CARACTERIZACIÓN DEL PATRÓN DE RADIACIÓN DE UNA ANTENA PATCH RECTANGULAR POR EL MÉTODO DE DIFERENCIAS FINITAS

CARLOS FERNANDO GUERRERO CORREDOR RENATO ALBERTO ANGELONE YEPES

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍA FACULTAD DE INGENIERIA ELECTRÓNICA BUCARAMANGA 2013

CARACTERIZACIÓN DEL PATRÓN DE RADIACIÓN DE UNA ANTENA PATCH RECTANGULAR POR EL MÉTODO DE DIFERENCIAS FINITAS

AUTORES CARLOS FERNANDO GUERRERO CORREDOR RENATO ALBERTO ANGELONE YEPES

PROYECTO DE GRADO

DIRECTOR FABIO ALONSO GUZMAN SERNA

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍA FACULTAD DE INGENIERIA ELECTRÓNICA BUCARAMANGA 2013

Nota de Aceptación

Firma de Presidente del Jurado

Firma del Jurado

Firma del Jurado

Bucaramanga, Julio 2013

Bucaramanga, Julio 2013

A mis padres que me apoyaron incondicionalmente durante toda mi carrera, siendo de gran importancia para lograr esta meta.

Al ingeniero Fabio Alonso Guzmán quien fue un gran colaborador en el proyecto.

A mis compañeros que fueron una gran ayuda.

A la Colombiana de tabaco que me financio mi estudio en la universidad.

Carlos Fernando Guerrero Corredor

Bucaramanga, Agosto 2013

"Un profesor mediocre dice, un buen profesor explica, un profesor superior demuestra, el gran maestro inspira" William Arthur Ward.

Agradezco a quienes hicieron parte de mi entorno hasta el día de hoy y en algún momento de mi vida, aportaron en mi formación, inspirándome, especialmente a mis Padres y a mi familia quienes siempre me ofrecieron la comprensión y el apoyo necesario para alcanzar este logro y terminar esta etapa de mi vida.

CONTENIDO

1. INTRODUCCIÓN	1
2. DEFINICIÓN DEL PROBLEMA	2
3. OBJETIVOS	3
3.1.1 OBJETIVO GENERAL	3
3.1.2 OBJETIVOS ESPECÍFICOS	3
4. MARCO TEÓRICO Y ESTADO DEL ARTE	4
4.1 INTRODUCCION A LAS ANTENAS	4
4.1.1 DEFINICION DE LAS ANTENAS	4
4.1.2 HISTORIA DE LAS ANTENAS	4
4.1.3 TIPOS DE ANTENAS	5
4.2 ANTENAS TIPO PARCHE	7
4.2.1 VENTAJAS Y LIMITACIONES	8
4.2.2 APLICACIONES	9
4.2.3 CONFIGURACIONES	9
4.2.4 ANTENA PARCHE RECTANGULAR	11
2.2.4.1 CARACTERISTICAS FISICAS DE LA ANTENA	11
2.2.4.1.1 SUSTRATO.	11
2.2.4.1.2 EFECTOS DE W	13
2.2.4.1.4 MECANISMO DE RADIACION DE UNA A PARCHE	ANTENA
4.2.5 PATRÓN DE RADIACIÓN	16
4.3 METODO DEL FDTD	18
4.3.1 DIFERENCIAS FINITAS	19
4.3.2 FORMULACIÓN DEL FDTD	21
4.3.3 TRANSVERSAL ELECTRICO	24
4.3.4 TRANSVERSAL MAGNETICO	25

4.3.	5 CRITERIO DE ESTABILIDAD	26
4.3.	6 CODICIONES DE FRONTERA ABSORBENTES	26
4.3.	7 CONDICIONES DE CAPA PERFECTAMENTE ACOPLADA (PML)	27
5.	ANTECEDENTES	32
6.	METODOLOGÍA	33
7.	DISEÑO DEL ALGORITMO	35
8.	RESULTADOS OBTENIDOS	62
8.1	SIMULACIONES CON VARIACIÓN DE DIELÉCTRICO	66
8.2	SIMULACIONES CON VARIACIÓN DEL ANCHO DE LA ANTENA	78
8.3	SIMULACIONES CON VARIACIÓN DEL ALTO DE LA ANTENA	81
8.4	SIMULACIONES DEL CAMPO ELÉCTRICO EN X	84
8.5	SIMULACIONES DEL CAMPO ELÉCTRICO EN Y	86
8.6	SIMULACIONES DEL CAMPO MAGNÉTICO EN Z	88
8.7 ITE	CAMPOS ELÉCTRICOS Y MAGNÉTICO CON EL TOTAL DE RACIONES	90
8.8 LEJ	SIMULACIÓN DE LOS CAMPOS ELÉCTRICOS Y MAGNÉTICOS IANOS	92
9.	CONCLUSIONES	94
10.	RECOMENDACIONES Y DIRECCIONES FUTURAS	95
11.	BIBLIOGRAFIA	96

LISTA DE TABLAS

Tabla 1 Ventajas y limitaciones antena parche	8
Tabla 2 Tipos de sustratos con su respectiva constante dieléctrica	12
Tabla 3 Tipos de alimentación para antenas tipo parche	14
Tabla 4 Resumen de variación de constantes dieléctricas	77
Tabla 5 Resumen de variación del ancho de la antena	80
Tabla 6 Resumen de variación del alto de la antena	83

LISTA DE FIGURAS

	æg.
Figura 1 Antena Yagi-Huda	5
Figura 2 Dipolo	S
Figura 3 Antena de alambre tipo lazo circular	6
Figura 4 Antena de alambre tipo nelicoidal	6
Figura 5 Bocina piramidal	1
Figura 6 Configuración antena tipo parche	8
Figura 7 Configuraciones Básicas	9
Figura 8 Otras configuraciones de parches	10
Figura 9 Antena parche rectangular	11
Figura 10 Antena parche con sustrato multicapas	12
Figura 11 Distribución de cargas y densidad de corriente en el parche	15
Figura 12 Campos en el interior del parche	15
Figura 13 Efectos de borde	15
Figura 14 Patrón de radiación en coordenadas polares	16
Figura 15 Patrón de radiación en coordenadas cartesianas	17
Figura 16 Campos de radiación	17
Figura 17 Celda de Yee	19
Figura 18 Componentes en la celda de Yee	24
Figura 19 Regiones de simulación	27
Figura 20 Diagrama de la aplicación del PML en el FDTD	30
Figura 21 Inicio del algoritmo	35
Figura 22 Declaración de variables de la grilla	36
Figura 23 Declaración de las constantes físicas del medio	36
Figura 24 Declaración de las constantes	37
Figura 25 Declaración de las constantes físicas de la antena	38
Figura 26 Declaración de las constantes físicas de la antena	38
Figura 27 Dimensiones de w de la antena parche	39
Figura 28 Dimensiones del plano de tierra y el dieléctrico	39
Figura 29 Inicialización de las matrices de campos	40
Figura 30 Inicialización de las matrices del campo Ex	40
Figura 31 Inicialización de las matrices del campo Ey	41
Figura 32 Inicialización de las matrices del campo Hz en X	41

Figura 35 Declaración constantes del PML42 Figura 36 Asignación de las variables sig y rho en las capas del pml43 Figura 37 Asignación de la variable sig y rho43 Figura 38 Determinación de las constantes de reflexión44 Figura 39 Coeficientes PML......44 Figura 40 Pml en el campo Ex.....45

Figura 33 Inicialización de las matrices del campo Hz en Y41 Figura 34 Declaración de constantes del pml42

Figura 41 PML izquierda Ex......45

Figura 43 PML derecha Ex	46
Figura 44 PML Superior e inferior campo Ey	47
Figura 45 PML izquierda y derecha campo Hzy	48
Figura 46Coeficiente PEC de la antena	49
Figura 47 Matriz antena parche rectangular	49
Figura 48 Antena parche	49
Figura 49 Iteraciones de los campos electromagnéticos	50
Figura 50 Declaración del número de iteraciones	51
Figura 51 Declaración de campo Ex	51
Figura 52 Declaración de campo Ey	51
Figura 53 Declaración de la fuente de alimentación	52
Figura 54 Declaración del campo Hzx	52
Figura 55 Declaración del campo Hzy	52
Figura 56 Declaración del campo Hz	53
Figura 57 Calcula de la distancia de Franunhofer	53
Figura 58 Declaración de la distancia de Fraunhofer	53
Figura 59 Transformación de coordenadas	54
Figura 60 Definición de T e inicialización de k y phi	54
Figura 61 Transformación a coordenadas polares	55
Figura 62 Inicialización de arreglos	55
Figura 63 Inicialización de arreglos	55
Figura 64 Incremento de ángulo	56
Figura 65 Campo lejano	56
Figura 66 Determinación del campo lejano	57
Figura 67 Inicialización de arreglos	58
Figura 68 Inicialización de arreglos	58
Figura 69 Cálculo del máximo valor de maxephi	59
Figura 70 Normalización del vector ephi y cálculo del máximo valor del vector	or de
Poynting	60
Figura 71 Cálculo del patrón de radiación en dB	61
Figura 72 Montaje en el laboratorio de antenas de la UPB	62
Figura 73 Antena trasmisora del equipo de Lab-volt	63
Figura 74 Antena receptora del equipo de Lab-volt	64
Figura 75 Patrón de radiación antena parche rectangular obtenido con el soft	ware
de Lab-volt	65
Figura 76 Comparacion N°1	66
Figura // Comparacion N°2	67
Figura 78 Comparación N°3	68
Figura 79 Comparacion N°4	69
Figura 80 Comparación N°5	70
Figura 81 Comparación N°6	/1
Figura 82 Comparación N°7	12
	73
Figura 84 Comparación N°9	/4
Figura 85 Comparacion N°10	/ 5

Figura 86 Comparación N°11	76
Figura 87 Comparación N°12	78
Figura 88 Comparación N°13	79
Figura 89 Comparación N°14	81
Figura 90 Comparación N°15	82
Figura 91 Campo Ex n=60	84
Figura 92 Campo Ex n=120	84
Figura 93 Campo Ex n=220	85
Figura 94 Campo Ex n=350	85
Figura 95 Campo Ey n=60	86
Figura 96 Campo Ey n=120	86
Figura 97 Campo Ey n=220	87
Figura 98 Campo Ey n=320	87
Figura 99 Campo Hz n=60	88
Figura 100 Campo Hz n=120	88
Figura 101 Campo Hz n=220	89
Figura 102 Campo Hz n=320	89
Figura 103 Campo Ex	90
Figura 104 Campo Ey	90
Figura 105 Campo Hz	91
Figura 106 Campo lejano eléctrico en x	92
Figura 107 Campo lejano eléctrico en y	92
Figura 108 Campo lejano magnético en Z	93

LISTA DE ANEXOS

ANEXO A	
ANEXO B	
ANEXO C	
ANEXO D	

RESUMEN GENERAL DE TRABAJO DE GRADO

TITULO: CARACTERIZACIÓN DEL PATRÓN DE RADIACIÓN DE UNA ANTENA PATCH RECTANGULAR POR EL MÉTODO DE DIFERENCIAS FINITAS

AUTORES: RENATO ALBERTO ANGELONE YEPES CARLOS FERNANDO GUERRERO CORREDOR

FACULTAD: FACULTAD DE INGENIERÍA ELECTRÓNICA

DIRECTOR: FABIO ALONSO GUZMAN SERNA

Se realizó la caracterización del patrón de radiación de una antena tipo parche rectangular mediante el método de Diferencias Finitas en el dominio del tiempo (FDTD). Se hizo inicialmente un estudio previo de las antenas tipo parche rectangular para conocer los elementos que la componen y cómo es el mecanismo de radiación de estas. Igualmente se estudió el método de las diferencias finitas en el dominio del tiempo y sus aplicaciones en las antenas en cuestión.

Para la caracterización se desarrolló un algoritmo en Wólfram Mathematica basado en el FDTD para obtener los campos lejanos radiados por la antena en transversal eléctrico y calcular el patrón de radiación a partir de estos. Dentro del método se empleó el método de capas perfectamente acopladas de Berenguer (PML) para las condiciones absorbentes de frontera. Se tomaron las medidas de una antena real, y se llevaron al programa de simulación para comparar los resultados. El análisis de resultados se hizo en Excel para contrastar los resultados obtenidos, con los que arrojó el equipo de LabVolt. Adicionalmente se variaron las constantes dieléctricas, y las dimensiones del ancho y del plano de tierra del parche para observar en qué se modificaba el patrón de radiación.

PALABRAS CLAVE: PML, FDTD, parche rectangular, patrón de radiación.

V° B° DIRECTOR DE TRABAJO DE GRADO

ABSTRACT OF THESIS PROJECT

TITLE: RADIATION PATTERN CHARACTERIZATION OF A RECTANGULAR PATCH ANTENNA USING FINITE DIFFERENCE TIME DOMAIN METHOD.

AUTOR: RENATO ALBERTO ANGELONE YEPES CARLOS FERNANDO GUERRERO CORREDOR

FACULTY: FACULTY OF ELECTRICAL ENGINEERING

DIRECTOR: FABIO ALONSO GUZMAN SERNA

It was made the Radiation Pattern characterization of a rectangular patch antenna using Finite Difference Time Domain Method (FDTD). Previously a study about elements and radiation mechanism of rectangular patch antennas was made. A study about FDTD and applications in patch antennas has done.

For Characterization was developed an algorithm on Wolfram Mathematica based in FDTD to get radiated far fields by the antenna using Transversal Electric and calculate radiation pattern from this. About Absorbent Boundary Conditions was used Perfectly Matched Layers (PML). Patch width and ground plane long was measured from a real antenna to simulate this in the software, and compare the radiation pattern with obtained from LabVolt equipment. Furthermore, results with different dielectrics, and variations of antenna dimensions were taken to observe how radiation pattern is modified.

KEY WORDS: FDTD, PML, rectangular patch, radiation pattern.

V ° B ° DIRECTOR WORKING GRADE

1. INTRODUCCIÓN

Las señales electromagnéticas son la esencia de las comunicaciones inalámbricas, esta tecnología hoy en día es estudiada para conocer a fondo estos fenómenos físicos. James Clerk Maxwell en el año de 1873 apoyado de trabajos experimentales de otras personas, propuso sus famosas ecuaciones, las cuales son las leyes fundamentales que rigen los fenómenos electromagnéticos. Las ondas electromagnéticas en nuestros días tienen diversas aplicaciones como la radio, el radar, la televisión, la telefonía móvil en fin existen muchas aplicaciones.

Las antenas son fundamentales en las comunicaciones, estas pueden recibir o transmitir ondas electromagnéticas. Existen diferentes tipos de antenas y dependiendo la aplicación donde se quiera implementar, las antenas se pueden clasificar en: elementales, resonantes y directivas.

Este trabajo de grado se basa en el estudio de las antenas microstrip, principalmente en la simulación del patrón de radiación en una antena parche rectangular utilizando el método de diferencias finitas en el dominio del tiempo (FDTD). Luego se contrastan estos resultados con los obtenidos con el software del "Sistema didáctico y de medición de antenas" Lab-volt 8092.

Este documento tiene la información básica sobre las antenas parche para comprender el trabajo realizado, además de la información del método del FDTD introducido por Yee en 1966 y otros estudios realizados por distintas personas en años siguientes.

En el capítulo 7 se desarrolló el algoritmo basado en un programa realizado en [1] y se muestra el paso a paso del algoritmo y las líneas de código escritas en Wolfram Mathematica. En el capítulo 8 se muestran los resultados de las comparaciones de los datos adquiridos en Lab-volt y las simulaciones en el programa desarrollado.

2. DEFINICIÓN DEL PROBLEMA

El presente trabajo se realiza con el fin de desarrollar un algoritmo para simular el patrón de radiación de antenas tipo parche rectangular, utilizando el método de diferencias finitas en el dominio del tiempo, a partir de los diagramas de radiación de la antena tomando los campos en zona lejana.

Este problema existe porque los trabajos que se han realizado con el FDTD en antenas parche tienen como principal interés determinar parámetros de antenas tipo parche como la impedancia de entrada del parche a partir de las pérdidas de retorno. Sin embargo, el cálculo del patrón de radiación se realiza empleando métodos como la transformación de campo cercano a campo lejano, esto implica que se debe trabajar en el dominio de la frecuencia. Así mismo se puede calcular el patrón de radiación a partir de la distribución de corrientes del parche, lo cual requiere de un trabajo matemático importante. Para obtener el patrón de radiación se plantea modelar la antena empleando un campo transversal eléctrico en una cavidad, para obtener los diagramas de radiación.

Los trabajos precedentes de simulaciones electromagnéticas con FDTD han sido realizados en plataformas de programación como C++ o Matlab, mas no en Wolfram Mathematica siendo este una herramienta con un lenguaje para desarrollo de fácil manejo, que permite realizar las gráficas de forma sencilla. Además para el campus universitario en la Universidad Pontificia Bolivariana de Bucaramanga se posee licencia.

3. OBJETIVOS

3.1.1 OBJETIVO GENERAL

Caracterizar el patrón de radiación de una antena tipo parche rectangular con el método numérico de diferencias finitas en el dominio del tiempo, para comparar el resultado obtenido del algoritmo desarrollado y el patrón de radiación del software de Lab-Volt.

3.1.2 OBJETIVOS ESPECÍFICOS

• Estudiar la información de los temas relacionados con el proyecto, consultando las bases de datos y libros.

• Construir el algoritmo para graficar el patrón de radiación mediante el software Wolfram Mathematica.

• Contrastar el patrón de radiación del modelo planteado con el adquirido con el equipo de Lab-Volt de la antena tipo parche lineal.

4. MARCO TEÓRICO Y ESTADO DEL ARTE

4.1 INTRODUCCION A LAS ANTENAS

4.1.1 DEFINICION DE LAS ANTENAS

Antena es una estructura que permita la transición entre el espacio libre y una línea de transmisión, transmitiendo y recibiendo energía; Por ello se tiene una antena receptora y una antena transmisora. Las antenas son capaces de direccionar dicha energía y es por esto que se pueden encontrar antenas de diversas formas y estructuras, ya sea un alambre conductor, una bocina, un parche, un reflector o incluso lentes.

Las antenas son de gran importancia, y son un elemento crítico en los sistemas de comunicación inalámbricos. Haciendo una analogía, "las antenas son para los sistemas de comunicaciones lo que los ojos son para el ser humano", esto aplica para una antena receptora ya que los ojos no pueden transmitir información, pero si pueden recibir información que serían las ondas electromagnéticas que componen la luz visible, por lo tanto tal analogía sería válida para las antenas receptoras más no para las transmisoras [1].

4.1.2 HISTORIA DE LAS ANTENAS

La evolución tecnológica de las antenas en los últimos años ha sido indispensable en la revolución de las comunicaciones inalámbricas.

La fundamentación teórica de las antenas se le atribuye a James Clerk Maxwell, quien en 1864 planteó las ecuaciones que llevan su nombre para explicar los fenómenos electromagnéticos. En 1886 Heinricht Hertz comprobó experimentalmente las ecuaciones de Maxwell, y en 1901 Guglielmo Marconi llevo a cabo la primera comunicación radial transatlántica [2].

El avance en el conocimiento del electromagnetismo ha facilitado que diferentes tipos de antenas se hayan diseñado y fabricado a través de los años, como lo fue en los años de 1920 con la antena Yagi-Huda. En la (figura 1) se puede observar una de estas antenas de este tipo.

Figura 1 Antena Yagi-Huda

4.1.3 TIPOS DE ANTENAS

Algunas de las diferentes formas y tipos de antenas se mostrarán con brevedad a continuación:

Las antenas de alambre son las más antiguas ya que pueden ser construidas por un alambre o un tubo conductor [2], de hecho fueron las primera utilizadas para realizar experimentos electromagnéticos. Este tipo de antena es muy común, la encontramos cotidianamente, ya sea en los automóviles, radios o edificios, y pueden tener diversas formas, ya sea un alambre recto, helicoidal, o en forma de lazo como se pueden ver en las figuras a continuación [1]: Antena tipo dipolo (figura 2), antena de alambre tipo lazo circular (figura 3), antena de alambre tipo helicoidal (figura 4) y antena bocina piramidal (figura 5).

Figura 2 Dipolo

Figura 3 Antena de alambre tipo lazo circular

Figura 4 Antena de alambre tipo helicoidal

Otro tipo de antenas son las de apertura, que son empleadas para trabajar a altas frecuencias y son muy utilizadas en la tecnología de comunicación aeronáutica.

En la (figura 5) se tiene una antena tipo bocina piramidal.

Figura 5 Bocina piramidal

También hay antenas reflectoras, por ejemplo la que tiene forma parabólica como se puede observar en la (figura 6), es empleada para transmitir y recibir información que atraviesa largas distancias hablando en términos de millones de kilómetros y suelen ser antenas de gran tamaño para poder obtener una ganancia.

Las antenas tipo parche son utilizadas para aplicaciones comerciales, y estas consisten en un parche metálico grabado sobre un sustrato. Este parche puede tomar diversas formas geométricas ya sea rectangular o circular, las cuales son las más populares debido a su fácil análisis y sus interesantes características radiactivas que se mostrará más adelante con mayor detalle.

En la práctica se puede llegar a obtener resultados cercanos a lo ideal, de acuerdo a las necesidades planteadas y es por ello que la variedad en diseño, geometría y forma permiten aprovechar las ventajas que cada tipo de antena nos ofrece [1].

4.2 ANTENAS TIPO PARCHE

Las antenas tipo parche consisten de un parche de metal grabado sobre la superficie de un sustrato, que por el otro lado tiene un plano de tierra, la (figura 6) ilustra de una mejor manera la estructura básica de este tipo de antena. El parche metálico puede asumir cualquier forma geométrica o arreglos de figuras

geométricas, pero los más comunes son los rectangulares y circulares debido a la sencillez en su análisis. Varios tipos de sustratos con diversas constantes dieléctricas han sido desarrollados, dichas propiedades se mostraran más adelante.

Figura 6 Configuración antena tipo parche¹

4.2.1 VENTAJAS Y LIMITACIONES

Tabla 1 Ventajas y limitaciones antena parche

VENTAJAS	DESVENTAJAS		
Son de bajo perfil.	Baja eficiencia.		
Pequeñas en tamaño y volumen.	Radiación espurea de alimentaciór		
Bajo costo de fabricación.	Alto Q.		
Versátil en frecuencia de resonancia	Pobre pureza de polarización.		
Pueden ser ventajas o desventajas dependiendo de la aplicación			
Baja potencia			
Ancho de banda angosto			

Algunas características pueden resultar deseables o indeseables de acuerdo a la utilidad de la antena, de la misma forma hay maneras para optimizar las características o minimizar los efectos no deseados de la antena mediante métodos de diseño.

