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Abstract

This thesis develops analytical- and numerical-oriented tools for the dynamic analysis and

motion control of ROVs, using an integrated approach where hydrodynamics, control, and

cable effects are considered. These tools facilitate the analysis, design, and operation of

ROV systems and are aimed at answering questions about their motion feasibility. They are

grounded on available theory to model the ROV and cable, design of feedback control, and

thrust allocation. Subsequently, this work contributes means to study the hydrodynamics of

an ROV and develops a framework where hydrodynamics and other motion-relevant systems

can be integrated and evaluated. For studying hydrodynamics, the manoeuvring behaviour

of ROVs is approached by using time-domain simulation (TDS) and computational fluid

dynamics (CFD). In this approach, viscous-flow computations are used to gather data about

the hydrodynamic forces and moments that act on an ROV at certain flow conditions, and

from that data a simplified meta-model is assembled to be used in time-domain simulations

for manoeuvring, control, and motion feasibility analyses. For integrated motion feasibility

studies, the concept of dynamic positioning capability (DPCap) for ROVs is proposed. The

idea of DPCap was first introduced for surface vessels that include a dynamic positioning

(DP) system, and in this work it is extended to ROVs. DPCap assesses whether craft are

able to withstand environmental and operational loads, while keeping a desired position or

path. This allows one to determine whether the system will be able to operate or not at

certain conditions and quantify the level of motion capability. Through these approaches,

this work delivers a framework to answer questions about ROV motion feasibility joining

vehicle dynamics, hydrodynamics, cable mechanics, and control, and that intends to be useful

at different stages of an ROV’s life-cycle.
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VISOR: Veh́ıculo para Investigación Subacuática Operado Remotamente (Remotely Operated

Vehicle for Underwater Research)

VTC: Virtual Captive Test

WCROV: Work Class ROV



Acknowledgements

FORMAL, FUNDING-RELATED ACKNOWLEDGEMENTS

The author’s doctoral studies were supported by funds of the Universidad Pontificia Bolivar-

iana (UPB), the Strategic Program for the Development of Robotic Technology for Offshore

Exploration of the Colombian Seabed, project 1210–531–30550, contract 0265–2013, and the

author. The Strategic Program for the Development of Robotic Technology for Offshore Ex-

ploration of the Colombian Seabed has been developed with the funding of the Fondo Nacional

de Financiamiento para la Ciencia, la Tecnoloǵıa y la Innovación, Francisco José de Caldas;
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Chapter 1

Introduction

1.1 MOTIVATION

This work is motivated by the long-term initiative to create technological tools that enable

the development of an ocean-based sustainable economy. The idea of a sustainable ocean

economy is often called The Blue Economy by many private and governmental organisations.

A blue economy balances the fulfilment of humanity’s needs and the ocean’s ability to stay

healthy on a large time scale [91, 42]. The ocean is often seen as a way to cope with humanity’s

resource-related issues, but, given the fact that the ocean’s health has been already altered [58],

the overall increase of human activity raises concerns and requires taking action towards

sustainable use of marine resources [137]. As a country with roughly half its territory in the

ocean, this concept is pertinent to Colombia.

As a plausible approach, the general goal of developing a blue economy may be tackled by

increasing knowledge, i.e., knowing the ocean’s environment better (e.g. as proposed in [59])

and developing technology intelligently. Increasing knowledge about the environment allows

the assessment of both the amount of resources and impact of human interventions, and

better-developed technologies are targeted to be more effective, efficient, and safe. By and

large, technology development plays a crucial role, because it provides the means to safely

explore and study the ocean’s environment and allow human activities.

Tasks such as mapping and monitoring the environment may be accomplished by using differ-

ent autonomous or intelligent equipment [78]. According to Nilssen et al. [86], each platform

becomes useful depending on time and space scales. Such platforms may be fixed or mobile,
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and among the mobile one can find remotely operated vehicles (ROV), autonomous under-

water vehicles (AUV), and gliders. Even though in the scientific and technical community

myriad efforts are being directed towards more autonomous platforms, many underwater op-

erations still require the use of ROVs intensively; the amount of power and data bandwidth

pose limitations to untethered systems, and many operations still need real-time human su-

pervision.

More technically, ROVs are self-propelled submersible robots that are connected through a

cable (tether or umbilical) to a remote control station for real-time operation and/or super-

vision [26]; see e.g. Fig. 1.1. There are two features that are common to ROVs: first, they

are primarily designed to be rather slow mobile platforms for the deployment of tools and

sensors into specific surveying sites; and, second, they require any sort of cable link that con-

nects them to a surface vessel or any other station for providing control and/or supervision

in real time and, often, power as well. Typically, operations with ROVs are performed by

either having a cable that connects the vessel and the vehicle directly or through a tether

management system (TMS). In the latter case, a TMS works as an intermediate stage, where

a garage containing the ROV is deployed from the vessel to the operation zone and, later on,

the ROV is deployed from the garage to explore the nearby area.

An approach to perform better or more intelligent operations is to consider the problem of

properly manoeuvring all or most of the mobile components. For an ROV those are essentially

the vehicle and cable, although it is possible to consider a surface vessel or any other mobile

components as well. Manoeuvring an ROV-cable system may be seen as a two-fold problem:

considering the hydrodynamic effects of the medium and taking into account the motion of

the cable. In the former, the hydrodynamic effects are to be considered both in the cable and

vehicle but are more complex in the vehicle. In the latter, the motion of a cable is that of

a rod type of slender structure, i.e., a long, highly deformable body, whose length is many

orders of magnitude larger than any other dimension (e.g. the diameter). An ROV cable has

similar attributes to those of other ocean engineering systems components, such as power and

umbilical cables and tethers, as well as pipes, risers, and the like.

Considering, for instance, an operation where the ROV is deployed directly from the vessel,

the motion of the cable is influenced mainly by the motion of the vessel and ROV and the

surrounding environmental conditions, e.g., current and waves. In this case, as well as in other

cases, the cable is not often directly modelled and treated as a disturbance. Not having a more

elaborate scheme to consider the cable mechanics more accurately limits the number of possible

analyses, and, furthermore, the types of underwater activities that may be accomplished.

An alternative to improve existing and foresee new conceptual design solutions and operation



CHAPTER 1. INTRODUCTION 34

This picture portrays an important moment of
Pionero500's history: this was the first time it
was launched, tested, and retrieved at the sea. 

Figure 1.1. Pionero500, ROV developed at Universidad Pontificia Bolivariana, during deployment

from the vessel to the ocean. This picture was taken by the author in Cartagena Bay, Colombia, 2018.

In the picture are Elkin Taborda (front) and Luis Miguel Aristizábal (back), part of the developer

team.

schemes, where ROVs and elastic rods’ manoeuvring is considered, is by applying modelling

and numerical simulation techniques to analyse and design operation and control scenarios.

Although mathematical models do not necessarily predict the complete spectrum of phenom-

ena, a good-enough model allows one to opportunely plan and predict a numerous amount

of situations. In a broader sense, a model that makes good predictions reflects knowledge

maturity about the system that is being studied and reduces the levels of uncertainty. There-

fore, in this work, an integrated approach for modelling, simulation, and control of ROVs and

rod-like structures is proposed as an alternative for analysing and designing ROV systems

and operational schemes for accessing the ocean space effectively, efficiently, and safely.
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1.2 BACKGROUND

1.2.1 ROV TECHNOLOGY IN UPB

Since the 1990’s, researchers at the Universidad Pontificia Bolivariana (UPB) in Medelĺın,

Colombia, have been developing underwater craft for exploring underwater. Motivations,

technologies, and people have varied during the decades, but the interest in underwater ex-

ploration has survived the test of time. The first ROV prototype, developed during the

1990’s, was named VISOR after an acronym for remotely operated vehicle for underwater

research (veh́ıculo para investigación subacuática operado remotamente). This prototype was

first developed to investigate sounds produced by whales during migration across the Colom-

bian Pacific Ocean. The second prototype, developed during the early 2000’s was named

VISOR II. The motivations behind that second vehicle were more technologically related.

The vehicle was shaped using a streamlined geometry and the control scheme was intended to

have dual operation: remotely operated or autonomous. There are not much records of these

first two developments but their history has been reported in further work [100].

