizontal position is between the horizontal limits defined by the fluid front inside the 

tows, and considerably decreasing in points with horizontal positions beyond these limits. 
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The streamlines corresponding to the zones of low mass transfer tend to converge in the 

horizontal extremes of the fluid front.  

Two numerical parameters were taken into account to quantify the process of void 

migration: the ratio between the average void migration velocity and the average channel 

liquid velocity,   , and the normalized air migration rate, 〈  
 〉    . In general, the void 

migration velocity is not constant during the whole migration process. The behavior of    in 

the time showed that the bubble can migrate at both a lower and a higher velocity with 

respect to the average liquid velocity. It is even possible to obtain negative values of   , 

where the parameter 〈  
 〉     is also negative, corresponding to the bubble contraction. 

Moreover, from the comparison with other works, it was obtained that, for a determined 

liquid velocity, the void migration from the tows towards the channel is considerably 

slower than the void migration along the channels.    

From the behavior of 〈  
 〉     in the time, it can be concluded that the void in the channel 

can be subjected to several cycles of expansion and contraction, with corresponding 

accelerations (increase in the expansion or contraction rates) and decelerations (decrease in 

the expansion or contraction rates), before the void splitting occurs. According to the BEM 

results, this splitting is product of a process in which the air pressure drops as a 

consequence of the bubble expansion until the interfacial forces on the bubble surface 

become significant to modify the shape of the bubble, which can lead to its breaking. Once 

the void splitting happens, the air inside the tow is compressed again until the equilibrium 

is achieved and the resulting bubble could migrate towards the channel until another 

splitting occurs. This allows concluding that, in general, the bubble inside the tow cannot 

be totally removed in a single step and the intra-tow void elimination is a slow pulsating 

process instead, where partial portions of air are removed; however, this conclusion needs 

to be confirmed with further experimental works. 

The influence of the surface tension, pressure gradient and average pressure in the process 

of void migration was also studied here. Even though the surface tension favors the tow 

impregnation due to the increase of the capillary pressure, it also opposes to the void 

migration due to the increase of the surface tractions in the bubble surface; on the other 

hand, the increase of the pressure gradient (which leads to the increase of the average liquid 
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velocity in the channel) and of the average pressure promotes the void migration, which is 

in agreement with other numerical and experimental results at macroscopic scale.  
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6. MULTISCALE FILLING SIMULATIONS IN DUAL-SCALE FIBROUS 

REINFORCEMENTS


 

6.1 Introduction 

In dual-scale fibrous reinforcements, the channels formed between the tows are 

considerably more permeable than the tows, leading to a non-uniform saturation of the 

preform as the filling takes place. At the mesoscopic level, the differences between the flow 

in the channels and the flow in the tows depend on the relationship between the viscous and 

capillary forces; these differences significantly affect the pressure and velocity fields at the 

macroscopic level. For instance, in unidirectional injections, the reduction of the pressure is 

linear along the mold length in single-scale fibrous reinforcements, whereas this reduction 

is almost parabolic for the partially saturated zone in dual-scale fibrous reinforcements due 

to the presence of a sink term,   , in the mass conservation equation [83]. On the other 

hand, in unidirectional constant flow rate injections, the increment of the inlet pressure with 

the time is linear for single-scale fibrous reinforcements, whereas a pressure drooping 

occurs for dual-scale fibrous reinforcements [83], [225]. 

The simulations of filling of dual-scale fibrous reinforcements can be classified into two 

main categories: mesoscopic simulations and macroscopic simulations. The mesoscopic 

simulations consists on the filling of the Representative Unitary Cell (RUC) and can be 

carried out to: 1) determine the effective properties of the porous medium, such as the 

effective unsaturated and saturated permeabilities, and the constitutive relationships of 

these properties [138]–[140], 2) compute the coupling terms between the mesoscopic and 

macroscopic governing equations in order to deduce lumped functions for such a terms, in 

terms of volume-averaged quantities [10], [12], [225], [232]. 

On the other hand, the macroscopic simulations make mention to those ones carried out in 

cavities, where the porous medium is initially dry and then a liquid passes throughout it, 

driven by positive pressure, gravity and/or capillary pressure. During the filling of the 

cavity, the dual-scale fibrous reinforcement is not uniformly impregnated as the fluid front 

progresses because of the dissimilar permeabilities of the channels and the tows, which 

                                                           


 The results of the present chapter are intended to be published in: Iván David Patiño Arcila, Henry Power, César Nieto 

Londoño, Whady Felipe Flórez Escobar, “Multiscale filling simulations in dual-scale fibrous reinforcements using Boundary 

Element Techniques” to be submitted (In preparation). 
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originates partial saturation effects. Two strategies can be considered to determine the 

influence of such effects in the macroscopic variables: in the first one, simultaneous and 

iterative-corrected simulations are conducted at both scales (macroscopic and mesoscopic) 

[8], [14], [94], whereas in the second one, which is less rigorous but computational cheaper, 

functions for the effective properties or for the coupling terms are obtained by running 

several mesoscopic simulations of the RUC filling, and those functions are  then used in the 

macroscopic equations [12], [13], [101], [102], [138]–[140], [225], [232]. This second 

strategy, in turns, can be divided into two approaches. In the first approach, some 

constitutive relationships permeability-saturation and capillary pressure-saturation are 

obtained at the mesoscopic scale and then the Richards‘ equation is solved using these 

constitutive equations [138]–[140]. In the second approach, which is used in the present 

work, a sink function,   , is obtained by running several simulations at the mesoscopic 

scale and this function is used afterwards in the solution of a Poisson type equation, which 

is obtained from the mass conservation equation considering the sink function,   , and the 

Darcy law with an equivalent channel permeability,    [12], [13], [101], [102], [225], 

[232]. 

In the present chapter the Boundary Element Method (BEM) is applied to the problem of 

impregnation of dual-scale fibrous reinforcements used in the processing of composite 

materials, based on the Stokes-Darcy (at the mesoscopic scale) and equivalent Darcy (at the 

macroscopic scale) formulations. A new methodology is presented for the calculation of the 

sink function,   , and the influence of several parameters on the effective unsaturated 

permeability,     , is studied as well. The principal contributions of this chapter attend 

some drawbacks identified in similar works and they are summarized as follows: 

 As in the other problems analyzed along this work, the problem of multiscale filling of 

dual-scale fibrous reinforcements has been tackled mostly using domain mesh 

techniques. For instance, the Finite Element/Control Volume (FEM/CV) conforming 

method was used in [13] introducing ‗slave‘ elements into the original nodes of the 

FEM mesh, with the purpose to simulate the delayed saturation of the tows as the 

macroscopic fluid front progresses. On the other hand, Park et al [79] used a modified 

FEM/CV method to predict the change of the void content and saturation along the 

mold length; in this work, the mesh in the neighborhood of the fluid front was refined in 
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adaptive manner by using floating imaginary nodes that were placed in the contour of 

the FEM elements taking into account the value of the fill factor [233]; a smoother fluid 

front was achieved regarding the traditional FEM/CV methods, but at the expense of the 

increase of the computational cost. The change of the saturation at both mesoscopic 

(tows) and macroscopic (cavity) levels and the drooping of pressure in constant flow 

rate injections were studied in [225] using FEM to solve the governing equations and 

the Nodal Saturation Method to track the fluid front [234]. The FEM/CV conforming 

method was also used in coupled multiscale simulations of partially saturated flow for 

isothermal [14], non-isothermal [8] and reactive [94] conditions, where two FEM 

meshes and the corresponding CV meshes were required since the mesoscopic (filling 

of tows) and macroscopic (filling of cavity) simulations were run simultaneously, 

implying a high computational cost. As important contribution, in the present work, the 

use of BEM techniques implies the reduction of the mesh in one dimension, which is 

convenient when dealing with moving boundary problems, and the tracking technique 

of Appendix C assures a higher order accuracy of the fluid front shape by reasons 

mentioned in other chapters. Additionally, only one contour mesh is required for each 

scale of simulation because a lumped strategy is used. Some works that make use of 

BEM techniques have also dealt with simulations of partially saturated flow in porous 

media [15]–[18], but the partial saturation effects were taken into account by using 

experimental constitutive laws for the permeability and the capillary pressure in soils-

water systems, which is not our case because of the non-existence of such constitutive 

equations for woven reinforced preforms. In [139], [140], constitutive equations 

permeability-saturation and capillary pressure-saturation were obtained for non-woven 

reinforcements by running several FEM simulations at the microscopic scale, but these 

equations are not applicable in this case where woven reinforcements are considered. 

 The second contribution of the present chapter is referred to the problem of how to take 

into account the partial saturation of the RUC‘s in the behavior of some macroscopic 

variables during the filling of the cavity. As it was mentioned before, there are mainly 

two numerical strategies to tackle this problem: 1) to carry out simultaneous and 

iterative-corrected simulations at both mesoscopic and macroscopic scales, 2) to 

conduct several simulations at the mesoscopic scale in order to deduce lumped 
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functions to be used at the macroscopic scale. The second strategy is employed in the 

present work because it implies less computational cost, but it is introduced an 

important modification in the methodology to obtain the sink function,   , which is 

related to the prescription of a pressure gradient along the RUC instead of considering 

an uniform pressure in the channels, as it was exposed in Chapter 5. When it is assumed 

that the channels are totally filled with liquid before any infiltration into the tows can 

take place, most of authors have supposed that the saturation rate inside the RUC,  ̇ ,  is 

a function only of the uniform pressure of the liquid contained in the channels, 〈  〉
 , 

and of the total saturation,    [13], [225], [232], [235]. This classical methodology has 

several weaknesses due to its simplifications: 1) the impregnation in the tows takes 

place towards the center of them, no matter the magnitude or direction of the channel 

fluid velocity, which is not in accordance with other researches where the void location 

is not necessarily symmetric with respect to the centroid of the tow  [3], [25], [171], 

[175], [220], [227], 2) the air compressibility and partial air dissolution are not taken 

into account, but a the full air dissolution instead, thereby leading to a constant air 

pressure in the fluid front during the whole filling of the tows, which does not 

reproduce the real situation of Liquid Composites Molding (LCM) processes [11], [92], 

3) the capillary pressure is assumed constant during the whole RUC filling and the 

model to compute this pressure is employed indistinctively for the warps and the wefts, 

4) the vacuum pressure is not considered as an initial condition for the air pressure, 

which is not coherent with some applications of composites manufacturing where the 

vacuum pressure is recognized as a relevant processing parameter [223], [236]–[238], 

5) the prescription of a constant pressure in the channels of the RUC is not physically 

consistent with the fact that the fluid is actually moving, 6) the processes of void  

displacement, migration and subsequent splitting, which have been reported in 

experimental researches [89], [175], [219], [220], [227],  are not possible using this 

simplified methodology as it was shown in Chapter 5.  Consequently, the classical 

methodology to compute    is refuted in the present work in favor of the prescription of 

a pressure gradient along the RUC length,     ⁄   at it was done in Chapter 5, and, by 

mass conservation in the channel domain, the rate of saturation of the tows,  ̇ , is 

established in terms of the difference between the inlet and outlet flow rates of the 
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RUC, which can be directly accomplished from the BEM simulation. The proposed 

methodology is more robust than the classical one because it tackles the aforementioned 

drawbacks as follows: 1) decentered voids are obtained in the transverse tow (weft) due 

to the prescription a pressure gradient, as shown in Chapter 5, 2) air compressibility and 

partial air dissolution are considered simultaneously in the boundary condition of the 

fluid front at the mesoscopic scale by means of the air entrapment parameter,  , 

proposed in [11], 3) the flow-direction dependent model for the capillary pressure 

obtained in Chapter 3 is used here, 4) the vacuum pressure,     , is taken into account 

as an independent variable of the function   , 5) there exists a velocity field in the 

channel that is consistent with the flow direction as shown in Chapter 5, 6) the 

displacement, migration and splitting of voids is possible under the assumption of full 

air compressibility, as shown in Chapter 5. Using the proposed methodology, a sink 

function,   , is obtained after running a considerable amount of mesosocopic 

simulations (RUC fillings), and, once the function    is known, macroscopic 

unidirectional simulations are run using the Dual Reciprocity Boundary Element 

Method (DR-BEM); the macroscopic simulations are performed to assess the coherence 

of the present methodology with a previous work [83] by comparing the pressure 

profiles, and to analyze the behavior of the global saturation in the space and the time 

under both constant pressure and constant flow rate regimes. The DR-BEM code is 

validated with an analytical solution at constant pressure regime [101]. 

 Finally, the curves of the effective unsaturated permeability,     , against tow 

saturation,   , are obtained from the mesoscopic simulations, and the influence of the 

tow aspect ratio,      , and tow porosity,   , on those curves is studied. The 

relationship between      and    is important when the Richards‘ equations needs to be 

solved. To the best of the author‘s knowledge, there is not another work devoted to the 

study of the behavior of the curves of            with       and    in dual-scale 

fibrous reinforcements, but some works have studied the effective saturated 

permeability instead [20], [85] and these results are compared to the present ones in the 

limit when the total saturation is close to one,     . 
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6.2 Governing equations, boundary conditions and matching conditions 

At the mesoscopic scale (filling of RUC‘s), the Stokes-Darcy formulation is used and the 

governing equations and matching conditions of Chapter 3, as well as the boundary 

conditions of Chapter 5, can be applied here. At the macroscopic scale, an equivalent Darcy 

approach is used, in which the channels of the fibrous reinforcement are conceived as a 

porous network having an equivalent permeability,   , and a sink term,   , accounting for 

the liquid absorption into the tows per unit RUC volume, needs to be considered in the 

continuity equation [6], [10]. Accordingly, for the channel domain, the following equations 

are valid: 

 

   
〈   

〉       (130a) 

〈   
〉   

   

 
 

 

   
〈  〉

   (130b), 

where      represents the gaps between the tows  (channels), in such a way that 〈   
〉 and  

〈  〉
  stand for i component of the phase volume-averaged velocity and the intrinsic phase 

volume-averaged pressure in the channels, respectively, while     
 represents the 

equivalent channel or gap permeability in the principal direction i assuming impermeable 

tows. On the other hand,     is defined as follows:  

   
 

    
∫        

  ̂   
      

(131), 

where         
 and   ̂   

 stand for the area, velocity and normal vector at the interface 

channel-tow, which is represented by subscript      . 

For the particular case of unidirectional filling at the macroscopic scale, which is 

considered here, the non-dimensionalization of the macroscopic variables depends on the 

injection regime, as follows (volume-averaged symbols are omitted for sake of simplicity): 

 

For both constant pressure and constant flow rate regimes: 

 ̂    ⁄    (132a) 

 ̂       ⁄    (132b), 

For a constant pressure regime only: 

 ̂   (   (|         |  )⁄ )⁄     (133a) 
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 ̂   |         |⁄    (133b) 

  ̂    ((|         |  )     ⁄ )⁄    (133c) 

For a constant flow rate regime only: 

 ̂   (      ⁄ )⁄  (134a) 

 ̂   (      (    )⁄ )⁄  (134b) 

  ̂    (     ⁄ )⁄    (134c), 

where  ,    ,  ,   and    are the horizontal coordinate, fluid front position along the cavity, 

time, pressure and horizontal velocity, respectively, whereas  ̂,  ̂  ,  ̂,  ̂ and   ̂ are the 

corresponding non dimensional variables; on the other hand,  ,  ,     ,     ,   ,   and      

stand for the length of the mold, liquid viscosity, injection pressure, vacuum pressure, 

equivalent gap permeability, cross section area of the mold and injection flow rate, 

respectively. 

 

6.3 Integral equation formulations and numerical techniques. 

At the mesoscopic scale (filling of RUC‘s), the integral equation formulations and all 

numerical considerations exposed in Section 3.3 are applicable to this particular problem. 

At the macroscopic scale, for unidirectional injections, the combination of the mass 

conservation, Eq.130a, and momentum conservation, Eq.130b, leads to a Poisson type 

equation, whose integral formulation is given by: 

         ∫        
 

        ∫        
 

        ∫            
 

      (135), 

where the fundamental solutions,    and   ,  have the same form as the ones presented in 

Section 3.3, considering          , where     is the effective gap permeability in the 

fluid direction as found in Section 6.5.3. The non-homogeneous term of Eq.135 is given as:  

  (   ⁄ )  , where    is the lumped function for the sink term, which is deduced in the 

Section 6.5.2.  

The domain integral of the Eq.135 can be transformed into boundary integrals using the 

Dual Reciprocity Boundary Element Method (DR-BEM) [63]. Firstly, the non-homogenous 

term,  , is approximated using Radial Basis Function (RBF) interpolation with Augmented 

Thin Plate Splines (ATPS) of order     (See Eqs. 111), as follows:  



214 
 

     ∑        
       
      (136) 

where    represent the approximation coefficients, with the orthogonality conditions given 

by: 

∑        
    ∑        

     
  ∑        

     
         (137) 

 

After substituting Eq.136 into Eq.135, the integral representation takes the following form: 

         

∫        
 

        ∫        
 

        

∑   ∫        
 

        
       
     

(138) 

The transformation of the domain integral into a boundary integral is accomplished by 

defining the following auxiliary pressure field: 

   ̂ 

      
        (139), 

with the particular solutions for the ATPS given in [239].  

The substitution of Eqs.139 into Eq. 138 and the application of Green‘s identities in the 

domain integral lead to the following boundary-only integral representation: 

         

∫        
 

        ∫        
 

        ∑   (     ̂     
       
   

∫        
 

 ̂        ∫        
 

 ̂       )  

(140), 

where the coefficients    are obtained from the inverse of the matrix [ ], which, in turns, 

is obtained by collocation of    boundary nodes and    internal nodes according to Eq. 