¹ Ramesh, Garg. Microstrip Antenna design handbook. Artech House, 2001.

4.2.2 APLICACIONES

Inicialmente las antenas tipo parche fueron empleadas especialmente para fines militares, sin embargo dichas antenas están tomando importancia en el sector comercial debido a su bajo costo de manufactura. Dentro de las aplicaciones a resaltar se encuentran las comunicaciones satelitales, radares, radio altímetro, sensado remoto, telefonía celular, radiadores biomédicos, entre otros.

4.2.3 CONFIGURACIONES

Las configuraciones básicas se muestran en la (figura 7), las características radiativas son similares pese a la diferencia del parche [4], debido a que estas se comportan como un dipolo [3].

² Ramesh, Garg. Microstrip Antenna design handbook. Artech House, 2001.

Figura 8 Otras configuraciones de parches³

Semi Disk

Disk Sector

Elliptical Ring

Pentagon

H-Shape

Rectangular

Ring

Cross-Junction

Hexagonal with

Inner Circle

U-Shape

Rectangular with

Inner Circle

T-Shape

Ring Sector

Eccentric Circular Ring

L-Shape

Right-Angled Isosceles Triangle

Trapezoidal

Otras configuraciones se pueden observar en la (figura 8), estas se utilizan para aplicaciones específicas como por ejemplo, la antena parche en "H". En [5] se hace un análisis con el método de Diferencias Finitas en el Dominio del Tiempo, donde se muestran los efectos de variar ciertos parámetros que afectan la frecuencia de resonancia y el patrón de radiación como tal. Esto debido a que las antenas tipo parche rectangular a frecuencias por debajo de los 2 GHz tienden a aumentar el tamaño causando dificultad al momento de ser instalada la antena, para esto se proponen diferentes soluciones como utilizar un dieléctrico con constante elevada, pero esto trae efectos adversos [6]. Los primeros resultados experimentales que

10

³ Ramesh, Garg. Microstrip Antenna design handbook. Artech House, 2001.

muestran que la antena parche en "H", presenta una reducción considerable en el tamaño fueron obtenidos por [7].

4.2.4 ANTENA PARCHE RECTANGULAR

Como se mencionó, las antenas tipo parche circulares y rectangulares son las más básicas y más utilizadas, su análisis es relativamente simple y por esto cualquier nueva técnica analítica o numérica que sea propuesta para el análisis de antenas es estandarizada, aplicándola primero en estas geometrías básicas.

La configuración más sencilla es sin duda el parche rectangular y este se compone de tal parche metálico en forma rectangular de dimensiones $L \times W$, siendo L la longitud del parche y W el ancho del mismo. El parche se encuentra grabado sobre un sustrato de constante dieléctrica ε_r , de espesor o altura h, que a su vez esta sobre una superficie metálica denominada plano de tierra [1].

Figura 9 Antena parche rectangular⁴

Más adelante se mencionarán algunas consideraciones para tener en cuenta al momento de determinar las longitudes ya sea del parche como del sustrato, o incluso los diferentes coeficientes dieléctricos disponibles en diversos sustratos.

2.2.4.1 CARACTERISTICAS FISICAS DE LA ANTENA

2.2.4.1.1 SUSTRATO Para seleccionar el sustrato se debe tener en cuenta sus dimensiones físicas y su constante dieléctrica. Con un sustrato más grueso, además de ser mecánicamente más fuerte, este incrementa la potencia radiada, reduce las pérdidas del conductor y mejora la impedancia del ancho de banda. Sin embargo haría que la antena fuera más pesada y podría ser una desventaja

⁴ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

dependiendo de la aplicación, también aumentaría las perdidas por dieléctrico y las radiaciones no deseadas debido a la alimentación. La constante dieléctrica cumple un papel similar al del grosor del sustrato, disminuir la constante dieléctrica, equivale a aumentar el grosor del dieléctrico. En la (tabla 2) se muestran ciertos sustratos con sus constantes dieléctricas [3].

TIPO DE SUSTRATO	CONSTANTE DIELECTRICA ε _r
Panal	1.07
Duroid	2.32
Cuarzo	3.8
Alúmina	10

Tabla 2 Tipos de sustratos con su respectiva constante dieléctrica.

Una de las configuraciones que se han llevado a cabo para mejorar el ancho de banda y el patrón de radiación de las antenas tipo parche, se estudian en [8] donde se propone el método de Diferencias Finitas en el dominio del tiempo para el análisis de una antena tipo parche rectangular con sustrato multicapas, específicamente tres capas como se muestra en la (figura 10) (la capa del medio es aire y las alturas son iguales para cada capa), los resultados pueden verse en [8].

⁵ Mahmoud, Ahmed. N. FDTD analysis of patch antenna over a Multi-layer Substrate. IEEE Seventeenth national radio science conference, 2000.

2.2.4.1.2 EFECTOS DE W La medida en que el ancho *W* afecta el patrón de radiación no es mucha, pero este si afecta la impedancia de entrada del parche, a mayor tamaño, menor sería la impedancia de entrada. Un *W* grande incrementa la potencia radiada, el ancho de banda, y la eficiencia de radiación especialmente [3].

2.2.4.1.3 TIPOS DE ALIMENTACION Las formas de alimentar una antena tipo parche son principalmente por línea "microstrip" o por sonda coaxial a través del plano de tierra, sin embargo diversas técnicas se han desarrollado a partir de las anteriores pero con pequeños cambios para mejorar ciertos aspectos. Sin embargo, la consideración más importante es la transferencia de la potencia entre la estructura radiante y la fuente de alimentación, en pocas palabras la impedancia entre ambas partes. La importancia en el modelo de alimentación radica en que si no se modela correctamente, esta puede generar radiación indeseada que a su vez puede afectar el patrón de radiación [3].

En la siguiente tabla se podrán observar los diferentes tipos de alimentación y diversas características de cada tipo.

COMPARACION DE VARIOS TIPOS DE ALIMENTACION PARA ANTENAS TIPO PARCHE				
		TIPOS		
CARACTERISTICAS	Por sonda coaxial	Por línea "microstrip"	Por acoplamiento de apertura	Por acoplamiento de proximidad
Dificultad de Fabricación	Fácil	Fácil	Difícil	Mayor dificultad
Cantidad de Radiación espuria	Baja	Aumenta con el incremento del grosor del sustrato	Moderada	Baja
Dificultad de Modelar	Difícil de modelar especialmente para sustratos de $h < 0.02 \lambda$	Fácil	Fácil	Fácil
Ancho de banda	Bajo	Bajo (aprox. 2% a 5%)	Bajo	Mayor (aprox. 13%)

Tabla 3 Tipos de alimentación para antenas tipo parche⁶

2.2.4.1.4 MECANISMO DE RADIACION DE UNA ANTENA PARCHE El proceso radiativo de la antena inicia cuando se alimenta el parche por algún método de alimentación que se mencionará más adelante, esto hace que se establezca una distribución de cargas en la superficie superior e inferior del parche, así mismo sucede arriba del plano de tierra [3].

Debido a esto, unas densidades de corriente J_t (Densidad de corriente sobre el parche), y J_b (Densidad de corriente debajo del parche) son creadas por la fuerza de repulsión entre las cargas en los bordes del parche como se observa en la figura 11 [1].

⁶ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

Figura 11 Distribución de cargas y densidad de corriente en el parche⁷

Las distribuciones de voltaje y de corriente en los bordes del parche generan campos eléctricos en el interior del parche como lo muestra la (figura 12), la radiación se da a lo largo de W del parche.

Debido al tamaño del parche, surgen los efectos de borde, que son las líneas de campo salientes y entrantes en los bordes, estas tienen efectos importantes en el modelo de líneas de transmisión.

⁷ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

⁸ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

⁹ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

4.2.5 PATRÓN DE RADIACIÓN

"El patrón de radiación es una representación gráfica o una función matemática de las propiedades radiativas de una antena en función de coordenadas espaciales". A menudo el patrón de campo y el patrón de potencia son normalizados y son graficados en escala logarítmica para expresarlos en decibeles (dB), debido a que esta escala puede acentuar en aquellas partes del patrón que tiene valores muy pequeños. [1]

Gráficamente, el patrón de radiación está compuesto de lóbulos (lóbulo principal, lóbulos laterales, lóbulos menores y lóbulo trasero), en la figura 14 se pueden observar los diferentes lóbulos en tres dimensiones en coordenadas polares, mientras que en la figura 15 se tiene en coordenadas cartesianas [1].

Figura 14 Patrón de radiación en coordenadas polares¹⁰

¹⁰ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

Radiation intensity Half-power beamwidth(HPBW) First null beamwidth(FNBW) Major lobe + + Minor lobes HPBW Side lobe Back lobe FNBW π/γ 0 $\pi/2$ θ

Figura 15 Patrón de radiación en coordenadas cartesianas¹¹

Para antenas polarizadas los planos eléctricos y magnéticos son aquellos que contienen un vector de campo eléctrico o campo magnético que expresa la mayor potencia radiada respectivamente [1].

El espacio que rodea la antena se divide en tres regiones, denominadas campo cercano reactivo, campo cercano radiante (Fresnel), y campo lejano (Fraunhofer), estas se pueden visualizar en la (figura 16), donde D es la mayor dimensión física de la antena, y λ la longitud de onda.

¹¹ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

¹² Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

El campo cercano reactivo es la porción espacial inmediatamente más cercana que rodea la antena, la región de Fresnel es aquella que se encuentra en el intermedio de lo que se considera campo lejano y el campo cercano reactivo. La región que compete al patrón de radiación es la lejana o de Fraunhofer, y se considera campo lejano a distancias mayores o iguales a $2D^2/\lambda$, esto se cumple si $D > \lambda$ [1].

En cuanto a la densidad de potencia de radiación, esta es un término empleado para determinar la potencia relacionada con las ondas electromagnéticas, la cual es denominada mediante el vector de Poynting [1] que es el producto cruz entre el campo eléctrico y el campo magnético de una onda electromagnética ($\mathcal{W} = \mathcal{E} X \mathcal{H}$). En [1] se muestra que la densidad de potencia asociada a los campos electromagnéticos de una antena en campo lejano es predominantemente real.

El patrón de potencia de una antena es una medición en función de la dirección dada por el ángulo, del promedio de la densidad de potencia radiada por la antena a una distancia en campo lejano. También encontramos la intensidad de radiación que es un parámetro de campo lejano de las antenas y está relacionada con el campo eléctrico a tal distancia, así que se puede decir que el patrón de potencia es tomado de la intensidad de radiación [1].

4.3 METODO DEL FDTD

El método de diferencias finitas en el dominio del tiempo es una técnica para resolver las ecuaciones de Maxwell con ayuda de una computadora, fue desarrollado por *K.S.Yee* en el año de 1966 en [15]. Este método es una herramienta para realizar las simulaciones de fenómenos electromagnéticos, siendo este uno de los métodos más exitosos, lo que se reflejan la gran cantidad de publicaciones que se han realizado en revistas y libros. Algunas de las características más relevantes de este método son:

- Modelar geometrías arbitrarias.
- Incluir diferentes tipos de fuentes.
- La propagación es relativamente simple.
- Cálculos precisos.

Las diferencias finitas en el dominio del tiempo consisten, en la sustitución de las derivadas parciales de las ecuaciones de Maxwell, en las diferencias finitas centradas. Yee realizo la discretización del espacio-tiempo mediante una malla discreta que se muestra en la (figura 17); de esta forma las ecuaciones se transforman a forma algebraica. Para obtener el campo eléctrico o magnético en

uno de los nodos de la malla en un tiempo determinado, solo se deben de tener los valores del campo eléctrico o magnético en lo nodos adyacentes en un instante de tiempo anterior. Las condiciones iniciales parten de una excitación de una fuente. El método permite calcular los campos electromagnéticos en la región que se desee estudiar.

4.3.1 DIFERENCIAS FINITAS

El método de diferencias finitas consiste en realizar una aproximación de las ecuaciones diferenciales a unas ecuaciones en diferencias, obtenidas a partir de la serie de Taylor [10]. El resultado de las ecuaciones en diferencias forma un sistema de ecuaciones algebraicas. El desarrollo de la serie de Taylor de una función está dada por:

¹³ James, J R y Hall, P. S. Handbook of microstrip antennas, Peter Peregrinus, 1989.

$$U(x + \alpha \Delta x) = U(x) + \frac{\alpha \Delta x}{1!} \frac{dU(x)}{dx} + \frac{(\alpha \Delta x)^2}{2!} \frac{d^2 U(x)}{dx^2} + \dots + \frac{(\alpha \Delta x)^n}{n!} \frac{d^n U(x)}{dx^n} + \dots$$
(1)

Para la aproximación de la primera derivada utilizando diferencias finitas por la derecha tomando $\alpha = \frac{1}{2}$ obtenemos:

$$\frac{dU(x)}{dx} = \frac{U(x + \frac{\Delta x}{2}) - U(x)}{\frac{\Delta x}{2}} - \frac{1}{2!} \frac{\Delta x}{2} \frac{d^2 U(x)}{dx^2} - \frac{1}{3!} (\frac{\Delta x}{2})^2 \frac{d^3 U(x)}{dx^3} \dots$$
(2)

Agrupando los términos obtenemos,

$$\frac{dU(x)}{dx} = \frac{U(x + \frac{\Delta x}{2}) - U(x)}{\frac{\Delta x}{2}} + O(\Delta x)$$
(3)

El término $O(\Delta x)$ expresa las potencias de orden *n*. Si se supone que Δx es muy pequeño, de esta forma se puede despreciar $O(\Delta x)$, como resultado se obtiene la derivada de una función utilizando diferencias finitas.

$$\frac{dU(x)}{dx} \simeq \frac{U(x + \frac{\Delta x}{2}) - U(x)}{\frac{\Delta x}{2}}$$
(4)

Con la aproximación de la primera derivada utilizando diferencias finitas por izquierda tomando $\alpha = -\frac{1}{2}$ obtenemos:

$$\frac{dU(x)}{dx} = \frac{U(x) - U(x + \frac{\Delta x}{2})}{\frac{\Delta x}{2}} + \frac{1}{2!} \frac{\Delta x}{2} \frac{d^2 U(x)}{dx^2} - \frac{1}{3!} (\frac{\Delta x}{2})^2 \frac{d^3 U(x)}{dx^3} + \cdots$$
(5)

En su forma reducida tenemos,

$$\frac{dU(x)}{dx} = \frac{U(x) - U(x - \Delta x/2)}{\Delta x/2} + O(\Delta x)$$
(6)

Despreciando el término $O(\Delta x)$, al igual que en el caso anterior obtenemos,

$$\frac{dU(x)}{dx} \simeq \frac{U(x) - U(x - \frac{\Delta x}{2})}{\frac{\Delta x}{2}}$$
(7)

Las ecuaciones (4) y (7) son aproximaciones de la primera derivada y observamos que estas derivadas presentan un truncamiento de primer orden.

La aproximación de la primera derivada utilizando diferencias finitas centradas sumando las ecuaciones 4 y 7 es:

$$\frac{dU(x)}{dx} = \frac{U(x + \frac{\Delta x}{2}) - U(x - \frac{\Delta x}{2})}{\Delta x} - \frac{1}{3!} (\frac{\Delta x}{2})^2 \frac{d^3 U(x)}{dx^3} - \frac{1}{5!} (\frac{\Delta x}{2})^4 \frac{d^5 U(x)}{dx^5} - \cdots$$
(8)

En su forma reducida tenemos,

$$\frac{dU(x)}{dx} = \frac{U(x + \frac{\Delta x}{2}) - U(x - \frac{\Delta x}{2})}{\Delta x} + O(\Delta x^2)$$
(9)

Despreciando el termino $O(\Delta x)$, al igual que en los casos anteriores obtenemos,

$$\frac{dU(x)}{dx} \simeq \frac{U(x + \frac{\Delta x}{2}) - U(x - \frac{\Delta x}{2})}{\Delta x}$$
(10)

La ecuación (10) es la primera derivada mediante el uso de diferencias finitas centradas.

4.3.2 FORMULACIÓN DEL FDTD

Las ecuaciones de Maxwell describen la evolución en el tiempo y en el espacio del campo eléctrico y magnético. *K.S. Yee*, utiliza las ecuaciones en medios isotrópicos y realiza los siguientes cálculos.

Ley de Ampere,

$$\frac{\partial \vec{D}}{\partial t} - \nabla x \vec{H} = \vec{j} \tag{11}$$

Ley de Faraday,

$$\frac{\partial \vec{B}}{\partial t} + \nabla x \vec{E} = 0 \tag{12}$$

Ley de Gauss para el campo magnético,

$$\nabla . \vec{B} = 0 \tag{13}$$

Ley de Gauss para el campo eléctrico,

$$\nabla . \vec{D} = 0 \tag{14}$$

La relación entre densidad de flujo eléctrico y campo eléctrico en materiales dieléctricos lineales está dado por:

$$\vec{D} = \varepsilon \vec{E} = \varepsilon_0 \varepsilon_r \vec{E}$$
(15)

La relación entre inducción magnética y campo magnético para materiales magnéticos está dado por:

$$\vec{B} = \mu \vec{H} = \mu_r \mu_o \vec{H} \tag{16}$$

Donde

 \vec{H} Campo magnética.

 \vec{D} Densidad de flujo magnético.

 \vec{E} Campo electrico.

 \vec{B} Densidad de flujo magnético.

 \vec{J} Es la densidad de corriente electrica.

ε Permitividad eléctrica.

 ε_r Permitividad relativa.

 ε_0 Permitividad del espacio libre.

 μ Permeabilidad magnetica.

 μ_r Permeabilidad relativa.

 μ_0 Permeabilidad del espacio libre

Si tenemos que $\vec{H} = (H_X, H_Y, H_Z)$ si resolvemos el rotacional de \vec{H} tenemos,

$$\nabla x \vec{H} = \frac{\vec{\iota}}{\partial x} \frac{\vec{j}}{\partial y} \frac{\vec{k}}{\partial z} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right)\vec{\iota} + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right)\vec{j} + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right)\vec{k}$$
(17)
$$H_X H_J H_Z$$

Sustituyendo la expresión anterior en la ecuación (11) se obtiene,

$$\frac{\partial D_x}{\partial t} = \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - J_x$$
(18)

$$\frac{\partial D_y}{\partial t} = \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} - J_y$$
(19)

$$\frac{\partial D_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - J_z$$
(20)
Y realizando la misma sustitución en la ecuación (12) tenemos,

$$-\frac{\partial B_x}{\partial t} = \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}$$
(21)

$$-\frac{\partial B_y}{\partial t} = \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}$$
(22)

$$-\frac{\partial B_z}{\partial t} = \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}$$
(23)

Yee propuso un conjunto de ecuaciones en diferencias finitas para resolver las ecuaciones de Maxwell. Para ello divide una grilla de celdas cubicas en una región tridimensional.

$$(\mathbf{i}, \mathbf{j}, \mathbf{k}) = (\mathbf{i} \Delta \mathbf{x}, \mathbf{j} \Delta \mathbf{y}, \mathbf{k} \Delta \mathbf{z})$$
(24)

Para la función espacio tiempo se tiene,

$$F(i\Delta x, j\Delta y, k\Delta z, n\Delta t) = F^n(i, j, k)$$
(25)

El fundamento matemático de las diferencias finitas en el dominio del tiempo es el desarrollo de una función en serie de potencias, trabajo realizado por Taylor.

Las derivadas espaciales y temporales se reemplazan en una aproximación en diferencias finitas centradas ecuación (10).

Sustituyendo las ecuaciones de (18) a (23) en las diferencias finitas centradas se obtiene [9],

$$H_{x(i,j,k}^{n+\frac{1}{2}} = H_{xi,j,k}^{n-\frac{1}{2}} + \frac{\Delta t}{\mu\Delta z} \left(E_{yi,j,k}^{n} - E_{yi,j,k-1}^{n} \right) - \frac{\Delta t}{\mu\Delta y} \left(E_{zi,j,k}^{n} - E_{zi,j-1,k}^{n} \right)$$
(26)

$$H_{y\,i,j,k}^{n+\frac{1}{2}} = H_{y\,i,j,k}^{n-\frac{1}{2}} + \frac{\Delta t}{\mu\Delta z} \left(E_{z\,i,j,k}^{n} - E_{z\,i-1,j,k}^{n} \right) - \frac{\Delta t}{\mu\Delta y} \left(E_{z\,i,j,k}^{n} - E_{z\,i,j,k-1}^{n} \right)$$
(27)

$$H_{z\,i,j,k}^{n+\frac{1}{2}} = H_{z\,i,j,k}^{n-\frac{1}{2}} + \frac{\Delta t}{\mu\Delta z} \left(E_{x\,i,j,k}^{n} - E_{x\,i,j-1,k}^{n} \right) - \frac{\Delta t}{\mu\Delta y} \left(E_{y\,i,j,k}^{n} - E_{y\,i-1,j,k}^{n} \right)$$
(28)

$$E_{x\,i,j,k}^{n+1} = E_{x\,i,j,k}^{n} + \frac{\Delta t}{\varepsilon \Delta y} \left(H_{z\,i,j+1,k}^{n+\frac{1}{2}} - H_{z\,i,j,k}^{n+\frac{1}{2}} \right) - \frac{\Delta t}{\varepsilon \Delta y} \left(H_{y\,i,j,k+1}^{n+\frac{1}{2}} - H_{y\,i,j,k}^{n+\frac{1}{2}} \right)$$
(29)

$$E_{y\,i,j,k}^{n+1} = E_{y\,i,j,k}^{n} + \frac{\Delta t}{\varepsilon \Delta y} \left(H_{x\,i,j,k+1}^{n+\frac{1}{2}} - H_{x\,i,j,k}^{n+\frac{1}{2}} \right) - \frac{\Delta t}{\varepsilon \Delta y} \left(H_{z\,i+1,j,k}^{n+\frac{1}{2}} - H_{y\,i,j,k}^{n+\frac{1}{2}} \right)$$
(30)

$$E_{z\,i,j,k}^{n+1} = E_{z\,i,j,k}^{n} + \frac{\Delta t}{\varepsilon \Delta y} \left(H_{y\,i+1,j,k}^{n+\frac{1}{2}} - H_{y\,i,j,k}^{n+\frac{1}{2}} \right) - \frac{\Delta t}{\varepsilon \Delta y} \left(H_{y\,i,j+1,k}^{n+\frac{1}{2}} - H_{y\,i,j,k}^{n+\frac{1}{2}} \right)$$
(31)

Las ecuaciones de la (26) a la (31) son reescritas realizando un redondeo de índice enteros para poder realizar la implementación computacionalmente [10].