The third prototype was developed during the late 2000’s and was called visor3 (see the

smaller vehicle in Fig. 1.2). This vehicle was initially designed and developed for surveillance

and inspection of port facilities [100, 57]. Following the initial development, and more in-

tensively since 2015, it has been used as a test-bed for studying ROV-related subjects such

as hydrodynamics [131, 98], low- and high-level control and perception algorithms [147, 8],

development of embedded control systems and user interfaces [7, 106, 56, 92], and design

architectures [31]. A lot of what we know today about ROVs has been accomplished through

modelling, simulation, and experimentation on visor3. Recently, visor3 was used as equip-

ment during the Seaflower Scientific Expedition 2016 [133]. All VISOR prototypes may be

regarded as observation class ROVs, given their small size and observation-only functionalities

(see Sec. 1.2.3 or refs. [26, 20] for information about ROV classes).

The last prototype so far has been a mid-size ROV called Pionero500 (see the bigger ve-

hicle in Fig. 1.2 or Fig. 1.1), a prototype that has brought greater challenges related to

its bigger scale and greater complexity [30]. This prototype has been developed as part of

the Strategic program for the development of robotic technology for offshore exploration of

the Colombian Seabed, funded by the Fondo Nacional de Financiamiento para la Ciencia,

la Tecnoloǵıa y la Innovación, Francisco José de Caldas (Colciencias), Colombian petroleum

company (Ecopetrol), Universidad Pontificia Bolivariana—Medelĺın (UPB), and Universidad

Nacional de Colombia—Sede Medelĺın (UNALMED). Pionero500 has made us push our



CHAPTER 1. INTRODUCTION 36

VISOR3:
observation
class ROV

PIONERO500:
mid-size ROV

Figure 1.2. A small glance at UPB’s recent ROV history: Pionero500 and visor3 in Senalmar

2017. It is not evident, but in the background pictures UPB’s oldest ROVs were shown: VISOR and

VISOR II. The picture was shot by Esteban Palacio and edited by the author.

knowledge boundaries even further.

1.2.2 THIS THESIS’ BACKGROUND

Dating back to this work’s own history, since the first stages, the idea in mind was to join

knowledge from hydrodynamics and control, to be useful during ROV design. This idea fol-

lowed the heuristics that hydrodynamics people focus on optimising geometries and control

people do not see geometry as the main priority. Then, maybe, finding common ground for

hydrodynamics and control may make possible to address such issues early during the design

process: this has been conjectured and experienced as not trivial. Moreover, hydrodynamics

and control share the feature that both require very precise information to perform useful

computations. For instance, to analyse drag performance through computational fluid dy-

namics (CFD), one requires a virtual three-dimensional geometry and through experimental

fluid dynamics (EFD) a real three-dimensional model. Conversely, to design a control sys-

tem one requires at least a mathematical model of the dynamics. All this information is

often only available at the later stages of the design or during the manufacturing process.

During Pionero500’s early design process (Universidad Pontificia Bolivariana’s latest ROV

development), it was cumbersome to answer technical, quantitative questions that involved
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hydrodynamics, cable mechanics, or control. This work got a great deal of motivation from

those rather frustrating, unsuccessful experiences.

The initial idea of joining knowledge from hydrodynamics and control for ROV design re-

sulted from various conversations with Rafael Vásquez in UPB. Afterwards, this work was

heavily influenced by experiences gathered abroad in the Maritime Research Institute Nether-

lands (MARIN) and Centre for Autonomous Maritime Operations and Systems (AMOS) of

the Norwegian University of Science and Technology (NTNU). The idea of using viscous flow

computations for obtaining hydrodynamic loads (using the virtual captive test, VCT, ap-

proach) and then using the data to obtain a manoeuvring model was developed during an

internship in MARIN. The base idea was originally presented in the thesis by Toxopeus [126]

for ships and submarines, and the proposal of expanding it to ROV’s was conducted by Persijn

Brongers and advised by Tomasz Gornicz, Chris Willemsen, and Serge Toxopeus in MARIN.

Subsequent work in UPB revealed that a manoeuvring would not be complete if cable mechan-

ics is not considered: this motivated further work in AMOS-NTNU. As a result, much of this

thesis’ path was crafted during conversations with Asgeir Sørensen at AMOS-NTNU, such as

how to approach the cable problem, as well as the idea of extending dynamic positioning ca-

pability analyses from surface vessels to ROVs. Further ideas related to cable modelling were

discussed with Svein Sævik. Moreover, people at AMOS have gatherer a considerable amount

of expertise tackling the problem of increasing ROV autonomy (i.e., intelligence); therefore,

this work is heavily influenced by the theses of Ludvigsen [77], Dukan [36], Fernandes [32],

and Candeloro [20]. This work is grounded on the aforementioned theses and proposes its

own particular path of study.

1.2.3 REMOTELY OPERATED VEHICLES

As mentioned in Sec. 1.1, remotely operated vehicles (ROV) are self-propelled submersible

robots used for underwater inspection and intervention tasks. They are commonly used as

platforms for the deployment of tools and sensors to specific survey sites. ROVs are considered

mature technology, with a well-known history of being a handy tool for accomplishing from

simple to highly dangerous tasks [26]. This technology has been widely used by the oil and gas

industry but, more recently, has expanded to a larger span of applications such as renewable

energies [47], sea-floor mining [2], aquaculture [108], biological studies [29], and archaeological

exploration [90], among others. Future work and application prospects suggest that improving

knowledge and capabilities around ROV technology, e.g., increasing autonomy, is a necessary

task [78].
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ROVs have different levels of autonomy (see e.g. [20] for a discussion about autonomy) but

are always commanded or supervised and often powered from the surface using a tether [26].

In terms of autonomy, ROVs are often compared to AUVs because the latter perform pre-

programmed, autonomous operations and lack a tether. As an effort to combine features from

both worlds, there are hybrid ROVs that aim to perform ROV-like tasks but without a tether.

This work focuses on tethered ROVs. Operations with ROVs are commonly performed either

having the vehicle directly deployed and tethered from a ship or using a tether management

system (TMS). When using a TMS, a garage containing the vehicle is deployed into the

water and then the vehicle is deployed from the garage. Spatial and temporal resolution and

coverage of ROV operations range from a few centimetres to a few kilometres and monitor

processes that change in the order of a few seconds to one day [86].

ROVs are usually designed to have enough motion capability to be a platform for the de-

ployment of tools and sensors for surveying specific sites. Motion autonomy requires the use

of navigation sensors such as acoustic baseline sensors, Doppler velocity log (DVL), pres-

sure sensors, heading sensor, and inertial sensors such as compass and inertial measurement

units (IMU) or motion reference units (MRU). Additionally, operations for ocean mapping

and monitoring require deployment of sensors such as video cameras, underwater hyperspec-

tral imaging (UHI), conductivity-temperature-depth (CTD) sensors, magnetometer, acoustic

Doppler current profilers (ADCP), active sonars, and navigation-related sensors [78].

Depending on size, power, and operation capabilities, ROVs are often classified as observation

class (OCROVs), mid-sized (MSROVs), and work class (WCROVs) [26]. OCROVs are the

smallest vehicles; they often weigh less than 100 kg, have very limited payload and depth

rating, e.g. UPB’s visor3 (Fig. 1.2) is an OCROV. MSROVs may be considered an extended-

capability version of the OCROVs. They are often bigger, heavier, and more powerful; have

greater payload capacity and depth rating; and may carry light equipment for low-complexity

tasks. For example, e.g. UPB’s Pionero500 (Fig. 1.2) is a MSROV. WCROVs are the

heaviest and most powerful class; consequently, they run on hydraulic power and are capable

of performing heavy work.

ROVs are an active research field. Two typical research approaches are the use of ROVs as

components of multi-robot missions or the improvement of the ROV system itself. In the

former case, joint operations of ROVs with AUVs are often studied [78]. In the latter case,

because the type of tasks ROVs accomplish normally require human intervention in real time,

a recurrent topic of research is how to improve ROV systems by increasing their operation

autonomy and complexity. Examples include user-machine interaction [22] and navigation

and real-time planning capabilities [21].
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1.2.4 A NOTE ON DYNAMICS, THRUST ALLOCATION, AND CONTROL

The dynamics of ROVs is a well-studied subject derived from rigid body dynamics applied

to water craft. A widely used formulation is Fossen’s robot-like dynamic equation [48, 36];

the name is due to it resemblance to classical dynamics formulations used in robotics. These

are compact, generalised equations compatible with Newton’s second law that model craft

behaviour in the forces and moments space as a function of position and velocity. There are

other approaches that make use of ideas and notation coming from the field of geometric

mechanics (see for instance [15, 88]). These are often based on variational principles directly,

such as Hamilton’s principle of least action, and the notion of a geometrical configuration

space (or manifold) where motion lies. From a practical standpoint, the latter approach

differs from the former by how numerical time-integration algorithms are derived.