136. In vector form, Eq.136 is  ⃗⃗  [ ] ⃗, from which  ⃗   [ ]   ⃗⃗. 

In the macroscopic problem, the boundary and the physical variables are discretized using 

quadratic isoparametric interpolation and discontinuous shape functions with a collocation 

factor of          are used in the corners [165]. To compute the regular integrals, 

standard Gaussian interpolation is used. The  singularities of the integrals of the DLP  are 

treated using the Rigid Body Motion principle [149], [150] and the singular integrals of the 

SLP, using the Telles transformation [166]. The final system at macroscopic scale can be 

written as: 
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[ ]
               
   

 ⃗  [ ]          

   
 ⃗  [ ]                   ⃗⃗   (141), 

where the matrix  [ ] is as follows: 

[ ]                  ([ ]               
   [ ]̂                  

[ ]          

   [ ]̂            ) [   ]                       

(142), 

with [ ]̂ and [ ]̂ as the matrices corresponding to the evaluation of the particular solutions 

in all field points, whereas [   ] is the inverse of the matrix [ ]. As it is shown in Section 

6.5.2, the sink function,   , obtained here is non-linear, and thereby the system defined by 

Eq. 141 is solved using fixed point Picard iteration.  

At the macroscopic scale, the fluid front tracking is also carried out by using the technique 

described in Appendix C. 

 

6.4 Methodology for calculation of the sink function, Sg 

Description of the problem. 

The sink term,   , defined in the Eq.131, is the coupling term between the flow in the 

channels and the flow in the tows, and it can be characterized in terms of some volume-

averaged variables of the RUC; once the function for    has been obtained, it can be used 

in the Eq.130a. According to Simacek and Advani [13],    can be taken as a function of the 

volume-averaged pressure, 〈  〉
 , and the saturation of the tows,   . The sink function,   , 

was implemented in macroscopic filling simulations in [101], [102], [235] using FEM/CV 

conforming, but neither capillary nor air compressibility and dissolution effects were 

considered. One of the most outstanding works to establish a function for    was developed 

in [12], [232], where the next general equation was deduced: 

   (  (〈  〉
 )  ⁄ ),         

    -    (143), 

where   (〈  〉
 )    (    )  (〈  〉

 ),    (〈  〉
 )     

   ⁄  〈  〉
  and the coefficients 

  
 ,   ,    and    are determined after running several simulations of filling of the tows 

assuming a constant liquid pressure in the channels, 〈  〉
 . 

A different methodology to calculate the function    is proposed in the present work, where 

both the air compressibility and air dissolution are considered. When the air dissolution is 
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present, it is possible to reach the total tow saturation,     , otherwise, an equilibrium 

saturation,   
  

, is reached instead, as mentioned in Chapter 5. The RUC geometry and type 

of boundary conditions for the determination of the sink function,   , are shown in Figure 

61. As mentioned before, the air compression is considered for the weft and the total tow 

saturation is thus not possible when the air dissolution is neglected. For the warps, on the 

contrary, the air compression is not taken into account and the total saturation is possible in 

all cases.  

 

Scale constraints.  

As it is well-known from the volume-averaging method [130], several scale constraints 

shall be complied in order to simplify the general volume-averaged momentum equation, 

which is quite complex as shown in Chapter 2, into the simpler Darcy‘s law, Eq.130b, 

which is used here for the channel domain at the macroscopic scale. Additionally, the LCM 

processes implies another scale restrictions. Therefore, both the RUC geometry and the 

prescribed inlet and outlet pressures used for the determination of    in the mesoscopic 

simulations, as well as the physical conditions of the macroscopic problem (filling of 

cavity), need to be in accordance with these scale restrictions. First of all, applying the 

constraints of [130] on the channel or gap phase,    , the Darcy‘s simplification is possible 

provided that the following equation is valid for the phase volume-averaged pressure 

gradient, 〈      ⁄ 〉: 

〈      ⁄ 〉    ( 〈  〉
    ⁄ )        ⁄  ∫   ̃   

  ̂          (144), 

where    stands for the pointwise pressure in the channel domain, whereas    ̃     〈  〉
   

is defined as the local variation of the pressure and          ⁄  is the gap porosity, with 

   as the volume of the channel or gap phase. The Eq. 144, in turns, is valid under the next 

scale restrictions: 

         (145a) 

      
           (145b), 

where       and    are the characteristic length-scales of the RUC and of the channel or 

gap phase, respectively. On the other hand,     and      are the characteristic length-scales 

defined by the estimates      (      ⁄ ) and    〈  〉
   ( 〈  〉

     ⁄ ), 
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respectively, where   stands for the absolute change of the variable, while   and    

represent the first and second derivative, respectively. On the other hand, the symbol   is 

used to denote the order of magnitude. The constraint of Eq. 145a is satisfied in this case 

because the average inter-tow distance, which can be taken as the characteristic length-

scale of the channels,   , is chosen smaller than the RUC length,     . In a similar fashion, 

the constraint of Eq.145b is also satisfied here because a homogeneous porous medium at 

macroscopic scale is considered, leading to       [130]. For heterogeneous porous 

media, the fulfillment of Eq.145b depends on the gradient of the gap porosity,    , and on 

the relationship between the first and second derivatives of the volume-averaged pressure, 

which can be defined by the ratio     〈  〉
   〈  〉

 ⁄ . According to [130], when     is 

very large,         , in which case, considering an order of magnitude of       for 

    , the minimum allowable order of magnitude of     , in order to comply the Eq.145b, 

would be      , i.e.,         to fulfill Eq.145b. The filling of heterogeneous dual-scale 

porous media is not tackled in this work, but it could be considered in forthcoming 

investigations under the scale restrictions mentioned here. 

In LCM processes, the assumption of full-filled channels is more realistic as the viscous 

forces exceeds the capillary ones, which can be valid when: 1) the tows permeabilities,    

and    , are very small regarding the gap permeability,   , and 2) the inlet injection 

pressure,     , is at least one order of magnitude larger than the typical capillary pressures 

in these processes, which usually have an order of      [75], [140], [145], [228].  The first 

condition is fulfilled in this chapter since    and    have an order of        and       , 

respectively, while the gap permeability has an order of       as shown in Section 6.5.3. 

To satisfy the second condition, a minimum injection pressure of order      is considered 

in the macroscopic simulations. 

On the other hand, according to Park et. al [83], the pressure profiles for unidirectional 

injections in dual-scale fibrous reinforcements can be divided into three categories, as it is 

shown in the Figure 76a-c. For the fully saturated zone,       the pressure profile is 

linear, while the non-linear part of this profile in the partially saturated zone,     , can be 

approximated by quasi-parabolic curves that could be concave (Figure 76a), convex (Figure 

76b) or both ones (Figure 76c), depending on the importance of the sink term,   , in such a 
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way that as    is greater, the profile tends to be slightly concave as reported in [240], [241], 

while a convex profile is liable to be obtained as    is lower [242].   Taking into account 

the possible forms of this profile and considering a minimum order for the injection 

pressure,     , of     , and a maximum order for the length scale of the macroscopic 

problem (length of the mold),  , of     , it is expected a minimum order for the pressure 

gradient of around     . As the order of      is       in the present work, the minimum 

order for the change of pressure along the RUC length,   , could be taken here as     . 

 

 

a) b) c) 

Figure 76 Typical pressure profiles in unidirectional injections for dual-scale fibrous 

reinforcements. a) Linear-Concave, b) Linear-Convex, c) Linear-Convex-Concave. 

Source: Park et al [83] 

 

On the other hand, the maximum order for the pressure gradient is determined by 

considering a mesoscopic scale restriction for the local velocity variation in the channel 

phase,   ̃, which establishes that: 

 〈|  ̃|〉
  〈  〉

  (146), 

where    ̃     〈  〉
 . 

In some researches about LCM processes, the maximum order of the volume-averaged 

velocity in the channel, 〈  〉
 , has been taken as       [77], [80], [81] and the maximum 

order of the resin viscosity is      . Consequently, taking into account these orders of 

magnitude and that the gap permeability,   , is of order       for the RUC geometry 

considered in this work, the maximum order for the pressure gradient according to the 

Darcy‘s law is     , which corresponds to a pressure change along the RUC length,   , of 
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order     . However, the consideration of an order       as the upper limit for 〈  〉
 , 

could lead to high Reynolds numbers and this is not consistent with the Stokes 

approximation for the channels. Consequently, in the present chapter, the starting point for 

the maximum order of    in the RUC is      (which corresponds to a channel velocity, 

〈  〉
 , of order      ), but it is necessary to check that the gap Reynolds number,    , 

remains small according to the following definition: 

     〈  〉
    ⁄   (147), 

where  ,   and    stand for the liquid density, liquid viscosity and characteristic length of 

the gap phase. 

 

Calculation of the sink function,    

Taking into account the last constraints, a pressure gradient is imposed along the RUC and 

the sink term,   , is computed by applying the principle of mass conservation in the gap or 

channel domain. Accordingly, for a unitary width RUC, the equation to compute    is as 

follows:  

   
  ̅    ̅      

         
    (148), 

where the mean inlet and outlet velocities of the RUC ,  ̅   and  ̅   , are defined by: 

 ̅   (∫    
   ⁄

    ⁄
  )   ⁄   (149a) 

 ̅    (∫     
   ⁄

    ⁄
  )   ⁄   (149b), 

where     and      are the pointwise inlet and outlet velocities obtained from the BEM 

simulations. 

The total saturation of the tows,   , is defined as: 

          ⁄      (∑   
   

)⁄  (∑       
   

) (∑   
   

)⁄      (150), 

where      is the total volume of liquid inside the tows (including warps and weft),     is 

the total porous volume of the tows,    
   

 is the porous volume of the tow     and      

    
    

   
⁄  is the saturation of the tow    , with     

  as the volume of liquid inside the tow    . 

From now on, considering that the channels are totally filled of liquid in the RUC,    is 

referred as the total saturation.  
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The saturation rate can be found by taking the time derivative of Eq. 150:   

 ̇  (∑  ̇      
   

) (∑   
   

)⁄       (151) 

By mass conservation, the following is valid: 

(∑  ̇      
   

)    ̅    ̅             (152) 

Solving for the term    ̅    ̅        in the Eq.148, substituting into Eq.152 and then 

substituting the resulting expression into the Eq.151, it is obtained the next relationship 

between the total saturation rate,   ̇ , and the sink term,   :  

 ̇  *         (∑   
   

)⁄ +          (153) 

Taking into account that          ⁄  and considering the same porosity,   , for all tows, 

the following expression can be written: 

     (∑  
   )            ⁄    (

 

  
)

(∑   
   

)

         
  (154), 

where   
   

 is the volume of the tow    , with    
        

   
. 

Solving for (∑   
   )            ⁄  in the Eq.154 and substituting into Eq.153, the 

following relationship is obtained for the sink term,   : 

      ̇ (    )  (155) 

The last equation is useful since it allows establishing the relationship between volume-

averaged quantities and the sink term,   , once the relationship between those quantities 

and the saturation rate,  ̇ , has been obtained. 

 

6.5 Results and discussion 

6.5.1 Analysis of saturation in mesoscopic simulations 

In this section, the behavior of the total saturation,   , in the time is obtained using BEM 

and the classical methodology, and the results are compared with those previously reported 

in [12], [225]. Then, the influence of the total saturation     , volume-averaged pressure 

(〈  〉
 ) and pressure gradient      ⁄   in the inlet and outlet velocity profiles of the 

channel,     and     , and in the phase-intrinsic volume-averaged gap velocity, 〈  〉
 , is 
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analyzed using the proposed methodology. Both 〈  〉
 , 〈  〉

  and 〈  〉 are computed using 

the BEM results in the boundary and interior points of the channel domain. In the case of 

the phase-intrinsic volume-averaged pressure, 〈  〉
 , BEM results indicate that it is very 

similar to the average of the inlet and outlet pressures.  

 

Saturation curves using the classical methodology. 

Firstly, some filling simulations of the RUC represented in Figure 61 are run using BEM 

and the classical methodology used in [12], [13], [101], [102], [225], [232], namely, a 

uniform pressure is  supposed in the channel as the boundary condition of the tows and it is 

only simulated the filling of such a tows.  Additionally, the air compressibility, partial air 

dissolution and vacuum pressure are not considered, and it is supposed full air dissolution. 

Data to run the simulations using such methodology are shown in the Table 18, where the 

channel pressures, 〈  〉
 , coincide with the ones used in [12], [225]. It is defined the 

normalized time as follows: 

         ⁄   (156), 

where        is the total filling time, which is obtained from the BEM simulations and 

reported in Table 19.  

The RUC geometries considered in Wang and Grove [225] and Tan [12] are represented in 

Figure 77a and Figure 77b, respectively, while the RUC geometry of this work is displayed 

again in Figure 77c. Using the BEM results, the curves of           for all values of 

 〈  〉
  were obtained as shown in the Figure 77f. When these curves are compared to the 

curves of the Figure 77d and Figure 77e, which correspond to the saturation curves 

obtained by Wang and Grove [225] and Tan [12], respectively, some similarities can be 

identified. First of all, the results converge into a single master curve in all figures. 

Secondly, despite the curves are not exactly the same, a similar general behavior of the 

saturation rate is observed: it is very large at the beginning of the injection and decreases as 

the filling takes place. The agreement of the current BEM results with the results of [12], 

[225] suggests that the present code is reliable enough to tackle the other problems of the 

present chapter. The saturation curves obtained by the proposed methodology will be 

presented in Section 6.5.2.  

 



222 
 

 

Table 18 Data of simulations of tows filling with the classical methodology 
Processing data 

Number of simulation 1 2 3 4 5 6 7 

Channel pressure,  〈  〉
  

(Pa) 
100 300 500 1000 5000 10000 50000 

Geometric and material data 

Total 

height 

of the 

RUC, 

     

(m) 

Length 

of the 

RUC, 

      

(m) 

Total 

height 

of the 

channel

,     

(m) 

Major 

axis 

of the 

weft, 

     

(m) 

Minor 

axis 

of the 

weft, 

   

(m) 

Visco

sity,    

(Pa.s) 

Major 

permea

bility, 

K1 

(m
2
) 

Minor 

permea

bility, 

K2 

(m
2
) 

Surface 

tension, 

  

(mN/m) 

Conta

ct 

angle

,   

Fiber 

radius, 

   

     

Tow 

poro

sity, 

   

 

4,50 

E-04 

 

1,20 

E-03 

 

3,00 

E-04 

 

5,00 

E-04 

 

1,00 

E-04 

 

0,1 

 

2,07 

E-13 

 

1,08 

E-14 

 

15 

 

30° 

 

20 

 

0,15 

 

 

Table 19 Filling times obtained from BEM simulations with the classical methodology 

Number of 

simulation 
1 2 3 4 5 6 7 

Filling time (s) 23,54 21,14 19,18 15,59 6,22 3,55 0,80 

 

 

 

        
a) b) c) 

 

    
d) e) 
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f) 

Figure 77 Comparison of saturation curves obtained by the classical methodology. a) 

RUC geometry of Wang and Grove [225], b) RUC geometry of Tan [12], c) RUC 

geometry of this work, d) Saturation curve of Wang and Grove [225], e) Saturation 

curve of [12], f) Curve St  vs. τ of this work 

 

Influence of saturation, volume-averaged pressure and pressure gradient on the channel 

velocity field using the proposed methodology. 

In this part, several simulations of filling of the RUC represented in Figure 61 are carried 

out using the proposed methodology, namely, a pressure gradient is prescribed along the 

RUC length, the channel domain is modeled as a Stokes flow and the matching conditions 

Stokes-Darcy are considered. Additionally, full air compressibility is deemed as in the 

simulation of Figure 63. The geometric and material data of Table 18 are taken into 

account. 

The influence of the pressure gradient      ⁄  , average pressure (〈  〉
 ) and total 

saturation      on the horizontal channel velocities is represented in Figure 78 to Figure 83, 

where the velocities are normalized with the maximum velocity in each case for 

comparison purposes, i.e.,         ⁄ , but they are referred in the following analysis as 

‗velocities‘ instead of ‗normalized velocities‘ for sake of simplicity. For the simulations 

corresponding to Figure 78, Figure 79 and Figure 80, an average pressure of 〈  〉
  

       and a pressure gradient of     ⁄                  are considered. The inlet 

velocity profiles of the channel domain for several values of total saturation,   , are 

represented in the Figure 78, where it is observed that  for a fixed vertical position, 
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           the inlet velocity,    
 , reduces with the increase of   , and this reduction is 

more significant as the saturation is lower. On the other hand, in the Figure 79 the inlet and 

outlet velocity profiles of the channel domain for several values of    are compared each 

other, and it can be noticed that, for a fixed vertical position,   , and saturation,   , the inlet 

velocity,    
 , is greater than the outlet velocity,     

 . It is also worth noting that the 

difference between the inlet and outlet velocity profiles is lower as the saturation,   , is 

higher, which is in agreement with the reduction of the saturation rate,  ̇ , with the increase 

of   , because the decrease of  ̇  means a lower liquid absorption into the bundles and a 

concurrent lower difference between the inlet and outlet velocity profiles by mass 

conservation. When    is close to one, the difference between    
  and     

  for a fixed 

vertical position is very small, see velocity profiles for          in Figure 79.   