En la celda de la (figura 18) se encuentra la representación de cada uno de los vectores del campo eléctrico y magnético.

Figura 18 Componentes en la celda de Yee¹⁴

Las fórmulas obtenidas anteriormente en las ecuaciones (29) a (31), representan el algoritmo de Yee en tres dimensiones. Cuando se desea realizar simulaciones en dos dimensiones elegimos entre uno de los dos grupos de tres vectores, el transversal magnético que está compuesto por Ez, Hx y Hy o el transversal eléctrico que está compuesto por Ez, Ey y Hz [2].

4.3.3 TRANSVERSAL ELECTRICO

Para obtener el transversal eléctrico, los siguientes campos se igualan a cero:

$$H_{x} = H_{y} = 0 \ E_{z} = 0 \tag{34}$$

¹⁴ James, J R y Hall, P. S. Handbook of microstrip antennas, Peter Peregrinus, 1989.

Teniendo en cuenta las ecuaciones (15) y (16), y sustituyendo la ecuación (34) en las ecuaciones 18-23.

$$-\mu \frac{\partial H_z}{\partial t} = \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}$$
(35)

$$\frac{\partial H_z}{\partial y} = \varepsilon \frac{\partial H_x}{\partial t}$$
(36)

$$-\frac{\partial H_z}{\partial y} = \varepsilon \frac{\partial H_y}{\partial t}$$
(37)

Resolviendo estas ecuaciones en las diferencias finitas centradas obtenemos las siguientes tres ecuaciones:

$$H_{z\,i,j}^{n+\frac{1}{2}} = H_{z\,i,j}^{n-\frac{1}{2}} + \frac{\Delta\tau}{Z\Delta z} \left(E_{x\,i,j+1}^{n} - E_{x\,i,j}^{n} \right) - \frac{\Delta\tau}{Z\Delta y} \left(E_{y\,i,j}^{n} - E_{y\,i+1,j}^{n} \right)$$
(38)

$$E_{x\,i,j}^{n+1} = E_{x\,i,j}^{n} + Z \frac{\Delta \tau}{\Delta y} \left(H_{z\,i,j}^{n+\frac{1}{2}} - H_{z\,i,j}^{n+\frac{1}{2}} \right)$$
(39)

$$E_{y\,i,j}^{n+1} = E_{y\,i,j}^{n} - Z \frac{\Delta \tau}{\Delta y} \left(H_{x\,i,j,j}^{n+\frac{1}{2}} - H_{x\,i,j,j}^{n+\frac{1}{2}} \right)$$
(40)

4.3.4 TRANSVERSAL MAGNETICO

En el transversal magnético los siguientes campos se igualan a cero:

$$E_x = E_y = 0 \quad H_z = 0 \tag{41}$$

Teniendo en cuenta las ecuaciones (15) y (16), y sustituyendo la ecuación (34) en las ecuaciones (18)-(23).

$$-\varepsilon \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}$$
(42)

$$-\frac{\partial E_z}{\partial y} = \mu \frac{\partial H_x}{\partial t}$$
(43)

$$-\frac{\partial H_z}{\partial y} = \mu \frac{\partial H_y}{\partial t}$$
(44)

Resolviendo estas ecuaciones en las diferencias finitas centradas, obtenemos las siguientes tres ecuaciones,

$$E_{z\,i,j}^{n+1} = E_{z\,i,j}^{n} + \frac{\Delta t}{\varepsilon \Delta x} \left(H_{y\,i,j}^{n-\frac{1}{2}} - H_{y\,i,j}^{n-\frac{1}{2}} \right) - \frac{\Delta t}{\varepsilon \Delta y} \left(H_{x\,i,j}^{n-\frac{1}{2}} - H_{X\,i,j}^{n-\frac{1}{2}} \right)$$
(45)

$$H_{x\,i,j}^{n+\frac{1}{2}} = H_{x\,i,j}^{n-\frac{1}{2}} - \frac{\Delta\tau}{Z\Delta y} \left(E_{z\ i,j+1}^{n} - E_{z\ i,j}^{n} \right)$$
(46)

$$H_{y\,i,j}^{n+\frac{1}{2}} = E_{y\,i,j}^{n-\frac{1}{2}} + \frac{\Delta\tau}{Z\Delta x} \left(E_{x\ i+1,j}^{n} - E_{x\ i,j}^{n} \right)$$
(47)

4.3.5 CRITERIO DE ESTABILIDAD

Como se ha estudiado en distinto cursos, las ondas electromagnéticas no pueden ir más rápido que la velocidad de la luz en el espacio libre. Partiendo de este concepto, la elección del avance de tiempo para llegar a una solución estable, se realiza de la siguiente manera: si suponemos que una onda plana viaja por la celda de Yee, y los avances de tiempo son muy grandes, la onda atravesaría más de una celda causando un error en la simulación. Por tanto el criterio de estabilidad está dado por la ecuación (48), este estudio de estabilidad se profundiza más en [1].

$$\Delta t \leq \frac{1}{c\sqrt{\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} + \frac{1}{(\Delta z)^2}}}$$
(48)

Donde *c* es las velocidad de la luz en el espacio libre y $\Delta x, \Delta y, \Delta y$ son los incrementos en las distintas direcciones. Cuando se considera que la malla tiene iguales dimensiones, es decir $\Delta x = \Delta y = \Delta y = \Delta$ se obtiene la siguiente ecuación:

$$\Delta t \leq \frac{1}{c\sqrt{\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} + \frac{1}{(\Delta z)^2}}} = \frac{1}{c\sqrt{\frac{3}{\Delta^2}}} = \frac{\Delta}{c\sqrt{3}}$$
(49)

Para cuestiones de simulación se selecciona un valor entero aproximado a $\sqrt{3}$, por lo que se toma 2 [1].

$$\Delta t = \frac{\Delta}{2c} \tag{50}$$

4.3.6 CODICIONES DE FRONTERA ABSORBENTES

En la simulación de la propagación de los campos electromagnéticos en el espacio abierto existen problemas, ya que los computadores tienen limitaciones en el tamaño de sus memorias. Como solución se plantea truncar el dominio espacial, dividiendo el dominio en dos regiones (figura 19), una interna y otra externa. La región interior debe de ser lo suficiente grande para abarcar la región de interés. La región exterior simula el espacio infinito y es un espacio libre limitado que encierra la región interior por un conductor eléctrico perfecto. En la región interior se aplica el algoritmo FDTD [3]. En la región interior se simula la propagación de ondas. Sin embargo, se generan reflexiones en la región exterior, ya que está limitada por un conductor eléctrico perfecto. Estas reflexiones se deben suprimir a un nivel aceptable de manera que la solución FDTD sea válida para todos los pasos de tiempo [3].

Exterior Region	
	Interior Region Structure

La condición de frontera absorbente puede ser simulada de diversas maneras, Estos se clasifican en ABC analítico y material ABC. El material ABC realiza la absorción física de la señal incidente en un medio con pérdidas, mientras que el método ABC analítico es simulado mediante la aproximación de la ecuación de onda en el límite. Uno de los métodos más utilizados en la condición de absorción de frontera es la condición de capa perfectamente acoplada (PML) [3], el cual se explicará a continuación.

4.3.7 CONDICIONES DE CAPA PERFECTAMENTE ACOPLADA (PML)

Berenguer en el año de 1994 en [12], propone una condición de frontera absorbente para el método de FDTD en dos dimensiones, este método es llamado "condición de capa perfectamente acoplada (PML) para la absorción de las ondas electromagnéticas". Esta técnica se basa en la utilización de una capa absorbente, donde el medio es diseñado para absorber sin reflexión las ondas electromagnéticas de cualquier frecuencia y en cualquier ángulo de incidencia.

Analíticamente existen ABC (*Absorbing Boundary Conditions*) como las de Mur [13] y Lio [14], que presentan coeficientes de reflexión entre de -35 dB a -45 dB para la mayoría de las simulaciones del FDTD.

¹⁵ Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

Estas técnicas fueron reemplazadas por la técnica del PML, la cual es mucho más sofisticada, donde se tienen coeficientes de reflexión entre los -70dB. Esta técnica es utilizada en simulaciones con cámaras anecoicas, donde implica que se deben de anular todas las fuentes de ruido computacional con amplitudes muy pequeñas.

Las ecuaciones de un medio PML para el transversal eléctrico, en coordenadas cartesianas, implican tres componentes E_x , $E_y y H_z$. Cuando se considera un medio con conductividad eléctrica σ y conductividad magnética σ^* las ecuaciones se pueden escribir como [12],

$$\varepsilon_o \frac{\partial E_x}{\partial t} + \sigma E_x = \frac{\partial H_z}{\partial y}$$
(51)

$$\varepsilon_o \frac{\partial E_y}{\partial t} + \sigma E_y = -\frac{\partial H_z}{\partial x}$$
(52)

$$\mu_{o}\frac{\partial H_{z}}{\partial t} + \sigma^{*}H_{z} = -\frac{\partial E_{x}}{\partial y} - \frac{\partial E_{y}}{\partial x}$$
(53)

Si consideramos,

$$\frac{\sigma}{\varepsilon_o} = \frac{\sigma^*}{\mu_o} \tag{54}$$

se satisface que entonces, la impedancia de este medio es igual a la del vacío y no existirá ninguna reflexión cuando una onda plana se propague normalmente a través de una interface entre el medio y el vacío.

El PML específica de forma más directa las pérdidas y acoplamientos de impedancia al romper el componente magnético H_z en dos subcomponentes que se denotan como $H_{zx} y H_{zy}$, con este nuevo concepto las ecuaciones se reescriben de la siguiente manera:

$$\varepsilon_o \frac{\partial E_x}{\partial t} + \sigma_y E_x = \frac{\partial (H_{zx} + H_{zy})}{\partial y}$$
(55)

$$\varepsilon_o \frac{\partial E_y}{\partial t} + \sigma_x E_x = \frac{\partial (H_{zx} + H_{zy})}{\partial x}$$
(56)

$$\mu_{o}\frac{\partial H_{zx}}{\partial t} + \sigma_{x}^{*}H_{zx} = -\frac{\partial E_{y}}{\partial x}$$
(57)

$$\mu_{o}\frac{\partial H_{zy}}{\partial t} + \sigma_{y}^{*}H_{zx} = -\frac{\partial E_{x}}{\partial y}$$
(58)

Donde los parámetros $\sigma_x y \sigma_y$ representan la conductiva eléctrica y $\sigma_x^* y \sigma_y^*$ representan las perdidas magnéticas [12].

Como primera observación cuando suponemos que $\sigma_x^* = \sigma_y^*$, las dos últimas ecuaciones se pueden combinar y se reduce a un conjunto de tres ecuaciones con tres componentes E_x , E_y y $H_z = H_{zx} + H_{zy}$.

También se pueden realizar otras suposiciones como por ejemplo:

- Si $\sigma_x = \sigma_y = \sigma_x^* = \sigma_y^* = 0$ las ecuaciones de Maxwell se reducen a las ecuaciones en el vacío.
- Si $\sigma_x = \sigma_y y \sigma_x^* = \sigma_y^* = 0$ se reducen a las ecuaciones de un medio eléctricamente conductor.
- Si $\sigma_x = \sigma_y y \sigma_x^* = \sigma_y^*$ se reduce a un medio absorbente que es acoplado en impedancia para ondas planas incidentes.

Si tenemos $\sigma_y = \sigma_y^* = 0$ el medio PML puede absorber una onda plana que tiene componentes de campo (E_y, H_{zx}) , propagándose a lo largo del eje x, pero no absorbe una onda que tiene componentes de campo (E_x, H_{zy}) , que se propagan a lo largo del eje y, esto es regido en el primer caso por las formulas (51), (52), (53) y (54). En el segundo caso por las formulas (55), (56), (57) y (58) [12].

Realizando la discretización en diferencias finitas centradas y al hacer el redondeo de índice enteros para poder realizar la implementación computacionalmente. Las ecuaciones son:

$$H_{zx}\Big|_{ij}^{n} = H_{zx}\Big|_{ij}^{n-1} - \frac{\Delta t}{\Delta \mu} \Big[E_{y} \Big|_{i+1,j}^{n-1} - E_{y} \Big|_{ij}^{n-1} \Big]$$
(59)

$$H_{zy} \Big|_{i,j}^{n} = H_{zy} \Big|_{i,j}^{n-1} e^{-(\frac{\sigma_{y(i,j)}^{*}}{\mu_{(i,j)}}\Delta t)} - \frac{\left(1 - e^{-\left(\frac{\sigma_{y(i,j)}^{*}}{\mu_{(i,j)}}\Delta t\right)}\right)}{\sigma_{y(i,j)}^{*}\Delta} \Big[E_{x} \Big|_{i,j+1}^{n-1} - E_{x} \Big|_{i,j}^{n-1}\Big]$$
(60)

$$E_{x} \Big|_{i,j+1}^{n} = E_{x} \Big|_{i,j+1}^{n-1} e^{-\left(\frac{\sigma_{y(i,j+1)}}{\varepsilon_{(i,j+1)}}\Delta t\right)} - \frac{\left(1 - e^{-\left(\frac{\sigma_{y(i,j+1)}}{\varepsilon_{(i,j+1)}}\Delta t\right)}\right)}{\sigma_{y(i,j+1)}\Delta} \Big[H_{zx} \Big|_{i,j+1}^{n} - H_{zx} \Big|_{i,j}^{n} + H_{zy} \Big|_{i,j+1}^{n} - H_{zy} \Big|_{i,j}^{n}\Big] \quad (61)$$

$$E_{y}\Big|_{i+1,j}^{n} = E_{y}\Big|_{i+1,j}^{n-1} - \frac{\Delta t}{\Delta \varepsilon} \Big[H_{zx} \Big|_{i+1,j}^{n} - H_{zx} \Big|_{i,j}^{n} + H_{zy} \Big|_{i+1,j}^{n} - H_{zy} \Big|_{i,j}^{n} \Big]$$
(62)

En el diagrama de la (figura 20) se observa cómo se aplica la técnica del PML utilizando el FDTD, cuando se trabaja en dos dimensiones, como se puede observar el dominio está rodeado de las capas del PML, como lo denomina Berenguer, la capa final está regida por condiciones de conductor eléctrico perfecto [12].

Figura 20 Diagrama de la aplicación del PML en el FDTD¹⁶

Los lados derecho e izquierdo del dominio están compuestos por capas de medios PML absorbentes del tipo ($\sigma_x, \sigma_x^*, 0, 0$) con esto, las interfaces entre el vacío y las capas del PML AB y CD, el factor de reflexión es teóricamente nulo. Las ondas salientes se pueden propagar sin reflejarse a través de AB y CD. De la misma manera se utilizan medios acoplados del tipo ($0, 0, \sigma_y, \sigma_y^*$) en los lados inferiores y superiores, así la onda saliente puede propagarse sin reflexión a través de las interfaces BC y DA. En las esquinas del mallado existe un material PML tipo ($\sigma_x, \sigma_x^*, \sigma_y, \sigma_y^*$), siendo las conductividades en *x* iguales a las de *y*, puesto que las esquinas es la superposición de los medios existentes [12].

¹⁶ James, J R y Hall, P. S. Handbook of microstrip antennas, Peter Peregrinus, 1989.

Sin tener ninguna reflexión, se indica por medio de la ley de Snell-Descartes que la velocidad de la propagación de la onda en la capa PML es igual a la de la velocidad de la luz en el vacío.

Berenguer propone que a medida que la profundidad (ρ) aumentan las pérdidas dentro de la capa PML en función de:

$$\sigma(\rho) = \sigma_{max} \left(\frac{\rho}{\delta}\right) \tag{63}$$

Donde δ es el grosor del PML y σ es cada $\sigma_x o \sigma_y$.

Proporcionando un factor de reflexión de PML dado por la siguiente ecuación:

$$R(\theta) = e^{-2(\frac{\sigma Cos\theta}{\varepsilon_0 c})\delta}$$
(64)

Este parámetro se puede reducir si hacemos,

$$R(\mathbf{0}) = e^{-2(\frac{\sigma}{\varepsilon_0 c})\delta}$$
(65)

5. ANTECEDENTES

El primer trabajo realizado donde se emplea el método de diferencias finitas en el dominio del tiempo, sobre antenas tipo parche fue de Alain Reineix y Bernard Jecko, en 1989 [23], quienes realizaron un análisis de antenas Microstrip tipo parche empleando el método de diferencias finitas en el dominio del tiempo, para obtener los parámetros relevantes de una antena parche, que dependen de la frecuencia de resonancia como la impedancia de entrada y el patrón de radiación a partir la distribución de corriente en el parche.

En 1990, David M. Sheen, lleva a cabo un trabajo parecido al de Reinex, a diferencia que realiza un análisis para circuitos microstrip planares empleando el método de Diferencias Finitas en el dominio del tiempo en 3 dimensiones [9]. Su trabajo se basa en emplear el FDTD para analizar configuraciones microstip planares complejas, y obtener parámetros como la impedancia de entrada.

Shum y Luk, calculan el patrón de radiación de una antena tipo parche de anillo empleando una transformación de campo cercano a campo lejano del FDTD [25], empleando el algoritmo de Goertzel. El trabajo se enfoca en obtener el patrón de radiación a partir de información de campo cercano, pero para poder obtenerlo, se debe pasar del dominio del tiempo al dominio de la frecuencia, para tener un eficiente uso del recurso de memoria.

S. Gao y J. Li en 1999 realizan un análisis para antenas parche de tamaño reducido y frecuencia dual, empleando el método de diferencias finitas en el dominio del tiempo [24], para calcular la impedancia de entrada del parche, y el patrón de radiación mediante el cálculo de la distribución de corriente en el parche.

Ahmed Mahmud en 2001 [8], emplea el FDTD para el análisis de una antena parche rectangular en un sustrato dieléctrico anisotrópico. Se determinan las pérdidas de retorno, la impedancia de entrada y el patrón de radiación mediante transformación de campo cercano a campo lejano.

Los antecedentes muestran que el FDTD es aplicado ampliamente en determinar la impedancia de entrada de las antenas tipo parche, sin embargo también para calcular el patrón de radiación de las antenas, pero empleando técnicas como la transformación de campo cercano a campo lejano (pasando al dominio de la frecuencia), o el método de equivalencias para calcular la distribución de corriente sobre el parche.

6. METODOLOGÍA

Inicialmente, se creó una base de datos que comprendía artículos científicos, libros de proyectos de grado, y literatura que proporcionara información acerca del método de diferencias finitas en el dominio del tiempo y las antenas tipo parche para posteriormente discriminar la información que sería de mayor utilidad, esto tomó una parte importante del tiempo empleado en el proyecto ya que el conocimiento en las antenas parche era muy básico, y el del método de diferencias finitas en el dominio del tiempo era nulo.

Estudiando la información obtenida, se estableció el estado del arte en cuanto a los trabajos realizados en antenas parche empleando el método de diferencias finitas en el dominio del tiempo para proceder a estudiar y entender el FDTD, y saber de qué manera se iba a encaminar el proyecto, ya conociendo los antecedentes y cuál sería el aporte. De aquí se obtuvo valiosa información que sirvió para dar un primer paso en el desarrollo del algoritmo, que fueron las simulaciones de propagación electromagnética que ofrece [1] en Matlab.

Partiendo de una simulación de [1] que emplea el FDTD para obtener los diagramas de radiación de una antena "Horn" en transversal eléctrico, se propone modelar una antena parche con las dimensiones de la antena que proporciona el equipo de Lab-Volt, en lugar de la antena "Horn" y Wolfram Mathematica en lugar de Matlab.

Para determinar qué técnica de condición de bordes absorbentes (ABC's) utilizar se revisaron los métodos existentes y según [8], la técnica que ofrece mejores resultados es la de capas perfectamente acopladas (PML), por consiguiente se procede a utilizar este método en el algoritmo.

Para obtener el patrón de radiación se tenían varios métodos ya trabajados en diversos artículos y literatura, como por ejemplo partir de la distribución de corriente en el parche para calcular el patrón de radiación, o empleando una transformación de campo cercano a campo lejano en el dominio de la frecuencia, sin embargo la forma que se planteó fue calcularlo a partir de los diagramas de radiación con el concepto de la distancia de Fraunhofer o zona lejana.

En el desarrollo del algoritmo, para la selección del tamaño de la grilla de simulación se debió tener en cuenta el tamaño de la antena para estar seguros que el campo lejano aun estuviera dentro del dominio de simulación propuesto, sin que este fuera demasiado grande ya que se necesitaría mayor recurso de memoria para llevar a cabo las simulaciones.

Finalizada la implementación del algoritmo en Wolfram Mathematica, después de mejorarlo prueba tras prueba específicamente en el tamaño de la grilla o dominio de simulación, se procede a obtener el patrón de radiación del equipo de Lab-Volt,

para comparar los resultados obtenidos de la simulación de Wolfram Mathematica, con los del equipo de Lab-Volt.

Para hacer el análisis respecto a la comparación entre los dos patrones obtenidos, se propone tomar la información concerniente al ancho de banda de potencia mitad, y calcular la desviación estándar y la media de la diferencia entre el patrón de radiación simulado y el patrón de radiación adquirido con Lab-Volt.

7. DISEÑO DEL ALGORITMO

Se realizó un estudio sobre las antenas tipo parche, mecanismos de radiación, tipos de alimentación y el método de diferencias finitas en el dominio del tiempo, el cual es la base del desarrollo de este proyecto. A partir de la información obtenida en diversas fuentes, se desarrolló un código en Wolfram Mathematica que simulara un parche rectangular radiando, para poder obtener su patrón de radiación.

A continuación se muestra en un diagrama de flujo el algoritmo diseñado.

Figura 21 Inicio del algoritmo

Figura 22 Declaración de variables de la grilla

```
(*Declaracion de variables*)
npmls = 10; (*Numero de capas del Pml*)
(*Medidas de la grilla*)
ie = 400; (*Altura de la Grilla*)
ib = ie+1;
ic = ie/2; (*Centro de la grilla para ubicar la antena(vertical) *)
ip = ie - npmls; (*Limites de region PML (vertical)*)
je = 400; (*Ancho de la Grilla*)
jb = je+1;
jc = je/2; (*Centro de la grilla para ubicar la antena (horizontal)*)
jp = je - npmls; (*Limites de region PML (horizontal)*)
```

El primer paso del algoritmo es definir la grilla de simulación junto con las capas PML, para esto se emplean las variable que representan el largo y ancho de la grilla que son ie y je, en este caso se construye un dominio de 400 celdas de largo por 400 celdas de ancho respectivamente, las cuales son suficientes para obtener los campos radiados por la antena a la distancia de Fraunhofer.