Thrust allocation is the most basic action towards controlling an ROV, even when the vehicle

is manually controlled and no feedback control strategy has been implemented. The task of

thrust allocation is to translate motion commands in three-dimensional space into thruster

forces [36]. Depending on how thrusters are distributed, the system may be under-actuated,

fully actuated, or over-actuated. Thrust allocation is based on the idea that a group of

actuators produce a net force and moment that is responsible of motion, and, conversely, one

should be able to compute the inverse action: given a desired net force and moment, compute

each actuator’s required force.

Feedback control is often approached by using a non-linear PID scheme [32]. This approach

looks forward to applying PID control’s classical idea of computing proportional, integral,

and derivative actions from an error to the particular context of water craft such as ROVs.

These craft have the particularity that often one wants to control motion variables on a

global x–y–z frame (such as the often-used North-East-Down, NED, frame) by manipulating

forces and moments on a (different) frame that is attached to the body. The need of using a

kinematic transformation between these frames makes the control law non-linear. This and

other control laws depend on knowing all motion-related variables. This is accomplished by

using an algorithm that uses (noisy) measurements and estimates a filtered version of known

and previously unknown variables; often this estimator is based on the Kalman filter [48]. This

work will further assume that such an estimator is constructable and all required variables are

available; consequently, it will not deal with how to construct such estimator nor its effects

on motion feasibility.
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1.2.5 HYDRODYNAMICS AND MANOEUVRING

Manoeuvring studies are commonplace for ships, submarines, and autonomous underwater

vehicles (AUV) and have been an active research subject for decades (see for example refs. [129,

48, 126, 23]). The motion of water craft is highly dependent on hydrodynamics. Historically,

the study of hydrodynamics has a time-standing duality between theory and experimentation:

today’s knowledge is due to model testing and empirical formulas derived from it, as well as

to pursuing practical computations of mathematical models derived from first principles [83].

Because the latter was only approachable in simple cases, experimental fluid dynamics (EFD)

has been used as the main tool to acquire information about hydrodynamic behaviour of water

craft, such as towing tank and planar motion mechanism (PMM) experiments [65]. After the

development of computational fluid dynamics (CFD) software, numerical solvers have been

used as the de facto tool for calculating theoretical models.

Although experimental testing is fundamental for ‘true’ calculation of hydrodynamic loads,

there are a number reasons to choose theoretical/computational approaches. To name a few,

testing facilities are not always available and often expensive to use, fabrication of physical

models and assembling the experiment may be time-demanding, and so on. Consequently,

CFD has been explored as an alternative to experimental fluid dynamics to speed-up the

process and reduce experimental facilities’ costs [127, 126, 70].

Well-known CFD computations and manoeuvring studies have been carried out. Vaz et al. [135]

compared two viscous-flow solvers for the accurate prediction of the manoeuvring forces of

the DARPA SUBOFF submarine. Zhang et al. [146] computed hydrodynamic coefficients for

a long-endurance underwater vehicle. Toxopeus et al. [128] worked on the validation of tools

to simulate the manoeuvrability and seakeeping of sea vehicles. Wang et al. [139] developed

the mathematical model for an underwater vehicle based on CFD calculations, strip theory,

and open-water tests. Furthermore, different combinations of experimental, computational

and model regression techniques have been tested as well [89, 103, 5, 80, 123, 14].

Because ROVs are primarily designed to be rather slow mobile platforms for the deployment

of tools and sensors, hydrodynamics is not commonly a concern as it is to other underwater

vehicles. Nonetheless, this does not mean that hydrodynamics should be completely avoided.

There have been works where different strategies are used to obtain ROV-shaped craft hydro-

dynamics models using experimental results and simulation. For instance, Tang et al. [124]

studied the TUNA-SAND hydrodynamic model through different experiments and using FLU-

ENT. Avila and Adamowski [9] and Avila et al. [10] determined hydrodynamic coefficients of

full scale ROVs using a PMM installation, least squares regression, and system identification;
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they also proposed a three-step identification procedure for such vehicles. Chin and Lum [25]

proposed an xPC target platform in order to experimentally determine hydrodynamic param-

eters. Aras et al. [6] modelled a low cost ROV using a system identification toolbox. Chin

and Lau [24] used CFD software for the systematic modelling of hydrodynamic damping of

a complex-shaped ROV, by using ANSYS-CFX to model an ROV’s damping model and a

free-decay pendulum test for verification. Velasco et al. [136] performed a complete modelling

of a torpedo-shaped underwater vehicle using parameter estimation with data acquired in

the model basin. Xu et al. [145] obtained a hydrodynamic model from a test model consid-

ering the effects of the ROV’s asymmetric shape. Despite these available works, from the

author’s perspective, there is still research to be done around the study of manoeuvring and

hydrodynamic behaviour of ROVs.

As part of this thesis’ preliminary works, methodologies to approach ROV manoeuvrability

have been explored [98, 99]. These methodologies look forward to combining CFD computa-

tions and time domain simulation to study ROV manoeuvring features. In [98], a methodology

to obtain a simplified hydrodynamic model from CFD computations was implemented. Re-

FRESCO was chosen as the Reynolds-Averaged Navier-Stokes (RANS) equations solver for

CFD computations, and UPB’s visor3 ROV was chosen as the study subject. This was

the first approach to obtain a manoeuvring model for this ROV. There, hydrodynamic forces

were modelled using a tailor-made structure that heuristically matched the observed loads

behaviour. CFD calculations were used to compute the corresponding manoeuvring coeffi-

cients for different scenarios that considered translation, rotation, and translation-rotation

combinations. Conversely, in [99], a methodology for using time-domain simulation software

during ROVs’ first design stages was tested. MARIN’s aNySIM, which specialises on offshore

applications, was used as the time-domain simulation software.

1.2.6 CABLE MODELLING

Contrary to the vehicle’s model where there is a rather clear path to constructing models

(options are not so numerous), modelling a cable (ROV cable) does not have a clear or unique

path. In general, the cable behaves as a slender flexible continuum where motion modelling re-

quires joining concepts from kinematics (geometry), dynamics (momentum), elasticity (stress

and strain), and numerical methods and discretisation techniques (spatial and temporal).

Different approaches can be constructed when different assumptions are stated or choices are

made on each of the previous components. Historically, this problem has been theoretically

approached assuming the cable is a catenary [64, 1, 66], beam/rod [62, 16, 19], collection of

masses [35], or collection of rigid bodies [67, 113, 93].
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The catenary approach comes from the classical problem of determining the geometry of a

chain that hangs between two points [64]. This approach, commonly used in marine applica-

tions [120], assumes that the cable does not have any flexural or torsional strain and may or

not have axial strain: the behaviour (geometry and motion) of the cable depends only on the

loads. The beam/rod approach assumes, in general, that the cable may exhibit all elasticity

phenomena (bending, torsion, and axial strains); compared to the catenary, the behaviour

depends on the loads and elastic properties. The collection of masses or lumped-masses is a

heuristic approach that often comes from a direct finite elements formulation [35]. The col-

lection of rigid bodies is also a heuristic approach that relies on multibody dynamics models

with elasticity constrains obtained from linear elasticity criteria [113, 93].

The catenary is a classical physics/geometry problem. Worth mentioning, Galileo described

the geometry of a hanging chain as parabolic, only to be proven wrong half a century later

when the Bernoullis, Leibnitz, and Huygens more or less at the same time discovered the

catenary geometry [64]. Different approaches may be applied to arrive to a solution (geometry,

differential equations, or variational calculus). This idea produced many works and proved

highly successful in the ocean engineering community since the 1980’s [64, 1, 66].

Regarding beams and rods, the difference between a beam and rod lies in the fact that the

shape of the former resembles a straight line and that of the latter a curve [107]. Theories

take advantage of the assumption that the longitudinal dimension is long compared to the

transversal ones and the body may be considered one-dimensional. This has been a classical

subject of elasticity theory [76, 4, 107]. From the elasticity point of view, beam/rod theories

could be distinguished by whether they use the Euler-Bernoulli or Timoshenko model of

elasticity. Roughly speaking, the former neglects shear strain produced by transversal forces

and the latter considers it. The Euler-Bernoulli model is used more often; it considers that

the internal moment is proportional to the beam curvature. This follows from the assumption

that the transversal area remains normal to the centroids line during deformation and a linear

strain-stress constitutive relation. Moreover, the internal transversal (shear) force is derived

from a static momentum balance (thus neglecting shear strain). The main assumption may

be stated by a constitutive relation where bending moment is proportional to curvature.