The Figure 80 shows that the volume-averaged gap velocity in the horizontal direction 

(flow direction in this case), (〈  〉
 )

 
, does not change significantly with the saturation,   , 

and thereby it can be taken the average value of this velocity for the whole simulation. In 

other words, the velocity field in the channel at the mesoscopic scale is clearly affected by 

the saturation,   , but the volume-averaged gap velocity in the flow direction, which is a 

macroscopic variable, is not considerably influenced by   . As the present problem is 

symmetric with respect to the     axis (See Figure 61), the volume-averaged gap velocity in 

the vertical direction is always zero, not requiring any analysis.  

 

 

Figure 78 Influence of the total saturation, St, on the inlet velocity profile 
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Figure 79 Difference between the inlet and outlet velocities for several values of St 

 

 

Figure 80 Influence of St on (〈ug〉
g
 )

*
 

 

To establish the influence of 〈  〉
  on the inlet and outlet velocities, some velocity profiles 

are plotted in Figure 81a-c for two values of the average pressure, 〈  〉
  [      ]    , 

three levels of total saturation,    [                 ], and a single pressure gradient, 

    ⁄                . For          and          (Figure 81a,b), it can be 

noticed that the increment of 〈  〉
  causes the increase of the inlet velocities and the 

reduction of the outlet ones, and this effect is more notorious for the lowest saturation, 

        , than for the intermediate one,         .  On the other hand, for    

      (Figure 81c) it is not possible to establish a monotonic relationship between 〈  〉
  

and the inlet and outlet velocities for all vertical positions of the profiles,   .  In this figure, 

it is important to notice some vertical positions where the outlet velocity,     
 , is greater 
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than the inlet velocity,    
 , for the case of 〈  〉

        , but the total inlet flow rate is 

still greater than the total outlet flow rate, which is in accordance with the mass 

conservation principle. Figure 81a-c confirm that the difference between the inlet and outlet 

velocities is greater as the total saturation,   , is lower, and this conclusion is corroborated 

for all values of 〈  〉
  considered in the present chapter.  According to the Figure 82 the 

influence of 〈  〉
 on (〈  〉

 )
 
 is negligible as long as the pressure gradient is constant. On 

the other hand, Figure 83 shows that the volume-average gap velocity, (〈  〉
 )

 
, increases 

with the pressure gradient,     ⁄ .   

 
a) 

 

 
b) 

 

 
c) 

Figure 81 Influence of 〈Pg〉
g
  on the inlet and outlet velocities. a) Low saturation 

(St=0.235), b) Medium saturation (St=0.554), c) High saturation (St=0.893). 
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Figure 82 Influence of 〈Pg〉
g
 on (〈ug〉

g
 )

*
 for several values of St  and  ΔP⁄Δx=5.83×10

3
 

kPa/m 

 

 
 

Figure 83 Influence of the pressure gradient on (〈ug〉
g
 )

*
   

 

To conclude this section, the fulfillment of the constraint of Eq. 146 is verified considering 

the horizontal velocities in the channel obtained by BEM in the instants represented in 

Figure 63a-j. The ratio 〈|  ̃|〉
 〈  〉

 ⁄  for each one of these instants is computed, obtaining 

the results summarized in the Table 20, where it is observed that the restriction of Eq.146 is 

satisfied in all instants. For all simulations considered in this chapter, Eq.146 is fulfilled. 

Table 20 Ratio 〈|ũg|〉
g 
⁄ 〈ug〉

g   for filling instants of Fig. 63a-j. 

Time instant,        Description   〈|  ̃|〉
 〈  〉

 ⁄  

0.012 Warps and weft saturation 0.475 

0.027 Total saturation of warps 0.488 

0.133 Onset of void mobilization 0.495 

0.711 Void displacement at constant volume  0.513 

1-2.80x10
-5

 Onset of void migration 0.524 

1-1.44x10
-5

 Void migration (1) 0.567 

1-4.21 x10
-6

 Void migration (2) 0.601 

1 Void migration (3) 0.613 
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6.5.2 Calculation of the sink function 

Statement of the problem and simulation data. 

As it is mentioned in [11], there are two limits for an air bubble that is trapped inside a tow: 

full air dissolution and full air compressibility. Both extreme situations were compared in 

Chapter 5, Figure 62a-c and Figure 63a-k. According to [163], the behaviour of the air 

entrapped inside the tow can be considered as a weighted average between both limits and 

the pressure at the fluid front can be described by the following equation: 

            
          

     
  (157), 

where    ,    
      and    

     
 stand for the fluid front pressure, and lower and upper 

bounds of the fluid front pressure, respectively, whereas    is the air entrapment parameter, 

ranging between 0 and 1, that allows considering the air dissolution. The values of    
      

and    
     

are given by the following equations assuming an ideal gas: 

   
                  (158a) 

   
         (    (       )⁄         )        (158b), 

with     ,      and         as the vacuum pressure, capillary pressure and average pressure 

of the liquid surrounding the tow, which shall be taken as absolute pressures in Eqs. 157 

and 158a,b. When     the case of full air dissolution is obtained (Figure 62a-c), while for 

    the case of full air compressibility is reached (Figure 63a-k). 

In the present work, the air entrapment parameter,  , is taken into account in the deduction 

of the sink function,   , with the purpose to consider the combined effect of air 

compression and partial air dissolution. Both    and      are prescribed values, while      

is computed according to the models mentioned in Chapter 3. On the other hand,         is 

given by the BEM simulation. The deduction of the sink function,   , is developed by 

running several series of simulations as shown in the Table 21. For each serie of this table, 

five air entrapment parameters are considered, namely,     (full air compressibility), 

      ,       ,        and     (full air dissolution), obtaining in this way a total 

of 280 simulations, i.e., five simulations for each serie. The geometric and material data 

that are kept constants in the simulations are shown in Table 18, with exception of the 

viscosity that is changed in the last four series of Table 21. When these geometric and 
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material data are maintained constant, the filling of the RUC of Figure 61 depends on the 

fluid front pressure,    , average pressure, 〈  〉
 , pressure gradient,     ⁄   and the fluid 

viscosity,  . As      is not considered here as an input parameter of the function   , but as 

a computed parameter instead, the function    obtained here is not valid when the 

microstructure and/or porosity of tows, as well as the capillary properties, change. In such a 

case, another function    shall be obtained using the same methodology exposed here. 

It is important to mention that the process of void migration (See Figure 63h-k) is not 

explicitly considered here in the deduction of   . However, the change of the weft 

saturation,      , during this process is very small since the void expansion in the channel 

is considerably faster than the void compression inside the weft, as it was concluded in 

Chapter 5. Therefore, if the warps are totally filled during the void migration process, 

which is the present case,    can be considered almost constant as this migration occurs, 

but, if the void splitting (breaking) arises, this approximation is not valid anymore and the 

functions obtained here do not apply in such a case. 

 

Table 21 Series of simulations for the determination of the sink function, Sg 

 

Serie of 

simulations 

Inlet 

pressure, 

    

(kPa) 

Outlet 

pressure, 

      

(kPa) 

Vacuum 

pressure, 

     

(kPa) 

Average 

pressure, 

〈  〉
  

(kPa) 

Pressure 

gradient, 

    ⁄   

(kPa/m) 

Viscosity, 

  (Pa.s) 

1 5.500 -1.500 -75 2 5.83E+03 0.1 

2 25.500 18.500 -75 22 5.83E+03 0.1 

3 45.500 38.500 -75 42 5.83E+03 0.1 

4 65.500 58.500 -75 62 5.83E+03 0.1 

5 85.500 78.500 -75 82 5.83E+03 0.1 

6 105.500 98.500 -75 102 5.83E+03 0.1 

7 125.500 118.500 -75 122 5.83E+03 0.1 

8 165.500 158.500 -75 162 5.83E+03 0.1 

9 205.500 198.500 -75 202 5.83E+03 0.1 

10 245.500 238.500 -75 242 5.83E+03 0.1 

11 2.500 1.500 -75 2 8.33E+02 0.1 

12 22.500 21.500 -75 22 8.33E+02 0.1 

13 42.500 41.500 -75 42 8.33E+02 0.1 

14 62.500 61.500 -75 62 8.33E+02 0.1 

15 82.500 81.500 -75 82 8.33E+02 0.1 
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16 102.500 101.500 -75 102 8.33E+02 0.1 

17 122.500 121.500 -75 122 8.33E+02 0.1 

18 2.038 1.962 -75 2 6.33E+01 0.1 

19 22.038 21.962 -75 22 6.33E+01 0.1 

20 42.038 41.962 -75 42 6.33E+01 0.1 

21 62.038 61.962 -75 62 6.33E+01 0.1 

22 82.038 81.962 -75 82 6.33E+01 0.1 

23 102.038 101.962 -75 102 6.33E+01 0.1 

24 122.038 121.962 -75 122 6.33E+01 0.1 

25 2.004 1.996 -75 2 7.33E+00 0.1 

26 22.004 21.996 -75 22 7.33E+00 0.1 

27 42.004 41.996 -75 42 7.33E+00 0.1 

28 62.004 61.996 -75 62 7.33E+00 0.1 

29 82.004 81.996 -75 82 7.33E+00 0.1 

30 102.004 101.996 -75 102 7.33E+00 0.1 

31 122.004 121.996 -75 122 7.33E+00 0.1 

32 125.500 118.500 -50 122 5.83E+03 0.1 

33 125.500 118.500 -25 122 5.83E+03 0.1 

34 125.500 118.500 0 122 5.83E+03 0.1 

35 5.500 -1.500 -50 2 5.83E+03 0.1 

36 5.500 -1.500 -25 2 5.83E+03 0.1 

37 5.500 -1.500 0 2 5.83E+03 0.1 

38 25.500 18.500 -50 22 5.83E+03 0.1 

39 25.500 18.500 -25 22 5.83E+03 0.1 

40 25.500 18.500 0 22 5.83E+03 0.1 

41 65.500 58.500 -50 62 5.83E+03 0.1 

42 65.500 58.500 -25 62 5.83E+03 0.1 

43 65.500 58.500 0 62 5.83E+03 0.1 

44 105.500 98.500 -50 102 5.83E+03 0.1 

45 105.500 98.500 -25 102 5.83E+03 0.1 

46 105.500 98.500 0 102 5.83E+03 0.1 

47 165.500 158.500 -50 162 5.83E+03 0.1 

48 165.500 158.500 -25 162 5.83E+03 0.1 

49 165.500 158.500 0 162 5.83E+03 0.1 

50 245.500 238.500 -50 242 5.83E+03 0.1 

51 245.500 238.500 -25 242 5.83E+03 0.1 

52 245.500 238.500 0 242 5.83E+03 0.1 

53 125.500 118.500 -75 122 5.83E+03 0.01 

54 125.500 118.500 -75 122 5.83E+03 0.05 

55 125.500 118.500 -75 122 5.83E+03 0.2 

56 125.500 118.500 -75 122 5.83E+03 0.3 
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Influence of average pressure and pressure gradient on the saturation curves. 

Firstly, to study how the pressure gradient affects the behavior of the total saturation,   , 

several curves of        
  are shown in Figure 84, where         ⁄  is the normalized 

time, i.e., the ratio between the real time,  , and the maximum time considered in the 

simulations of Figure 84,     . The case of full air compressibility is taken into account 

and it is prescribed a vacuum pressure of            , which can be considered as a 

conventional value in LCM processes [236]. The curves of Figure 84 correspond to some 

simulations from series 1 to 31 of Table 21 considering    . In each curve, the time 

instant from which the total tow saturation,   , remains essentially constant can be 

identified. This time instant corresponds to the onset of the void mobilization in the case of 

full air compressibility (See Figure 63c). According to the BEM code, from this time 

instant to the arrival of the bubble to the right extreme of the weft (See Figure 63c to Figure 

63f), the change of the void volume is negligible and the total saturation remains essentially 

constant as long as the warps are fully saturated. This phenomenon has also been 

mentioned in [79]. Taking this in mind, only some results are reported in Figure 84 once 

the point of equilibrium saturation has been reached in each curve. As it can be observed, 

all simulations having the same average pressure, 〈  〉
 , tend to converge into a single 

curve, no matter the value of the pressure gradient,     ⁄ . The same conclusion can be 

obtained for the other values of the air entrapment parameter,  , where the total saturation 

is possible.  

 

Figure 84 Influence of 〈Pg〉
g
  and  ∆P⁄∆x  on the saturation curve St  vs. t

*
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Equilibrium time and equilibrium saturation. 

In order to unify the equilibrium times of the saturation curves, the following normalized 

time is defined for each curve: 

      ⁄     (159), 

where     represents the equilibrium time in which no net mass transfer from the channels 

into the tows is present, i.e., the time when the equilibrium saturation is reached. When 

   , the equilibrium time is the one when all tows are fully saturated, thereby coinciding 

with       (See Eq. 156); on the other hand, when     (full air compressibility), it is time 

corresponding to the onset of void mobilization inside the weft (Figure 63c). For    , the 

equilibrium saturation is    
    , while for     the value of   

  
 is not known a priori 

and shall be determined using the results of the BEM simulations.  

The curves of         for several combinations of 〈  〉
 ,   and     , taking    , are 

shown in the Figure 85a. The BEM results indicate that these curves tend to converge into a 

single master curve for any combination of 〈  〉
 ,   and     , enhancing in this way the 

conclusion obtained with the classical methodology that establishes the invariance of the 

curves of           under 〈  〉
 , see Figure 77d-f. However, this behavior is not observed 

for     according to the curves presented in Figure 85b, and the principal reason is that 

the equilibrium saturation,   
  

, depends on the average pressure, 〈  〉
 , in such a way that 

as 〈  〉
  increases,   

  
 also increases (Figure 85b). This poses the necessity to obtain a 

function for   
  

 in the case of     and this problem is tackled in the next lines.  

 
a) 
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b) 

Figure 85 Plots of St  vs τ using the proposed methodology, a) For λ<1 (Partial or total 

air dissolution), b) λ=1 (Full air compressibility) 

 

From the Figure 84, it is clear that the equilibrium time,    , depends on 〈  〉
  when     

and is not sensible to the values of     ⁄  considered in this work, but nothing can be 

concluded regarding the influence of the vacuum pressure,     , because this pressure was 

taken constant in the simulations of that figure, i.e.,            . With the purpose to 

determine the influence of the vacuum pressure,     , on    , four simulations of the Table 

21 are initially considered, namely, 7 and 32 to 34 with    ,  corresponding to an average 

pressure of 〈  〉
         and vacuum pressures of      [             ]   , 

respectively. In the Figure 86, it is observed that as the vacuum is higher, the equilibrium 

saturation,   
  

, is reached more quickly, i.e.,      is shorter, which is reasonable since the 

vacuum pressure is applied in LCM processes to promote the impregnation of the tows. In 

that figure, the equilibrium time is reported as            ⁄ , where          stands for the 

equilibrium time when the initial air pressure is the atmospheric one, namely,           . 

In Figure 86, it is also worth noting that   
  

 decreases as the vacuum is lower. 

Accordingly, results of Figure 86 confirm the importance of the vacuum pressure,      , in 

the processing of composite materials because when the filling of the RUC is conducted 

considering that the initial air pressure is the atmospheric one,           , the 

equilibrium saturation is   
         , but, on the other hand, when a vacuum pressure of 

            is applied, an equilibrium saturation of   
          is reached, which 
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means a smaller void inside the weft. Additionally, the equilibrium time for the case with 

            is 61.90% the equilibrium time obtained for           , which 

represents another advantage of the application of vacuum.  

 

Figure 86 Influence of vacuum pressure on the equilibrium time and equilibrium 

saturation 
 

From the above analysis, it is therefore obvious that both     and   
  

 depend on 〈  〉
  

(Figure 84) and      (Figure 86) for the case of    . Now, in order to define how the 

combination of 〈  〉
  and      affects the behavior of     and   

  
, some results of the series 

35 to 56 of Table 21 with     are considered. In the Figure 87, the equilibrium time,    , 

is represented as a function of the variable     |     〈  〉
 |⁄ , and it can be noticed that 

all points tend to coincide into a single curve; this means that     can be conceived as a 

function of the difference between      and 〈  〉
 , and of the viscosity,  , in such a way 

that for all combinations of     , 〈  〉
  and   leading to a same value of   , similar values 

of     are expected. The same conclusion is reached for the cases with    . This 

conclusion is applicable for the orders of magnitude of 〈  〉
 ,     ,   and     ⁄  

considered here, but not necessarily extensible to other orders of magnitude of these 

variables. As it is shown in Figure 87, a linear type curve fits well to data; so, the function 

for     has the next form: 

       
      (160), 

where                in this case.  In the linear regression model of the Figure 87, 

the fit curve is forced to pass by the origin because for a zero viscosity fluid,      .    
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Figure 87 Plot of teq  vs. T
'
=μ ⁄ |Pvac-〈Pg〉

g
|  

  

On the other hand, the starting point for the determination of a function for   
  

 is the curve 

of   
  

 vs. |    | of Figure 86 (red line). According to this curve, the relationship between 

  
  

 and |    | is linear when 〈  〉
  remains constant. To verify this relationship, several 

curves of   
  

 vs. |    | for different values of 〈  〉
  are presented in Figure 88a, where it 

can be observed that the linear relationship is kept, but the slope,    ,  and intercept,    , 

of the linear fitting curves vary with 〈  〉
 . Accordingly, in Figure 88b and Figure 88c,     

and     are put in terms of 〈  〉
 . For the slope,  , the better fitting curve is of exponential 

type (Figure 88b), whereas for the intercept,  , which corresponds to the equilibrium 

saturation when the initial air pressure is the atmospheric one             , a second 

order polynomial fitting is acceptable (Figure 88c). Accordingly, the general regression 

equation for   
  

 obtained from the simulations is as follows: 

  
   (   

  〈  〉 )|    |  (  (〈  〉
 )

 
   (〈  〉

 )    )  (161) 

For this particular problem, the fitting coefficients are:                 ,    

              ,                   ,                   and    

               In the Figure 88d, the regression curve of   
      〈  〉

   is compared 

with the results of the BEM simulations considering a vacuum pressure of            ; 

some simulation results presented in such figure were not used in the deduction of the 

regression model. The L
2
 relative error norm of the regression model is             , 
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which allows concluding that the model is reliable enough to describe the behavior of    
  

 

in terms of 〈  〉
  and      when     (full air compressibility). 