Figura 23 Declaración de las constantes físicas del medio

Figura 24 Declaración de las constantes

```
(*Constantes fisicas del Medio*)
muo = (4 * Pi) * 10^-9
                            (*Permeabilidad en el espacio libre dada cm*)
                            (*Permitividad en el espacio libre dada cm*)
epso = 8.854 * 10^ - 14
co = 1.0 / Sqrt[muo * epso]
                            (*Velocidad de la luz en el espacio libre cm/s*)
                            (*impedancia de la onda en el espacio libre*)
aimp = Sqrt[muo/epso]
freg = 10^{10}
                            (*Frecuencia de funcionamiento*)
lambda = co/freq
                            (*Longitud de onda*)
dx = lambda / 29.0
                            (*tamaño de cada celda celda*)
dt = dx / (co \star 2.0)
                            (*tamaño del paso del tiempo*)
```

El segundo paso es asignar los valores a las variables físicas del medio a simular, ya sea la constante del dieléctrico, la permeabilidad magnética, la permitividad del vacío, la velocidad de la luz en el vacío, y la frecuencia de operación de la antena $(\lambda = C/f)$.

Las dimensiones de cada celda se toman de igual tamaño, para facilitar los cálculos, aunque si se tomará de diferente tamaño, podría tenerse una descripción de la antena mucho más detallada. La dimensión Δx se calcula de tal manera que sea mucho menor que la longitud de onda, en este caso se multiplicó por un factor de $\frac{1}{20}$, para obtener un $\Delta x = 0.1033 \ cm$.

Según el criterio de estabilidad, en dos dimensiones, $\Delta t = \frac{\Delta x}{2c}$ debe ser mucho menor que Δx , ya que las ondas no pueden ser más rápidas que la velocidad de la luz en el vacío.

Figura 25 Declaración de las constantes físicas de la antena


```
(*Constantes fisicas de la antena*)
epse = 4.5; (*Constante del dielectrico (va de 2.2 a 10*)
w = 14; (*1.3 cm longitud del parche*)
longpt = 48; (*4.8 cm longitud plano tierra*)
h = 1; (*0.1 cm altura del dieléctrico*)
```

Las dimensiones de la antena son las medidas de la antena tipo parche del equipo de Lab-Volt como lo muestran las (figuras 27 y 28).

Figura 27 Dimensiones de w de la antena parche

Figura 28 Dimensiones del plano de tierra y el dieléctrico

Cada unidad representa 0.1 cm, por lo tanto se tomaron las medidas dadas en el código de la figura 26.

Figura 29 Inicialización de las matrices de campos


```
(*Inicializacion de las matrices de campo*)
(*Campo electrico en X*)
ex = Array[0 &, {ie, jb}];
caex = Array[1 &, {ie, jb}];
cbex = Array[(dt/epso/dx) &, {ie, jb}];
(*dielectrico de altura h *)
For[k = ic, k ≤ ic + h, k++,
For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, cbex[[k, m]] = dt/epso/epse/dx]];
```

En la (figura 30) que hace alusión a la inicialización de las matrices del campo eléctrico, se crean tres arreglos, uno para la propagación del campo eléctrico en x, otro para la condición de bordes, en este caso PML, que más adelante se explicará, y otro arreglo para la descripción del medio.

Para definir el dieléctrico, se asigna al arreglo "cbex" que representa los coeficientes de dieléctrico $cbex = \frac{\frac{dt}{epso}}{dx}$. Lo mismo se hace para los arreglos de campo eléctrico en y, y los campos magnéticos en x y y como se ve en la (figuras 31, 32 y 33). Figura 31 Inicialización de las matrices del campo Ey

```
(*Campo electrico en Y*)
ey = Array[0 &, {ib, je}];
caey = Array[1 &, {ib, je}];
cbey = Array[(dt/epso/dx) &, {ib, je}];
(*dielectrico*)
For[k = ic, k ≤ ic + h, k++,
    For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, cbey[[k, m]] = dt/epso/epse/dx]];
```

Figura 32 Inicialización de las matrices del campo Hz en X

```
(*Campo Magnetico en X*)
hz = Array[0 &, {ie, je}];
hzx = Array[0 &, {ie, je}];
dahzx = Array[1 &, {ie, je}];
dbhzx = Array[(dt/muo/dx) &, {ie, je}];
(*dielectrico*)
For[k = ic, k ≤ ic + h, k++,
    For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, dbhzx[[k, m]] = dt/muo/epse/dx]];
```

Figura 33 Inicialización de las matrices del campo Hz en Y

```
(*Campo Magnetico en Y*)
hzy = Array[0 &, {ie, je}];
dahzy = Array[1 &, {ie, je}];
dbhzy = Array[(dt/muo/dx) &, {ie, je}];
(*dielectrico*)
For[k = ic, k ≤ ic + h, k++,
    For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, dbhzy[[k, m]] = dt/muo/epse/dx]];
```

Figura 34 Declaración de constantes del pml

Figura 35 Declaración constantes del PML

Se define la profundidad o grosor δ de la capa con "pmldepth", habiendo definido al inicio del código "npmls" como el número de capas para el PML.

Se propone un factor o coeficiente de reflexión pequeño "R0" (*R*), y de la ecuación 66 se despeja "sigmax", que hace referencia a la máxima conductividad.

De la ecuación (54) se despeja σ^* ("rhomax"), para obtener la conductividad magnética.

Figura 36 Asignación de las variables sig y rho en las capas del pml

Figura 37 Asignación de la variable sig y rho

```
(*Se asigna el valor de sig y rho a cada capa del PML*)
For[m = 1, m ≤ npmls, m++,
sig[m] = sigmax * ((m - 0.5) / (npmls + 0.5)) ^2;
rho[m] = rhomax * (m / (npmls + 0.5)) ^2];
```

En dos vectores se almacenan los valores de conductividad eléctrica y conductividad magnética "sig[m]" y "rho[m]" respectivamente.

Figura 38 Determinación de las constantes de reflexión

Figura 39 Coeficientes PML

```
(* Coeficientes PML*)
For [m = 1, m ≤ npmls, m++,
    re = sig[m] * dt/epso;
    rm = rho[m] * dt/muo;
    ca[m] = Exp[-re];
    cb[m] = - (Exp[-re] - 1.0) / sig[m] / dx;
    da[m] = Exp[-rm];
    db[m] = - (Exp[-rm] - 1.0) / rho[m] / dx];
```

Cada valor de la conductancia eléctrica y conductancia magnética son asignados al coeficiente de reflexión eléctrica y magnética respectivo a cada lado del dominio de simulación como se puede ver en la (figura 20) del diagrama de simulación.

Figura 40 Pml en el campo Ex

Figura 41 PML izquierda Ex

Se asignan los coeficientes del PML a los arreglos "caex", y "cbex" para las capas en el segmento izquierdo de la grilla de simulación. En la (figura 42) se puede observar las capas PML al lado izquierdo con la franja gris en degradé, debido a que la conductividad va aumentando exponencialmente.

Figura 42 Matriz CAEX con acercamiento en PML izquierdo

Para cada borde en cada una de las matices de campo se realiza el procedimiento anterior, variando los límites, como se ve en las (figuras 43, 44 y 45).


```
(*PML derecho Ex*)
For[i = 2, i ≤ ie, i++,
For[j = jp+1, j ≤ je, j++,
    m = j - jp;
    caex[[i, j]] = ca[m];
    cbex[[i, j]] = cb[m]];]
ArrayPlot[caex]
ArrayPlot[cbex]
```

Figura 44 PML Superior e inferior campo Ey

```
(*PML Superior e inferior campo EY*)
For[j = 2, j ≤ je, j++,
For[i = 2, i ≤ npmls + 1, i++,
    m = npmls + 2 - i;
    caey[[i, j]] = ca[m];
    cbey[[i, j]] = cb[m]];]
For[j = 2, j ≤ je, j++,
For[i = ip+1, i ≤ ie, i++,
    m = i - ip;
    caey[[i, j]] = ca[m];
    cbey[[i, j]] = cb[m]];]
```

Figura 45 PML izquierda y derecha campo Hzy

```
(*PML izquierda y derecha campo Hzy*)
For[i = 2, i \le ie, i++,
 For j = 1, j \le npmls, j + +,
   m = npmls + 1 - j;
   dahzy[[i, j]] = da[m];
   dbhzy[[i, j]] = db[m]];]
For [i = 2, i \le ie, i++,
 For[j = jp + 1, j \leq je, j++,
   m = j - jp;
   dahzy[[i, j]] = da[m];
   dbhzy[[i, j]] = db[m]];]
(*PML superior e inferior campo Hzx*)
For[j = 2, j ≤ je, j++,
 For[i = 1, i \le npmls, i + +,
   m = npmls + 1 - i;
   dahzx[[i, j]] = da[m];
   dbhzx[[i, j]] = db[m]];]
For[j = 2, j ≤ je, j++,
 For[i = ip + 1, i \le ie, i + +,
   m = i - ip;
   dahzx[[i, j]] = da[m];
   dbhzx[[i, j]] = db[m]];
```

Los arreglos tendrán los coeficientes asignados del PML en los bordes del dominio de simulación, el resto de estos estarán conformados por unos. A continuación se construirán el parche y el plano de tierra como un PEC (conductor perfecto).

Figura 46Coeficiente PEC de la antena

```
(*coeficientes PEC de la antena*)
(*parche*)
For[m = jc - w/2, m ≤ jc + w/2, m++, caey[[ic - 1, m]] = -1]
For[m = jc - w/2, m ≤ jc + w/2, m++, cbey[[ic - 1, m]] = 0]
(*plano tierra*)
For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, caey[[ic + h + 1, m]] = -1]
For[m = jc - longpt/2, m ≤ jc + longpt/2, m++, cbey[[ic + h + 1, m]] = 0]
```

Figura 47 Matriz antena parche rectangular

Haciendo un acercamiento de la (figura 47), se observan las partes de la antena, el parche en la parte superior, el dieléctrico en parte media y en la parte inferior el plano de tierra.

Figura 48 Antena parche

Figura 49 Iteraciones de los campos electromagnéticos

Figura 50 Declaración del número de iteraciones

```
nmax = 600;(*Numero de Iteraciones*)
(*Iteraciones temporales*)
For[n = 1, n ≤ nmax, n++, Print[n];
```

Se realizan 600 iteraciones para la actualización de los campos tanto eléctricos como magnéticos como se ve en la (figura 50).

Figura 51 Declaración de campo Ex

De las ecuaciones (38), (39) y (40) se obtienen los campos para ser actualizados en cada iteración, la (figura 51) corresponde al código para la actualización del campo eléctrico en x. De igual manera se hace la actualización para el campo eléctrico en y (figura 52), así mismo para el campo magnético (figura 56).

Figura 52 Declaración de campo Ey

```
(*Campo Ey*)
ey[[2;; ie, 1;; je]] =
  caey[[2;; ie, 1;; je]] * ey[[2;; ie, 1;; je]] +
    cbey[[2;; ie, 1;; je]] * (hz[[1;; ie-1, 1;; je]] -
        hz[[2;; ie, 1;; je]]);
```

Figura 53 Declaración de la fuente de alimentación

```
(*Fuente puntual emitiendo excitacion
    cosenoidal modulada exponencialmente en el inicio*)
ey[[ic-1, jc]] = (1.0 - Exp[-((n/20.0)^2)]) * aimp * Cos[2.0 * Pi * freq * n * dt];
```

El campo magnético Hz se construye a partir de los campos Hzx y Hzy, que a su vez son conformados por los campos eléctricos debido al transversal eléctrico. En las figuras siguientes se observan del código para tal tarea. (Figuras 54 y 55).

Figura 54 Declaración del campo Hzx

```
(*Campos magneticos*)
(*Campo Hzx*)
hzx[[1;; ie, 1;; je]] =
  dahzx[[1;; ie, 1;; je]] * hzx[[1;; ie, 1;; je]] +
  dbhzx[[1;; ie, 1;; je]] * (ey[[1;; ie, 1;; je]] -
      ey[[2;; ib, 1;; je]]);
```

Figura 55 Declaración del campo Hzy

```
(*Campo Hzy*)
hzy[[1;; ie, 1;; je]] =
  dahzy[[1;; ie, 1;; je]] * hzy[[1;; ie, 1;; je]] +
    dbhzy[[1;; ie, 1;; je]] * (ex[[1;; ie, 2;; jb]] -
        ex[[1;; ie, 1;; je]]);
```


Figura 57 Calcula de la distancia de Franunhofer

Figura 58 Declaración de la distancia de Fraunhofer

Para el cálculo de la distancia de Fraunhofer, se toma la mayor dimensión física de la antena, en este caso el plano de tierra ("longpt") y se calcula la distancia R para tomar los campos a dicha distancia.

Figura 59 Transformación de coordenadas

Figura 60 Definición de T e inicialización de k y phi

Para tomar los campos a la distancia de Fraunhofer, se calcula "R", y se inicializan "k" y "phi" que representan el número de datos referentes al ángulo.

El periodo del campo "T" se calcula para establecer un rango en el cual se captarán los valores más altos de campo eléctrico.

Figura 61 Transformación a coordenadas polares

En la (figura 61) se realiza la transformación de coordenadas cartesianas a coordenadas polares, esto para hallar el campo lejano.

Figura 62 Inicialización de arreglos

En la (figura 62) se inicializan los vectores ephi, exff y eyff donde se almacenaran los campos lejanos.

Figura 63 Inicialización de arreglos

A continuación se emplea un For que va de cero a 360°, en incrementos de 1° para obtener los campos a un radio determinado como lo muestra la (figura 65).

Figura 64 Incremento de ángulo

Figura 65 Campo lejano

Figura 66 Determinación del campo lejano

En el proceso anterior se obtiene un vector con los mayores valores de los campos eléctricos circundantes a una distancia "R".

Finalmente se procede a calcular el patrón de radiación:

Figura 67 Inicialización de arreglos

Para determinar el patrón de radiación se parte del vector que contiene los campos eléctricos "ephi", para normalizarlo.

Figura 68 Inicialización de arreglos

"ephiNorm" representa el vector que contiene los valores de campo eléctrico normalizados alrededor de la antena. Para normalizarlos se emplea el proceso que se mostrará a continuación.
Para hacer el cálculo del patrón de radiación se toma el campo eléctrico lejano, y así calcular el vector de Poynting que es la cantidad de potencia radiada por una onda electromagnética, se normaliza y se obtiene el patrón de potencia de la antena, y el patrón de potencia en dB.

Para hallar el máximo valor se emplea un "For", y dentro de este un "if", que vaya comparando el valor mayor de momento con el valor evaluado, si el valor evaluado "ephi[[i,1]]" es mayor, este valor es asignado a "maxephi", al final del ciclo "For" se obtendrá el máximo valor del vector.

Figura 69 Cálculo del máximo valor de maxephi

14 15 For $[k = 1, k \le 362, k++,$ ephiNorm[[k, 1]] = ephi[[k, 1]] / maxephi; vectorPoynting[[k, 1]] = ((epso $\star co) / 2$) \star ((ephi[[k, 1]]) 2); 15 maxpoynting = vectorPoynting[[1, 1]]; For[j = 2, j \leq 362, j++, 16 NO If[maxpoynting < vectorpoynting[[j, 1] SI maxpoynting = vectorPoynting[[j, 1]];]

Figura 70 Normalización del vector ephi y cálculo del máximo valor del vector de Poynting

La estructura es la misma que se empleó para calcular el máximo valor de "ephiNorm", cambiando solo las variables.

Figura 71 Cálculo del patrón de radiación en dB

Finalmente se obtienen los patrones en escala lineal y en escala logarítmica para contenidos en los vectores "potPatNorm" y "dbPat", los cuales pueden ser exportados para analizar los resultados obtenidos.

8. **RESULTADOS OBTENIDOS**

En esta sección se reportan los resultados obtenidos de la antena parche rectangular de la (figura 24), utilizando el "Sistema didáctico y de medición de antenas" Lab-volt modelo 8092 [21]. Los resultados de esta antena parche rectangular fueron contrastados con las diversas simulaciones que se hicieron en el programa diseñado en Wolfram Mathematica.

Para realizar la adquisición de datos de la antena de la (figura 24) se realizó el siguiente montaje de la (figura 59), se utilizaron los siguientes elementos: Interfaz para la adquisición de datos, fuente de alimentación, generador de RF, orientador de antena y computador.

Figura 72 Montaje en el laboratorio de antenas de la UPB

Para generar la señal emitida se colocó el mástil con la antena "horn", y se conectó el cable SubMiniature versión A (SMA) o común mente conocido como conector, a la salida de oscilador de 10Ghz del generador RF y a su vez se conectó a la antena "horn", como se ve en la (figura 73).

Figura 73 Antena trasmisora del equipo de Lab-volt

La antena parche rectangular se ubicó en el mástil, conectando el cable SubMiniature versión A (SMA) entre el orientador y la antena como se muestra en la (figura 74).

Figura 74 Antena receptora del equipo de Lab-volt

La antena parche rectangular se coloca como receptora debido a que el software de lab-Volt mide el patrón de radiación de la antena receptora.

Para comenzar la transmisión, las antenas fueron ubicadas a 2m de distancia enfrentadas y a la misma altura, luego se enciende el oscilador y se emite a una frecuencia de 10Ghz. En la antena receptora se enciende la interfaz de adquisición de datos y por medio del software del equipo se rota la antena y se capta el patrón de radiación obteniendo el siguiente resultado.

El resultado del patrón de radiación del software de Lab-volt y las simulaciones realizadas en Wolfram Mathematica fueron exportadas a Excel para contrastación de resultados.

Para analizar los resultados obtenidos mediante la comparación del patrón de radiación adquirido del equipo de Lab-Volt, con el del algoritmo de Wolfram Mathematica, se hace un cálculo del porcentaje de error (punto a punto), en el ancho de banda de potencia mitad, para saber qué tanto es el porcentaje de error para cada ángulo del patrón de radiación de Wolfram Mathematica, respecto al del equipo de Lab-Volt. Para tener un valor representativo de este conjunto de errores, se calcula la media, la cual permite medir la tendencia central del conjunto de datos en estudio [26], y así poder comparar la media obtenida en cada prueba de simulación y saber cuál es la más aproximada al patrón de radiación de Lab-Volt.

Igualmente se calcula la desviación estándar de la media del porcentaje de error, para saber qué tan dispersos están los datos de la media del error, esto proporcionará mayor certeza para determinar que un resultado sea óptimo o no lo sea, ya que teniendo una media con menor porcentaje de error y una desviación estándar de la media del porcentaje de error baja, se podría concluir que es un buen resultado. Los datos adquiridos del equipo de Lab-Volt se pueden observar en el Anexo D, estos al importarse del software, se encuentran en dB, para hacer el análisis y la comparación con los del algoritmo de Wolfram Mathematica, los datos son expresados en escala lineal, y luego son normalizados.

8.1 SIMULACIONES CON VARIACIÓN DE DIELÉCTRICO

En el programa desarrollado en Wolfram Mathematica se realizaron diversas pruebas modificando el dieléctrico de la antena parche, para lograr predecir el valor del dieléctrico de la antena del laboratorio. A continuación se presentan las distintas simulaciones, los datos de los patrones de radiación y los cálculos que se realizaron en Microsoft Excel se encuentran en el Anexo A.

Figura 76 Comparación N°1

En la (figura 76) se muestra la comparación del patrón de radiación adquirido con el software Lab-Volt y la simulación realizada en Wolfram Mathematica de la antena parche con constante dieléctrica de 2.2. Se realizó un análisis de los resultados obteniendo una desviación estándar de 28,5985525 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 48,8332961 del porcentaje de error de los datos en el ancho de banda de potencia mitad. Se puede notar que el patrón simulado es muy directivo comparado con el de Lab-Volt.

Figura 77 Comparación N°2

En la (figura 77) se muestra la comparación del patrón de radiación adquirido con el software Lab-Volt y la simulación realizada en Wolfram Mathematica de la antena parche con constante dieléctrica de 3.5. Se realizó un análisis de los resultados obteniendo una desviación estándar de 17,7108879 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 33,141622 del porcentaje de error de los datos en el ancho de los datos en el ancho de banda de potencia mitad y una media de 33,141622 del porcentaje de error de los datos en el ancho de banda de potencia mitad; En la (figura 77) se ve que el patrón simulado es menos directivo que el de la (figura 76),

pero sin embargo sigue siendo alta la diferencia con el patrón de radiación de Lab-Volt.

Figura 78 Comparación N°3

En la (figura 78) se muestra la comparación del patrón de radiación adquirido con el software Lab-Volt y la simulación realizada en Wolfram Mathematica de la antena parche con constante dieléctrica de 4. Se realizó un análisis de los resultados obteniendo una desviación estándar de 22,27623584 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 31,1377082 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 31,1377082 del porcentaje de error de los datos en el ancho de banda de potencia mitad; El patrón de radiación de la (figura 78) presenta de igual forma un comportamiento directivo.

Figura 79 Comparación N°4

En la (figura 79) se muestra la comparación del patrón de radiación adquirido con el software Lab-Volt y la simulación realizada en Wolfram Mathematica de la antena parche con constante dieléctrica de 4.3. Se realizó un análisis de los resultados obteniendo una desviación estándar de 10,2043368 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 10,2244466 del porcentaje de error de los datos en el ancho de banda de potencia mitad y una media de 10,2244466 del (figura 79) en patrón simulado presenta un mejor comportamiento con respecto al de Lab-Volt, pero presenta ligeras deformaciones en su parte frontal.

Figura 80 Comparación N°5

En la (figura 80) se muestra la comparación de los dos patrones de radiación teniendo una desviación estándar de 11,77031 y media de 11,13549 del porcentaje del error. En esta figura el patrón simulado presenta un muy buen comportamiento, la forma del lóbulo es muy parecida a la de Lab-Volt.

Figura 81 Comparación N°6

En la (figura 81) se muestra la comparación de los dos patrones de radiación teniendo una desviación estándar de 14,565654 y media de 17,2059069 del porcentaje del error.

En la (figura 82) se muestra la comparación de los dos patrones de radiación teniendo una desviación estándar de 8,47040217 y media de 9,48374357 del porcentaje del error. En esta comparación la desviación estándar y el porcentaje de error son bajas, pero la parte frontal del lóbulo presenta deformaciones considerables.

Figura 82 Comparación N°7

Figura 83 Comparación N°8

En la figura 83 se realizó la comparación de los dos patrones de radiación teniendo una desviación estándar de 23,0883958 y media de 29,7786044 del porcentaje de error. Estos valores son altos, por lo que se considera que el patrón de radiación obtenido no es un buen resultado, ya que muestra un alto porcentaje de error y bastante dispersión en los datos.