In terms of beam/rod kinematics, one approach differs from another depending mostly on

the way rotational quantities are encoded and computed. Particularly, rod theories depart

from classical linear beam theories because the kinematics of the former are necessarily non-

linear [142], as a consequence of the greater displacements that rods experience. A common-

place alternative is to describe rotations using any Euler angles parametrisation of rotation

matrices. In this approach, matrices are used to transform vector quantities between frames,

but integrations related to rotation are performed in the space of the Euler angles, for instance,
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as in early works such as [64, 1, 62]. Worth mentioning, this approach was applied also in the

WHOI-cable model: the model used by the Woods Hole Oceanographic Institution [52, 54].

Other approaches describe rotations intrinsically from the curve’s derivative, as the case of

Nordgren’s model [87] applied to underwater slender structures in [49] and ROV cables in [19],

where the Frenet-Serret frames are used, and integrations related to rotations are performed

in the Euclidean space (R3). Finally, the seminal work of Simo [114] introduced the so-called

geometrically-exact approaches, where rotations are directly encoded by rotation matrices and

integrated in SO(3), the space (manifold) of rotation matrices. This last approach was used

in works such as [16, 97].

Regarding numerical methods for solving catenary and beam/rod models, many approaches

have been applied to discretise and integrate the model’s differential equations spatially and

temporally. Two general techniques for spatial discretisation are finite differences (FD) and

the finite element method (FEM). Many early works used FD, e.g., [87, 1, 62, 52, 54]. These

models normally use centred differences about the segments’ mid-point. FEM has been used

in later works [19, 16, 97]. This method offers some advantages such as ensuring continuity

and time-space compatibility of the solutions and allowing the formulation of numerical solu-

tions from variational/virtual work principles [114, 16], as well as from differential equations.

Time-discretisation and integration often uses classical implicit structural dynamics formu-

lations such as Newmark-β [84] and generalised-α [27] methods. These methods are suited

for dynamics problems where the relation among position, velocity, and acceleration is taken

into account in the algorithm. The generalised-α method is more general, but Newmark’s is

more standard. Explicit integration is not common, but e.g. in [19] an explicit Runge-Kutta

method was used.

Lumped mass and collection of rigid bodies approaches make use of theories from multibody

dynamics and, as expected, inherit their different methods. That means that the ways to

model and simulate cables are as diverse as that of multibody systems. Often the lumped

mass method is favoured because it is cheap to compute, the main reason being a cable is

a collection of concentrated masses, so rotational kinetic energy is not taken into account

and each mass has three-dimensional dynamics [35]: this is consistent with Euler-Bernoulli

beam assumptions. One of the most recognized drawbacks of the method is that when elastic

constraints become stiff, most conventional time-integration algorithms become unstable: the

resulting discrete system has unstable modes along the axial direction [125].

Models that assume each cable element is a collection of constrained rigid bodies have early

developments like the one of Kamman [67], where the dynamic model uses Newton’s second

law. Later developments use the different methods to solve the motion dynamics via Euler-

Lagrange equations: the minimal degrees of freedom and the descriptor approach [138]. The
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former uses the same idea of robot’s dynamics: find a reduced order model where each equation

represents a degree of freedom; consequently, internal reaction forces, whose net work is zero,

are eliminated. Motion constraints are encoded directly as a function of the degrees of freedom

in the definitions of kinetic and potential energy in the Lagrangian. The descriptor form in

general includes all six degrees of freedom for each body and encodes the constraints via an

augmented Lagrangian, where Lagrange multipliers represent internal impulses that enforce

the constraints. The resulting numerical methods become an optimisation algorithm coupled

with time integration of the dynamics. Cable dynamics are solved using the reduced order

approach by Pereira et al. [93] and Gomes et al. [55] and the description approach by Servin

and Lacoursière [113].

1.2.7 DYNAMIC POSITIONING CAPABILITY

The concept of dynamic positioning capability (DPCap) was originally developed for ships

and surface vessels that are capable to operate in dynamic positioning (DP) mode, this is,

keeping a position and orientation constant by actively controlling the actuators. More gen-

erally, DPCap analyses aim to determine whether craft have enough actuator capacity to

withstand environmental and operation-related loads. And furthermore, in a more modern

fashion, DPCap evaluates whether a complete vessel’s motion system has sufficient capacity to

withstand environmental and operational loads while keeping a prescribed motion at normal

and failure conditions.

In modern autonomous or intelligent water craft, the dynamic positioning (DP) system is

responsible for distributing power to the actuators in order to keep a constant position and

heading or attain a prescribed motion. This idea of DP started to be applied in surface vessels

in the 1960s, with a significant increase since the late 1970s mainly thanks to advances in mul-

tivariable control and Kalman filtering theories. A first formal description of a ship DP system

was made by Balchen [11]. The DP system usually includes, as subsystems, power generation,

control system (computer, sensors, position reference systems, operator panels, etc.), actuator

system, and power management. Consequently, a DP system is able to automatically bal-

ance the actuators’ forces and moments with the environmental and operation-specific loads

and any other disturbances, often by keeping precise position and orientation control while

maintaining low power consumption [121].

DPCap is usually illustrated by using DPCap plots. DPCap plots are polar graphs that show

the operation envelope of a vessel by depicting the limiting environmental conditions it can

withstand in DP mode, at each direction (or at least a set of directions), and at normal and
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failure conditions. An early reference on the use of these plots can be found in the work by

Webb [140], where the DP and operability capabilities of the Ocean Clipper drillship were

studied. Later, the International Marine Contractors Association (IMCA) released the “Spec-

ification for DP Capability Plots (IMCA M 140)” [63], which standardised the requirements

to elaborate and present DP capability plots. There, a quasi-static method to balance envi-

ronmental loads and actuators forces was proposed. In this context, a quasi-static balance

is a steady-state balance where loads are augmented by a factor of safety that accounts for

unsteady phenomena and uncertainties.

Following the release of IMCA M 140 standard, DPCap analyses started to be used for vessel

design processes [82, 132], contractor decision making [12], reliability assessment [102], among

others. For instance, Mahfouz and El-Tahan [82] developed software for creating DPCap plots

of marine vessels and floating production units for Oil and Gas industries, this software was

declared by the authors as a potential tool for thruster selection and configuration. This

work was further expanded by Mahfouz [81] where neural networks where used to enhance

the standard DPCap plots predictions. Some works propose DPCap as a tool that may

be used during vessel early design stages, such as those of van ’t Veer and Gachet [132],

Luebke et al. [79] and Antheunisse et al. [3]. Other works proposed DPCap as detailed

design/optimisation tool, such as thruster sensitivity analyses to assess how each individual

thruster influences the overall capability [144], as well as local optimisation of the thruster

configuration [143].

Important drawbacks of the IMCA M 140’s quasi-static method were stated later by different

authors, including the necessity to develop methods in order to include dynamic effects and

operation-specific environmental and external loads. For instance, Serraris [112] showed the

use of time-domain simulation software to analyse the DP capabilities of a mono-hull deep-

water drillship including a Kalman filter, PID controller, and thruster interaction effects.

Later, works by Smogeli et al. [119] and Nguyen et al. [85] proposed a formal expansion of

the DP capability methodologies to the dynamic case, including descriptions of the most

important dynamics to consider. Moreover, among the studies where operation- and site-

specific conditions were considered, one can find works were ice operation [68], depth-related

effects [18], and multi-body operations [51] were analysed.

More recently, the DNVGL-ST-0111 standard was released [34]. This standard gives in-

dications on how to calculate and document DP capability analysis for surface vessels in

quasi-static and dynamic conditions, when considering either standard and site-specific en-

vironmental conditions and loads. It also gives a prescriptive method to make comparisons

among mono-hulled ship-shaped vessels. The standard gives indications on how to calculate

and report the DP capability of a vessel using DP capability numbers. According to the
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standard “The DP capability number indicates that a vessel’s position keeping ability can be

maintained in the corresponding DP capability number condition and all conditions below,

but not in the conditions specified for the next DP capability number.” These numbers are

given using the Beaufort Scale as parallel and related to certain wind, waves, and current

conditions. The standard comprises three levels, but a total of five types of analyses: Level 1,

Level 2, Level 2-Site, Level 3, and Level 3-Site. For DP capability Level 1, Level 2 and

Level 2-Site the calculations are made considering quasi-static conditions: the main idea is to

start balancing the lowest environmental conditions and increase the weather conditions until

a limiting condition is reached, according to the DP capability number definition. For the DP

capability Level 3 and Level 3-Site dynamic conditions are considered. Level 1 corresponds

to a prescriptive method for analysing ship-shaped mono-hull vessels. Levels 2 and 3 are for

any surface vessel shape and allow the inclusion of model specifics. The “Site” variation of

Levels 2 and 3 allow the inclusion of site/operation specific environmental conditions and

loads.