 

 
a) 

 
b) 

 

 
c) 

 

 
d) 

 

Figure 88 Plots of the regression model for St
eq

. a) Plots of St
eq

 vs. |Pvac|  for several 

values of 〈Pg〉
g
, b) Plot of slope, m, vs 〈Pg〉

g
, c) Plot of intercept ,b, vs 〈Pg〉

g
, d) 

Verification of the regression model of  St
eq

  vs 〈Pg〉
g
 with Pvac=-75kPa 
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Determination of the sink function,   . 

Two procedures can be implemented for the determination of the sink term,   . In the first 

one, the saturation rate,  ̇ , is computed from the plot of         taking the numerical 

derivatives and then, the Eq.155 is used to calculate    considering the tow and gap 

porosities,    and   , respectively, where    can be computed as (See Figure 61):  

     
(       )          

         
  (162), 

corresponding to a value of          in this case. This indirect procedure for the 

calculation of    has been previously used in [12], [225], [232]. On the other hand, in the 

second procedure,    is acquired directly from the mass transfer from the channel towards 

the tows, which can be estimated once the velocity fields along the interfaces channels-tows 

are known from the BEM solution. The comparison among the results of both procedures, 

direct and indirect, considering    , is shown in the Figure 89, where the plots of 

         for several combinations of 〈  〉
  and      are presented.  Considering all marked 

points of the Figure 89, the average relative difference between the results of both 

procedures, defined here as    (       ⁄ ) (∑ |(  
   )

 
 (  

   )
 
| (  

   )
 

⁄
      

   
), where 

      , (  
   )

 
 and (  

   )
 
 are the number of points,  sink term computed at point     by 

the indirect procedure and sink term computed at point      by the direct procedure, 

respectively, is          , obtaining an acceptable coincidence.   

 
Figure 89 Comparison between direct and indirect procedures for the calculation of 

Sg. 
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On the other hand, using the results of FEM simulations, a three parameter regression 

function for the sink term,   , has been adopted in [12], [225], [232]. The form of this 

function was presented in Eq. 143. This function cannot be used here in its original form, 

but it is the starting point to purpose another lumped function. Firstly, it is convenient to 

remember that when     the total tow saturation is possible and the Eq.143 does not need 

to be modified initially, however, in the case of full air compressibility,    ,  the total 

tow saturation is not possible and Eq.143 is thereby modified with the purpose to set    to 

zero when the equilibrium saturation,   
  

, is reached. Accordingly, Eq.143 is rewritten as 

Eq.163, which can be used for any value of  , considering that   
     when    : 

〈  〉  (  (〈  〉
 )  ⁄ ) {   (  

  
   )

  

  }    (163) 

Secondly, in order to evaluate the convenience of the model of Eq.163, some regression 

curves of this model for the BEM results, computing    by the direct method, are 

considered (Figure 90a and Figure 90b). The case of full air compressibility,       

considering 〈  〉
         and            , is represented in Figure 90a, whereas a 

second case corresponding to partial air dissolution with      , 〈  〉
         and 

           , is represented in Figure 90b. In both cases, some important differences 

between the fit model and the BEM results can be noticed and these differences are 

reflected in the relatively high value of the sum of squared errors,    , which is presented 

in each figure. Similar differences between FEM numerical results and the fit curves 

defined by Eq.143 were found in the work of Wang and Grove [225], as it is shown in the 

Figure 90c, which corresponds to a curve of      ⁄        that has the same form as the 

curve          because      ⁄  and    are related by a constant (see Eq. 155). With the 

objective to improve this fitting model, a potential type function is added to Eq.163 with an 

additional free parameter,   , as it is specified in the Eq. 164. The fitting curves of the 

improved model for the two cases previously considered are presented in the Figure 90d 

and Figure 90e, where it can be observed a better correlation with the BEM results. The 

value of SSE in the improved model is           for the first case (Figure 90d) and 

          for the second one (Figure 90e), whereas, for the original model, these values 

are           (Figure 90a) and           (Figure 90b), respectively, showing that 

the proposed model is better.  
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〈  〉  (  (〈  〉
 )  ⁄ ) {   (  

  
   )

  

   (  
     )

  
}    

(164) 

 

      
a) b) 

 
c) 

      
d) e) 

Figure 90 Comparison between fitting models of the sink term, Sg. a) Original fit 

model for λ=1,  〈Pg〉
g
=202kPa and Pvac=-75kPa, b) Original fit model for λ=0.5,  

〈Pg〉
g
=162kPa and Pvac=-25kPa, c) Original fit model in the work of Wang and Grove 

[225], d) Improved fit model for λ=1,  〈Pg〉
g
=202kPa and Pvac=-75kPa, e) Improved fit 

model for λ=0.5,  〈Pg〉
g
=162kPa and Pvac=-25kPa. 
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As it was shown in Section 6.4, in the original model, Eq.143,    is a linear function of 

〈  〉
  such that   (〈  〉

 )    (    )  (〈  〉
 ), where   (〈  〉

 )     
   ⁄  〈  〉

 . In 

general, the present model is more complex since it is not considered a uniform pressure in 

the gaps and other parameters are taken into account. Accordingly, the dependency of the 

fitting coefficients of Eq. 164 on 〈  〉
 ,      and   cannot be disregarded a priori and a 

more general form of the Eq.164 can be written as: 

〈  〉  (  (〈  〉
        )  ⁄ ) {   (〈  〉        ) (  

  
   )

  (〈  〉        )

   

(  
     )

  (〈  〉        )
}     

(165) 

Initially, the form of the fitting parameters of the Eq. 165 in terms of 〈  〉
  and      for the 

case of full air compressibility,    , is obtained. Using a similar methodology to the one 

exposed in Section 6.4, the function    can be written as:   (〈  〉
          )  

  (    )   (〈  〉
          ). To establish a function for          and   , the plots 

of these fitting parameters against 〈  〉
  and      are taken into account; these plots are 

represented in the Figure 91a-i. The fitting parameters for each combination of 〈  〉
  and 

     were obtained using the curve fitting tool of MATLAB.  

As it can be observed in the Figure 91a, the linear relationship between    and 〈  〉
  still 

remains when the vacuum pressure,     , is constant. Additionally, the fit curves are nearly 

parallel each other, as it can be confirmed by comparing the slopes of the regression 

equations; the average slope of these curves is   
            . On the other hand, 

according to Figure 91b, the intercept of the fitting curves,   , changes almost linearly with 

|    |, and the slope of the linear fitting curve for the plot of       |    |  is    
       

    . As   
   and   

  are similar, it is reasonable to suppose that    is approximately a 

linear function of |     〈  〉
 |. This assumption can be confirmed in Figure 91c, where 

all combinations of 〈  〉
  and      tend to converge into a single curve when the abscissa 

values are |     〈  〉
 |.  A similar analysis can be done for the coefficients of the fitting 

curves of the parameter    (Figure 91g); according to Figure 91h, the parameter    can be 

also conceived as a linear function of |     〈  〉
 |, despite the points are sparser with 

respect to the fitting curve in this case than for the parameter    (Figure 91c). The 
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parameter    varies in logarithmic manner with |     〈  〉
 |, as it is shown in the Figure 

91i. On the other hand, the fitting parameter    varies in almost linear manner with 〈  〉
  

for all values of      (Figure 91d), but it is not a single function of |     〈  〉
 | according 

to the BEM results and deserves another treatment. Accordingly, the coefficients of the 

regression curves for       〈  〉
 , which are represented as    and   , are put in terms of 

|    | in the Figure 91e and Figure 91f. For both coefficients,    and   , a linear variation 

with  |    | can be noticed. Consequently, as a result of all conclusions achieved for the 

parameters           and   , the Eq. 165 can be rewritten as: 

〈  〉  (  (|     〈  〉
 |)  ⁄ ) {   (〈  〉      ) (  

  
   )

  (|     〈  〉 |)

   

(  
     )

  (|     〈  〉 |)
}    

(166), 

where: 

  (|     〈  〉
 |)    (    )  (|     〈  〉

 |) 

                                              (    )(  |     〈  〉
 |    )    

(167a), 

  (〈  〉
      )     |    |    (〈  〉

 )     |    |   (167b) 

   |    |    
   |    |    

   
  (167c) 

   |    |    
   |    |    

   
  (167d) 

  (|     〈  〉
 |)    |     〈  〉

 |      (167e) 

  (|     〈  〉
 |)       (|     〈  〉

 |)      (167f) 

and the fitting coefficients are shown in the Table 22.  

The above-mentioned procedure is repeated for the other values of   considered in this 

work. According to the BEM results, the functions for           and    has the same form 

as for the last case of    , Eq.167a-f, with fitting coefficients also given in the Table 22. 

For    , the relationship between the fitting parameters shown in Table 22 and the air 

entrapment parameter,  , can be approximated by a linear regression. Therefore, for    , 

each fitting coefficient of Table 22, which can be represented in general form as    , can be 

written as follows: 

             (168), 
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where    and    are the slope and intercept of the linear fitting curves, while   

*        
   

   
   

   
   

   
   

            + . The values of    and    for each fitting 

coefficient are shown in the Table 23. 

    
a) b) 

 

 
c) 

 

 
d) 
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e) f) 

 

 
g) 

 

 

 
h) 
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i) 

Figure 91 Plots to find the fitting coefficients of the sink function, Sg, for λ=1. a) A1  vs 

〈Pg〉
g
  for several values of Pvac, b) b1  vs |Pvac |, c) A1  vs |Pvac-〈Pg 〉

g
 |, d) A2  vs 〈Pg〉

g
  

for several values of Pvac, e) m2  vs |Pvac |, f) b2  vs |Pvac |, g) A3  vs 〈Pg〉
g 

 for several 

values of Pvac,  h) A3  vs |Pvac-〈Pg〉
g
 |, i) A4  vs |Pvac-〈Pg〉

g
 | 

 

Table 22 Fitting coefficients of the regression model for Sg 
Air 

entrapment 

parameter,   

        
   

   
   

   
   

   
   

             

1 
2.905 

E-06 

1.779 

E-03 

1.407 

E-10 

-1.457 

E-05 

-4.992 

E-05 

7.390 

E+00 

1.038 

E-05 

2.558 

E+00 

1.233 

E-01 

-9.840 

E-01 

0.75 
3.445 

E-06 

8.251 

E-05 

-3.369 

E-13 

-2.737 

E-07 

-2.184 

E-06 

2.682 

E+00 

1.716 

E-07 

5.804 

E+00 

-1.398 

E-02 

6.568 

E-01 

0.50 
3.323 

E-06 

1.041 

E-04 

-1.495 

E-12 

-7.106 

E-08 

-2.079 

E-06 

2.629 

E+00 

6.072 

E-07 

5.205 

E+00 

-8.270 

E-03 

5.531 

E-01 

0.25 
3.279 

E-06 

1.283 

E-04 

-3.218 

E-12 

9.362 

E-08 

-2.234 

E-06 

2.608 

E+00 

9.452 

E-07 

4.80 

E+00 

-1.781 

E-03 

4.682 

E-01 

0 
3.160 

E-06 

1.454 

E-04 

-4.326 

E-12 

2.425 

E-07 

-1.602 

E-06 

2.585 

E+00 

1.407 

E-06 

4.558 

E+00 

3.332 

E-03 

3.859 

E-01 

 

Table 23 Values of mψ and bψ for the fitting coefficients when λ<1. 

        

   3.6058E-07 3.1667E-06 

   -8.5157E-05 1.4701E-04 

  
   

 5.4765E-12 -4.3976E-12 

  
   

 -6.8480E-07 2.5475E-07 

  
   

 -6.3742E-07 -1.7859E-06 

  
   

 1.2495E-01 2.5792E+00 

   -1.6180E-06 1.3896E-06 

   1.6567E+00 4.4709E+00 

   -2.3373E-02 3.5894E-03 

   3.5911E-01 3.8131E-01 
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6.5.3 Calculation of effective unsaturated permeability and gap permeability from 

BEM simulations. 

As it was aforementioned, the macroscopic modeling of dual-scale porous media can be 

tackled in different manners. One of these is based on the Richards‘ equation, where it is 

necessary to know a relationship between the effective unsaturated permeability,     , also 

called the total permeability by Ashari [139], [140], and the total saturation,   . From the 

results of the BEM simulations, the curves of            can be obtained by computing the 

value of      in each time instant as follows: 

     〈  〉      ⁄  ⁄      (169), 

where 〈  〉 is the phase volume-averaged horizontal velocity in the liquid phase,  , obtained 

from the BEM simulation. In this case, the liquid phase includes both the channel and the 

saturated volume of the tows.  

The second approach for dealing with dual-scale porous media at the macroscopic scale is 

the equivalent Darcy approach, which requires the calculation of the gap permeability,   , 

to model the flow in the channels as a Darcy flow. The gap permeability,   , was suggested 

in [10] and accounts for the easiness of impregnation of the channels considering that the 

tows are impermeable. Accordingly, this property is only dependent on the RUC 

architecture and can be determined in this case by setting the normal permeability of the 

tows,   , to zero and using the following equation: 

   〈  〉      ⁄  ⁄      (170), 

where 〈  〉 is the phase volume-averaged horizontal velocity in the channel or gap domain.  

It is important to remind that both 〈  〉 and 〈  〉 are referred to the total volume of the 

RUC.  

Series 1, 4, 7, 11, 14, 17, 18, 21 and 24 of Table 21 for    , where        , and the 

equivalent simulations with        , are initially considered to compute    and      , 

and the results are shown in Figure 92a for    and Figure 92b,c for     . As shown in 

Figure 92a, which corresponds to the plots of       〈  〉
  for three values of     ⁄ , the 

standard deviation of the results is negligible for   ,              , which 

demonstrates the coherence of the BEM results with the premise that    should remain 

constant, independent on the value of      ⁄  and 〈  〉
 , as long as the RUC geometry is 
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not altered. Therefore, the gap permeability can be reported here as the average value 

shown in Figure 92a, i.e.,                , which is employed in the macroscopic 

simulations of the next section. It is very important to notice that this value of    confirms 

the principal assumption of the present chapter: the equivalent permeability of the gap or 

channel is several orders of magnitude larger than the permeability of the tows. 

The curves of            for two values of tow porosity,         and        , are 

presented in Figure 92b and Figure 92c, respectively, where it is observed that these curves 

are not dependent either on the pressure gradient,     ⁄ , and on the average pressure, 

〈  〉
 . To the best of the author‘s knowledge, there is not another work devoted to the study 

of the behavior of the effective unsaturated permeability,     , with the saturation,   , in 

cross-ply or woven fibrous reinforcements, but some works dealing with non-woven 

fibrous reinforcements have also found the non-dependency of the curves of            on 

the processing parameters. For instance, Landeryou et al. [138] carried out some 

experiments in samples at different flow rates and found that the relationship between the 

unsaturated permeability and the saturation does not depend on the flow rate. Afterwards, 

Ashari [139], [140] run some FEM simulations to study the influence of the saturation, 

fiber diameter and fiber content on the unsaturated permeability of non-woven 

reinforcements, not finding any influence of the applied pressure.  

 

   
a) b) 

 



247 
 

 
c) 

Figure 92 Influence of 〈Pg〉
g
  and  ΔP⁄Δx  on Kg  and Keff. a) Plot of Kg  vs. 〈Pg〉

g
  for 

several values of  ΔP⁄Δx, b) Curves Keff  vs St  for several values of  ΔP⁄Δx  and 〈Pg〉
g
, 

εt=0.15, c) Curves Keff  vs St  for several values of  ΔP⁄Δx  and 〈Pg〉
g
, εt=0.46. 

 

The influence of the tow porosity,   , and the geometry of the weft on    and      is 

studied as well in this section. For this purpose, some additional simulations were run 

considering the data of the Serie 7 of Table 21 with     (   =125.5 kPa,      =118.5 

kPa,      =-75 kPa,  〈  〉
 =122 kPa,      ⁄ =5.83×10

3
 kPa⁄m,    =0.1 Pa.s) and modifying 

some geometrical parameters of the Table 18 (  ,   ,   ,   ,   ,   ), as it is shown in the 

Table 24. The influence of the tow porosity,   , on the curves of            can be 

appreciated in the Figure 93, where it can be noticed that when the tows are almost 

unsaturated, namely,     , BEM results predict that      is lower as    increases, but, as 

the warps and wefts are permeated by the liquid (   increases), the differences between the 

unsaturated permeabilites reduce and all curves tend to converge into a single point, which, 

in the present case, corresponds approximately to         and                 . 