Figura 84 Comparación N°9

En la (figura 84) se realizó la comparación de los dos patrones de radiación teniendo una desviación estándar de 23,5264219 y media de 27,659169 del porcentaje del error. Al igual que la (figura 83) la desviación estándar y el porcentaje de error son altos, por lo tanto se descarta este patrón de radiación como un buen resultado.

Figura 85 Comparación N°10

En la (figura 85) se realizó la comparación de los dos patrones de radiación teniendo una desviación estándar de 16,9573952 y media de 19,7569442del porcentaje del error.

Figura 86 Comparación N°11

En la (figura 86) se realizó la comparación de los dos patrones de radiación teniendo una desviación estándar de 10,9492599 y media de 13,5761978 del porcentaje del error. En esta comparación la desviación estándar es baja, al igual que la media del porcentaje de error, pero la parte frontal del lóbulo presenta deformaciones considerables.

En la tabla 4 se puede observar un resumen de los resultados obtenidos variando la constante dieléctrica y dejando constantes el ancho del parche y el grosor o altura del dieléctrico. Las diferentes simulaciones se hacen con las dimensiones físicas de la antena del equipo de Lab-Volt.

w	н	EPSE	MEDIA DEL % DE ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD	DESVIACION ESTANDAR DEL % DEL ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD
14	1	2.2	48,8332961	28,5985525
14	1	3.5	33,141622	17,7108879
14	1	4.0	31,1377082	22,27623584
14	1	4.3	10,2244466	10,2043368
14	1	4.5	11,13549	11,77031
14	1	4.8	17,2059069	14,565654
14	1	5.5	9,48374357	8,47040217
14	1	6.5	29,7786044	23,0883958
14	1	7.5	27,659169	23,5264219
14	1	8.5	19,7569442	16,9573952
14	1	10.0	13,5761978	10,9492599

Tabla 4 Resumen de variación de constantes dieléctricas

8.2 SIMULACIONES CON VARIACIÓN DEL ANCHO DE LA ANTENA

Se realizaron distintas simulaciones disminuyendo el valor de ancho de la antena, los datos de los patrones de radiación y los cálculos que se realizaron en Microsoft Excel se encuentran en el Anexo B.

Al reducir el ancho del parche a la mitad, se obtuvo una desviación estándar de 9,62536201 y media de 7,68373775 respecto a la referencia, siendo este el patrón de radiación con menor error, sin embargo al reducirse a 4 mm aproximadamente, se obtuvo un patrón de radiación como muestra la (figura 87).

Figura 88 Comparación N°13

Para un ancho de aproximadamente 4 mm, la desviación estándar obtenida fue de 14,7864427 y media de 15,2877141 respecto a la referencia, conforme aumentó el error, la deformación del patrón también se pudo notar.

En la (figura 88), se observa el patrón de radiación variando la altura o grosor del dieléctrico y manteniendo el ancho original de la antena (1.3 cm) y la constante dieléctrica (EPSE=4.5), y se obtuvieron los siguientes resultados:

W	н	EPSE	DESVIACION ESTANDAR DEL % DEL ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD	MEDIA DEL % DE ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD
8	1	4.5	9,62536201	7,68373775
4	1	4.5	14,7864427	15,2877141

Tabla 5 Resumen de variación del ancho de la antena

8.3 SIMULACIONES CON VARIACIÓN DEL ALTO DE LA ANTENA

Se realizaron distintas simulaciones aumentando el valor de la altura de la antena, los datos de los patrones de radiación y los cálculos que se realizaron en Microsoft Excel se encuentran en el anexo C.

Figura 89 Comparación N°14

En la (figura 89), la media del porcentaje de error es de 14,8997299, y desviación estándar de la media del porcentaje de error de 15,9356606 respecto a la referencia, esto para una altura 10 veces mayor que la original (1 cm).

Figura 90 Comparación N°15

En la (figura 90) la media del porcentaje de error es de 14,9235526, y desviación estándar de 11,8587154 para una altura 5 veces mayor. El patrón muestra deformaciones en las partes laterales del lóbulo.

W	н	EPSE	MEDIA DEL % DE ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD	DESVIACION ESTANDAR DEL % DEL ERROR PUNTO A PUNTO EN EL ANCHO DE BANDA DE POTENCIA MITAD
14	10	4.5	14,8997299	15,9356606
14	5	4.5	14,9235526	11,8587154

Tabla 6 Resumen de variación del alto de la antena

8.4 SIMULACIONES DEL CAMPO ELÉCTRICO EN X

Los diagramas de radiación de los campos eléctricos en x, de la antena parche rectangular se puede observar en diferentes instantes de la simulación en las (figuras 91, 92, 93 y 94). Las medidas de la antena son las mismas de la antena del equipo de LabVolt (w = 1.3 cm, h = 0.1 cm) y con dieléctrico de 4,5. Se tomaron para n = 60, 120, 220, 350 y 600.

Figura 92 Campo Ex n=120

Figura 93 Campo Ex n=220

Figura 94 Campo Ex n=350

Como se observa en las (figuras 91, 92, 93 y 94). A medida que se aumenta el número de iteraciones, las ondas del campo eléctrico en x, se propagan en la grilla de simulación.

8.5 SIMULACIONES DEL CAMPO ELÉCTRICO EN Y

Los diagramas de radiación de los campos eléctricos en y, de la antena parche rectangular se puede observar en diferentes instantes de la simulación en las (figuras 95, 96, 97 y 98). Las medidas de la antena son las mismas de la antena del equipo de LabVolt (w = 1.3 cm, h = 0.1 cm) y con dieléctrico de 4,5. Se tomaron para n = 60, 120, 220, 350 y 600.

Figura 95 Campo Ey n=60

Figura 96 Campo Ey n=120

Figura 97 Campo Ey n=220

Figura 98 Campo Ey n=320

Como se observa en las (figuras 95, 96, 97 y 98). A medida que se aumenta el número de iteraciones, las ondas del campo eléctrico en y, se propagan en la grilla de simulación.

8.6 SIMULACIONES DEL CAMPO MAGNÉTICO EN Z

Los diagramas de radiación de los campos magnéticos en z de la antena parche rectangular se puede observar en diferentes instantes de la simulación en las (figuras 99, 100, 101 y 102). Las medidas de la antena son las mismas de la antena del equipo de LabVolt (w = 1.3 cm, h = 0.1 cm) y con dieléctrico de 4,5. Se tomaron para n = 60, 120, 220, 350 y 600.

Figura 99 Campo Hz n=60

Figura 100 Campo Hz n=120

Figura 101 Campo Hz n=220

Figura 102 Campo Hz n=320

Como se observa en las (figuras 99, 100, 101 y 102). A medida que se aumenta el número de iteraciones, las ondas del campo magnético en z, se propagan en la grilla de simulación.

8.7 CAMPOS ELÉCTRICOS Y MAGNÉTICO CON EL TOTAL DE ITERACIONES

Figura 103 Campo Ex

Figura 104 Campo Ey

Figura 105 Campo Hz

En las (figuras 103, 104 y 105) se presentan las simulaciones con el total de iteraciones, como se ve estas las radiaciones ocupan toda la grilla de simulación. Se observa como la capa de absorción no refleja las ondas en ninguno de los campos simulados.

8.8 SIMULACIÓN DE LOS CAMPOS ELÉCTRICOS Y MAGNÉTICOS LEJANOS

A continuación se muestran los campos lejanos del campo eléctrico en "x" (exff), en "y" (eyff) y el campo magnético lejano en "z" (hzff).

Figura 106 Campo lejano eléctrico en x

Las (figuras 106 y 107) muestran los campos eléctricos lejanos en "x" obtenido de "exff", y los campos eléctricos lejanos en "y" a partir de "eyff", respectivamente. Estos resultados se dan debido a la posición de la antena en el dominio de simulación.

En la (figura 108) se muestra el campo lejano magnético en "z".

Figura 108 Campo lejano magnético en Z

9. CONCLUSIONES

- Se desarrolló un algoritmo en Wolfram Mathematica una vez entendido el método de diferencias finitas en el dominio del tiempo (FDTD), las características y mecanismo de radiación de la antena parche rectangular.
- Se determinó que el Δx debe ser menor que la longitud de onda, pero a medida que disminuye, se necesitaría significativamente un alto recurso de computación al momento de realizar las simulaciones.
- Se logró simular distintos patrones de radiación modificando el valor del dieléctrico, el mejor resultado que se obtuvo fue con constante dieléctrica de EPSE=4.5, con un valor de media del porcentaje de error punto a punto de 11,13549 y un valor de desviación estándar del porcentaje de error punto a punto de 11,77031, y gran similitud en la forma de estos en la parte frontal respecto a la referencia del patrón de radiación obtenido del equipo de Lab-Volt.
- Respecto a los diagramas de radiación obtenidos en transversal eléctrico, la propagación del campo eléctrico se da con mayor uniformidad en el plano YZ, que en el plano XZ, esto debido a la posición de la antena.
- El patrón de radiación adquirido del equipo de Lab-Volt, pese a ser la base para hacer la comparación de los resultados obtenidos con el algoritmo de Wolfram Mathematica, no es del todo exacto, debido a la forma en que fueron adquiridos los datos, pues no se obtuvieron dentro de una cámara anecoica, lo que las reflexiones e interferencia de otras señales podrían desmejorar la toma de datos.
10. RECOMENDACIONES Y DIRECCIONES FUTURAS

Con el propósito de continuar realizando estudios con el método de diferencias finitas en el dominio del tiempo se plantean las siguientes recomendaciones:

- Se propone el estudio del método de diferencias finitas en el dominio del tiempo para realizar simulaciones sobre los parámetros S, para determinar la impedancia en las antenas parche.
- Buscar con arreglos en el algoritmo para obtener menor error en las partes laterales del lóbulo del patrón de radiación.
- Desarrollar un interfaz de fácil interacción para los usuarios que deseen realizar simulaciones con algoritmo desarrollado ya sea en Wolfram Mathematica u otro software.
- Se propone adquirir una cámara anecoica para realizar la adquisición de datos con un menor grado de error, debido a que en el laboratorio de antenas se presentan gran número de reflexiones alterando el patrón de radiación.

11. BIBLIOGRAFIA

[1] Constantine A. Balanis, Antenna Theory, analysis and design. Tercera Edition, John Willey y Sons, 2005.

[2] Stutzman, Warren L. Antenna Theory and desing, John Willey, 1981.

[3] Ramesh, Garg. Microstrip Antenna design handbook. Artech House, 2001.

[4] James, J R y Hall, P. S. Handbook of microstrip antennas, Peter Peregrinus, 1989.

[5] Gao, C. Analysis of an H-shaped patch antenna by using FDTD method, Progress in electromagnetics Research, 2001. Pier 34 165-187.

[6] Lo, T. K. Miniature aperture-coupled microstrip antenna of very. Electronics Letters,1997.Vol.33,No.1,9–10.

[7] Palanisamy, V. and R. Garg. Rectangular ring and Hshaped— Alternatives to rectangular patch antenna. Electronics Letters, 1985. Vol. 21, No. 19, 874–876.

[8] Mahmoud, Ahmed. N. FDTD analysis of patch antenna over a Multi-layer Substrate. IEEE Seventeenth national radio science conference, 2000.

[9] David M, Sheen. Application of the three-dimensional finite-difference timedomain method to the analysis of planar microstrip circuits. IEEE transctions on microwave theory and tecniques, 1990.

[10] Jafeth, A. Alonso. Análisis del campo radiado en una guía de onda ranurada usando el metodo de diferencias finitas en el dominio del tiempo. Instituto politécnico nacional, 2007.

[11] Sullivan, Dennis M. Electromagnetic simulation using the fdtd method. IEEE Microwave theory and techniques society, 2000.

[12] Jean P, Berenguer. A perfectly matched layer for the absorption of electromagnetic waves. 1993.

[13] Mur, G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on electromagnetic waves, 1981.

[14] Liao, Z. P. y otros. A transmiting boundary for transient wave analysis. Scientia Sinica, 1984.

[15] Kane S, Yee. Numerical solution of initial boundary value pronblems involving Maxwell's Equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966.

[16] QUINTERO R Gustavo y SARMIENTO L Luis, "Análisis del patrón de radiación de una antena tipo parche con arreglo matricial de parches rectangulares" Universidad Pontificia bolivariana seccional Bucaramanga. 2012

[17] MARTINEZ C Sergio y JIMENEZ B Rosa, "Análisis de la simulación del patrón de radiación en una antena tipo parche" Universidad Pontificia bolivariana seccional Bucaramanga. 2010

[18] CHAPRA, Steven C. and Canale Raymond P, Métodos Numéricos para ingenieros. McGraw-Hill, México.

[19] Portal universidad de la habana cuba. http://www.fisica.uh.cu/bibvirtual/vida%20y%20tierra/radiacion%20%20vida/index.ht m, consultado el 7 de febrero del 2013.

[20] Portal Universidad Politécnica de Valencia http://www.upv.es/antenas/Documentos_PDF/Transparencias_reducidas/Tema_9.p df. Consultado el 22 de febrero 2013.

[21] Lab-vot < http://www.labvolt.com/> [citado el 10 de junio del 2013].

[23] Alain Reineix. Analisys of microstrip patch antennas using Finite Difference Time Domain. IEEE transactions on antennas and propagation, 1989.

[24] Gao, C. FDTD Analysis of sized-reduced, dual frequency patch antenna, Progress in electromagnetics Research, 2001. Pier 34 165-187.

[25] S. M. Shum., An efficient FDTD near-to-far-field transformation for radiation pattern calculating, Microwave and optical technology letters, 1999. Vol. 20, No. 2, january 20 1999.

[26] Murray R. Spiegel, Estadística teoria y problemas resueltos, McGraw-Hill, México.

					Desviación
		Datos		Media	estándar
		simulación		del %	del % de
		constante		de error	error
		dieléctrica	% de error	punto a	punto a
Angulos (°)	Datos software Lab-Volt	2.2	punto a punto	punto	punto
39	0,71302848	0,123877145	82,62662036	48,8333	28,59855
38	0,728614921	0,123138585	83,09963447		
37	0,744599108	0,135968798	81,73932835		
36	0,755757882	0,145056151	80,80653147		
35	0,769961846	0,143180179	81,40425015		
34	0,782182714	0,154378103	80,26316618		
33	0,794464548	0,150473875	81,05971182		
32	0,80534718	0,170573857	78,81983551		
31	0,819480632	0,16853755	79,43361401		
30	0,829812825	0,178639788	78,47227916		
29	0,841367095	0,1861956	77,86987375		
28	0,851910235	0,196611925	76,92105144		
27	0,860550382	0,212392941	75,31894178		
26	0,871067058	0,218076883	74,96439791		
25	0,881816834	0,238471775	72,95676769		
24	0,889321723	0,251970284	71,66713944		
23	0,900431744	0,272480348	69,73892242		
22	0,908245088	0,289698272	68,10351348		
21	0,917214118	0,317958775	65,33429122		
20	0,924113864	0,346456434	62,50933485		
19	0,932406551	0,371291887	60,17918507		
18	0,940127179	0,405531079	56,86423201		
17	0,945865852	0,442258363	53,24301411		
16	0,952387665	0,474667979	50,16021355		
15	0,959322171	0,518701718	45,930394		
14	0,964103866	0,564650082	41,43265038		
13	0,969549037	0,593408507	38,79541066		
12	0,975414465	0,642812358	34,09854158		

11	0,978729834	0,692798155	29,2145666	
10	0,982144517	0,721363521	26,55220195	
9	0,985092626	0,773462629	21,48325864	
8	0,988817647	0,809441875	18,14042989	
7	0,990730028	0,860077274	13,18752334	
6	0,991515691	0,884720537	10,77089908	
5	0,99409291	0,910032579	8,455983353	
4	0,996773401	0,946332927	5,060375238	
3	0,995881001	0,971671596	2,430953593	
2	0,995099481	0,982402638	1,275937049	
1	0,993197606	0,992806644	0,03936396	
0	0,993309754	0,994684171	0,13836738	
-1	1,00000004	1	4,43775E-07	
-2	0,996884827	0,996810817	0,007424108	
-3	0,996996255	0,990414418	0,660166614	
-4	0,994204782	0,971409853	2,292780047	
-5	0,993309754	0,940607641	5,305707858	
-6	0,991403735	0,920898729	7,11163409	
-7	0,988704869	0,899249616	9,047720459	
-8	0,988254261	0,852110346	13,77620315	
-9	0,986336124	0,820661142	16,79701047	
-10	0,983280011	0,769550077	21,73642626	
-11	0,979641995	0,744447891	24,00816875	
-12	0,974267614	0,694904087	28,67420852	
-13	0,970356766	0,647395273	33,28275781	
-14	0,964103866	0,619836011	35,70858569	
-15	0,957916845	0,57336898	40,14418027	
-16	0,953449483	0,528385419	44,58170798	
-17	0,94871881	0,495722051	47,74826374	
-18	0,93868552	0,455408388	51,4844558	
-19	0,929490237	0,419867813	54,82816321	
-20	0,925584346	0,39232412	57,61335835	
-21	0,913366079	0,362989862	60,25800931	
-22	0,903087695	0,333777358	63,04042675	
-23	0,89560025	0,314724967	64,85876736	
-24	0,882986546	0,289753869	67,18479231	
-25	0,871067058	0,274569585	68,47893826	
-26	0,86001348	0,254290975	70,43174549	
-27	0,848231983	0,242449138	71,4171191	
-28	0,835267108	0,227738163	72,73469034	

-29	0,822469635	0,21632837	73,69770732	
-30	0,809272231	0,205723601	74,57918442	
-31	0,795353972	0,194947701	75,48919	
-32	0,779453757	0,193134376	75,22183017	
-33	0,766868442	0,173987264	77,31198016	
-34	0,751637503	0,175230533	76,6868294	
-35	0,735028419	0,163710112	77,72737654	
-36	0,720790815	0,163266087	77,3490333	
-37	0,706535157	0,15314467	78,32455062	

Ángulos (°)	Datos software Lab-Volt	Datos simulación constante dieléctrica 3.5	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0,71302848	0,328055971	53,9911827	33,141622	17,7108879
38	0,728614921	0,341682478	53,1052043		
37	0,744599108	0,356558561	52,1140225		
36	0,755757882	0,369815499	51,0669345		
35	0,769961846	0,38339861	50,2055054		
34	0,782182714	0,394645988	49,5455498		
33	0,794464548	0,406726858	48,8049078		
32	0,80534718	0,416388425	48,2970282		
31	0,819480632	0,427713658	47,8067398		
30	0,829812825	0,438685611	47,1343901		
29	0,841367095	0,447849474	46,771216		
28	0,851910235	0,45917486	46,1005584		
27	0,860550382	0,471726059	45,1832143		
26	0,871067058	0,482279988	44,6334259		
25	0,881816834	0,492262753	44,1763035		
24	0,889321723	0,508527049	42,8185509		
23	0,900431744	0,520896745	42,1503353		
22	0,908245088	0,534613742	41,1377228		
21	0,917214118	0,556925091	39,2807982		
20	0,924113864	0,573431784	37,9479298		
19	0,932406551	0,590553465	36,6635226		
18	0,940127179	0,610142287	35,1000268		
17	0,945865852	0,630838041	33,30576		
16	0,952387665	0,652050508	31,5351792		
15	0,959322171	0,675277288	29,6089147		
14	0,964103866	0,671311552	30,3693745		
13	0,969549037	0,694376792	28,3814676		
12	0,975414465	0,728193239	25,3452492		
11	0,978729834	0,759242149	22,4257683		
10	0,982144517	0,753248364	23,3057507		
9	0,985092626	0,792348215	19,5661206		
8	0,988817647	0,807698765	18,3167122		
7	0,990730028	0,840003657	15,2136674		
6	0,991515691	0,866948073	12,5633532		
5	0,99409291	0,906192336	8,84228966		

4	0,996773401	0,931217769	6,57678385	
3	0,995881001	0,948440668	4,76365475	
2	0,995099481	0,96289496	3,23631174	
1	0,993197606	0,981992713	1,12816353	
0	0,993309754	0,99092983	0,13836738	
-1	1,00000004	1	4,4378E-07	
-2	0,996884827	0,994972369	0,19184343	
-3	0,996996255	0,991740126	0,52719648	
-4	0,994204782	0,984331446	0,9930888	
-5	0,993309754	0,961888588	3,16327981	
-6	0,991403735	0,93719336	5,46804225	
-7	0,988704869	0,91355408	7,60093246	
-8	0,988254261	0,876954207	11,2622892	
-9	0,986336124	0,841001654	14,7347813	
-10	0,983280011	0,810879423	17,5332139	
-11	0,979641995	0,76885886	21,5163433	
-12	0,974267614	0,718024824	26,3010682	
-13	0,970356766	0,69206504	28,6793203	
-14	0,964103866	0,697873164	27,6143174	
-15	0,957916845	0,673653106	29,6751999	
-16	0,953449483	0,649466585	31,8824336	
-17	0,94871881	0,626131325	34,0024338	
-18	0,93868552	0,603800025	35,6760052	
-19	0,929490237	0,582349071	37,3474785	
-20	0,925584346	0,563059586	39,167123	
-21	0,913366079	0,53117903	41,8437972	
-22	0,903087695	0,516555157	42,8012186	
-23	0,89560025	0,499600618	44,2161145	
-24	0,882986546	0,476474031	46,0383588	
-25	0,871067058	0,462842297	46,8649063	
-26	0,86001348	0,449556056	47,7268593	
-27	0,848231983	0,431069703	49,1802111	
-28	0,835267108	0,414206338	50,4103138	
-29	0,822469635	0,403376091	50,9555035	
-30	0,809272231	0,388089803	52,0445917	
-31	0,795353972	0,373333207	53,0607477	
-32	0,779453757	0,363515509	53,362787	
-33	0,766868442	0,349607752	54,4109873	
-34	0,751637503	0,335704172	55,3369582	
-35	0,735028419	0,321553326	56,2529396	