As part of the current thesis, in a work by Ramı́rez-Maćıas et al. [101], a methodology for

DP capability studies for ROVs based on the DNVGL-ST-0111 standard [34] was proposed.

There, ROV and submerged craft specifics and differences to surface vessels were taken into

account. More specifically, ocean current was considered the primary environmental variable

to determine capability, 2D and 3D plots where proposed to illustrate three-dimensional mo-

tion capability and account for three-dimensional relative current, and the effects of vertical

current profile on the cable and other depth- and operation-related were included. Poten-

tially, DPCap studies on ROVs can be used as a design tool for developers and as a decision

making tool for ROV buyers, contractors, and operators; for instance, to allow customers

and contractors know whether an ROV was appropriately designed for a specific operation

and choose the appropriate one for their needs. It also lets the ROV operators to plan the

operations using environmental data and ROV-specific information and implement on-line

operation assessment. And lastly, gives ROV designers a framework to assess, evaluate, and

optimise the DP system components.

1.2.8 MOTION FEASIBILITY FRAMEWORK

Based on the reviewed literature and to the author’s knowledge, a methodology to study mo-

tion feasibility that integrates the analysis of many motion-related subsystems is not available,

as it is proposed in this work. Such methodology is grounded on the aforementioned theory to

model the ROV and cable, design of feedback control, and thrust allocation. Moreover, given

limitations to the way hydrodynamic studies are currently performed, this thesis is intended
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to propose means to study the hydrodynamics of an ROV by using global, simplified models

assembled from data obtained through CFD computations. This work aims at closing the

knowledge gap in assessing the motion capabilities of an ROV system integrally.

1.3 PROBLEM STATEMENT

Motivated by the idea of developing better remotely controlled underwater systems, this work

proposes the development of analytical- and numerical-oriented tools for the dynamic analysis

and motion control of ROVs, using an integrated approach where hydrodynamics, control, and

cable effects are considered and aimed at answering questions about motion feasibility. Such

analytical and numerical tools are expected to facilitate the analysis, design, and operation of

systems that involve ROVs; for example, either planning an exploration mission or analysing,

designing, or improving an exploration system. These tools are intended to be useful to

any ROV system, but in this work they are applied to and illustrated on observation and

medium-size ROVs of which information is currently available.

The approach proposed in this work encompasses the following tasks: at first, it includes study-

ing, testing, and proposing suitable simulation models, using existing ROV motion modelling

and control theory, but integrating more elaborate hydrodynamic models (compared to those

in, e.g., [48, 36]), as well as effects of cable mechanics; second, there should be an implemen-

tation of numerical computations on the models, including testing different basic simulation

scenarios; and, third, an implementation of an integrated framework for analysing and de-

signing systems and operational schemes, where components such as hydrodynamics, control,

and cable are considered. This work will be grounded on available theory to model the ROV

and cable, design of feedback control, and thrust allocation; furthermore, it looks forward

to contributing means to study the hydrodynamics of an ROV and developing a framework

where hydrodynamics and other motion-relevant systems can be integrated and evaluated. In

a nutshell, this work requires understanding and implementing available models as a baseline

to propose an integrated framework to analyse multiple components that constrain an ROV

system’s motion.

For the hydrodynamics part, studying the manoeuvring behaviour of ROVs using time-domain

simulation and computational fluid dynamics (CFD) is proposed. Here, a CFD viscous-flow

solver can be used by applying the virtual captive test (VCT) approach, where experimental

fluid dynamics conditions are simulated using numerical computations. From the computa-

tions, a simplified manoeuvring model, suitable for fast time-domain simulation (compared
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to CFD), can be assembled and further implemented in other analyses. The main question to

solve in this context is how to use CFD practically to obtain a meta-model useful for time-

domain simulation; this requires proposing a methodology to plan the computations and take

advantage of data coming from them. As part of this, different ways of performing VCT,

namely CFD computations, as well as assembling a manoeuvring meta-model will be studied

and analysed. Given the computational nature of this work, how to quantify numerical model

uncertainty, namely solution verification, shall also be studied.

For the cable model part, given the fact that the dynamics of beams, elastic rods, and other

slender structures have been widely studied, there are numerous approaches when, for in-

stance, different kinematics, dynamics, elasticity, and time and space discretisation schemes

are to be considered. The approaches’ spectrum range from relatively simple and heuristic

to highly convoluted and rigorous. This work will cope with the challenge of studying and

evaluating different approaches and integrating at least one cable model into the analysis

framework. The main question to solve in this context is what model or models are suitable

for solving motion feasibility analyses practically. Because the model spectrum is wide, the

idea is to test catenary models first and assess their utility, and further on study if increasing

the model’s complexity to include elasticity are feasible and practical.

As a first approach to integrating concepts from motion modelling and control, dynamic

positioning capability (DPCap) studies are proposed to solve design- and operational-related

questions. The concept of DPCap was first introduced for surface vessels that include a

dynamic positioning (DP) system, in order to assess whether they are able to withstand

environmental and operational loads while keeping a desired position or path. In this work,

DPCap studies will be extended from surface vessels to ROVs, considering features that make

ROVs different, such as three-dimensional motion and the presence of a cable. The concept of

DPCap is useful either for offline studies such as ROV motion system design, control tuning,

and operation planning, as well as for operation assistance as an online advisory tool that

assess in real time whether the system is able to operate at certain conditions.

By using this integrated approach, this work will address the question about the motion

feasibility of an ROV system. This is equivalent to ask, given some environmental conditions,

will the ROV be able to operate? This question has a trivial answer: if the water is calm (lack

of waves and current), yes, but if the water is not calm, maybe. This is valid for any stable,

neutrally buoyant ROV system because breaking equilibrium in water is always possible.

Furthermore, providing any other non-trivial answer is difficult. This fact makes the question

interesting, because there is no such thing as motionless water in practical situations. Asking

whether the system will be able to operate or not at certain conditions requires proposing a

way to quantify the level of motion capability, in order to compare among different systems
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or configurations for the same system. This work intends to be a first approach to ask about

motion feasibility joining vehicle dynamics, hydrodynamics, cable mechanics, and control.

1.4 OBJECTIVES

1.4.1 GENERAL

This thesis is oriented to the accomplishment of one general objective: To develop a framework

for dynamics and motion control studies on remotely operated vehicles (ROV) and highly flex-

ible elastic rods, oriented to the analysis and design of ROVs and their operations and aimed

at answering questions about motion feasibility. This general objective is carried through four

specific objectives. In the next section, the reader can track what chapter or chapters of the

book address each specific objective.

1.4.2 SPECIFIC

To elaborate simplified ROV hydrodynamics models to be used in time-domain simulation and

control design by means of viscous-flow computations and the virtual captive test approach, is

addressed in Chapter 6, Hydrodynamics.

To mathematically model highly flexible elastic rods that are used in ROV operations, including

the integration into a framework for ROV motion feasibility studies, is addressed in Chapter 7

principally and in Chapter 10 rather tangentially.

To implement time-domain simulations of ROVs with highly flexible elastic rods, where ma-

noeuvring and control-scheme concepts are tested and evaluated, is addressed in Chapters 8,

9, and 10.

To develop a DP capability analysis framework for ROV system motion feasibility analyses,

where steady-state and unsteady motion scenarios are included, is addressed in Chapter 9 and,

more specifically, Chapter 10.
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1.5 CONTRIBUTION AND DELIVERABLES

1.5.1 CONTRIBUTION

This work is mainly about integrating the analysis of many motion components that are

traditionally considered separately, in order to study motion feasibility. It is is grounded

on available theory to model the ROV and cable, design of feedback control, and thrust

allocation. Conversely, it is expected to contribute means to study the hydrodynamics of an

ROV and develop a framework where hydrodynamics and other motion-relevant systems can

be integrated and evaluated. This work pursues the advance in knowledge about assessing

the motion capabilities of an ROV system. This is done through the following contributions:

• A procedure to obtain ROV manoeuvring models from viscous flow computations.

• A framework to analyse an ROV system’s motion feasibility integrally, including ROV,

cable, feedback control, and thrust allocation, by means of ROV dynamic positioning

capability analysis.

1.5.2 PRODUCTS

During the author’s PhD studies, different products were accomplished

• Thesis monograph.

• Published articles:

– Hydrodynamic modelling for the remotely operated vehicle visor3 using CFD [98].

Published in IFAC-PapersOnLine.

– A methodology for DP capability studies on remotely operated vehicles [101]. Pub-

lished in Proceedings of the International Conference on Offshore Mechanics and

Arctic Engineering—OMAE.

– On the use of time-domain simulation in the design of Remotely Operated Vehi-

cles [99]. Published in Ship Science & Technology.