After this point, the behavior of      with    is reversed, that is,      is larger as    

increases, and the differences between the unsaturated permeabilities increases with    (the 

curves diverge each other). This behavior is maintained until the total saturation is almost 

reached, namely,     . Accordingly, the BEM results suggest that the variation of      

with the tow porosity,   , in dual-scale porous media depends on the saturation,   . 
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Table 24 Additional simulations to study the influence of εt  and the weft geometry on 

Kg  and Keff 

Number of 

simulation 

Geometrical parameters 

modified 
Values of parameters modified 

1 
Porosity- 

Permeability tensor 

       ,                 , 
                  

2 
Porosity- 

Permeability tensor 

       ,                 ,  
                 

3 
Porosity- 

Permeability tensor 

       ,                 , 
                  

4 
Aspect ratio of weft 

 

                           , 

    ⁄      ,          

5 
Aspect ratio of weft 

 

                           , 

    ⁄      ,          

6 Gap porosity 
                           , 

    ⁄      ,         

7 Gap porosity 
                           , 

    ⁄      ,          

 

 

 
Figure 93 Influence of the tow porosity, εt, on the curve of Keff  vs St 

 

A possible explanation for the variation of the curves of            with the tow porosity, 

  , can be constructed by taking into account the phase volume-averaged horizontal 
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velocity of the liquid phase, 〈  〉, which appears in Eq. 169. In the unit-width RUC of 

Figure 61, this velocity can be expressed as: 

〈  〉  (∫         
 ∫ 〈  

    〉        
   

     
   )     ⁄       (171), 

where    is the pointwise horizontal velocity of the liquid in the channel or gap domain,    

is the area of the channel domain, 〈  
    〉  is the intrinsic-phase volume-averaged 

horizontal velocity of the liquid in the tows,      
    is the saturated area of the tows and  

     is the total area of the RUC. Eq. 171 can be also written in terms of the phase 

volume-averaged velocity in the channel domain, 〈  〉, as follows: 

〈  〉  〈  〉  (∫ 〈  
    〉        

   
     
   )     ⁄        (172), 

According to Eq. 172, for a determined RUC geometry, 〈  〉 only depends on the velocity 

field in the channel domain and the velocity field in the saturated volume of the tows. The 

change of these velocity fields will determine whether 〈  〉 augments or diminishes, and 

thus, will also regulate the value of      according to Eq. 169. However, the construction 

of an explanation for the behavior of the curves of            with    by comparing 

velocity fields could be very complicated and other variables are going to be introduced to 

justify such a behavior. 

Firstly, by mass conservation in the channel domain and considering a unit-width RUC, the 

rate of liquid that is absorbed by the warps and the weft,  ̇   , can be expressed as: 

 ̇    (∫    
   ⁄

    ⁄
  )  (∫     

   ⁄

    ⁄
  )         (173) 

The Eq. 173 is divided by     and Eqs. 149a,b are substituted into the resulting expression 

to obtain the following equation: 

 ̇     ⁄   ̅    ̅             (174), 

where the right hand side terms are the mean inlet and outlet velocities of the RUC.  

Now, the following expression for the non-dimensional velocity at mesoscopic scale is 

introduced: 

 ̂            ⁄            (175), 

whereby the phase volume-averaged horizontal velocity of the liquid phase, 〈  〉, can be 

written as 〈  〉  〈  〉̂        ⁄ , and, considering that          in this case, the 
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effective unsaturated permeability defined in Eq.169 can be expressed as      

〈  〉̂       
 .      

Taking into account Eq. 175, the non-dimensional form of Eqs.172 and 174 is as follows: 

〈  〉̂  〈  〉̂  (∫ 〈  
    〉 ̂        

   
     
   )     ⁄             (176) 

  ̂̅  
 ̇     

        
  (177), 

where the variable   ̂̅   ̅  ̂   ̅   ̂ stands for the difference between the non-dimensional 

mean inlet and outlet velocities. 

Considering the definition of the sink term, Eq.131, it is obtained that  ̇           , and 

the Eq.177 can be written as follows:  

  ̂̅  
         

        
              (178) 

Then, Eq. 155 is substituted into Eq.178 to obtain the next expression: 

  ̂̅  
   ̇ (    )      

        
   (179), 

which clearly shows that the difference between the non-dimensional mean velocities at the 

inlet and outlet of the RUC,   ̂̅, is an indication of the amount of liquid absorbed by the 

tows, expressed here as the total saturation rate,  ̇ .  This was also analyzed in the Section 

6.5.1, where it was remarked that the inlet and outlet velocity profiles are farther away from 

each other as the saturation rate,  ̇ , is higher (Figure 79).  According to Eq. 179, if the 

viscosity    , pressure difference       and RUC geometry (               ) do not 

change, as in the present analysis, the value of   ̂̅ can be only modified by changing    and 

 ̇ , and the value of  ̇ , in turns, decreases as the total saturation,   , increases.  

Consequently, it can be concluded that if    is kept constant, the increment of    causes the 

reduction of   ̂̅, as it is confirmed in Table 25. 

On the other hand, the tow porosity,   , has a well-defined influence on   ̂̅, 〈  〉̂  and 〈  〉̂  

for a constant value of   . As it can be observed in Table 25,   ̂̅ increases and 〈  〉̂   

decreases as    increases for both saturation levels,          and         .   

For         , considering that the saturated area of the tows,      
   , is very small and 

according to the Eq. 176, it can be asserted that 〈  〉̂  is almost exclusively dependent on 

〈  〉̂ . Accordingly, the reduction of 〈  〉̂  as    increases leads to the reduction of 〈  〉̂  as 
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well, as it can be appreciated in Table 25, and hence, to the reduction of      with    

considering that      〈  〉̂       
 . As the RUC filling evolves,    increases,  ̇  

decreases and      
    increases. Additionally, as    is higher, the magnitude of 〈  

    〉 ̂  is 

greater because the tow permeabilities,    and   , are greater as well, and, additionally, 

     
    is larger for a same saturation level,   , considering that the inter-fibers spaces inside 

the tows are larger too. Therefore, the second right-hand side term of the Eq.176 is more 

important as the total saturation,   , and the tow porosity,   , increase, in such a way that in 

the situation of nearly total saturation,         , 〈  〉̂  increases with the tow porosity,    

(See Table 25), leading to the increment of      with   , in spite of 〈  〉̂  still decreases with 

the increment of   .  

The decrease of the saturated effective permeability with the fiber content of the tows,   , 

in dual-scale fibrous reinforcements has been reported in [20], which is in agreement with 

the present results since it is equivalent to say that      increases with    when     , as 

obtained here, considering that the fiber content of the tow is defined as        .  

 

Table 25 Influence of the tow porosity, εt, on 〈ûl 〉 for two levels of total saturation, St. 

Total tow 

saturation,    

Tow 

porosity,   . 

  ̂̅  

(Dimensionless) 

〈  〉̂ 

(Dimensionless) 

 〈  〉̂  

(Dimensionless) 

0.039 

0.15                                  

0.25                                  
0.37                                  

0.46                                  

0.953 

0.15                                  

0.25                                  

0.37                                  

0.46                                  

 

The influence of the weft geometry on      and    can be studied by considering Serie 7 

of Table 21 with     and simulations 4 to 7 of Table 24. The plot of           ⁄  for a 

constant value of         , with     ⁄  as the aspect ratio of the weft (See Figure 61), 

can be appreciated in the Figure 94a, according to which    increases as     ⁄  increases 

provided that    remains constant. On the other hand, according to Figure 94b, if the weft 

aspect ratio is kept constant,     ⁄   ,    is greater as    increases. 



252 
 

        
a) b) 

Figure 94 Influence of weft geometry on the gap permeability, Kg. a) Influence of 

aspect ratio of the weft on the gap permeability, b) Influence of the gap porosity on 

the gap permeability 
 

The curves of            for the three values of     ⁄  considered in Table 24 and    

      are represented in the Figure 95a, where it is noticed that the increase of     ⁄  leads 

to the increase of      for any value of   . In the limit when the RUC is nearly 

saturated,     , this is in agreement with the results reported in [20] for the effective 

saturated permeability of dual-scale fibrous reinforcements.  On the other hand, the curves 

of             for the three values of    considered in Table 24 and     ⁄    are shown 

in the Figure 95b, where it can be appreciated that the increase of the gap porosity,   , 

brings about an increase of      for any value of   .  

      
a) b) 

Figure 95 Influence of weft geometry on the effective permeability, Keff. a) Influence 

of the weft aspect ratio on the curve of Keff  vs St, b) Influence of the gap porosity on 

the curve of Keff  vs St 
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6.5.4 Macroscopic unidirectional simulations 

Assessment of accuracy of DR-BEM scheme. 

In this section, the DR-BEM scheme presented in Section 6.3 is used to simulate the 

unidirectional filling of dual-scale fibrous reinforcements at macroscopic scale.  Firstly, this 

numerical scheme is validated with the analytical solution proposed in [101] for 

unidirectional filling of molds at constant pressure regime. The problem is represented in 

Figure 96, where a dual-scale fibrous reinforcement is positioned into a cavity and the 

liquid is injected in unidirectional form at constant inlet pressure,     . Three zones can be 

clearly differentiated in the Figure 96: fully saturated zone, partially saturated zone and the 

dry zone, and the variables       and     stand for the mold length, position of the 

macroscopic fluid front and length of the partially saturated zone, respectively. In the 

analytical solution presented by [101], the non-dimensional position of the macroscopic 

fluid front,  ̂  , and the non-dimensional length of the partially saturated region,  ̂  , are 

predicted as follows:  

Non-dimensional position of the macroscopic fluid front,  ̂  : 

 ̂   
 

  
      (

  
  ̂

  
  )     ̂    ̂    (180a) 

 ̂   
 √      

  (  )
 
 √      

  (  )
 
        

   ̂   ̂ 

      
 

 

  

      (
    

  
)    ̂   ̂       ̂    (180b) 

  ̂     ⁄   (180c) 

Non-dimensional length of the partially saturated region,  ̂  : 

 ̂   
 

  
      (

    

  
)  (181), 

where    ̂ and       ̂   are the dimensionless times (see Eq.133a) when the total saturation is 

reached at the inlet of the mold and when the fluid front arrives to the end of the mold, 

respectively, while     ,     and      are the bulk porosity of the RUC and two model 

parameters, respectively, defined as: 

     
∑   

   
   

    
 

  ∑  
   

   

    
                  (182) 

   √
 (    )    

  
   

      (183a) 
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(    )  
  (183b), 

where   ,   
   

,    
   

 and      were defined in Section 6.4. On the other hand, in the 

calculation of    and    (Eq‘s. 183a and 183b) three parameters of the tows are 

considered, namely,   ,    and   , with    as the transverse permeability and     as the 

height of the tow. The details of the calculation of the fitting parameter     appearing in 

Eq. 183a can be found in [101].  A linear pressure dependent function for the sink term,   , 

is considered in [101], as shown in the following equations: 

    〈  〉
        (184a) 

  
   

  
    

       (184b) 

 

 

Figure 96 Scheme of unidirectional filling of dual-scale fibrous reinforcements in 

molds. Source: Zhou, Alms and Advani [101] 

 

The fixed and computed parameters used in the present validation are summarized in the 

Table 26. The comparison of the analytical and numerical results is carried out on the basis 

of the L
2
 relative error norm and the relative error,  , which are defined as follows: 

   √∑ ( ̂       
   

  ̂        
   

)
 

 ∑ ( ̂       
   

)
 

 ⁄    (185a) 

  √| ̂         ̂        |  ̂       ⁄           (185b), 

where  ̂       
   

 and  ̂        
   

 are the analytical and DR-BEM solutions of the non-

dimensional fluid front position along the mold at the time instant    , whereas  ̂        and 

 ̂         represent the analytical and DR-BEM solutions of the non-dimensional length of 

the partially saturated region,  ̂  . 
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Table 26 Data for comparison between the analytical and DR-BEM results of 

macroscopic unidirectional simulations. 
Fixed parameters 

Radius of 

the fiber, 

        

Half distance 

between 

fibers,    

     

Height of 

the tow, 

   (m) 

Gap 

porosity, 

   

Gap 

permeability, 

   (m
2
) 

Inlet 

pressure, 

    (kPa) 

Length 

of the 

mold,   

(m) 

Fluid 

viscosity, 

  (Pa.s) 

54 2.92        0.268         100 0.1 
0.1 

 

Computed parameters  

Tow 

porosity, 

   

Transverse 

tow 

permeability,

     (m
2
) 

Bulk 

porosity of 

the RUC, 

     

            ̂  ̂   

0.18            0.40 0.272 1.578 18.779 
     
      

0.0533 0.607 

 

The plots of L
2
 relative error norm vs Meshsize for several values of the constant of  

Courant-Friedrich-Levy,    , which is used in the advancement of the moving interface 

during the mold filling, are presented in the Figure 97a, where the meshsize is reported as 

     , with    as the size of one quadratic element and   as the length of the mold. 

Details about the fluid flow advancement using the CFL condition can be found in 

Appendix C. The results allow concluding that the DR-BEM scheme is accurate enough to 

conduct macroscopic unidirectional simulations of dual-scale fibrous reinforcements. 

Additionally, the small relative errors,  , between the analytical and the numerical 

solutions of the non-dimensional length of the partially saturated region,  ̂  , which are 

shown in the Figure 97b, confirms the accuracy of the present DR-BEM scheme. 

 

     
a) b) 

Figure 97 Plots of convergence for the solution of macroscopic unidirectional filling 

using the present DR-BEM scheme, a) L
2
 relative error norm vs Mesh-size for the 

fluid front positions, b) Relative error, E, vs. Mesh-size for the length of the partially 

saturated region. 
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The graphical comparison between the analytical and the DR-BEM results of the time 

evolution of the fluid front position is shown in the Figure 98 for             and 

     , which are the parameters employed in the forthcoming simulations. 

 
Figure 98 Comparison between the analytical and DR-BEM non-dimensional fluid 

front positions for macroscopic unidirectional injections at constant pressure. 

 

Series of simulations. 

After having validated the DR-BEM scheme used here, this scheme is employed for 

unidirectional macroscopic simulations using the lumped function for    deduced in 

Section 6.5.2 and the gap permeability,                , obtained in the Section 

6.5.3.  The material parameters of the following simulations are the same as in Table 18 

( =0.1 Pa.s,  =15 mN/m,      ) and the geometric characteristics of the RUC used in 

Section 6.5.2 to obtain the function    shall be kept unaltered; on the other hand, the 

geometric data of the mold, as well as the processing data of the different series of 

simulations are presented in the Table 27. In Serie 1, it is considered a constant pressure 

regime with two inlet pressures, i.e.,      [      ]    , a single vacuum pressure of 

           and three cases of air dissolution, namely, full air dissolution,    ,  partial 

air dissolution with        and no air dissolution (full air compressibility),    . On the 

other hand, Serie 2 also corresponds to constant pressure injections, but in this case two 

vacuum pressures are considered, i.e.,      [     ]    , while the inlet pressure is kept 

constant in             and the air entrapment parameters are the same as in Serie 1, 

namely,   [        ]. In Serie 3, a constant flow rate regime is considered with inlet 

flow rates of      [             ]     , a single vacuum pressure of      

      and the same air entrapment parameters considered in the other two series.  
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Table 27 Data of macroscopic unidirectional simulations considering the lumped 

function for the sink term, Sg 
Geometric parameters of the mold 

Length of the mold,       Width of the mold,   (mm) Thickness of the mold,    (mm) 

0.3 30 3 

Parameters of the Serie 1 

Inlet pressure,            Vacuum pressure,            Air entrapment parameters, λ 

10 100   0 0.75 1 

Parameters of the Serie 2 

Inlet pressure,            Vacuum pressure,            Air entrapment parameters, λ 

50 0 -75 0 0.75 1 

Parameters of the Serie 3 

Inlet flow rate,        
     Vacuum pressure,            Air entrapment parameters, λ 

                0 0.75 1 

 

Results of Serie 1: Change of inlet pressure,      

In the Figure 99a, several curves of        ̂ of the Serie 1, with  ̂ as the non-dimensional 

horizontal position along the mold, are presented for seven fluid front positions,  ̂  , which 

correspond  to the intersection of the curves with the abscissa axis. According to this figure, 

each pair of curves corresponding to the same fluid front position and having the same air 

entrapment parameter,  , are almost identical, independent on the injection pressure,      

(see the matching between the cross-type and the point-type markers for the blue and red 

curves in Figure 99a). The dimensionless times,  ̂, of each one of these pairs of curves are 

very similar each other and the average value of  ̂  is reported for each pair in Figure 99a. 

Considering this, for a determined fluid front position, the curves of       ̂ having the 

same value of   can be represented as a single curve independent on     , provided that 

    (Figure 99b). On the other hand, in the case of full air compressibility,    , the 

curves are not the same for different values of      because the equilibrium saturation,   
  

, 

depends on      (Figure 99b). Bearing this in mind, the curves of the Serie 1 are compared 

each other in the Figure 99b, where several aspects, some of them denoting the physical 

consistency of the obtained sink function,   , are worth noting. Firstly, the difference 

between the saturation curves is larger as the unidirectional injection evolves, in such a way 

that the influence of   is very small at the beginning of the injection, but it becomes more 

important as the filling takes place. Additionally, for a determined fluid front position, the 

global saturation (area under the curve) is higher as the air entrapment parameter,  , 

decreases, and, for the two cases of full air compressibility,    , as the inlet pressure 
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increases; this is the expected macroscopic behaviour during the filling of molds because   

accounts for the resistance exerted by the air on the fluid fronts inside the tows and, in the 

cases with    ,  because the equilibrium saturation,   
  

, is greater for the higher inlet 

pressure,              ; therefore, the reduction of   and, in the cases with    , the 

increase of      promote the tow impregnation, which contributes to the global saturation 

for all fluid front positions.  