-36	0,720790815	0,308800503	57,1580968	
-37	0,706535157	0,295005599	58,2461543	

Ángulos (°)	Datos software Lab- Volt	Datos simulación constante dieléctrica 4	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0.71302848	0.206875907	70.98631	31.137708	22.27623584
38	0.72861492	0.22487421	69.13675	_ ,	,
37	0.74459911	0.247070736	66.81829		
36	0,75575788	0,275381553	63,5622		
35	0.76996185	0.297022821	61.4237		
34	0,78218271	0,317715681	59,38089		
33	0,79446455	0,340941789	57,08534		
32	0,80534718	0,370706817	53,96932		
31	0,81948063	0,392445622	52,11045		
30	0,82981283	0,415309819	49,95139		
29	0,8413671	0,447617244	46,79882		
28	0,85191024	0,470616859	44,75746		
27	0,86055038	0,496866417	42,26179		
26	0,87106706	0,519509281	40,35944		
25	0,88181683	0,543617818	38,35252		
24	0,88932172	0,564922744	36,47712		
23	0,90043174	0,588720453	34,61798		
22	0,90824509	0,611622829	32,65883		
21	0,91721412	0,634852847	30,78466		
20	0,92411386	0,6570183	28,90288		
19	0,93240655	0,672351486	27,89074		
18	0,94012718	0,693980795	26,18224		
17	0,94586585	0,723993792	23,45703		
16	0,95238767	0,754537057	20,77417		
15	0,95932217	0,784944544	18,17717		
14	0,96410387	0,789294816	18,13177		
13	0,96954904	0,820250164	15,3988		
12	0,97541447	0,853028923	12,54703		
11	0,97872983	0,887586038	9,312457		
10	0,98214452	0,890635566	9,317259		
9	0,98509263	0,926038253	5,994804		
8	0,98881765	0,926502018	6,302034		
7	0,99073003	0,962542445	2,845133		
6	0,99151569	0,963450239	2,830561		
5	0,99409291	0,961117216	3,317164		
4	0,9967734	0,997974996	-0,120548		

3	0,995881	0,99735682	-0,148192	
2	0,99509948	0,99585679	-0,076104	
1	0,99319761	0,99333879	-0,014215	
0	0,99330975	0,988745518	0,138367	
-1	1	1	4,44E-07	
-2	0,99688483	0,99987894	-0,300347	
-3	0,99699625	0,967038021	3,004849	
-4	0,99420478	0,968608147	2,574584	
-5	0,99330975	0,966721125	2,676771	
-6	0,99140374	0,933409337	5,849726	
-7	0,98870487	0,931683156	5,767314	
-8	0,98825426	0,897905075	9,142302	
-9	0,98633612	0,894033562	9,358124	
-10	0,98328001	0,860544667	12,48224	
-11	0,97964199	0,828729685	15,40484	
-12	0,97426761	0,798478427	18,04321	
-13	0,97035677	0,79294627	18,28302	
-14	0,96410387	0,762157299	20,94656	
-15	0,95791684	0,731734692	23,61188	
-16	0,95344948	0,701043996	26,47287	
-17	0,94871881	0,671373363	29,23368	
-18	0,93868552	0,643175272	31,48128	
-19	0,92949024	0,616219561	33,70349	
-20	0,92558435	0,578160106	37,53567	
-21	0,91336608	0,560424433	38,64186	
-22	0,90308769	0,537901814	40,43748	
-23	0,89560025	0,519904832	41,94901	
-24	0,88298655	0,49689222	43,72596	
-25	0,87106706	0,477430923	45,19011	
-26	0,86001348	0,450031262	47,6716	
-27	0,84823198	0,430226574	49,27961	
-28	0,83526711	0,406433174	51,34093	
-29	0,82246963	0,386129604	53,05242	
-30	0,80927223	0,365429639	54,84466	
-31	0,79535397	0,3385779	57,43054	
-32	0,77945376	0,318914669	59,08485	
-33	0,76686844	0,298413002	61,08681	
-34	0,7516375	0,276868657	63,1646	
-35	0,73502842	0,251667802	65,76081	
-36	0,72079081	0,234236587	67,50283	

-37 0,70653516 0,215397137	69,5136	
----------------------------	---------	--

					Desviación
	Datos	Datos simulación	% de error	Media del %	estándar del
Ángulos (°)	software	constante	punto a	de error punto	% de error
	Lab-Volt	dieléctrica 4.3	punto	a punto	punto a
					punto
39	0,71302848	0,413496021	42,00848456	10,224447	10,2043368
38	0,72861492	0,444135892	39,04381047		
37	0,74459911	0,476704856	35,97832024		
36	0,75575788	0,517766856	31,49037958		
35	0,76996185	0,54597491	29,09065393		
34	0,78218271	0,580343282	25,80463981		
33	0,79446455	0,612945777	22,84793846		
32	0,80534718	0,652154944	19,02188768		
31	0,81948063	0,68278028	16,68134018		
30	0,82981283	0,712515952	14,13534104		
29	0,8413671	0,745036024	11,44935099		
28	0,85191024	0,7720631	9,372716925		
27	0,86055038	0,807512597	6,163239893		
26	0,87106706	0,83185084	4,502089378		
25	0,88181683	0,855862556	2,943273161		
24	0,88932172	0,879632444	1,08951337		
23	0,90043174	0,90020773	0,024878472		
22	0,90824509	0,918299597	1,107025912		
21	0,91721412	0.937540542	2,21610453		
20	0,92411386	0.953233627	3,151101184		
19	0,93240655	0,965445363	3,543391226		
18	0,94012718	0.974743112	3,68204784		
17	0,94586585	0.98213149	3,834120686		
16	0,95238767	0.988726533	3,815554226		
15	0.95932217	0,99403345	3.618313036		
14	0.96410387	0.995046158	3.209435549		
13	0.96954904	1	3.140734661		
12	0.97541447	0 99706144	2.21925916		
11	0.97872983	0 988791938	1.028077738		
10	0.98214452	0.99138878	0.941232443		
9	0.98509263	0.978375783	0 681848893		
8	0.98881765	0.978517559	1 041656963		
7	0 99073003	0.06162510	2 937716357		
6	0 99151569	0.060102019	3 159590777		
	0 90/00201	0,300107000	1 527006812		
1 5	0,55405291	0,94900131	+,JZ/ JUU013	1	

4	0,9967734	0,951482099	4,543791228	
3	0,995881	0,951774543	4,428888374	
2	0,99509948	0,950133231	4,518769323	
1	0,99319761	0,947727129	4,578190374	
0	0,99330975	0,943680226	4,996379884	
-1	1	0,944564502	5,54355023	
-2	0,99688483	0,947653343	4,938532736	
-3	0,99699625	0,948981549	4,815936378	
-4	0,99420478	0,949576949	4,488796837	
-5	0,99330975	0,948146343	4,546760132	
-6	0,99140374	0,944129277	4,768436607	
-7	0,98870487	0,933914494	5,541630934	
-8	0,98825426	0,928567487	6,039617145	
-9	0,98633612	0,92657763	6,058633843	
-10	0,98328001	0,918582284	6,579786711	
-11	0,97964199	0,916273058	6,46858103	
-12	0,97426761	0,912469678	6,34301444	
-13	0,97035677	0,913304242	5,87954094	
-14	0,96410387	0,911557104	5,450321647	
-15	0,95791684	0,906936555	5,321995388	
-16	0,95344948	0,90272835	5,319750459	
-17	0,94871881	0,896076701	5,548757795	
-18	0,93868552	0,88887762	5,306132718	
-19	0,92949024	0,880349574	5,286840141	
-20	0,92558435	0,87019431	5,984331555	
-21	0,91336608	0,857929153	6,069518861	
-22	0,90308769	0,842721524	6,684419543	
-23	0,89560025	0,824751627	7,910741766	
-24	0,88298655	0,808372332	8,45020955	
-25	0,87106706	0,789791192	9,330609541	
-26	0,86001348	0,768592036	10,63023383	
-27	0,84823198	0,747200866	11,91078841	
-28	0,83526711	0,724018581	13,31891624	
-29	0,82246963	0,692153081	15,84454277	
-30	0,80927223	0,668534119	17,3907008	
-31	0,79535397	0,639356484	19,61359258	
-32	0,77945376	0,612936318	21,36335063	
-33	0,76686844	0,584254237	23,81297692	
-34	0,7516375	0,549948699	26,83325451	
-35	0,73502842	0,52018154	29,22973767	

-36	0,72079081	0,49110956	31,86517512	
-37	0,70653516	0,464732826	34,22368005	

Ángulos (°)	Datos software Lab- Volt	Datos simulación constante dieléctrica 4.5	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0,71302848	0,408196148	42,751775	11,13549	11,77031
38	0,728614921	0,435314163	40,2545638		
37	0,744599108	0,46029244	38,1825153		
36	0,755757882	0,494831713	34,5251006		
35	0,769961846	0,523315364	32,033598		
34	0,782182714	0,550011018	29,6825399		
33	0,794464548	0,573021188	27,873284		
32	0,80534718	0,609974538	24,2594307		
31	0,819480632	0,63385257	22,6519157		
30	0,829812825	0,657549082	20,7593494		
29	0,841367095	0,693045529	17,6286388		
28	0,851910235	0,717810892	15,7410179		
27	0,860550382	0,741469386	13,8377716		
26	0,871067058	0,76219064	12,4992005		
25	0,881816834	0,795364739	9,80386088		
24	0,889321723	0,814054697	8,46341924		
23	0,900431744	0,839480081	6,76915968		
22	0,908245088	0,854959023	5,86692576		
21	0,917214118	0,877891405	4,28719008		
20	0,924113864	0,897721196	2,85599743		
19	0,932406551	0,906092893	2,82212283		
18	0,940127179	0,921992858	1,92892213		
17	0,945865852	0,936805405	0,95789982		
16	0,952387665	0,950404272	0,20825483		
15	0,959322171	0,960797738	0,15381346		
14	0,964103866	0,96655378	0,25411307		
13	0,969549037	0,979401951	1,0162368		
12	0,975414465	0,983099635	0,78788755		
11	0,978729834	0,988829982	1,03196487		
10	0,982144517	0,992598915	1,06444598		
9	0,985092626	0,996630231	1,17122034		
8	0,988817647	0,997438846	0,87186943		
7	0,990730028	0,99946449	0,88161882		
6	0,991515691	1	0,85569084		
5	0,99409291	0,999533136	0,54725523		

4	0,996773401	0,993099722	0,36855709		
3	0,995881001	0,99340365	0,24875972		
2	0,995099481	0,991380892	0,37369026		
1	0,993197606	0,988700397	0,45280106		
0	0,993309754	0,981848138	1,15388136		
-1	1,00000004	0,979004743	2,09952617		
-2	0,996884827	0,979840144	1,70979458		
-3	0,996996255	0,978518477	1,85334476		
-4	0,994204782	0,976891513	1,74141878		
-5	0,993309754	0,971267805	2,2190409		
-6	0,991403735	0,966992677	2,46227221		
-7	0,988704869	0,965696169	2,32715556		
-8	0,988254261	0,96296314	2,55917147		
-9	0,986336124	0,952318165	3,44892159		
-10	0,983280011	0,950089473	3,37549207		
-11	0,979641995	0,940097933	4,03658296		
-12	0,974267614	0,935945154	3,93346335		
-13	0,970356766	0,926302032	4,54005526		
-14	0,964103866	0,920326143	4,5407683		
-15	0,957916845	0,907523601	5,26071175		
-16	0,953449483	0,90089258	5,51229027		
-17	0,94871881	0,888124713	6,38693953		
-18	0,93868552	0,872997295	6,99789472		
-19	0,929490237	0,857862402	7,70614176		
-20	0,925584346	0,843054004	8,91656633		
-21	0,913366079	0,833612333	8,73184891		
-22	0,903087695	0,814346105	9,82646422		
-23	0,89560025	0,792948206	11,461815		
-24	0,882986546	0,77800856	11,8889678		
-25	0,871067058	0,754633376	13,3667874		
-26	0,86001348	0,737229051	14,2770354		
-27	0,848231983	0,706734242	16,6814909		
-28	0,835267108	0,686188843	17,8479751		
-29	0,822469635	0,664407308	19,2180137		
-30	0,809272231	0,641849096	20,6881107		
-31	0,795353972	0,607679374	23,5963614		
-32	0,779453757	0,586326037	24,777316		
-33	0,766868442	0,563108107	26,570442		
-34	0,751637503	0,528873479	29,6371619		
-35	0,735028419	0,507344465	30,976211		

-36	0,720790815	0,483364816	32,9396538	
-37	0,706535157	0,456131928	35,4410148	

Ángulos (°)	Datos software Lab- Volt	Datos simulación constante dieléctrica 4.8	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0,71302848	0,374118234	47,5310952	17,2059069	14,565654
38	0,72861492	0,394508227	45,8550443		
37	0,74459911	0,416903589	44,0096577		
36	0,75575788	0,443202378	41,3565656		
35	0,76996185	0,462639552	39,913964		
34	0,78218271	0,481009609	38,5041884		
33	0,79446455	0,502781664	36,7143991		
32	0,80534718	0,524919534	34,820715		
31	0,81948063	0,543883791	33,6306716		
30	0,82981283	0,56219955	32,249836		
29	0,8413671	0,578768836	31,2109019		
28	0,85191024	0,595327877	30,1184735		
27	0,86055038	0,615263668	28,5034693		
26	0,87106706	0,631416737	27,51227		
25	0,88181683	0,653345267	25,9091864		
24	0,88932172	0,689397173	22,4805652		
23	0,90043174	0,711641873	20,9665942		
22	0,90824509	0,734509819	19,128677		
21	0,91721412	0,769576728	16,0962841		
20	0,92411386	0,790044108	14,507926		
19	0,93240655	0,812308007	12,8804913		
18	0,94012718	0,834129565	11,2748166		
17	0,94586585	0,854803485	9,62740821		
16	0,95238767	0,874716427	8,15542257		
15	0,95932217	0,893165328	6,89620706		
14	0,96410387	0,896888805	6,97176552		
13	0,96954904	0,914822595	5,6445255		
12	0,97541447	0,934016335	4,24415797		
11	0,97872983	0,952394758	2,69074008		
10	0,98214452	0,954742071	2,79006252		
9	0,98509263	0,972496669	1,27865715		
8	0,98881765	0,967959713	2,10938123		
7	0,99073003	0,988168617	0,25853773		
6	0,99151569	0,987910384	0,36361573		
5	0,99409291	0,977351474	1,6840917		
4	0,9967734	1	-0,3237044		

3	0,995881	0,998435075	-0,2564638	
2	0,99509948	0,993280016	0,18284252	
1	0,99319761	0,986205201	0,68489833	
0	0,99330975	0,977192122	0,13836738	
-1	1	0,976000247	2,39997573	
-2	0,99688483	0,981914934	1,5016672	
-3	0,99699625	0,986261778	1,07668175	
-4	0,99420478	0,988644094	0,55931011	
-5	0,99330975	0,988492289	0,48499124	
-6	0,99140374	0,964186018	2,74537168	
-7	0,98870487	0,971436214	1,74659352	
-8	0,98825426	0,969919728	1,85524452	
-9	0,98633612	0,949090033	3,77620675	
-10	0,98328001	0,950646878	3,31880368	
-11	0,97964199	0,931994979	4,86371713	
-12	0,97426761	0,927954203	4,75366416	
-13	0,97035677	0,90874567	6,34932408	
-14	0,96410387	0,889256652	7,76339733	
-15	0,95791684	0,871715542	8,99882941	
-16	0,95344948	0,865927185	9,17954224	
-17	0,94871881	0,84730743	10,6892979	
-18	0,93868552	0,826239817	11,9790601	
-19	0,92949024	0,80522795	13,3688642	
-20	0,92558435	0,783152673	15,3882975	
-21	0,91336608	0,761318025	16,6470004	
-22	0,90308769	0,740854632	17,9642646	
-23	0,89560025	0,706427408	21,1224641	
-24	0,88298655	0,68285565	22,6652259	
-25	0,87106706	0,661473547	24,0616964	
-26	0,86001348	0,626651186	27,1347252	
-27	0,84823198	0,605491913	28,6171796	
-28	0,83526711	0,589125682	29,4685884	
-29	0,82246963	0,569874155	30,7118304	
-30	0,80927223	0,554220484	31,5161867	
-31	0,79535397	0,537136529	32,4657263	
-32	0,77945376	0,519795926	33,3127949	
-33	0,76686844	0,500531316	34,7304846	
-34	0,7516375	0,479335446	36,2278433	
-35	0,73502842	0,458105317	37,6751558	
-36	0,72079081	0,439857528	38,975703	

-37 0,70653516 0,4207924	5 40,4428151
--------------------------	--------------

	_			Media del	Desviación
á 1 (0)	Datos	Datos simulación	% de error	% de error	estándar del %
Angulos (°)	software	constante	punto a	punto a	de error punto a
	Lab-voit	dielectrica 5.5	punto	punto	punto
39	0,71302848	0,46271496	35,1056833	9,48374357	8,47040217
38	0,72861492	0,488514863	32,9529428		
37	0,74459911	0,515322909	30,7918982		
36	0,75575788	0,548215903	27,4614377		
35	0,76996185	0,576188721	25,166588		
34	0,78218271	0,602502317	22,9716656		
33	0,79446455	0,62525354	21,2987488		
32	0,80534718	0,660244145	18,0174511		
31	0,81948063	0,683906744	16,5438795		
30	0,82981283	0,707800052	14,7036499		
29	0,8413671	0,734706703	12,677034		
28	0,85191024	0,75732866	11,1022936		
27	0,86055038	0,786830631	8,56658165		
26	0,87106706	0,804768911	7,61114151		
25	0,88181683	0,827750535	6,13123916		
24	0,88932172	0,850182266	4,40104593		
23	0,90043174	0,871337867	3,23110291		
22	0,90824509	0,888344471	2,19110654		
21	0,91721412	0,906463669	1,17207622		
20	0,92411386	0,923577678	0,05802164		
19	0,93240655	0,932122468	0,03046774		
18	0,94012718	0,949667049	1,01474244		
17	0,94586585	0,964671891	1,98823529		
16	0,95238767	0,973639608	2,23143828		
15	0,95932217	0,974197456	1,55060364		
14	0,96410387	0,963271391	0,08634704		
13	0,96954904	0,996947143	2,82586071		
12	0,97541447	0,979282053	0,39650712		
11	0,97872983	0,935777093	4,38862082		
10	0,98214452	0,97683897	0,54020025		
9	0,98509263	0,910628387	7,55911036		
8	0,98881765	0,963976181	2,51223936		
7	0,99073003	1	0,93567084		
6	0,99151569	0,902170076	9,01101373		
5	0,99409291	0,939952144	5,44624813		
4	0,9967734	0,96411105	3,27680805		

3	0,995881	0,829859541	16,670813	
2	0,99509948	0,841815736	15,4038615	
1	0,99319761	0,852137539	14,2026185	
0	0,99330975	0,851592698	14,2671564	
-1	1	0,851041477	14,8958527	
-2	0,99688483	0,847184146	15,0168482	
-3	0,99699625	0,832691184	16,4800088	
-4	0,99420478	0,817735692	17,7497728	
-5	0,99330975	0,946354935	4,72710748	
-6	0,99140374	0,918144876	7,38940725	
-7	0,98870487	0,877326145	11,2651133	
-8	0,98825426	0,971327925	1,71275112	
-9	0,98633612	0,932568146	5,45128345	
-10	0,98328001	0,877820056	10,7253228	
-11	0,97964199	0,940698868	3,97524063	
-12	0,97426761	0,89933857	7,69080719	
-13	0,97035677	0,941182552	3,00654512	
-14	0,96410387	0,95878551	0,55163718	
-15	0,95791684	0,925893885	3,34297914	
-16	0,95344948	0,937277424	1,69616326	
-17	0,94871881	0,937939953	1,13614875	
-18	0,93868552	0,930780699	0,84211594	
-19	0,92949024	0,917139555	1,32875868	
-20	0,92558435	0,901124124	2,64267888	
-21	0,91336608	0,889503364	2,61261243	
-22	0,90308769	0,873493554	3,27699523	
-23	0,89560025	0,855990545	4,42269912	
-24	0,88298655	0,842883046	4,54180187	
-25	0,87106706	0,821847533	5,65048628	
-26	0,86001348	0,803026075	6,62633852	
-27	0,84823198	0,779855661	8,06104031	
-28	0,83526711	0,76276185	8,68048766	
-29	0,82246963	0,733917033	10,7666712	
-30	0,80927223	0,713728615	11,8061157	
-31	0,79535397	0,690365686	13,2001964	
-32	0,77945376	0,668662857	14,2139158	
-33	0,76686844	0,645213571	15,8638515	
-34	0,7516375	0,614287704	18,2734095	
-35	0,73502842	0,592213076	19,4299077	
-36	0,72079081	0,567881196	21,2141465	

-37 0,70653516 0,54059205	23,4868857
---------------------------	------------

	Datos	Datos	% de error	Media del	Desviación
Ángulos (°)	software	constante	punto a	% de error	de error punto
	Lab-Volt	dieléctrica 6 5	punto	punto a	a nunto
29	0 71302848	0 1972/669/	72 336772	29 7786044	23 0883958
38	0 72861/192	0,137240034	70 7106427	23,7700044	23,0003330
27	0,72801492	0,213400027	60 2642221		
37	0,74439911	0,220007502	66 65 25 45 35 1		
30	0,75575788	0,252018457	64 9522124		
35	0,70990185	0,270624546	64,8522134		
34	0,78218271	0,287976247	63,1829953		
33	0,79446455	0,308828338	61,1274866		
32	0,80534718	0,335429551	58,3496957		
31	0,81948063	0,356600995	56,4845121		
30	0,82981283	0,37722531	54,5409159		
29	0,8413671	0,406756656	51,6552693		
28	0,85191024	0,429719014	49,5581816		
27	0,86055038	0,458985021	46,6637828		
26	0,87106706	0,481290918	44,7469728		
25	0,88181683	0,514706837	41,6310942		
24	0,88932172	0,539540228	39,3312663		
23	0,90043174	0,569290198	36,7758632		
22	0,90824509	0,594577621	34,5355534		
21	0,91721412	0,623343938	32,0394305		
20	0,92411386	0,654374574	29,188967		
19	0,93240655	0,682375827	26,8156336		
18	0,94012718	0,712925165	24,1671574		
17	0,94586585	0,74337145	21,4083637		
16	0,95238767	0,765409274	19,6325928		
15	0,95932217	0,791685323	17,47451		
14	0,96410387	0,816341597	15,3263848		
13	0,96954904	0,842355956	13,1187879		
12	0,97541447	0,861564855	11,6719215		
11	0,97872983	0,889467584	9,12021351		
10	0,98214452	0.901334898	8,2278746		
9	0.98509263	0.927553943	5.84094142		
8	0.98881765	0.939160409	5.02188021		
7	0.99073003	0.962814592	2.81766323		
6	0.99151569	0.969452264	2.22522222		
5	0,99409291	0.974806916	1,9400595		
4	0,9967734	0,990197529	0,65971582		