• Further articles:

– Article on DP Cap.

– Article on ROV hydrodynamics and manoeuvring.

• Software suite in Python covering the following topics:

– DP Cap.

– ROV time-domain simulation.
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– Cable.

– Environment modelling.

1.6 THESIS ORGANISATION

This thesis brings together ideas from rigid body dynamics, control theory, time-domain simu-

lation, object oriented programming and related scientific computing software, some spherical

geometry, design of (computer) experiments, hydrodynamics and use of CFD tools, and struc-

tural mechanics and its application to slender bodies. With these tools in hand, the thesis

proposes means to study and analyse an ROV system’s motion feasibility, i.e., whether oper-

ating at some known conditions is possible or not. The theme is in nature for someone who has

background in classical mechanics, control, structural mechanics/elasticity, hydrodynamics,

and programming, and feels fine reading maths. Acknowledging that in general it is difficult

to find someone that feels comfortable around all the aforementioned topics, this book is writ-

ten to cover the basic tools for understanding the whole matter. Because of this and since

the thesis covers many topics, the text is rather long; consequently, the author appeals to the

reader’s patience. The description of the thesis organisation herein looks forward to inform

the reader about what to find where and allow each person to adjust to their own interests.

The book is divided into four parts that succeed this introductory chapter: (I) Basics, (II) Hy-

drodynamics and cable modelling, (III) Manoeuvring and motion feasibility, and an (IV) Epi-

logue. Part I, Basics, comprises the building blocks of the forthcoming work. The chapters

contained in this part do not claim any contribution besides the way they are presented; nev-

ertheless, they are included in order to make the book complete. Part I contains four chapters:

from Chapter 2 to 5. Chapter 2, Vehicle motion modelling and control, deals with usual rigid

body dynamics and control for water craft but particularised for ROVs. Chapter 3, Study

subjects, illustrates the particularities of the ROVs to be used further in the thesis, with an

emphasis on the information required for modelling their dynamics. Chapter 4, Tools from

sphere geometry, lays some tools from sphere geometry that ease dealing with problems that

explore and interpret spaces with a spherical geometry. Finally, Chapter 5, Design of com-

puter experiments, presents a collection of tools to organise series of computations and assess

them by using metrics.

Part II, Hydrodynamics and cable modelling, is comprised by Chapters 6 and 7. These two

chapters deal with two noteworthy parts of an ROV model that affect motion significantly and

are cumbersome to model: hydrodynamics and cable. Chapter 6, Hydrodynamics, contributes
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means to model ROV hydrodynamics. This chapter presents a methodology for obtaining

a meta-model that is suited for time-domain simulation and whose base information comes

from viscous-flow computations. This is carried through by describing the methodology and

applying the complete process to an ROV (visor3). Conversely, Chapter 7, Cable mod-

elling, contributes means to model the cable. The chapter builds knowledge in modelling and

performing computations on ROV cables by starting with the classical static catenary and,

from that point on, increasing the model’s complexity. In brief, the chapter approaches com-

putations on the catenary by using different numerical methods (shooting algorithm, finite

differences, and finite elements) and then studies the effect of elasticity by solving the WHOI

cable model (using finite differences).

Part III, Manoeuvring and motion feasibility, is comprised by Chapters 8, 9, and 10. Chapter 8,

Time-domain simulation framework, shows a framework that uses object-oriented program-

ming for performing time-domain simulations on ROVs. This framework is used to assemble

the time-domain simulations computed throughout the thesis. Chapter 9, Manoeuvring time-

domain simulations, could be understood a follow-up chapter to Chapter 6, Hydrodynamics,

that makes use of the time-domain framework presented in Chapter 8. The chapter comprises

a number of time-domain manoeuvring computations that use visor3’s model to study qual-

itatively and quantitatively its manoeuvrability. Chapter 10, Motion feasibility framework,

presents the concept of ROV dynamic positioning capability (ROV-DPCap) as the means to

perform motion feasibility analyses. This chapter wraps-up the main purpose of the thesis:

to assess whether motion of an ROV is feasible under foreknown conditions, by means of

numerical computation of the time-domain dynamics equations. Following this last chapter,

the thesis closes with Part IV, an Epilogue. This part includes commonplace Conclusions and

Further Work, References, and Appendices.
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Chapter 2

Vehicle motion modelling and

control

This work relies on being able to simulate ROV motion in the time domain. The ROV simu-

lation model is based on rigid-body Newtonian mechanics, where external loads are assumed

as Euclidean vector quantities. The approach presented herein is mainly based on Fossen’s

theory [48, 36] and is complemented by some ideas and notation coming from the field of geo-

metric mechanics (see for instance [15, 88]). All models presented in this chapter are grounded

on existing theory and represent the baseline vehicle model to be further used.

2.1 KINEMATICS

Roughly speaking, kinematics deals with how to define and manipulate position, orientation,

and velocity quantities of moving bodies such as water craft. Kinematics is geometrical

in nature. Position and orientation are also called configuration or pose, and all possible

configurations define the configuration space [72, 15, 88]. When the motion of a rigid body

does not cover great distances, it is enough to define its configuration by using a North-East-

Down (NED) frame {n} and a body-fixed frame {b} [48], see Fig. 2.1. Frame {n} is assumed

inertial and defined on a tangent plane on the Earth’s surface. The frame is orthogonal and

directions x-y-z, as its name suggests, point towards North-East-Down respectively. The

origin may be placed at any feasible coordinates, but commonly z is zero at the water surface.

54
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Figure 2.1. Frames to describe ROV motion. This figure was created by the author from a render

of Pionero500’s CAD model. The CAD model was the work of many of the UPB’s Underwater

Robotics Program students and researchers. The render was finally obtained thanks to Sergio Suárez.

2.1.1 POSITION AND ORIENTATION

The position of the body is given by pnb/n =
[
x y z

]ᵀ
∈ R3, as the position of the

origin of {b} with respect to {n}. Conversely, the orientation is described by the rotation

matrix between {n} and {b}, Rn
b ∈ R3×3, that maps an arbitrary vector vb ∈ R3 defined

in {b} to a vector vn defined in {n}, i.e., vn = Rn
b v

b. More specifically, admissible ma-

trices are elements of SO(3), the special orthogonal group of order 3, i.e., SO(3) = {R ∈
R3×3 | R orthogonal, detR = 1}; SO(3) is a three-dimensional subspace of R3×3 (in differ-

ential geometry, such subspace is a manifold).

To define orientation, a three-dimensional parametrisation based on the roll-pitch-yaw Euler

angles φ, θ, and ψ may be used. This parametrisation is obtained by successive rotations using

the z−y−x convention. The Euler angles vector, often called attitude, is Θnb =
[
φ θ ψ

]ᵀ
.

This parametrisation maps a subset of R3 to R3×3. Consequently, Rn
b , where s · = sin(·) and
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c · = cos(·), is

Rn
b (Θnb) =

 cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ

−sθ cθsφ cθcφ

 .
Hence, the configuration may be described by η ∈ R6,

η =

[
η1

η2

]
=

[
pnb/n
Θnb

]
.

Other configuration descriptions are possible depending on how the orientation is represented.

For instance, using quaternions or the rotation matrix directly [48]. The latter is used to

develop numerical integration algorithms often called Lie group integrators [72, 88].

2.1.2 VELOCITY

The body’s linear velocity is given on {b} by vbb/n ∈ R3, vbb/n =
[
u v w

]ᵀ
, and the

angular velocity by ωb/n ∈ R3, ωb/n =
[
p q r

]ᵀ
. The angular velocity is often expressed

as Ωb/n ∈ so(3), where so(3) ⊂ R3×3 is the set of skew-symmetric matrices, i.e., so(3) = {Ω ∈
R3×3|Ω = −Ωᵀ}. The isomorphism S : R3 → so(3) is often defined as

Ωb/n = S(ωb/n) =

 0 −r q

r 0 −p
−q p 0

 .
The velocity vector is thus given by ν ∈ R6,

ν =

[
ν1

ν2

]
=

[
vbb/n
ωb/n

]
. (2.1)

The set (Cartesian product) of a configuration and velocity is called the vehicle’s state. Using

the aforementioned definitions, the state q ∈ R12 is given by q =
[
ηᵀ νᵀ

]ᵀ
.

2.1.3 KINEMATIC TRANSFORMATION

The kinematic transformation is used to define the tangent space of a specified configuration η.

In rigid-body kinematics it is commonly expressed as a mapping defined by a J(η) ∈ R6×6.

In general terms, this mapping is defined as

η̇ = J(η)ν, (2.2)
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where the overdot indicates differentiation with respect to time. Given a fixed configuration

η, J(η) linearly maps ν into η̇.