According to the dimensionless times of Figure 99b, for a constant inlet pressure,     , the 

increase of the air entrapment parameter from        to     (full air compressibility) 

can both increase or decrease the velocity of the fluid front, which is understandable  

considering that the change of   can have a double effect on the fluid front advancement: as 

  is lower, the liquid absorption through the tows is promoted as mentioned before, which 

retards the impregnation in the channels, but, on the other hand, as the tows saturate faster, 

the saturation rate also decreases faster, which promotes the impregnation in the channels. 

For the cases when air dissolution is considered,    , the first effect prevails, since 

longer values of  ̂ were obtained for     than for        in all fluid front positions. 

If the results of     and        in Figure 99b are compared one another, it can be 

noticed that the total saturation at the inlet is achieved at a lower fluid front position in the 

former case, whereas the comparison of the results for the cases with     (full air 

compressibility) and different injection pressures, shows that the fluid front position 

corresponding to the instant when the equilibrium saturation,   
  

,  is reached at the inlet is 

lower for the inferior pressure,            . 

 
a) 
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b) 

Figure 99 Curves of saturation for Serie 1, a) Coincidence of curves having the same 

air entrapment parameter, λ, when λ<1 , b) Influence of the air entrapment 

parameter, λ, and injection pressure, Pinj 

 

 

Results of Serie 2: Change of vacuum pressure,      

For Serie 2, the independency of the curves of        ̂ on the vacuum pressure,     , 

considering    , can be appreciated in the Figure 100a, where it is observed that the 

dimensionless times,  ̂, for     are longer in all fluid front positions, as in Serie 1. On the 

other hand, according to the results presented in Figure 100b, for each fluid front position, 

the domain is less saturated (global saturation is lower) as the air entrapment parameter,  , 

increases and, for the two cases of    , as the magnitude of the vacuum pressure,|     |, 

decreases, being this more notorious as the injection evolves.  On the other hand, for a 

constant value of |     |, the increase of the fluid front velocity (decrease of  ̂)  with   

during the whole injection is only valid when the air dissolution is considered, i.e., for 

    (compare the values of  ̂ for     and        in each fluid front position). In a 

similar fashion as Serie 1, for    , the fluid front position corresponding to the instant 

when the total saturation is reached at the inlet is lower for the case of full air dissolution, 

   . Moreover, for the cases of    , the fluid front position corresponding to the 

instant when   
  

  is reached at the inlet is lower for the inferior vacuum, |     |      . 
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a) 

 

 
b) 

Figure 100 Curves of saturation for Serie 2, a) Coincidence of curves having the same 

air entrapment parameter, λ, when λ<1, b) Influence of the air entrapment parameter, 

λ, and vacuum pressure, Pvac 

 

 

Results of Serie 3: Change of inlet flow rate,      

Similar conclusions as those ones obtained in Serie 1 and 2 can be addressed for Serie 3, 

but some differences can be also identified. Likewise to the other series, the curves of 

       ̂ are independent on the processing parameter (injection or inlet flow rate,       in 

this case) when    , and the dimensionless times,  ̂, are longer for     in all fluid front 

positions (See Figure 101a). According to Figure 101b, for each fluid front position, the 
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domain is less saturated as the air entrapment parameter,  , increases and, for the two cases 

of    , as the inlet flow rate decreases, obtaining a more notorious difference between 

the saturation curves as the injection develops. Conversely to constant pressure injections 

(Figure 99b and Figure 100b), the behaviour of the global saturation with    is directly 

related to the behaviour of  ̂ with   in constant flow rate injections (Figure 101b), because 

the time elapsed from the beginning of the injection to any fluid front position is directly 

proportional to the volume of fluid injected; as the global saturation decreases with   at any 

fluid front position, the injected volume and, consequently, the injection time also decrease 

with  , as shown in Figure 101b. This means that, for a constant inlet flow rate injection, 

the fluid front velocity always increases with  .  

There is an important difference between the curves corresponding to     of the constant 

inlet pressure regime (Figure 99b and Figure 100b) and those ones of the constant inlet 

flow rate regime (Figure 101b): in the first ones, the saturation at the inlet reaches an 

equilibrium saturation,   
  

, which depends on the injection pressure,     , and on the 

vacuum pressure,     , whereas, in the second ones, the saturation at the inlet increases 

continuously because the injection pressure also increases to maintain a constant flow rate. 

Additionally, for some curves of        ̂ (Figure 99b, Figure 100b and Figure 101b), it is 

worth noting that there are two well-differentiated curve portions separated by a break point 

in which the change of the slope is significant. In the first portion (from the inlet to the 

break point), the slope is almost constant. For the cases of full air compressibility,    , 

this slope is more pronounced for the constant flow rate regime (Figure 101b) than for the 

constant pressure ones (Figure 99b and Figure 100b). This general behaviour of the curves 

of Figure 101b for     is very similar  to the one recently obtained in [92], where a 

constant flow rate regime and the air compressibility were also considered, which 

demonstrates the coherence of the present DR-BEM results. It is important to highlight that 

in the cases of     for the constant flow rate regime, Figure 101b, if the unidirectional 

injection continues indefinitely, the total saturation at the inlet is not going to be reached, 

and        as      at the inlet. 
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a) 

 

 
b) 

Figure 101 Curves of saturation for Serie 3, a) Coincidence of curves having the same 

air entrapment parameter when λ<1, b) Influence of the air entrapment parameter, λ, 

and injection flow rate, Qinj 

 

Pressure profiles. 

The assessment of the macroscopic simulations using the function    obtained in the 

Section 6.5.2 can be also carried out by comparing the form of the numerical pressure 

profiles with the profiles presented in the Figure 76. According to [83], the flow rates from 

the channels towards the tows in the partially saturated region determine whether the 

pressure profile is convex or concave, and these flow rates, in turns, depends on the 

saturation degree,   . As in the present work the saturation degree,   , in the fluid front is 



263 
 

zero due to the assumption of fully filled channels, and the change of    in the partially 

saturated region close to the fluid front is not pronounced (See Figure 99b, Figure 100b and 

Figure 101b), high values of    are expected in that region, which, according to [83], leads 

to a slightly concave pressure profile, as shown in Figure 76a. The pressure profiles 

corresponding to the curves of the Figure 99a (constant pressure) and Figure 101a (constant 

flow rate), with    , are depicted in Figure 102a and Figure 102b, respectively, and mark 

points are added to some profiles to indicate the longitudinal position until which the 

reinforcement is fully saturated, i.e., the length of the fully saturated zone; some dotted 

lines are also shown indicating the projection of the linear part of these profiles. As it can 

be observed for each one of these profiles (Figure 102a,b), the change of the pressure from 

the inlet until the mark point is linear, but from the mark point until the fluid front, the 

curve is slightly concave, coinciding with the results reported in [83], [240], [241].  

The slope of the pressure profiles in the fully saturated region for the constant flow rate 

regime (Figure 102b) is another parameter to verify the DR-BEM results. As      in this 

region (no mass transfer from the channel towards the tows),  according to Eqs.130a-b and 

considering that the volume-averaged horizontal velocity is 〈  〉       ⁄ , the slope of the 

pressure profile in the fully saturated region shall be the same for all fluid front positions 

where this region is present and equal to 

        (            )     ⁄        (   )⁄ , where the point             is the 

coordinate corresponding to the threshold of the fully saturated region in each pressure 

profile (this threshold is represented in non-dimensional form by the mark points of Figure 

102a,b). Taking into account the Eq.134b, the non-dimensional slope shall be  ̂       

  , which is in agreement with the slopes obtained in Figure 102b. It is important to notice 

that  ̂    is practically constant during the whole injection for the constant flow rate regime 

(Figure 102b), whereas it decreases as the injection develops for the constant pressure 

regime (Figure 102a). 
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a) 

 

 
b) 

Figure 102 Pressure profiles for unidirectional fillings of dual-scale fibrous 

reinforcements, a) Constant pressure regime (Figure 99a, λ=0), b) Constant flow rate 

regime (Figure 101a, λ=0) 

 

 

6.6 Conclusions 

In the present chapter, multiscale filling simulations of dual-scale fibrous reinforcements 

were carried out using Boundary Element Techniques. At the mesoscopic scale, a Stokes-

Darcy BEM approach, previously validated in Chapter 3, was employed for the simulation 

of the tows filling assuming fully filled channels, whereas, at the macroscopic scale, an 

Equivalent Darcy DR-BEM approach was satisfactorily validated with the analytical 

solution obtained in [101] and then used to simulate the unidirectional filling of cavities at 

both constant pressure and constant flow rate regimes using the sink functions,   , obtained 

here by running several mesoscopic simulations. 

At the mesoscopic scale, two methodologies were considered for the tows filling. The 

classical methodology, consisting on the prescription of a uniform pressure in the channels, 

was used to obtain the saturation curves of the RUC‘s,        , finding a good agreement 
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with previous works that have implemented this methodology [12], [225]. On the other 

hand, the proposed methodology, consisting on the prescription of a pressure gradient along 

the flow direction and the modeling of the channels flow using the Stokes equation, was 

used to analyze the influence of saturation, volume average-pressure and pressure gradient 

on the channel velocity field, reaching the following conclusions: 

 The inlet and outlet velocity profiles of the RUC are parabolic, which is consistent with 

the Stokes flow, with the highest velocities reached at the interfaces channel-bundles 

and the lowest velocity, at the center of the channel.  

 The difference between the inlet and outlet velocity profiles is an indication of the 

saturation rate of the tows. As the saturation of the tows takes place, the saturation rate 

decreases and this difference reduces since the inlet velocities decrease and the outlet 

ones increase.  

 The velocity field in the channel is affected by the saturation,   , in such a way that 

larger changes of velocities along the RUC length are obtained as    decreases, 

however, the volume-averaged gap velocity in the flow direction, 〈  〉
 , which is a 

macroscopic variable, remains essentially constant with the change of   .    

 For a constant pressure gradient, the influence of the average pressure, 〈  〉
 , in the 

inlet and outlet velocity profiles depends on the saturation,   . For low and intermediate 

values of   , the increase of 〈  〉
  causes the increase of the inlet velocities and the 

reduction of the outlet ones, being this effect less important as    increases; on the other 

hand, for high values of   , a monotonic relationship between 〈  〉
  and the difference 

between the inlet and outlet velocities is not necessarily achieved.  

 Despite 〈  〉
  affects the inlet and outlet velocities, the volume-average gap velocity,  

〈  〉
 , is not significantly influenced by this macroscopic variable as long as the 

pressure gradient,     ⁄ , is constant. On the other hand, if     ⁄  increases, 〈  〉
  

increases as well.  

The gap permeability,   , and the effective unsaturated permeability,     , were calculated 

using the simulations results obtained with the proposed methodology. Both permeabilities 

are independent on the average pressure, 〈  〉
 , and the pressure gradient,     ⁄ ; in the 

case of     , this conclusion is in agreement with previous works in non-woven 
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reinforcements [138]–[140]. On the other hand,      is directly proportional to the 

saturation,   , and the curves of            are influenced by the tow porosity     , the weft 

aspect ratio      ⁄  , and the gap porosity (  ). In the former case,      is lower as    

increases when the tows are almost unsaturated       , but, as    increases, the 

differences between the curves of            reduces until all curves converge into a single 

point, from which      increases with    for each value of    until the tows are fully 

saturated. On the other hand, the increase of     ⁄  keeping constant   , and the increase of 

   keeping constant     ⁄ , lead to the increase of      for any value of   , as well as to the 

increase of the gap permeability,   .  

The proposed methodology was also used to determine four-parameter sink functions,   , 

in terms of the saturation, average pressure, vacuum pressure, viscosity and air entrapment 

parameter, by running several mesoscopic simulations with input data complying certain 

scale restrictions, and by using fitting equations for the simulation results that are 

physically consistent with the impregnation process of the tows. The proposed sinks 

functions fit better to the curves of          than sink functions of other works [12], [225]. 

Once the functions    were determined, several macroscopic unidirectional simulations 

were run using an Equivalent Darcy formulation, with the gap permeability,   , previously 

found. A DR-BEM scheme was used to solve the governing equations, obtaining the 

following conclusions: 

 In both the constant pressure and constant flow rate regime, the influence of the air 

entrapment parameter,  , on the saturation curves is more relevant as the injection 

develops. In general, for each fluid front position along the mold, the global saturation 

is larger as   decreases and for the cases of full air compressibility,    , as the input 

processing parameter (inlet pressure, vacuum pressure or flow rate) increases. 

 Since in constant flow rate injections the global saturation is directly proportional to the 

injection time, the reduction of the global saturation with   for all fluid front positions 

signifies an increase of the fluid front velocity with  . On the other hand, for constant 

pressure injections, the fluid front is faster as   increases when the air dissolution is 

present, i.e.,    ; when full air compressibility is considered, i.e.,    , this 

behavior is not necessarily kept in all fluid front positions.  
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 For the cases of full air compressibility,    , at constant pressure regime, the 

equilibrium saturation,   
  

, is higher as the input processing parameter (inlet pressure 

or vacuum pressure) increases, and this causes that the fluid front position 

corresponding to the instant when   
  

 is reached at the inlet is lower as the input 

processing parameter decreases. On the other hand, at constant flow rate regime, the 

saturation at the inlet increases continuously because the injection pressure augments to 

maintain a constant flow rate 

The pressure profiles of the macroscopic simulations were obtained for both regimes 

(constant pressure and constant flow rate), finding that the general behavior of these 

profiles is in agreement with the profiles commonly found in the literature when the sink 

term is important in the neighborhood of the fluid front [83], [240], [241]. It was obtained a 

good agreement between the analytical and numerical slopes of these profiles in the totally 

saturated zone when the injection is conducted at constant flow rate. Despite the general 

behavior of the constant-pressure and constant-flow rate profiles are very similar, namely, 

both are linear in the totally saturated zone and slightly concave in the partially saturated 

one, two important differences were identified: 1) the magnitude of the slope in the linear 

zone is constant in the constant flow rate regime, whereas it decreases in the constant 

pressure one, 2) the pressure corresponding to the threshold of the totally saturated zone, 

    , is practically constant during the whole injection for the constant flow rate regime 

(Figure 102b), whereas it decreases as the injection develops for the constant pressure 

regime (Figure 102a). 

  



268 
 

7. CONCLUDING REMARKS, CONTRIBUTIONS AND FUTURE WORKS. 

 

Summary of problems considered. 

In this work, Boundary Element Techniques were implemented in several problems of 

impregnation of dual-scale fibrous reinforcements used in the processing of composites 

materials. Three kinds of problems were tackled:   1) simultaneous filling of channels and 

bundles at mesoscopic scale to study the void formation by mechanical entrapment of air; 

2) filling of bundles at mesoscopic scale considering fully filled channels, to study the 

dynamic evolution of intra-tow voids, to determine sink functions that couple the 

macroscopic and mesoscopic equations, and to analyse the behaviour of the effective 

unsaturated permeability under several variables; 3) unidirectional filling of molds at 

macroscopic scale, to study the behaviour of the global saturation and pressure profiles in 

time and space when the RUC impregnation is not uniform.  

During the development of the above mentioned problems, several issues were overcome: 

1) the incorporation of suitable constraints for the time interval based on geometric 

restrictions and on the modified capillary number    
   and capillary ratio (    ), as well as 

the implementation of smoothing and remeshing algorithms, in order to track complex fluid 

front shapes using a simplistic numerical technique, namely, the Direct Euler Integration of 

the kinematic condition; 2) the solution of coupled problems free fluid-porous media, 

which are usually ill-conditioned, by using special solvers (Singular Value Decomposition 

in this case); 3) the treatment of the defective boundary condition that arises in the constant 

flow rate regime, by considering a physically consistent assumption at the RUC inlet; 4) the 

deduction of a flow direction-dependent model for the capillary pressure in the porous 

media in order to avoid using experimental shape factors; 5) the treatment of the numerical 

errors associated to the calculation of the surface tractions on the channel fluid front, which 

can have a significant impact on the fluid front advancement when the capillary effects are 

important; 6) the choice of an appropriate BEM-based numerical scheme to deal with the 

anisotropic Brinkman equations in coupled problems free fluid-porous media; among 

others. In the following paragraphs, the main conclusions obtained in this work are 

summarized and possible future works are identified. 
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Problem 1: Simultaneous filling of channels and bundles at mesoscopic scale. 

For the first type of problem abovementioned, two consistent mathematical formulations 

were considered: Stokes-Darcy and Stokes-Brinkman. In the former case, a pure BEM 

scheme was used for both the Stokes and Darcy domains; in the second one, two numerical 

schemes were compared each other: 1) pure BEM for both the Stokes and Brinkman 

domains, 2) pure BEM for Stokes and DR-BEM for Brinkman domain (BEM/DR-BEM 

scheme). Superior accuracy and convergence rates were obtained in BEM/DR-BEM. 

All numerical schemes were validated by means of problems admitting analytical solutions. 

For the validation of the pure BEM scheme used in Stokes-Darcy problems, an analytical 

solution of a simple case was developed. On the other hand, the validation of the BEM/DR-

BEM scheme used in Stokes-Brinkman problems was carried out with a benchmark 

analytical solution previously employed for the robustness assessment of FEM codes. After 

evaluating the accuracy and convergence of both numerical schemes, i.e, pure BEM for 

Stokes-Darcy and BEM/DR-BEM for Stokes-Brinkman, it can be concluded that they are 

reliable for the solution of coupled problems free fluid-porous media within the limits of 

the numerical parameters established here, namely, for Stokes-Darcy, anisotropy ratios of 

permeability,       ,  and slip coefficients,  ,  with orders of magnitude ranging between 

      and      for the first parameter        , and between       and      for the 

second one     ; in the Stokes-Brinkman case, inverse Darcian numbers,   , and jumps 

stress coefficients,  , with orders of magnitude ranging between      and      for the 

first parameter     , and having a value of      for the second one    .  