3	0,995881	0,998685111	0,28157081	
2	0,99509948	1	0,4924652	
1	0,99319761	0,999642229	0,64887615	
0	0,99330975	0,99539336	0,20976396	
-1	1	0,994991559	0,50084457	
-2	0,99688483	0,997493624	0,06107	
-3	0,99699625	0,996472315	0,05255181	
-4	0,99420478	0,993878995	0,03276857	
-5	0,99330975	0,984403832	0,89659068	
-6	0,99140374	0,967936988	2,36702233	
-7	0,98870487	0,958205047	3,08482565	
-8	0,98825426	0,950678167	3,8022698	
-9	0,98633612	0,927126931	6,00294281	
-10	0,98328001	0,909973135	7,45534082	
-11	0,97964199	0,884504082	9,71149798	
-12	0,97426761	0,866782333	11,0324185	
-13	0,97035677	0,840712303	13,3604946	
-14	0,96410387	0,816676578	15,2916395	
-15	0,95791684	0,788475305	17,6885437	
-16	0,95344948	0,764111631	19,8581944	
-17	0,94871881	0,734676085	22,5612397	
-18	0,93868552	0,70857874	24,5137243	
-19	0,92949024	0,676537405	27,2141462	
-20	0,92558435	0,645577528	30,2518964	
-21	0,91336608	0,62163017	31,9407427	
-22	0,90308769	0,586818593	35,0208627	
-23	0,89560025	0,560044795	37,4671016	
-24	0,88298655	0,535316523	39,3743284	
-25	0,87106706	0,508485329	41,6250075	
-26	0,86001348	0,48509311	43,5947086	
-27	0,84823198	0,454712308	46,3929306	
-28	0,83526711	0,433891663	48,0535437	
-29	0,82246963	0,407032228	50,510972	
-30	0,80927223	0,386384823	52,2552723	
-31	0,79535397	0,359621657	54,7847035	
-32	0,77945376	0,341007412	56,2504627	
-33	0,76686844	0,32156203	58,0681624	
-34	0,7516375	0,297767906	60,3841074	
-35	0,73502842	0,278558411	62,1023617	
-36	0,72079081	0,263393672	63,4576819	

-37 0,70653516 0,245884998	65,1984766	
----------------------------	------------	--

Ángulos (°)	Datos software Lab- Volt	Datos simulación constante dieléctrica 7.5	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0,71302848	0,186016028	73,9118376	27,659169	23,5264219
38	0,72861492	0,20156944	72,3352577		
37	0,74459911	0,217452006	70,7960964		
36	0,75575788	0,232967626	69,1743042		
35	0,76996185	0,255120753	66,8657929		
34	0,78218271	0,274006365	64,9690079		
33	0,79446455	0,291358216	63,3264673		
32	0,80534718	0,310927066	61,3921705		
31	0,81948063	0,337571857	58,8066094		
30	0,82981283	0,359244427	56,707776		
29	0,8413671	0,380479023	54,778476		
28	0,85191024	0,410162107	51,8538351		
27	0,86055038	0,433698344	49,6022135		
26	0,87106706	0,461627841	47,004328		
25	0,88181683	0,486332064	44,8488569		
24	0,88932172	0,523730687	41,108974		
23	0,90043174	0,548811783	39,0501516		
22	0,90824509	0,581945042	35,9264312		
21	0,91721412	0,608621065	33,6446034		
20	0,92411386	0,643024981	30,4171265		
19	0,93240655	0,676527368	27,4428771		
18	0,94012718	0,704590227	25,0537329		
17	0,94586585	0,73784276	21,9928747		
16	0,95238767	0,770806829	19,0658534		
15	0,95932217	0,788539553	17,8024259		
14	0,96410387	0,819383237	15,010896		
13	0,96954904	0,85169651	12,1553962		
12	0,97541447	0,868647096	10,9458464		
11	0,97872983	0,894997123	8,55524251		
10	0,98214452	0,919497116	6,37863364		
9	0,98509263	0,933176591	5,27016785		
8	0,98881765	0,951770576	3,74660298		
7	0,99073003	0,968119578	2,28220092		
6	0,99151569	0,975487793	1,6165047		
5	0,99409291	0,988388335	0,57384728		

4	0,9967734	0,997955313	0,11857376	
3	0,995881	0,999271987	0,34050115	
2	0,99509948	0,99773622	0,26497233	
1	0,99319761	0,998795502	0,56362359	
0	0,99330975	1	0,67353064	
-1	1	0,995937679	0,40623259	
-2	0,99688483	0,996418456	0,04678278	
-3	0,99699625	0,997586936	0,05924607	
-4	0,99420478	0,993287726	0,09224012	
-5	0,99330975	0,988317592	0,5025786	
-6	0,99140374	0,987530915	0,39064008	
-7	0,98870487	0,983767958	0,49933107	
-8	0,98825426	0,972713354	1,57256154	
-9	0,98633612	0,959252569	2,74587483	
-10	0,98328001	0,948994804	3,48682032	
-11	0,97964199	0,933051075	4,75591284	
-12	0,97426761	0,913239437	6,26400548	
-13	0,97035677	0,900772498	7,17099832	
-14	0,96410387	0,876205598	9,11709525	
-15	0,95791684	0,852126729	11,0437682	
-16	0,95344948	0,83765564	12,1447277	
-17	0,94871881	0,80714674	14,9224479	
-18	0,93868552	0,77879919	17,0330027	
-19	0,92949024	0,762064715	18,0126175	
-20	0,92558435	0,731507874	20,9679942	
-21	0,91336608	0,700572105	23,2977751	
-22	0,90308769	0,67407081	25,3593185	
-23	0,89560025	0,642467828	28,2639963	
-24	0,88298655	0,609921547	30,9251597	
-25	0,87106706	0,584279407	32,9237168	
-26	0,86001348	0,551839027	35,833677	
-27	0,84823198	0,527477218	37,8145097	
-28	0,83526711	0,490060669	41,3288678	
-29	0,82246963	0,464820599	43,4847708	
-30	0,80927223	0,437048553	45,994866	
-31	0,79535397	0,412968796	48,0773579	
-32	0,77945376	0,382032266	50,9871802	
-33	0,76686844	0,359974584	53,0591475	
-34	0,7516375	0,337173265	55,1415058	
-35	0,73502842	0,309464306	57,8976407	

-36	0,72079081	0,288245532	60,0098218	
-37	0,70653516	0,270269451	61,7472041	

Ángulos (°)	Datos software Lab-Volt	Datos simulación constante dieléctrica 8.5	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto
39	0,71302848	0.291739075	59,084513	19,7569442	16,9573952
38	0,72861492	0.314531993	56,8315191	,	,
37	0,74459911	0,334176673	55,1199203		
36	0,75575788	0,357667094	52,6743813		
35	0,76996185	0,386423235	49,8126775		
34	0,78218271	0,409330863	47,6681272		
33	0,79446455	0,430677504	45,7902174		
32	0,80534718	0,451160019	43,9794377		
31	0,81948063	0,483082202	41,0501989		
30	0,82981283	0,504726636	39,1758454		
29	0,8413671	0,526640917	37,4065233		
28	0,85191024	0,554983729	34,8542011		
27	0,86055038	0,576002407	33,0658124		
26	0,87106706	0,604770053	30,5713553		
25	0,88181683	0,626323122	28,9735581		
24	0,88932172	0,650927909	26,8062511		
23	0,90043174	0,67276516	25,2841578		
22	0,90824509	0,695243189	23,4520287		
21	0,91721412	0,716392393	21,8947486		
20	0,92411386	0,740721306	19,845234		
19	0,93240655	0,764054505	18,0556482		
18	0,94012718	0,778328664	17,2102796		
17	0,94586585	0,796960048	15,7428036		
16	0,95238767	0,815525649	14,3704104		
15	0,95932217	0,837010321	12,74982		
14	0,96410387	0,85474985	11,3425555		
13	0,96954904	0,866122856	10,6674524		
12	0,97541447	0,889203102	8,83843393		
11	0,97872983	0,896313747	8,42071882		
10	0,98214452	0,918983315	6,43094784		
9	0,98509263	0,923504221	6,25204199		
8	0,98881765	0,945129371	4,41823382		
7	0,99073003	0,951141922	3,99585207		
6	0,99151569	0,965783004	2,59528797		
5	0,99409291	0,976167011	1,80324185		

4	0,9967734	0,98266515	1,415392	
3	0,995881	0,980878415	1,50646371	
2	0,99509948	0,987914541	0,7220324	
1	0,99319761	0,992965164	0,02340337	
0	0,99330975	0,997427317	0,41452957	
-1	1	0,996173699	0,38263053	
-2	0,99688483	0,99743935	0,05562565	
-3	0,99699625	1	0,30127949	
-4	0,99420478	0,997633924	0,34491308	
-5	0,99330975	0,993355197	0,00457486	
-6	0,99140374	0,993176842	0,1788481	
-7	0,98870487	0,993412631	0,47615445	
-8	0,98825426	0,987013894	0,1255109	
-9	0,98633612	0,975245724	1,12440377	
-10	0,98328001	0,963720578	1,9892028	
-11	0,97964199	0,956052375	2,40798371	
-12	0,97426761	0,934237374	4,108752	
-13	0,97035677	0,928795901	4,28304989	
-14	0,96410387	0,90216184	6,42482911	
-15	0,95791684	0,891639654	6,91888771	
-16	0,95344948	0,8698868	8,76424862	
-17	0,94871881	0,853006013	10,088637	
-18	0,93868552	0,832381474	11,3247775	
-19	0,92949024	0,807492937	13,1251836	
-20	0,92558435	0,783784545	15,3200301	
-21	0,91336608	0,761816191	16,5924586	
-22	0,90308769	0,746559537	17,3325534	
-23	0,89560025	0,720097032	19,5961554	
-24	0,88298655	0,692772159	21,5421613	
-25	0,87106706	0,671078319	22,959052	
-26	0,86001348	0,646524185	24,8239476	
-27	0,84823198	0,62465065	26,3585125	
-28	0,83526711	0,599191725	28,2634598	
-29	0,82246963	0,576932807	29,853604	
-30	0,80927223	0,549101046	32,1487844	
-31	0,79535397	0,529279601	33,4535792	
-32	0,77945376	0,501607679	35,6462555	
-33	0,76686844	0,481258021	37,2437311	
-34	0,7516375	0,460062899	38,791918	
-35	0,73502842	0,431060735	41,3545484	

-36	0,72079081	0,412105495	42,825923	
-37	0,70653516	0,392605475	44,4322804	

	Datos	Datos simulación	% de error	Media del	Desviación
Ángulos (°)	software	constante	punto a	% de error	estándar del % de
0 0	Lab-Volt	dieléctrica 10	punto	punto a	error punto a
			•	punto	punto
39	0,71302848	0,394273061	44,7044442	13,5761978	10,9492599
38	0,72861492	0,414862593	43,0614744		
37	0,74459911	0,434824495	41,6028719		
36	0,75575788	0,45414947	39,9080737		
35	0,76996185	0,472401108	38,6461666		
34	0,78218271	0,493856085	36,8618002		
33	0,79446455	0,524983854	33,9197885		
32	0,80534718	0,550883923	31,5967154		
31	0,81948063	0,589641313	28,0469495		
30	0,82981283	0,615164777	25,8670439		
29	0,8413671	0,647327138	23,0624609		
28	0,85191024	0,682139307	19,9282649		
27	0,86055038	0,709612913	17,5396434		
26	0,87106706	0,750976871	13,7865605		
25	0,88181683	0,778741937	11,6889237		
24	0,88932172	0,805964343	9,37314108		
23	0,90043174	0,83244204	7,55078934		
22	0,90824509	0,864751008	4,78880436		
21	0,91721412	0,882761124	3,75626511		
20	0,92411386	0,911398972	1,37590104		
19	0,93240655	0,933502626	0,11755327		
18	0,94012718	0,946803592	0,71016054		
17	0,94586585	0,961851195	1,69002227		
16	0,95238767	0,974884626	2,36216422		
15	0,95932217	0,983836392	2,55536894		
14	0,96410387	0,9897426	2,65933325		
13	0,96954904	0,994821979	2,60666974		
12	0,97541447	0,998890502	2,40677556		
11	0,97872983	1	2,1732418		
10	0,98214452	0,994927643	1,30155249		
9	0,98509263	0,997203616	1,22942649		
8	0,98881765	0,984296529	0,45722463		
7	0,99073003	0,974234658	1,66497121		
6	0,99151569	0,963732596	2,80208326		
5	0,99409291	0,951187428	4,31604347		
4	0,9967734	0,931704662	6,52793693		
_					
---	-----	------------	-------------	------------	------
	3	0,995881	0,919399655	7,67976758	
	2	0,99509948	0,901813209	9,37456744	
	1	0,99319761	0,880845768	11,3121334	
	0	0,99330975	0,871912878	12,2214522	
	-1	1	0,85867875	14,1321254	
	-2	0,99688483	0,853155486	14,4178481	
	-3	0,99699625	0,850466466	14,6971253	
	-4	0,99420478	0,846401019	14,8665311	
	-5	0,99330975	0,844966035	14,934286	
	-6	0,99140374	0,850504609	14,2120835	
	-7	0,98870487	0,852836523	13,7420529	
	-8	0,98825426	0,857164022	13,2648291	
	-9	0,98633612	0,861511449	12,6553892	
	-10	0,98328001	0,86432754	12,0975175	
	-11	0,97964199	0,869449387	11,2482527	
	-12	0,97426761	0,874972961	10,1917226	
	-13	0,97035677	0,872075993	10,1283132	
	-14	0,96410387	0,874856748	9,25700242	
	-15	0,95791684	0,874897272	8,66667847	
	-16	0,95344948	0,871110801	8,63587255	
	-17	0,94871881	0,866805538	8,63409376	
	-18	0,93868552	0,86093196	8,28323848	
	-19	0,92949024	0,854357014	8,08327187	
	-20	0,92558435	0,847170381	8,47183355	
	-21	0,91336608	0,838941516	8,14838271	
	-22	0,90308769	0,829111312	8,19149494	
	-23	0,89560025	0,817095259	8,76562846	
	-24	0,88298655	0,801208456	9,26153296	
	-25	0,87106706	0,785968815	9,76942503	
	-26	0,86001348	0,771021693	10,34772	
	-27	0,84823198	0,753921593	11,1184667	
	-28	0,83526711	0,730900739	12,4949693	
	-29	0,82246963	0,710139158	13,657705	
	-30	0,80927223	0,686460448	15,1755835	
	-31	0,79535397	0,665308362	16,3506582	
	-32	0,77945376	0,63460599	18,5832406	
	-33	0,76686844	0,613688592	19,9747234	
	-34	0,7516375	0,589676223	21,5477913	
	-35	0,73502842	0,558699755	23,9893669	
	-36	0,72079081	0,533053751	26,0459844	

-37 0,70653516	0,508069736 28,0899569		
----------------	------------------------	--	--

ANEXO B

Dieléctrico constante de 4.5 y variaciones en el W de la antena						
		Datos software	Datos simulación	% de error punto a punto	Media del % de error punto a	Desviación estándar del % de error punto a
	Ángulos (°)	Lab-Volt	con W de 8		punto	panto
	39	0,71302848	0,45110596	36,733809	7,68373775	9,62536201
	38	0,72861492	0,475852742	34,6907772		
	37	0,74459911	0,506005548	32,0432239		
	36	0,75575788	0,528731205	30,0396043		
	35	0,76996185	0,563253339	26,846591		
	34	0,78218271	0,592940975	24,1940579		
	33	0,79446455	0,618182147	22,1888317		
	32	0,80534718	0,640088227	20,5202125		
	31	0,81948063	0,673822515	17,7744428		
	30	0,82981283	0,694348224	16,3247177		
	29	0,8413671	0,717422284	14,7313594		
	28	0,85191024	0,748247463	12,1682741		
	27	0,86055038	0,768552933	10,690536		
	26	0,87106706	0,79092491	9,20045677		
	25	0,88181683	0,808184254	8,35009913		
	24	0,88932172	0,833906462	6,23118267		
	23	0,90043174	0,849016842	5,71002765		
	22	0,90824509	0,869360094	4,28133273		
	21	0,91721412	0,884177062	3,60189136		
	20	0,92411386	0,901005512	2,50059576		
	19	0,93240655	0,915138991	1,85193467		
	18	0,94012718	0,923623022	1,75552395		
	17	0,94586585	0,936255301	1,01605853		
	16	0,95238767	0,947826667	0,47890145		
	15	0,95932217	0,95746764	0,19331688		
	14	0,96410387	0,966764728	0,2759933		
	13	0,96954904	0,971728237	0,2247643		
	12	0,97541447	0,978051798	0,27038067		
	11	0.97872983	0.98315068	0.45169216		
	10	0.98214452	0.988767609	0.67435007		
	 	0.98509263	0.991318417	0.63200051		
	8	0,98881765	0.996965634	0.82401314		
	7	0.99073003	0.997389808	0.67220931		
	6	0 99151569	0 999624348	0.81780422		
		0,00101000	0,00027070	0,01,00722	1	1

5	0,99409291	1	0,59421907	
4	0,9967734	0,99956306	0,27986893	
3	0,995881	0,993901891	0,19872959	
2	0,99509948	0,99505269	0,00470219	
1	0,99319761	0,993220677	0,00232292	
0	0,99330975	0,990476491	0,28523459	
-1	1	0,984873883	1,51261211	
-2	0,99688483	0,983609183	1,33171288	
-3	0,99699625	0,98627512	1,07534352	
-4	0,99420478	0,987325762	0,69191173	
-5	0,99330975	0,987472934	0,58761333	
-6	0,99140374	0,984520483	0,69429362	
-7	0,98870487	0,984658484	0,40926118	
-8	0,98825426	0,983754067	0,45536798	
-9	0,98633612	0,982192421	0,42011068	
-10	0,98328001	0,975930971	0,74740053	
-11	0,97964199	0,974235865	0,55184748	
-12	0,97426761	0,967749566	0,66902031	
-13	0,97035677	0,961645073	0,89778244	
-14	0,96410387	0,956152484	0,82474325	
-15	0,95791684	0,946771799	1,16346698	
-16	0,95344948	0,93895743	1,5199603	
-17	0,94871881	0,931798347	1,78350667	
-18	0,93868552	0,918644283	2,13503207	
-19	0,92949024	0,905859178	2,54236767	
-20	0,92558435	0,8935551	3,46043516	
-21	0,91336608	0,878655504	3,80029167	
-22	0,90308769	0,866693404	4,02998413	
-23	0,89560025	0,850034252	5,08776069	
-24	0,88298655	0,831008995	5,88656204	
-25	0,87106706	0,812872379	6,68084943	
-26	0,86001348	0,791739968	7,93865598	
-27	0,84823198	0,773748284	8,78105287	
-28	0,83526711	0,748121353	10,4332798	
-29	0,82246963	0,72836485	11,4417336	
-30	0,80927223	0,700448449	13,4471167	
-31	0,79535397	0,680232057	14,4742994	
-32	0,77945376	0,651211204	16,4528751	
-33	0,76686844	0,625771098	18,399159	
-34	0,7516375	0,602834528	19,7971727	

-35	0,73502842	0,572566275	22,1028385	
-36	0,72079081	0,5495802	23,7531627	
-37	0,70653516	0,527490823	25,3411783	

_							
۵	Dieléctrico constante de 4.5 y variaciones en el W de la antena						
,	Íngulos	Datos	Datos	% de error	Media del %	Desviación estándar	
1	۹)	software Lab-	simulación	punto a	de error	del % de error punto a	
	1	Volt	con W de 4	punto	punto a punto	punto	
	39	0,71302848	0,39343049	44,8226122	15,2877141	14,7864427	
	38	0,72861492	0,412002243	43,454048			
	37	0,74459911	0,426124788	42,7712465			
	36	0,75575788	0,445038578	41,1136042			
	35	0,76996185	0,462722759	39,9031574			
	34	0,78218271	0,475918214	39,1551097			
	33	0,79446455	0,493566048	37,8743772			
	32	0,80534718	0,507347966	37,0025774			
	31	0,81948063	0,525272967	35,9017228			
	30	0,82981283	0,536825851	35,3075978			
	29	0,8413671	0,549273309	34,7165688			
	28	0,85191024	0,565057276	33,6717353			
	27	0,86055038	0,589571146	31,4890611			
	26	0,87106706	0,636279256	26,9540444			
	25	0,88181683	0,648002328	26,5150877			
	24	0,88932172	0,651271467	26,7676196			
	23	0,90043174	0,718811245	20,1703794			
	22	0,90824509	0,733117577	19,2819662			
	21	0,91721412	0,744151339	18,8683074			
	20	0,92411386	0,80886837	12,4709193			
	19	0,93240655	0,830302047	10,9506421			
	18	0,94012718	0,851633886	9,41290663			
	17	0,94586585	0,872687937	7,73660602			
	16	0,95238767	0,893066682	6,22865933			
	15	0,95932217	0,911687544	4,96544634			
	14	0,96410387	0,928061929	3,73838735			
	13	0,96954904	0,915619842	5,56229683			
	12	0,97541447	0,930893245	4,56433873			
	11	0,97872983	0,958334091	2,08389925			
	10	0,98214452	0,973898307	0,83961265			
	9	0,98509263	0,966279889	1,90974297			
	8	0,98881765	0,987492316	0,13403191			
	7	0,99073003	0,967829221	2,31150834			
F	6	0,99151569	0,995860076	0,43815594			
F	5	0,99409291	0,987851041	0,627896			
F	4	0,9967734	0,967154929	2,97143486			

3	0,995881	1	0,41360354	
2	0,99509948	0,994208864	0,08950033	
1	0,99319761	0,984850486	0,84042892	
(0,99330975	0,974776379	1,86582038	
-1	1	0,963642124	3,63578798	
-2	0,99688483	0,965233341	3,17503942	
-3	0,99699625	0,976470469	2,05876262	
-4	0,99420478	0,986071473	0,81807177	
-5	0,99330975	0,994505799	0,12041005	
-6	6 0,99140374	0,998803157	0,74635805	
-7	0,98870487	0,967397287	2,15510033	
-8	0,98825426	0,985601813	0,26839726	
-9	0,98633612	0,990573439	0,42960146	
-10	0,98328001	0,96378148	1,98300906	
-11	0,97964199	0,978572003	0,10922277	
-12	0,97426761	0,958212901	1,64787504	
-13	0,97035677	0,962600008	0,7993717	
-14	0,96410387	0,946502803	1,82563965	
-15	0,95791684	0,919662864	3,99345525	
-16	0,95344948	0,90379391	5,20799209	
-17	0,94871881	0,913252008	3,73838922	
-18	0,93868552	0,89636776	4,50819352	
-19	0,92949024	0,87837441	5,49933983	
-20	0,92558435	0,858848393	7,21014275	
-21	0,91336608	0,838920597	8,15067296	
-22	0,90308769	0,819013844	9,30959982	
-23	0,89560025	0,798643751	10,8258678	
-24	0,88298655	0,738721391	16,3383185	
-25	0,87106706	0,729119666	16,2958053	
-26	6 0,86001348	0,716242278	16,7173196	
-27	0,84823198	0,653393279	22,9699785	
-28	0,83526711	0,650879025	22,0753435	
-29	0,82246963	0,638241035	22,3994409	
-30	0,80927223	0,594217053	26,5738981	
-31	0,79535397	0,545581632	31,4039218	
-32	0,77945376	0,543183726	30,3122576	
-33	0,76686844	0,507666058	33,8001109	
-34	0,7516375	0,493767899	34,3077086	
-35	0,73502842	0,472142868	35,7653588	
-36	6 0,72079081	0,457673618	36,5039608	