For instance, when attitude vector Θnb encodes the orientation, the mapping is [48]

JΘ(η) =

[
Rn
b (Θnb) 03×3

03×3 TΘ (Θnb)

]
, (2.3)

where

TΘ (Θnb) =

 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 ,
s · = sin(·), c · = cos(·), t · = tan(·), and 03×3 ∈ R3×3 is a zeros matrix. The main drawback

of this mapping is that it becomes singular when θ = ±π/2, this fact motivates the use of

quaternions when this singular configuration may be reached [48]; this is hardly the case of

ROVs. The kinematic transformation (2.2) using (2.3) is then defined as

η̇ = JΘ(η)ν.

2.1.4 RELATIVE VELOCITY KINEMATICS AND FLOW FRAME

The dynamics model requires a definition of the body’s relative velocity, e.g., when com-

puting hydrodynamic loads. In this work, relative velocity is defined with respect to the

current around the vehicle. In general, (ocean) current is a function of time and space, i.e.,

Vn
c/n = Vn

c/n(x, y, z, t). Once an operation site is known, it is common to assume that current

varies with depth and time Vn
c/n = Vn

c/n(z, t). This current profile may be known through

field measurements or ocean models. Nevertheless, when such models are not available, the

DNV-RP-C205 Environmental Conditions and Environmental Loads Recommended Practice

presents a simplified model for the steady-state case [33].

This work assumes that currents are irrotational and their acceleration is negligible. This

means that for the irrotational case, current with respect to {n} is

Vn
c/n =

[
vcx vcy vcz 0 0 0

]ᵀ
.

Then, by using the inverse of (2.3), current velocity with respect to {b} is

νc = JΘ(η)−1Vn
c/n;

subsequently, relative velocity with respect to {b} is given by

νr = ν − νc
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and the relative acceleration by

ν̇r = ν̇.

The last expression facilitates the computation of the dynamics by assuming that the vehicle’s

acceleration equals the relative acceleration.

A convenient way to represent relative velocity is presented in [48], using the so-called FLOW

frame. This frame is written using the drift/side-slip and attack angles: β and α respectively.

Using this description, relative velocity is given by

νr =

 ur

vr

wr

 =

 Vr cos(αr) cos(βr)

Vr sin(βr)

Vr sin(αr) cos(βr)

 , (2.4)

where Vr is relative velocity’s magnitude, αr attack angle, and βr drift/sideslip angle. In this

work, this representation has two practical uses: parametrising relative currents on three-

dimensional computations directly, as well as exploratory analysis and visualisation.

2.2 RIGID BODY DYNAMICS

The dynamic model of an ROV can be obtained from the Newton-Euler equations of motion

when frame {b}’s origin is located at a generic, geometrically convenient point (denoted as

CO); in general, this point does not coincide with the centre of mass. The dynamic model could

be derived also from a variational principle such as the Lagrange-d’Alembert principle [88].

Nevertheless, in this work Fossen’s robot-like equation derived from the Newton-Euler formu-

lation is preferred. This equation is given in vector form (∈ R6) by [48]

MRB ν̇ + CRB (ν) ν + MAν̇r + CA (νr) νr + D (νr) νr + g (η) = τ(u) + τcable + τwave. (2.5)

This model includes loads from rigid body kinetics (inertia and Coriolis), hydrodynamics

(drag, added mass, and hydrodynamic Coriolis), hydrostatics, actuators, and other external

forces, e.g., cable or wave loads.

More specifically, MRB and CRB ∈ R6×6 represent rigid-body mass and Coriolis matrices;

MA and CA ∈ R6×6 represent hydrodynamic added mass and Coriolis matrices; D ∈ R6×6

represents hydrodynamic drag; g ∈ R6×1 represents hydrostatic forces (buoyancy and restor-

ing moments); τ ∈ R6×1 is the force vector due to actuators, dependent on some input u;

τcable ∈ R6×1 is the force vector due to the cable; and τwave ∈ R6×1 is the force vector due to

waves. Nonetheless, in the case of waves, the effects, divided into first and second order loads,

can be disregarded when the ROV is submerged more than half of the wave length [120].
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2.2.1 RIGID BODY INERTIA

The rigid body inertial model is obtained when one knows the vehicle’s mass m, as well as

the tensor of inertia Ib and location of the centre of mass rbg =
[
xg yg zg

]ᵀ
, both with

respect to CO. Then, the matrix of inertia is given by

MRB =

[
M11 M12

M21 M22

]
, (2.6)

where M11 = mI3×3 is the mass matrix,

M22 = Ib =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz


is the inertia tensor measured with respect to CO, and

M21 = Mᵀ
12 = mS(rbg) =

 0 −mzg myg

mzg 0 −mxg
−myg mxg 0

 .
Once MRB is known, the rigid-body Coriolis matrix is

CRB =

[
03×3 −S (M11ν1 + M12ν2)

−S (M11ν1 + M12ν2) −S (M21ν1 + M22ν2)

]
. (2.7)

Furthermore, when a starboard-port-symmetrical ROV is assumed, (2.6) can be simplified [48].

This means that yg = 0 and Ixy = Iyz = 0. In this case

M22 =

 Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz


and

M21 = Mᵀ
12 =

 0 −mzg 0

mzg 0 −mxg
0 mxg 0

 .
Hence, the rigid body inertia becomes

MRB =



m 0 0 0 mzg 0

0 m 0 −mzg 0 mxg

0 0 m 0 −mxg 0

0 −mzg 0 Ix 0 −Ixz
mzg 0 −mxg 0 Iy 0

0 mxg 0 −Ixz 0 Iz


.
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2.2.2 HYDROSTATICS

The hydrostatics model is obtained when one knows the vehicle’s weight W and buoyancy B,

as well as the location of the centre of buoyancy rbb =
[
xb yb zb

]ᵀ
with respect to CO.

Then, the hydrostatics load becomes [48]

g(η) =



(W −B) sin θ

−(W −B) cos θ sinφ

−(W −B) cos θ cosφ

−(ygW − ybB) cos θ cosφ− (zgW − zbB) cos θ sinφ

(zgW − zbB) sin θ + (xgW − xbB) cos θ cosφ

−(xgW − xbB) cos θ sinφ− (ygW − ybB) sin θ


.

In this equation, weight may be calculated as

W = (m+mp)g, (2.8)

where mp is payload mass, and buoyancy is given by

B = ρWg∇,

where ∇ is displaced volume and ρW water’s density.

Assuming xz symmetry and that the vehicle is well balanced (i.e., xgW = xbB and ygW =

ybB), this becomes [48]

g(η) =



(W −B) sin θ

−(W −B) cos θ sinφ

−(W −B) cos θ cosφ

−(zgW − zbB) cos θ sinφ

(zgW − zbB) sin θ

0


.

This could be further simplified if one assumes that the vehicle is neutrally buoyant, meaning

that W = B. In this case,

g(η) =



0

0

0

−W (zg − zb) cos θ sinφ

W (zg − zb) sin θ

0


.

In this last case, hydrostatics only includes roll and pitch restoring moments.
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2.2.3 HYDRODYNAMICS

As shown in (2.5), hydrodynamics terms include added mass, hydrodynamic Coriolis, and

drag, i.e., MAν̇r+CA (νr) νr+D (νr) νr. These terms include hydrodynamic effects dependent

on relative acceleration, linear and angular relative velocities, and linear-angular cross-coupled

effects.

2.2.3.1 Added mass and hydrodynamic Coriolis

Added mass, that includes effects dependent on relative acceleration, is given in general by

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yṗ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zṗ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kṗ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mṗ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nṗ Nṙ


. (2.9)

This matrix is assumed symmetric and positive definite, i.e., MA = Mᵀ
A ≥ 0.

The hydrodynamic Coriolis matrix, that includes linear-angular cross-coupled effects, could

be obtained from MA by following a similar procedure as in (2.7). This means that

CA =

[
03×3 −S (A11ν1 + A12ν2)

−S (A11ν1 + A12ν2) −S (A21ν1 + A22ν2)

]
. (2.10)

When operating below the wave-affected zone, where wave frequency may be assumed equal

to zero, hydrodynamic added mass is constant and for ROV-like bodies may be simplified

to [48]

MA = −



Xu̇ 0 Xẇ 0 Xq̇ 0

0 Yv̇ 0 Yṗ 0 Yṙ

Xẇ 0 Zẇ 0 Zq̇ 0

0 Yṗ 0 Kṗ 0 Kṙ

Xq̇ 0 Zq̇ 0 Mq̇ 0

0 Yṙ 0 Kṙ 0 Nṙ


. (2.11)

Furthermore, assuming low speed and three planes of symmetry, the contribution from the

off-diagonal elements could be neglected [48]. This means that

MA = −diag{Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ}.
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2.2.3.2 Linear and quadratic drag

A simplified way to compute D (νr) is by assuming that forces are uncoupled and composed

only of combined linear and quadratic terms. This means that [48]

D(νr) =− diag{Xu, Yv, Zw,Kp,Mq, Nr}

− diag{X|u|u|u|, Y|v|v|v|, Z|w|w|w|,K|p|p|p|,M|q|q|q|, N|r|r|r|}. (2.12)

Moreover, it may be considered that linear damping is faded out with increasing speed [120].