Problems formerly tackled by other numerical techniques were solved using the present 

numerical schemes, obtaining important similarities and differences. Pure BEM for Stokes-

Darcy was used to solve a pressure-constant, moving-boundary problem previously solved 

in [3] using a CV/FAN approach. The increase of the void size with the anisotropy ratio of 

permeability,     ⁄ , was obtained in both numerical solutions, but differences in the filling 

times, fluid front shapes and void characterization (size and shape) between both solutions 

were noticed as well.  In both solutions, void remains trapped at the rear edge of the weft, 

with a smoother void obtained with pure BEM due to the tracking technique of the fluid 

front. On the other hand,  a pressure-driven, fully developed problem, formerly solved by 

[20] using FEM and a Level Set formulation, was solved here using BEM/DR-BEM for 
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Stokes-Brinkman. Both FEM and BEM/DR-BEM converged correctly to the analytical 

solution, but the errors in the Stokes and Brinkman domains were different between both 

numerical schemes due to the dissimilar interpolation strategies, namely, Level Set 

interpolation in [20] and Radial Basis Function interpolation here. In both schemes, the 

reduction of the Stokes velocity and the boundary layer thickness with the increase of   and 

   was predicted. Moreover, the boundary layer solution by BEM/DR-BEM was more 

stable than the one in FEM since no oscillations appeared in the first one. 

Parametric studies of simultaneous fillings of RUC‘s were conducted using both numerical 

approaches, pure BEM and BEM/DR-BEM, with the purpose to determine the influence of 

the following aspects on the void formation process: 1) Processing, geometric and material 

variables, 2) formulation type and corresponding interface matching conditions, 3) injection 

regime, and 4) RUC compaction. Some results obtained are in agreement with previous 

experimental, analytical and numerical works, whereas some few results are not. Other 

results have not been reported yet in other works and pose the necessity of further 

investigations. According to the simulations of void formation in highly compacted 

preforms at constant flow rate, the tow porosity, width of transverse tow, fluid penetrativity 

and RUC porosity have influence on the final void size and shape for different values of the 

modified capillary number,   
 . If the former four parameters are kept constant, numerical 

results show an increase of the void size with   
  in logarithmic manner, which is in 

agreement with other researches [25], [44], [75], [77], [81]. Other results obtained here that 

are congruent with previous researches can be highlighted: the void shapes obtained in the 

parametric studies [170], [176], [177], the increase of the void aspect ratio as the void size 

decreases [117], the increase of the void size with       [3] and the location of the void at 

the rear edge of the weft  [3], [4].  

The comparison between the processes of void formation using the Stokes-Darcy (S-D) and 

Stokes-Brinkman (S-B) formulations was carried out considering the filling of two adjacent 

RUC‘s (two wefts). Even though the fluid front shapes, filling times and voids 

characteristics were different between both formulations, the behavior of the size and 

aspect ratio of voids with the capillary ratio,     , in both wefts, was the same; the 

reduction of the total void size with       was predicted by both S-D and S-B, which is in 

agreement with the experimental work in [11]. 
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According to the BEM/DR-BEM results, the size and aspect ratio of the voids, as well as 

the saturation curves, are also influenced by the matching conditions Stokes-Brinkman. 

When void formation occurs, the void size at both wefts, and consequently the total void 

size, decreases when   decreases, in such a way that the smallest voids are obtained for the 

continuous-stress condition,    . On the other hand, the change of the void aspect ratio 

with   depends on the weft considered and on the capillary ratio,     . For the jump stress 

condition, the behavior of the void size and void aspect ratio with       in both wefts, as 

well as  the decreasing behavior of the total void content with     , remain unaltered under 

the jump stress coefficient,  . Regarding the RUC saturation, it can be concluded that its 

general behavior in the time is consistent with the RUC geometry for the matching 

conditions evaluated here, with the continuous stress condition predicting larger saturations 

than the jump-stress one at all filling instants.  In addition to the reduction of the total void 

content with     , the shapes and location of the voids obtained with the S-B formulation 

are also in accordance with results previously reported in the literature [3], [4], [170], [176], 

[177] .  

The BEM/DR-BEM results also showed that the RUC compaction has several effects on 

the void formation process regarding the original domain. When the RUC is compacted, the 

impregnation process takes more time, the behavior of the void size with      for the first 

weft is modified, the void size for both wefts and all values of      decreases, and the 

distance between the minimum fluid front position at the warps and the maximum fluid 

front position at the channel decreases for all filling instants. This last result was also 

reported in [22].  

 

Problem 2: Filling of bundles at mesoscopic scale considering fully filled channels. 

The second kind of problem considered in this work consisted on the simulations of filling 

of bundles considering fully filled channels at mesoscopic scale. The modelling of the 

channel fluid flow using the Stokes equation, the consideration of the matching conditions 

free fluid-porous media and the prescription of a pressure gradient along the flow direction, 

instead of considering a uniform pressure in the channel, were the principal methodological 

changes adopted here with respect to other works devoted to this kind of problems [8], [13], 
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[14], [102], [225], [226]. These simple changes allowed considering some phenomena and 

parameters that are proper of LCM processes and have been neglected in other works. For 

instance, the dynamic evolution of intra-tow voids was deemed using the present 

methodology and the pure BEM scheme for Stokes-Darcy problems. According to the 

numerical results, the elimination of intra-tow voids from the tows towards the channel is a 

pulsating process, i.e., a process that occurs in several cycles. Each cycle comprises four 

void stages: compression and displacement that take place inside the tows, and migration 

and splitting that occur in the channel and are faster than the former two processes. The 

numerical results showed that the void compression occurs until the air pressure at the fluid 

front matches the average liquid pressure surrounding the tow plus the magnitude of the 

capillary pressure, moment from which the void displacement starts; this confirms the  

hypothesis of [79]. On the other hand, when the void migrates from the tow towards the 

channel, it can be subjected to several cycles of expansion and contraction that depend on 

the evolution of the air pressure and the surface tractions of the bubble. The magnitude of 

the average velocity of void expansion or contraction is variable and can be lower or higher 

than the average liquid velocity in the channel domain, but it is considerably inferior to the 

velocity of the bubbles when they migrate freely along the channels. The void splitting or 

breaking could arise when the bubble surface deforms enough due to the surface traction 

effects. According to the numerical results, the increase of the surface tension of the liquid 

generates a greater opposition to the void migration, whereas the increase of the average 

liquid velocity and the average pressure in the channel promote the void migration, 

coinciding with the conclusions reported in [5], [78], [81], [84], [220], [222].  

Several simulations of filling of bundles considering fully filled channels were also run to 

establish lumped functions for the sink term,   , that couple the mesoscopic and 

macroscopic equations, and to determine the influence of the tow saturation and some 

geometrical variables on the effective unsaturated permeability. The principal contributions 

of this work to the computation of    with respect to other works [12],[225] can be 

summarized as follows: 1) the inclusion as independent variables of the air entrapment 

parameter,  , to consider the air compressibility and air dissolution at the same time, and of 

the vacuum pressure,     , which is a relevant parameter in LCM processes, 2) the 

consideration of a flow-direction dependent capillary pressure for the porous media, 3) the 
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statement of a direct methodology to compute the saturation rate in terms of the difference 

between the inlet and outlet flow rates of the RUC, and 4) the modification of the fitting 

equation with an additional free parameter to improve the matching with the numerical 

results.  

The simulation results also showed that      is directly proportional to the saturation,   , 

and the curves of            are influenced by the tow porosity     , weft aspect ratio 

     ⁄   and gap porosity (  ). Some results obtained here are also in agreement with 

previous results, such as: the independency of      on the processing parameters  [138]–

[140], the increase of      with the tow porosity and with the aspect ratio of the weft when 

the bundles are totally saturated [20], and  the general behavior of the RUC saturation in the 

time when full air dissolution is considered [12],[225].  Since the channel velocity field 

needed to be calculated in all filling instants in order to compute    and     , some 

interesting conclusions about the influence of the tow saturation, average pressure and 

pressure gradient on the inlet and outlet velocity profiles and on the volume-averaged 

horizontal velocity in the channel were obtained. In general, as the tows saturate more, the 

inlet and outlet velocity profiles get closer each other and consequently the velocity 

variations along the RUC length decreases; additionally, as    is higher, the influence of the 

average pressure on the velocity profiles is less significant.  On the other hand, according to 

the numerical results, the volume-averaged horizontal velocity in the channel is only 

affected by the pressure gradient. 

 

Problem 3: Unidirectional filling of molds at macroscopic scale. 

The last type of problem considered here was the unidirectional filling of molds at 

macroscopic scale considering the partial saturation effects arising inside the RUC at 

mesoscopic scale.  A lumped strategy was adopted, i.e., the sink functions for   , 

previously obtained via mesoscopic simulations, were introduced in the macroscopic 

governing equations, which in turn were solved using the DR-BEM technique and Piccard 

iteration. The analytical solution of a problem consisting on the unidirectional filling of 

dual-scale fibrous reinforcements at constant pressure, with the sink term varying as a 

linear function of the pressure [101], was compared to the DR-BEM solution for validation 

purposes, obtaining a good accuracy and convergence. On the other hand, both constant 
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pressure and constant flow rate macroscopic simulations were considered in the parametric 

study of this problem. Some similarities between both injection regimes (constant pressure 

and constant flow rate) were found:  the influence of the air entrapment parameter,  , on the 

saturation curves is more important as the injection develops; the global saturation is higher 

as   decreases and, for     (full air compressibility), as the input processing parameters 

(inlet pressure, vacuum pressure and inlet flow rate) increases. However, some important 

differences between both regimes can be also mentioned: for constant flow rate injections, 

the fluid front velocity always increases with  , whereas for constant pressure ones this is 

not necessarily valid in all fluid front positions; on the other hand, the saturation at the inlet 

of the mold continuously increases in constant flow rate injections for    , while in 

constant pressure ones it reaches an equilibrium value instead. The shapes of the pressure 

profiles obtained in both regimes are in agreement with previous works [83], [240], [241]. 

 

Summary of contributions of the present work. 

In this part, it is convenient to emphasize the main contributions of the present work 

regarding previous researches, in light of the objectives initially posed in Section 1.4. These 

main contributions can be summarized as follows:  

Regarding the general objective. 

 Implementation for first time of Boundary Element Techniques (BEM) on the processes 

of formation and dynamic evolution of voids in dual-scale porous media used in the 

processing of composites materials. As it was mentioned in this work, this 

implementation entailed several numerical issues, like the solution of ill-conditioned 

systems, the prescription of defective boundary conditions, the application of constraints 

for the time step and of smoothing and remeshing algorithms to assure the stability of 

the fluid front tracking scheme, among others. In addition to the well-known advantages 

of BEM over domain-mesh techniques in moving boundary problems, which lie in the 

reduction of the meshing requirements, some benefits of the present numerical scheme 

with respect to other ones were identified: 1) the fluid front shape is more accurate 

because it is directly obtained from the kinematic condition, 2) the dynamic condition 

can be directly imposed on the nodes of the fluid front, 3) neither reconstruction 



275 
 

algorithms nor the solution of a pure advection equation are required to acquire the fluid 

front position, among others.  

Regarding the specific objectives. 

 As in previous works, the influence of the modified capillary number    
  , tow 

porosity, width of transverse tow, fluid penetrativity and RUC porosity on the size, 

shape and location of voids was studied here as well. However, the use of a Stokes-

Darcy formulation in this work allowed considering two important things usually 

disregarded in other works: 1) the capillary forces associated to the curvature of the 

moving fluid front in the channel, which can have a relevant influence on the fluid front 

evolution and consequently, on the void formation process, for small values of   
 ; 2) 

the tangential velocities of the porous medium at the interface free fluid-porous 

medium, which were not neglected a priori in this work by reasons previously argued, 

allowing in this way to known the complete velocity field at such interface in both the 

channel and the porous medium domain. 

 Analysis of the influence of the stress matching conditions and the formulation type 

(Stokes-Darcy and Stokes-Brinkman) on the void formation process at several capillary 

ratios,     , which had not been considered before to the best of the author´s 

knowledge. On the other hand, the influence of the RUC compaction on the void 

formation process was also analyzed here; previous works only considered the 

influence of the RUC compaction on the imbalances of the fluid fronts inside the RUC, 

but not on the formation and final characterization of the voids as done here. 

 One simple methodological modification to tackle the problem of tows filling at 

mesoscopic scale considering fully filled channels was made here. It is based on the 

prescription of a pressure gradient in the direction of the fluid motion instead of the 

consideration of an average pressure in the channels. This simple modification, together 

with the consideration of the air compressibility, led to the following contributions:  1) 

analysis of the influence of the volume-averaged pressure, pressure gradient and 

capillary properties on the dynamic evolution of intra-tow voids (compressibility, 

displacement, migration and splitting) by means of simulations at mesoscopic scale; 2) 

analysis of the influence of the processing parameters, tow porosity, gap porosity and 
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weft geometry on the behavior of the effective unsaturated permeability with the 

saturation in dual-scale fibrous reinforcements.  

 Deduction of lumped functions to account for the sink effect in macroscopic 

simulations. In previous works, lumped sink functions were obtained in terms of the 

volume-averaged pressure and the saturation only, but, in the present work, two 

additional parameters that play a major role in the impregnation process of the tows 

were considered: the vacuum pressure and the air entrapment parameter. The 

incorporation of the obtained sink functions in the macroscopic governing equations 

allowed analyzing the influence of these two parameters on the evolution of the global 

saturation in the space and time, considering the unidirectional filling of cavities at both 

constant pressure and constant flow rate regimes. 

 Development of an analytical solution for a coupled problem free fluid-porous medium, 

on the basis of the lubrication approximation for the free fluid flow and the EIS 

transformation for the anisotropic porous medium. This solution can be used later as a 

benchmark solution for validation of other numerical schemes. 

 Deduction of a flow-direction dependent model to compute the capillary pressure,     , 

inside the tows without experimental shape factors. In that way, the dynamic condition 

of the fluid front inside the tows was prescribed more accurately here than in previous 

works where a constant value of      was considered, even though      actually 

depends on the fluid flow orientation regarding the fibers as it was considered here. 
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Future Works. 

The statement of future works can be motivated by the following reasons: the necessity of 

confirming or extending some of the obtained conclusions, the consideration of more 

complex problems in the area of composites, and the identification of potential applications 

of the numerical schemes implemented here in other areas. 

In the first case, some important aspects deserve a deeper numerical and experimental 

study, such as: 1) The influence of the tow porosity on the void characteristics considering 

several RUC geometries and compaction levels, 2) the non-sensitivity of the void location 

to all parameters studied here considering other RUC geometries, 3) the influence of the 

RUC compaction on the total void content considering others compaction levels and RUC 

geometries, 4) the slow stepwise elimination process of intra-tow voids from the tows 

towards the channel, 5) the behavior of the total void content with   
  for larger capillary 

numbers than the ones considered here, to numerically confirm the reduction of this content 

once a certain value of   
  has been reached, 6) the relationship between the times of the 

stages involved in the void elimination process taking into account other processing 

conditions and RUC geometries, 7)  the consideration of the void splitting phenomenon on 

the sink functions calculations, among others. 

The numerical codes developed in this work can be considered a first important step to 

tackle more complex problems of processing of composites manufactured with dual-scale 
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fibrous reinforcements. One of these problems is the incorporation of non-isothermal and 

reactive conditions in the filling process at both mesoscopic and macroscopic scales. This 

problem has been previously considered by [8], [94] using FEM/CV and the classical 

methodology of prescribing a uniform pressure in the channel to account only for the filling 

of bundles. This strategy implies the use of two domain meshes at different scales (leading 

to a very high computational cost), the implementation of tracking techniques that do not 

reproduce the exact shape of the fluid front and the acceptance of the limitations of the 

classical methodology that were exposed in this work. These drawbacks can be overcome 

by incorporating the solution of the energy and species transport equations to the present 

work, which is part of the ongoing work developed by the author.  Considering that 

continuity, momentum, energy and species equations are coupled altogether, the first 

developed algorithms for this particular problem have been much more time-demanding 

than the ones employed in this work, but the obtained results have been satisfactory so far. 

The consideration of non-newtonian fluids associated to the impregnation of reinforcements 

with thermoplastic resins or thermosetting resins modified with nanofillers, the simulation 

of the fabric deformation mechanisms when the impregnation takes place, the consideration 

of hybrid and/or heterogeneous dual-scale preforms, and the simulation of the mechanical 

response of dual-scale fibrous reinforcements under the presence of voids, are forthcoming 

investigations. 

Apart from the applications to the composites area, other potential applications of the 

numerical schemes implemented here to solve coupled problems free fluid-porous media 

can be identified.  As mentioned before, the principal characteristic of those problems is the 

presence of two domains with very dissimilar permeabilities, which can be found in many 

applications such as: transport of contaminants in coastal areas and rivers, flooding of dry 

areas, transport of chemicals from the main blood stream in the arteries through a porous 

membrane, groundwater infiltration in karst aquifers, flow modeling through oil filters, 

among others. The simulation of the dynamic response of peatlands under rewetting 

operations to restore its carbon sink function is another application of particular interest to 

the author. 
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Appendix A.  

Equivalent Isotropic System (EIS). 