-37 0,70653516 0,441036175	37,5776039		
----------------------------	------------	--	--

ANEXO C

Dieléctrico constante de 4.5 y variaciones en el H de la antena						
Ángulos (°)	Datos software Lab-Volt	Datos simulación con H de 10	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto	
39	0,71302848	0,307212646	56,9143934	14,8997299	15,9356606	
38	0,72861492	0,331303678	54,5296605			
37	0,74459911	0,356362532	52,1403494			
36	0,75575788	0,381708015	49,4933465			
35	0,76996185	0,4080528	47,0035039			
34	0,78218271	0,437463989	44,0713811			
33	0,79446455	0,465836868	41,3646752			
32	0,80534718	0,49513048	38,5196233			
31	0,81948063	0,514105225	37,2645056			
30	0,82981283	0,546413582	34,1521889			
29	0,8413671	0,577632447	31,3459666			
28	0,85191024	0,598325939	29,7665511			
27	0,86055038	0,629784803	26,8160452			
26	0,87106706	0,662847543	23,9039593			
25	0,88181683	0,683663616	22,4710179			
24	0,88932172	0,703618602	20,8814332			
23	0,90043174	0,738823479	17,9478639			
22	0,90824509	0,760345307	16,2841267			
21	0,91721412	0,779315853	15,0344682			
20	0,92411386	0,812261464	12,1037465			
19	0,93240655	0,832520572	10,7127067			
18	0,94012718	0,852140398	9,3590296			
17	0,94586585	0,871747754	7,83600522			
16	0,95238767	0,890725554	6,47447603			
15	0,95932217	0,907841054	5,36640545			
14	0,96410387	0,923489197	4,212686			
13	0,96954904	0,924138718	4,68365372			
12	0,97541447	0,937347547	3,90264034			
11	0,97872983	0,956102898	2,31186743			
10	0,98214452	0,970068976	1,22950757			
9	0,98509263	0,969495982	1,58326677			
8	0,98881765	0,984851068	0,40114365			
7	0,99073003	0,975473963	1,53988115			

6	0,99151569	0,994937836	0,34514284	
5	0,99409291	0,990713935	0,33990535	
4	0,9967734	0,977256205	1,9580374	
3	0,995881	1	0,41360354	
2	0,99509948	0,995210528	0,01115935	
1	0,99319761	0,987946071	0,52875031	
0	0,99330975	0,979866256	1,35340446	
-1	1	0,97056058	2,94394242	
-2	0,99688483	0,97153843	2,54256021	
-3	0,99699625	0,980383856	1,66624481	
-4	0,99420478	0,987896296	0,63452576	
-5	0,99330975	0,994713003	0,14126994	
-6	0,99140374	0,998870563	0,75315709	
-7	0,98870487	0,975904772	1,29463276	
-8	0,98825426	0,988765741	0,05175594	
-9	0,98633612	0,992106481	0,58502943	
-10	0,98328001	0,97265672	1,08039327	
-11	0,97964199	0,981691669	0,20922691	
-12	0,97426761	0,965869437	0,86199899	
-13	0,97035677	0,966045594	0,44428722	
-14	0,96410387	0,952029099	1,25243425	
-15	0,95791684	0,932947797	2,60659873	
-16	0,95344948	0,919940342	3,51451675	
-17	0,94871881	0,91792454	3,2458796	
-18	0,93868552	0,901996037	3,90860218	
-19	0,92949024	0,88468867	4,8200148	
-20	0,92558435	0,865566263	6,48434506	
-21	0,91336608	0,845750095	7,40294453	
-22	0,90308769	0,825751206	8,56356358	
-23	0,89560025	0,80511945	10,1028109	
-24	0,88298655	0,773383532	12,4127615	
-25	0,87106706	0,753527237	13,4937741	
-26	0,86001348	0,731657724	14,9248539	
-27	0,84823198	0,697221234	17,8030011	
-28	0,83526711	0,676552692	19,001636	
-29	0,82246963	0,655240643	20,332543	
-30	0,80927223	0,622297326	23,1040802	
-31	0,79535397	0,59108554	25,6827073	
-32	0,77945376	0,569497089	26,9363855	
-33	0,76686844	0,538298864	29,8055788	

-34	0,7516375	0,50711848	32,5315091	
-35	0,73502842	0,486966602	33,7486022	
-36	0,72079081	0,45737738	36,5450599	
-37	0,70653516	0,429051272	39,2738963	

Dieléctrico constante de 4.5 y variaciones en el H de la antena							
Ángulos (°)	Datos software Lab-Volt	Datos simulación con H de 5	% de error punto a punto	Media del % de error punto a punto	Desviación estándar del % de error punto a punto		
39	0,71302848	0,388809758	45,4706552	14,9235526	11,8587154		
38	0,72861492	0,413804488	43,2066959				
37	0,74459911	0,439772104	40,9384058				
36	0,75575788	0,464872869	38,4891802				
35	0,76996185	0,491906637	36,1128555				
34	0,78218271	0,518073997	33,765604				
33	0,79446455	0,541259088	31,8712095				
32	0,80534718	0,566643652	29,6398291				
31	0,81948063	0,573878321	29,9704839				
30	0,82981283	0,608871993	26,6253817				
29	0,8413671	0,631371616	24,9588415				
28	0,85191024	0,637427293	25,1767068				
27	0,86055038	0,665333122	22,6851633				
26	0,87106706	0,689714728	20,8195601				
25	0,88181683	0,693570357	21,3475713				
24	0,88932172	0,682443923	23,2624251				
23	0,90043174	0,725305379	19,4491549				
22	0,90824509	0,719349686	20,7978446				
21	0,91721412	0,713736187	22,1843436				
20	0,92411386	0,762459089	17,4929499				
19	0,93240655	0,769314288	17,4915398				
18	0,94012718	0,784256231	16,5797726				
17	0,94586585	0,807583051	14,6197054				
16	0,95238767	0,830551944	12,7926606				
15	0,95932217	0,854401422	10,936967				
14	0,96410387	0,878097821	8,92082773				
13	0,96954904	0,897642082	7,41653621				
12	0,97541447	0,907535299	6,95900753				
11	0,97872983	0,929669848	5,01261787				
10	0,98214452	0,939149168	4,37770087				
9	0,98509263	0,956272425	2,9256336				
8	0,98881765	0,959861691	2,92834133				
7	0,99073003	0,979715862	1,11172226				
6	0,99151569	0,982195454	0,93999897				
5	0,99409291	0,986911958	0,72236232				

4	0,9967734	0,999797465	0,30338524	
3	0,995881	1	0,41360354	
2	0,99509948	0,997984707	0,28994341	
1	0,99319761	0,99498852	0,18031799	
0	0,99330975	0,989690527	0,36436038	
-1	1	0,986149156	1,38508485	
-2	0,99688483	0,986148608	1,07697684	
-3	0,99699625	0,988001813	0,90215403	
-4	0,99420478	0,988351745	0,58871542	
-5	0,99330975	0,99006399	0,32676259	
-6	0,99140374	0,991059676	0,03470425	
-7	0,98870487	0,989701813	0,10083335	
-8	0,98825426	0,976159819	1,2238188	
-9	0,98633612	0,965914139	2,07048945	
-10	0,98328001	0,962847591	2,07798598	
-11	0,97964199	0,943341489	3,70548688	
-12	0,97426761	0,935120707	4,0180856	
-13	0,97035677	0,919305649	5,26106666	
-14	0,96410387	0,904802432	6,15093828	
-15	0,95791684	0,880108735	8,12263721	
-16	0,95344948	0,871286351	8,61746049	
-17	0,94871881	0,848738384	10,5384678	
-18	0,93868552	0,823010817	12,3230518	
-19	0,92949024	0,802955482	13,6133495	
-20	0,92558435	0,779218695	15,8133239	
-21	0,91336608	0,753902185	17,4589245	
-22	0,90308769	0,738538864	18,2206924	
-23	0,89560025	0,736885557	17,7215998	
-24	0,88298655	0,681246145	22,8475056	
-25	0,87106706	0,69541256	20,1654392	
-26	0,86001348	0,703570086	18,1908071	
-27	0,84823198	0,662467245	21,9002279	
-28	0,83526711	0,675508894	19,1266018	
-29	0,82246963	0,672647964	18,2160732	
-30	0,80927223	0,65019696	19,6565834	
-31	0,79535397	0,624734264	21,4520471	
-32	0,77945376	0,618221889	20,6852385	
-33	0,76686844	0,596711753	22,188511	
-34	0,7516375	0,564940525	24,8386992	
-35	0,73502842	0,555202055	24,465226	

-36	0,72079081	0,530700701	26,3724384	
-37	0,70653516	0,5079728	28,1036768	

ANEXO D

Lab-Volt LVDAM-ANT File 1.2		
Antenna Type :Parche rectangular		
Description		
Lab-Volt model :	9561	
Op. Frequency :	915 MHz	
Polarization :	Lin.	
Connector Type :	SMA	
Author : Carlos Fernando Guerrero Corred	or. Renato Albe	rto Angelone
Yepes.		
Comments :		
P - E - attenuation : 0		
P - H - attenuation : 0		
Anglo	с	
	-0.150621	-0 1172028
0	-0,1505870	-0,1172028
2	-0,1535873	-0,1001172
3	-0 1865692	-0.08843613
4	-0 1854401	-0 1016884
5	-0.1629524	-0.105011
6	-0.1183128	-0.105011
7	-0,1495132	-0,1127663
8	-0,1483955	-0,1061172
9	-0,1764336	-0,09616089
10	-0,1854401	-0,1183128
11	-0,2046471	-0,1495132
12	-0,2319069	-0,1685638
13	-0,2364655	-0,2046471
14	-0,2558937	-0,2501717
15	-0,2869263	-0,2593307
16	-0,3239937	-0,3135376
17	-0,3790054	-0,3707657
18	-0,4192276	-0,3967056
19	-0,4838753	-0,4778481
20	-0,5482559	-0,5323792

21	-0,5950012	-0,5925293
22	-0,6447411	-0,6912613
23	-0,7510605	-0,7754669
24	-0,8495026	-0,8626213
25	-0,891613	-0,9811096
26	-1,024498	-1,080723
27	-1,137669	-1,185455
28	-1,220924	-1,282604
29	-1,362766	-1,435429
30	-1,498676	-1,498676
31	-1,626385	-1,643589
32	-1,764324	-1,801517
33	-1,91835	-1,910023
34	-2,07275	-2,116127
35	-2,234512	-2,261456
36	-2,407993	-2,389408
37	-2,609932	-2,590481
38	-2,772713	-2,801113
39	-2,973324	-3,007305
40	-3,196774	-3,192326
41	-3,392376	-3,387726
42	-3,592136	-3,587273
43	-3,796215	-3,837151
44	-3,975521	-4,004791
45	-4,204063	-4,282936
46	-4,398098	-4,513329
47	-4,681087	-4,71228
48	-4,923843	-4,920563
49	-5,097927	-5,087696
50	-5,318394	-5,35442
51	-5,542816	-5,584518
52	-5,827175	-5,811111
53	-6,152542	-6,062576
54	-6,288761	-6,311131
55	-6,651173	-6,617413
56	-6,889805	-6,930851
57	-7,152775	-7,218266
58	-7,669193	-7,52552
59	-7,805088	-7,8619
60	-8,150581	-8,164154
	•	

61	-8,365818	-8,517769
62	-8,854015	-8,767544
63	-9,082008	-9,123978
64	-9,30471	-9,42038
65	-9,58567	-9,747623
66	-9,925781	-10,06945
67	-10,40514	-10,40514
68	-10,63598	-10,7197
69	-11,04522	-11,15038
70	-11,35453	-11,51044
71	-11,99793	-11,96584
72	-12,28053	-12,38473
73	-12,69407	-12,80863
74	-12,63788	-13,12951
75	-13,43081	-13,52082
76	-13,63599	-13,8512
77	-14,12941	-14,12941
78	-14,56845	-14,4545
79	-14,74514	-14,62656
80	-15,25455	-14,89804
81	-15,4976	-15,15439
82	-15,79309	-15,42676
83	-16,02871	-15,64283
84	-16,36422	-15,87022
85	-16,40805	-16,1515
86	-16,7757	-16,49707
87	-17,0225	-16,7757
88	-17,17768	-17,12533
89	-17,73973	-17,44949
90	-18,60236	-18,11626
91	-18,82907	-18,60236
92	-18,98727	-19,23631
93	-19,59315	-20,08681
94	-20,64712	-21,15748
95	-22,24024	-22,06674
96	-22,06674	-23,02032
97	-23,02032	-23,99099
98	-24,58369	-24,91759
99	-23,99099	-25,28295
100	-24,91759	-25,68654
	,	,2

101	-24,27614	-24,58369
102	-24,91759	-23,99099
103	-23,47601	-23,24164
104	-23,72511	-22,42152
105	-22,42152	-21,5868
106	-20,64712	-20,89439
107	-20,30193	-20,41383
108	-20,41383	-19,88228
109	-20,30193	-19,41093
110	-19,88228	-19,23631
111	-19,59315	-19,15165
112	-19,15165	-18,75214
113	-19,23631	-18,60236
114	-19,32271	-18,60236
115	-19,59315	-18,67658
116	-19,68732	-18,82907
117	-19,59315	-19,23631
118	-19,98329	-19,59315
119	-20,41383	-20,08681
120	-21,02383	-21,15748
121	-21,74057	-21,74057
122	-22,81062	-23,24164
123	-23,72511	-23,99099
124	-25,28295	-24,91759
125	-27,9431	-26,1376
126	-28,80853	-27,9431
127	-27,9431	-27,9431
128	-28,80853	-29,93888
129	-28,80853	-28,80853
130	-27,9431	-28,80853
131	-28,80853	-28,80853
132	-27,9431	-27,24085
133	-26,1376	-26,64923
134	-25,28295	-25,68654
135	-24,58369	-24,58369
136	-23,99099	-23,99099
137	-23,47601	-23,47601
138	-22,81062	-23,24164
139	-22,61136	-22,81062
140	-22,06674	-22,24024

141	-22,06674	-21,74057
142	-21,43863	-21,43863
143	-21,29564	-20,89439
144	-21,02383	-20,64712
145	-20,7689	-20,41383
146	-20,64712	-20,19298
147	-20,52883	-19,98329
148	-20,41383	-19,88228
149	-20,52883	-19,88228
150	-20,41383	-19,78366
151	-20,52883	-19,78366
152	-20,30193	-19,98329
153	-20,89439	-19,88228
154	-20,52883	-20,19298
155	-20,7689	-20,30193
156	-20,7689	-20,64712
157	-21,02383	-20,64712
158	-21,29564	-21,02383
159	-21,90038	-21,29564
160	-22,06674	-21,74057
161	-22,42152	-22,06674
162	-22,61136	-22,42152
163	-23,02032	-22,61136
164	-23,47601	-23,02032
165	-23,72511	-23,72511
166	-24,27614	-23,99099
167	-24,27614	-24,58369
168	-24,91759	-24,91759
169	-24,91759	-24,91759
170	-26,1376	-25,68654
171	-26,1376	-25,28295
172	-26,1376	-26,1376
173	-27,24085	-27,24085
174	-27,24085	-27,9431
175	-28,80853	-27,24085
176	-27,9431	-27,9431
177	-28,80853	-28,80853
178	-28,80853	-27,9431
179	-29,93888	-28,80853
180	-27,9431	-27,9431

181	-28,80853	-28,80853
182	-27,9431	-28,80853
183	-28,80853	-28,80853
184	-28,80853	-28,80853
185	-28,80853	-28,80853
186	-28,80853	-27,9431
187	-28,80853	-28,80853
188	-28,80853	-27,9431
189	-28,80853	-29,93888
190	-27,24085	-28,80853
191	-28,80853	-28,80853
192	-28,80853	-28,80853
193	-28,80853	-28,80853
194	-28,80853	-27,24085
195	-28,80853	-27,9431
196	-28,80853	-27,9431
197	-27,9431	-28,80853
198	-28,80853	-27,9431
199	-28,80853	-27,9431
200	-28,80853	-28,80853
201	-27,9431	-27,9431
202	-28,80853	-28,80853
203	-27,9431	-27,9431
204	-28,80853	-27,9431
205	-27,9431	-28,80853
206	-28,80853	-27,9431
207	-27,9431	-27,24085
208	-27,9431	-27,9431
209	-28,80853	-27,9431
210	-29,93888	-27,9431
211	-27,9431	-27,9431
212	-27,9431	-28,80853
213	-28,80853	-27,9431
214	-28,80853	-27,9431
215	-27,9431	-27,9431
216	-27,9431	-27,24085
217	-27,9431	-27,9431
218	-27,24085	-27,24085
219	-26,64923	-27,9431
220	-27,24085	-27,24085

221	-27,24085	-27,24085
222	-26,1376	-26,64923
223	-26,1376	-26,1376
224	-26,1376	-26,1376
225	-25,68654	-25,68654
226	-25,68654	-25,28295
227	-26,1376	-25,28295
228	-25,28295	-25,28295
229	-25,28295	-25,28295
230	-25,68654	-25,68654
231	-25,68654	-25,28295
232	-25,28295	-25,28295
233	-25,28295	-24,91759
234	-25,28295	-25,28295
235	-25,28295	-25,28295
236	-25,28295	-25,28295
237	-25,28295	-25,68654
238	-25,68654	-25,68654
239	-26,1376	-26,1376
240	-27,24085	-27,24085
241	-27,24085	-27,9431
242	-27,9431	-27,24085
243	-28,80853	-27,9431
244	-28,80853	-28,80853
245	-28,80853	-28,80853
246	-28,80853	-27,9431
247	-28,80853	-28,80853
248	-28,80853	-28,80853
249	-28,80853	-28,80853
250	-28,80853	-28,80853
251	-28,80853	-27,9431
252	-27,9431	-27,9431
253	-27,9431	-27,24085
254	-26,64923	-27,24085
255	-26,64923	-26,64923
256	-26,1376	-26,1376
257	-26,1376	-25,68654
258	-25,28295	-26,1376
259	-25,28295	-25,68654
260	-25,28295	-25,28295

261	-25,28295	-25,68654
262	-25,68654	-25,28295
263	-26,1376	-25,68654
264	-25,68654	-25,68654
265	-26,1376	-26,1376
266	-26,64923	-26,64923
267	-26,64923	-26,64923
268	-26,64923	-26,64923
269	-26,1376	-26,64923
270	-25,68654	-26,1376
271	-25,28295	-25,28295
272	-24,27614	-24,58369
273	-23,24164	-23,47601
274	-22,61136	-22,61136
275	-21,29564	-21,74057
276	-20,7689	-20,89439
277	-19,88228	-20,19298
278	-19,23631	-19,32271
279	-18,60236	-18,82907
280	-18,05115	-17,98701
281	-17,28435	-17,39373
282	-16,63413	-16,72799
283	-16,1515	-16,23534
284	-15,64283	-15,71732
285	-15,08888	-15,18752
286	-14,6559	-14,7753
287	-14,26195	-14,28894
288	-13,87577	-14,0262
289	-13,61271	-13,68291
290	-13,27758	-13,36449
291	-13,0267	-13,12951
292	-12,80863	-12,80863
293	-12,56406	-12,56406
294	-12,34972	-12,29772
295	-12,06282	-12,12867
296	-11,83976	-11,88662
297	-11,55394	-11,59786
298	-11,34063	-11,29916
299	-11,00642	-11,05823
300	-10,7439	-10,81734

301	-10,43901	-10,43901
302	-10,14307	-10,16433
303	-9,767071	-9,875572
304	-9,474796	-9,529888
305	-9,115555	-9,17487
306	-8,767544	-8,830261
307	-8,466541	-8,525135
308	-8,103382	-8,137043
309	-7,755192	-7,805088
310	-7,496166	-7,478645
311	-7,158195	-7,190861
312	-6,833977	-6,833977
313	-6,550659	-6,564884
314	-6,239944	-6,26207
315	-5,991055	-5,995232
316	-5,688568	-5,719872
317	-5,41267	-5,445774
318	-5,191078	-5,187595
319	-4,900921	-4,933704
320	-4,690422	-4,690422
321	-4,427357	-4,421494
322	-4,190125	-4,181782
323	-3,935921	-3,935921
324	-3,693001	-3,71545
325	-3,500652	-3,514973
326	-3,284412	-3,277607
327	-3,067406	-3,097763
328	-2,918655	-2,885345
329	-2,732456	-2,734459
330	-2,574982	-2,553761
331	-2,419182	-2,383846
332	-2,283131	-2,257854
333	-2,109158	-2,11438
334	-1,983864	-1,985558
335	-1,845585	-1,822681
336	-1,721054	-1,703545
337	-1,620144	-1,58289
338	-1,498676	-1,474476
339	-1,376022	-1,370129
340	-1,291275	-1,252373

341	-1,167122	-1,153072
342	-1,080723	-1,058697
343	-0,9824562	-0,963604
344	-0,9075127	-0,8850098
345	-0,8181763	-0,8000069
346	-0,735714	-0,7255135
347	-0,6748581	-0,6547623
348	-0,606144	-0,5912895
349	-0,533596	-0,533596
350	-0,4838753	-0,4658241
351	-0,4275551	-0,4061737
352	-0,3672409	-0,3519974
353	-0,3333092	-0,3135376
354	-0,298481	-0,2719612
355	-0,2685089	-0,2307663
356	-0,2307663	-0,1955986
357	-0,2114449	-0,1674385
358	-0,2035179	-0,1595879
359	-0,1775589	-0,1372299
	E	Н
MSL :	-0,12	-0,07
MSP :	6	2
HPBW:	72,88	72,17