The EIS transformation is implemented to transform the pressure field equation of 

anisotropic Darcy porous media into a simple Laplace equation. This transformation and 

BEM were previously used in the simulation of single-scale porous media in [50], [58]. The 

EIS transformation can be conceived as the transformation of an ellipse with main axes 

equal to √   and  √   into a circle having a radius of   √  , with    √     as the 

equivalent isotropic permeability (Figure A1). 

 

 

Figure A1 Scheme of EIS transformation 

 

In the original coordinate system, the pressure field equation can be obtained by 

substituting the Darcy law into the mass conservation equation: 

  
   

   
    

   

   
     (A1) 

The EIS transformation is defined as follows [59], [144]: 

[
  
 

  
 ]  0

     ⁄    ⁄  

      ⁄    ⁄
1 *

  

  
+  (A2) 

in such a way that the Eq. A1 in the EIS system becomes:  

  
   

   
     (A3), 

whereas the components of the normal vector in the EIS system,   ̂  〈  
 ̂    

 ̂〉, can be 

computed in terms of the normal components in the original system, 〈  ̂   ̂〉, by using the 

inverse-transpose of the transformation matrix defined in Eq.A2: 

〈  
 ̂    

 ̂〉  
 

  
〈     ⁄    ⁄   ̂      ⁄    ⁄   ̂〉 

(A4), 

where    ‖     ⁄    ⁄   ̂      ⁄    ⁄   ̂‖. 
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Taking into account (A2) and (A4), the normal flux in the EIS system can be expressed as 

follows: 

  

   ̂  
  

   
    

 ̂  
  

   
 
   

  
   

 ̂  
  

 

   
  

   
   ̂  

(A5) 

where the scale factors,   , are given by: 

        ⁄       (A6) 

        ⁄      (A7) 

If the Eq. A5 is multiplied at both sides by      ⁄  , the following is achieved:  

 
  

 

  

   ̂   
 

   
  

 

  

   
   ̂   

(A8) 

After applying the Darcy‘s law in the right hand side of the Eq.A8 and dividing at both 

sides by   , the next expression is obtained for the normal pore velocity,   , in terms of 

variables in the EIS system: 

    
   

 

   

  

   ̂    
(A9) 

The domain integral formulation in the EIS system can be achieved by applying a similar 

procedure to the one exposed in Section 2.4, obtaining the following: 

∫ ( 
    

   
  

      

   
  
)

      ∫
 

   
 ( 

   

   
      

   
 )    

    
(A10) 

Considering that   and    satisfy the original and the singularly forced Laplace equation in 

the EIS system, respectively, the next equation is obtained: 

 ∫    (  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)   
   ∫

 

   
 ( 

   

   
      

   
 )    

     
(A11) 

Taking into account that            
    

    , the fundamental property of Delta 

Dirac function applies in the EIS system, i.e,  ∫    (  ⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗)   
   ∫    ( ⃗  

 

 ⃗)    ( ⃗) ( ⃗)   (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗). Thus, the Eq.A11 becomes: 

  (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫
 

   
 ( 

   

   
      

   
 )    

     
(A12) 

Divergence theorem cannot be directly applied in right hand side terms of Eq.A12 since the 

scale factors,   , do not appear. It is necessary first to apply the chain rule and consider that 

       to accomplish the next expression: 

  (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫
 

   
( 

   

   
      

   
 ) (

   

   
 )   

 
  

(A13), 

Considering Eqs. A2, A6 and A7, the Eq. A13 can be written as: 
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  (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫
 

   
( 

   

   
      

   
 )      

  
(A14) 

As the scale factors,   , are constants, (A14) can be rewritten as: 

  (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫
 

   
( 

   

   
        

   
   )   

 
  

(A15) 

By applying the divergence theorem in the right hand side integral, the following is 

obtained: 

  (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫  
   

   
     ̂ 

   ∫     

   
     ̂ 

    (A16) 

Considering that     ̂    
 ̂   from Eq.A4, the Eq.A16 becomes:  

 (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫     

   
  

   
 ̂

 
   ∫  

   

   
  

   
 ̂

 
    (A17), 

or equivalently: 

 (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫       

   ̂ 
   ∫       

   ̂ 
    (A18), 

which corresponds to the integral formulation for the anisotropic Darcy equation in the EIS 

system.  

The integral formulation in the original coordinate system can be also obtained directly and 

it is equivalent to Eq.A18. To demonstrate this, the equation corresponding to the Second 

Green Identity, Eq.39, is applied in one dimension for both     and     separately; the 

resulting expressions are multiplied at both sides by   , with      , and added up, to 

obtain the following: 

∫ (   
    

   
      

   

   
 )  

 
 ∫

 

   
(   

   

   
     

  

   
)  

 
    (A19) 

Likewise to the last case, the divergence theorem is applied in the right hand side integral. 

Besides,   is a solution of the original anisotropic Darcy equation, Eq.A1, and the solution 

of the corresponding singularly forced equation,     
      

 ⁄     ( ⃗   ⃗)   , is given 

in [149]: 

   
  

  
  

 

    
           (A20) 

Therefore, the integral formulation in the original system can be written as follows: 

 ( ⃗) ( ⃗)  ∫   (
  

  
)

  

   
  ̂ 

   ∫  (
  

  
)

   

   
  ̂ 

    (A21) 

Considering that   
      ⁄ , the following is obtained: 
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 ( ⃗) ( ⃗)  ∫     
   

   
  ̂ 

   ∫    
    

   
  ̂ 

    (A22) 

Applying the inverse of the transformation defined in Eq.A2 and considering the Eq.A5, the 

following equation is obtained: 

 (  ⃗⃗⃗⃗⃗) (  ⃗⃗⃗⃗⃗)  ∫       

   ̂ 
   ∫       

   ̂ 
    (A23), 

which is the same Eq.A18 obtained before.  
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Appendix B.  

Development of analytical solution of a coupled Stokes-Darcy problem. 

The coupled Stokes-Darcy problem used for the validation of the numerical approach 

considered in this work consists on a thin rectangular channel coupled with an adjacent 

rectangular porous channel (Figure 16). The main goal of this solution is the prediction of 

the pressure and velocities fields in both domains. In the channel, according to the 

lubrication approximation (thin film flow), the Stokes system of equations is reduced to:  

 
    

   
  

  

   
      (B1) 

     ⁄         (B2) 

   

   
 

   

   
    (B3), 

while in the porous medium, the problem is described by Darcy‘s model (Eq. 62a-b). 

Symmetry conditions are prescribed at the lateral walls        ⁄               , 

namely, bottom of the channel and top of the porous medium. At the surface between the 

two regions,     , an unknown tangential velocity coming from the channel,   
     , is 

considered, and it will be determined from the slip condition, Eq. 66, in terms of the 

tangential velocity at such surface coming from the porous medium,   
     . Direct 

integration of (B1) between        and     , taking into account (B2), and 

considering the symmetric condition at        and that      
  at     , follows: 

   
 

  
 (

  

   
)     

           
         (B4) 

Having an explicit expression for   , the value of    can be obtained from the integration 

of the continuity equation (B3), taking into account the no-flux condition at       , as: 

    
 

  
 (

   

   
 )  (

  
 

 
     

  
 

 
  
 )  (

   
 

   
)          (B5), 

from where it follows that the infiltration velocity towards the porous medium at      is 

given by: 

  
    

  
  
 

  
 (

   

   
 )  (

   
 

   
)       (B6) 

To complete the formulation of the lubrication flow in the channel, it is necessary to 

prescribe inlet and outlet pressures, which are considered as     ̅   at      and     

at     .   
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On the other hand, at the porous medium, the pressure and velocity fields are obtained 

using Eq‘s 62a-b, which are reduced to the Laplace equation by using the EIS 

transformation, as it is shown in Appendix A. Pressure boundary conditions are prescribed 

at the inlet and outlet of the porous medium, with    ̅   at     , i.e., a uniform 

pressure is considered at the inlet of the two regions,  and     ̅    at     , i.e., a 

capillary pressure is considered at the end of the porous domain; this capillary pressure can 

have a major role in the impregnation of LCM processes, as it is shown in this work. A 

harmonic pressure field in the EIS transformed domain that satisfies the inlet and outlet 

pressure conditions and the no-flux condition at      , is given by:  

 

      
     ∑        (      

    
  ) 

             
                   (B7), 

 

where    (        )   ⁄ ,        and          ⁄ , with         . The 

coefficients    need to be determined from the continuity of surface tractions at the 

interface between the two media (channel and porous medium). In the above equation 

superscript ―e‖ stands for the EIS system.  

The pressure field in the porous medium can be written in terms of the original space 

variables as: 

         ⁄  
 

       ∑        .        ⁄  
 

        /
 
       (        ⁄  

 

   )         

                     

(B8) 

Taking the derivative       ⁄  in Eq. (B4) and substituting the resulting expression into 

the slip condition, Eq. 66, yields: 

  

 
(

  

   
)  

 √ 

√     
    

    
    (B9) 

Taking the    derivative of the above equation and substituting the obtained value of 

   
    ⁄  into (B6), results in: 

(
   

   
 )  

 

  
 (  

        
   

 

   
)   (B10), 

where      
     ⁄  √        

 (  √ )⁄ . 

Expressing the velocity field in the porous medium,       
    

  , in (B10) by using 

Darcy law, the Reynolds equation for the pressure field in the channel is obtained: 
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(
   

   
 )  

 

  
 ( 

  

 
(
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(
   

   
 )

 

)    (B11) 

In the above equation the pressure    represents the pressure in the surface between the 

porous medium and the channel, looking from the porous medium side, which is given by 

evaluating (B8) in     . Integrating twice (B11) in the    direction and using the 

pressure inlet and outlet conditions in the channel, it is found the following expression for 

the channel pressure field: 

           ⁄     ∑      
 
       (        ⁄       )               (B12) 

Where: 

    
 

  
 *  

  

 
    (        ⁄       )  

  

 
(
     ⁄     

  
)     (        ⁄         )+  

In (B12), the only unknowns are the coefficients of the series,   , which are determined by 

the surface traction condition, Eq. 68, as previously commented: 

      (
   

   
)
 

       (B13) 

or  

      (
   

   
)
 

      (B14), 

where the last expression, (B14), was obtained by imposing the equation of continuity in 

(B13). Taking the    derivative of (B9) to express        ⁄    in terms of the pressure 

field in the channel and the tangential velocity in the porous medium,   
 , and using Darcy 

law to express   
  in terms of the corresponding pressure gradient, the final equation is: 

(       ⁄        )   ∑      
 
       (        ⁄  

 

   )     (B15), 

with: 

     (  
 √     

 √ 
     

       ⁄     )      (        ⁄  
 

    ) (       
       ⁄  

 

 ) , 

and corresponding Fourier coefficients:       (       ⁄        )       ⁄      , 

completing the analytical solution of the problem. 
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Appendix C. 

Tracking of the fluid front. 

The Euler integration of the kinematic condition, commonly known as marker particle 

technique, is a very simple technique to advance the fluid front position, but it could entail 

some complications. Integrating the kinematic condition defined in Eq.73, the advancement 

of any evolution point     of the moving interface can be computed as (Figure C1): 

   
   

    
   

   
   

  
   ̂

   (C1) 

   
   

    
   

   
   

  
   ̂

   (C2), 

where (   
   

    
   

) and (   
   

    
   

) are the initial and final positions of the evolution point 

   , respectively, while    
   

,   ,   
   ̂

 and   
   ̂

 are the normal velocity, time interval, 

horizontal component and vertical component of the normal vector.   

Several restrictions shall be imposed on the time interval,   , in order to keep the numerical 

stability of the solution, to avoid the crossing of points and to prevent the points to advance 

beyond the limits of the corresponding domain. Firstly, the numerical stability of the 

solution can be achieved by applying the CFL condition: 

     
   

 (    
   

      )       
   

⁄   (C3), 

where      
   

,       and       
   

 are the CLF time interval, mesh-size and maximum normal 

velocity corresponding to the domain    , whereas     
   

 is CFL constant for the domain     

given in terms of the modified capillary number,   
 , for constant flow rate injections, and 

of the capillary ratio,     , for constant pressure injections, as shown in Figs. C2 and C3, 

where S-D and S-B stand for Stokes-Darcy and Stokes-Brinkman, respectively. The sign 

    refers to any domain that is being impregnated by the fluid front, which in this case 

could be the channel, the warps and/or the weft (Figure C1). The final CFL time interval is 

taken as the minimum of all domains    , i.e.,          (     
   

).  
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Figure C 1 Scheme of tracking of the fluid front 



288 
 

 

Figure C 2 Plots of CCFL  vs. Ca
*
 

 

 

Figure C 3 Plots of CCFL  vs. Ccap 
 

To avoid the crossing of points and to control the smoothness of the curve, the following 

restriction is applied for each pair of points     and     on any moving boundary (Figure 

C1): 

          
    

         
 
    

    (C4), 

where    
 
 is the time taken by the point     to intersect the line of movement of the point 

   , and, in a similar fashion,    
 
 is the time taken by the point      to intersect the line of 

movement of the point    . The time interval    
 
 can be computed as follows: 

   
 
   

 
  

   
⁄    (C5), 
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where   
 
 is the distance travelled by point     to the intersect line of movement of point  

    as given by: 

  
 
 *∑ (   

 
)
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    (C6) 
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  (C7) 
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)   
   ̂

(   
   

    
   

)

  
   ̂

  
   ̂

   
   ̂

  
   ̂

  (C8), 

where   
   ̂

 and    
   

 represent the   component of the normal vector and of the initial 

position of the evolution point    , respectively.  On the other hand, the time interval    
 
 

can be computed by interchanging indexes     and     in equations (C5) to (C8). The 

restriction for the time interval is given in terms of the minimum value of            
    

 for the 

whole pairs of points     and    , as follows:               (          
    

). 

Another restriction for the time interval considers that any point cannot advance beyond the 

limits of the domain to which the point belongs (Figure C1); these limits are defined by the 

interfaces and/or the boundaries, and can be described by parametric curves,    
   

    , as 

follows: 

  
   

   
   

    , m=1,2 (C9), 

where   
   

 stands for the     coordinate of the curve corresponding to the boundary or 

interface    ,   
   

 is the parametric function and    is the independent parameter. The sign 

    represents any interface or boundary, namely, the edges of the RUC, the interfaces 

channel-warp, interface channel-weft and interfaces warp-weft. 

On the other hand, the line of movement of any evolution point     can be described as: 

  
   

    
   

     
   ̂

, m=1,2 (C10), 

where   
   

 and     
   

 stand for the     coordinate of the line of movement of the point     

and the     component of the initial position of the point    , respectively, whereas      

is the independent parameter. 
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The parameters    and    assumes the values      
 
 and      

  in the intersection points 

between the curves defined by Eqs. (C9) and (C10). Bearing this in mind, the restriction of 

the time interval for any evolution point     is as follows: 

       
   

         
   (C11), 

where    
  is the time taken by the point     to intersect the boundary or interface defined 

by ―s”, which can be computed as follows: 

   
    

   
   ⁄  (C12) 

  
  *∑ (   
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   +
   

   
 (C13) 

   
    

   
   ̂

  (C14), 

where the form of   
  depends on the parametric curve defined in (C9). In the present work, 

all limits can be described in terms of straight lines and ellipses, where the form of the 

parametric function,   
   

, and   
  is as follows: 

 

For straight lines: 
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  (C15) 
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  (C17), 

where (   
   

    
   

) is a known point of the straight line corresponding to the boundary or 

interface “s” , whereas   
   ̂

 and    
   ̂

 are the direction cosines.   

 

For ellipses: 
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⁄     (C22) 
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⁄    (C23) 

  
    

   
   ̂

  
   

⁄   (C24) 

where  (   
   

    
   

) is the center of the ellipse corresponding to the boundary or interface 

   , whereas   
   

 and   
   

 are the major and minor semi-axes of the ellipse. The time 

interval to avoid the advancement of any point beyond the corresponding domain is the 

minimum value obtained for all evolution points    , namely,  

                    
   

 .Thus, taking into account all constraints above referred, the next 

expression is achieved for the final time interval,   : 

      (                         )  (C25) 

After defining the suitable    and advancing the points of the fluid front according to (C1) 

and (C2), small-scale oscillations might be present in the resulting interface when the 

capillary effects are relevant (Figure C1), namely, when   
  has an order of magnitude 

lower or equal than      , or      has an order of magnitude greater or equal than      . 

These oscillations, if not suppressed, can be amplified as the fluid front evolves, originating 

important errors. Therefore, a second-order five-point polynomial fitting is employed here 

to suppress small-scale oscillations, where the position of each evolution point is corrected 

taking into account the two adjacent points of each side and using a quadratic fitting curve 

obtained with the Fitting Toolbox of MATLAB.  

Then, parametric cubic splines are fitted to the corrected points (Figure C1), in such a way 

that for each space interval     defined by two adjacent points,      and      , the next 

parametric curve is defined: 

  
   

 ∑    
   

   
   , m=1,2,   [   ] (C26), 

where   is the independent parameter, while   [         ] for closed curves and  

  [           ] for open curves, with         as the number of evolution points 

conforming the moving boundary. The constants    
   

 are found by forcing the curves 

defined in (C26) to pass by the evolution points and by forcing the continuity of the first 

and second derivatives between the curves of adjacent intervals. Additionally, the splines 

are forced to be perpendicular to the boundaries where the symmetric condition is 
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prescribed and its slope is maintained continuous in the interfaces considered here: channel-

warp, channel-weft and warp-weft.  Then, a remeshing algorithm is employed to generate a 

new set of uniformly spaced points located along the splines, keeping constant the mesh-

size defined for each moving boundary (Figure C1). 
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