2.2.3.3 Manoeuvring meta-model

In (2.5), all hydrodynamics terms may be summarised as

τH (νr, ν̇r) = − (MAν̇r + CA (νr) νr + D (νr) νr) ; (2.13)

consequently, the dynamic model becomes

MRB ν̇ + CRB (ν) ν + g (η) = τH (νr, ν̇r) + τ(u) + τcable + τwave.

Thus, hydrodynamic loads in this context may be understood as a load term that is dependent

on relative velocity νr and acceleration ν̇r and modelled as an algebraic expression. It is often

useful to write τH ’s components explicitly, i.e.,

τH =
[
X Y Z K M N

]ᵀ
,

where X, Y , and Z are x-y-z forces respectively and K, M , and N are x-y-z moments

respectively. This is called the component form.

Using the concept of hydrodynamic derivatives [48], where τH is written as a Taylor-series

expansion, hydrodynamic loads are modelled by polynomial expressions. Coefficients of re-

sultant polynomial terms are hydrodynamic derivatives. For example, one can write for X the

linear expansion

X = Xuu+Xvv +Xww +Xpp+Xqq +Xrr +Xu̇u̇+Xv̇v̇ +Xẇẇ +Xṗṗ+Xq̇ q̇ +Xṙṙ,

where coefficients X(·) are hydrodynamic derivatives. Furthermore, higher order expansions

may be used as well. In this case, often added-mass terms are linear and drag terms use only

odd elements, given drag’s dissipative nature. Hence, for X one obtains

X = Xu̇u̇+Xuu+Xuuuu
3 +Xv̇v̇ +Xvv +Xvvvv

3 +Xẇẇ +Xww +Xwwww
3 + · · · .
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Moreover, second order terms may be included in modulus form to obtain a model

X = Xu̇u̇+Xuu+X|u|u|u|u+Xv̇v̇ +Xvv +X|v|v|v|v +Xẇẇ +Xww +X|w|w|w|w + · · · .

More generally, any hydrodynamic load component is susceptible to be written as

X =
∑
i

Xi gXi(νr, ν̇r), (2.14)

where the Xi are coefficients and gXi are basis functions of νr and ν̇r. Xi coefficients will

be further called manoeuvring coefficients. See e.g. [126, 98], where different options for

model (2.14) have been explored.

2.2.4 A NOTE ON THE CABLE MODEL

Further on this work, cable modelling will be approached in greater detail. The main moti-

vation of cable modelling is to compute a vector of the forces and moments exerted by the

cable on the ROV, τcable, to be used on model (2.5). Vector τcable results from all dynamic

phenomena on the cable, namely drag due to current, hydrostatics, spatial configuration and

motion, among others. Figure 2.2 illustrates how, when the ROV is deployed, the cable ob-

tains certain geometric configuration and, for instance, it accumulates the effect of current

along its length. Finally, the sum of all effects is summarised in τcable.

2.2.5 ACTUATORS

The body’s forces and moments vector due to thrusters, τ(u), is computed by knowing the

location and orientation of each thruster, as well as the way each thruster force (i.e., thrust)

behaves; τ is dependent on the input vector u. Supposing an ROV is composed by r thrusters,

then u ∈ Rr and u =
[
u1 · · · ui · · · ur

]ᵀ
.

The location of each thruster is given by rbti/b ∈ R3, i = 1, . . . , r, and its orientation can be

expressed by using a unitary vector ebti/b ∈ R3. Each thruster force is given by fi ∈ R, and

the body’s forces and moments vector is given by τ(u) =
∑r

i=1 τi(ui), where the contribution

of each thruster is

τi(ui) =

[
Fτi(ui)

Mτi(ui)

]
=

[
ebti/bfi(ui)

S
(
rbti/b

)
ebti/bfi(ui)

]
=

[
ebti/b

S
(
rbti/b

)
ebti/b

]
fi(ui).

Vectors rbti/b , ebti/b , and ebti/bfi(ui) are illustrated in Fig. 2.3 for Pionero500. This ROV has a

total of six thrusters, and Fig. 2.3 shows vectors for thruster 2 explicitly. Vector rbt2/b indicates
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North

East

Down

Heave

Surge
Sway

Water surface

Cable

Vehicle

Current

Figure 2.2. ROV and cable. This figure illustrates a situation where the ROV has been deployed and

attains certain depth. If there is a current profile, this effect should accumulate along the cable’s length

and affect ROV motion. The figure was created by the author from Pionero500’s CAD model and

the CAD render was obtained thanks to Sergio Suárez.

the position of any point in thruster 2’s force line of action. This line of action’s direction is

given by unitary vector ebt2/b . Finally, the complete force vector becomes ebt2/bf2. This whole

process may be repeated for all remaining thrusters.

Each thruster body load can be written more compactly as

τi(ui) = Tifi(ui).

where

Ti =

[
ebti/b

S
(
rbti/b

)
ebti/b

]
. (2.15)

Moreover, the contribution of all thrusters may be computed by defining the matrix-vector
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THRUSTER 2THRUSTER 3

THRUSTER 4

THRUSTER 5 THRUSTER 6

THRUSTER 1

Figure 2.3. Pionero500’s thruster configuration. The ROV has six thrusters but related vectors are

illustrated for thruster 2 only; related vectors indicate thrust force and the unitary vector of its line

of action, as well as a position vector of any point along the line of action. As before, the figure was

created by the author from Pionero500’s CAD model and the CAD render was obtained thanks to

Sergio Suárez.

product [36]

τ(u) = Tf(u), (2.16)

where T ∈ R6×r is called thruster configuration matrix, f =
[
f1 · · · fi · · · fr

]ᵀ
is the

vector of thruster forces. The vector of thruster forces defines a space in Rr. The thruster

configuration matrix is assembled as

T =
[

T1 · · · Ti · · · Tr

]
, (2.17)

where each column is computed from (2.15). Consequently, (2.16) is a mapping from thruster

forces space (in Rr) to three-dimensional forces and moments space (in R6).

The force fi(ui) exerted by each thruster, dropping sub-index i, is calculated as

f = ρKT (J)D4|n|n, (2.18)

where D is propeller diameter, n propeller speed (often in s−1), and KT (J) propeller’s thrust

coefficient as a function of the advance ratio J . The advance ratio is given by

J =
Va
Dn

, (2.19)

where Va is advance velocity. In (2.18), each thruster’s propeller speed ni depends on input

ui, meaning that thrust is controlled by manipulating propeller speed. The relation ni(ui)
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depends on the thruster’s driver unit. Often, the input signal and propeller speed are pro-

portional. In this case, ni = nimax
ui, where nimax

is maximum propeller speed and ui is a

normalised input, i.e., ui ∈ [−1, 1].

2.3 CONTROL SYSTEM

In this work, two main components of an ROV control system are considered, namely thrust

allocation and control algorithms. These components are illustrated in Fig. 2.4 as generic

blocks. Broadly speaking, the control algorithm requires converting some sort of operator

commands into control commands. The control commands are often related to a body forces

and moments vector in frame {b} that controls motion in three-dimensional space, i.e., about

all six translation and rotation degrees of freedom. Then, the thrust allocation algorithm

converts these control commands into commands to each thruster. Manual and feedback of

control schemes are considered herein, including manual, multi-loop PID, and non-linear PID.

ROV

FEEDBACK

OPERATOR
COMMANDS

CONTROL
COMMANDS

THRUSTER
COMMANDS

THRUST
ALLOCATION

CONTROL
STATE

Figure 2.4. Control system. This block diagram shows that each control system converts operator

commands into thrusters commands in order to attain certain motion. The control scheme could or

could not have any means of feedback.

All feedback control algorithms depend on knowing the vehicle’s state q =
[
ηᵀ νᵀ

]ᵀ
. This

is often accomplished by using an algorithm that uses (noisy) measurements to estimate all

state variables; often this estimator is based on the Kalman filter [48]. This work will assume

that measurable information is available and a state estimator is constructable; consequently,

this work will not deal with how to construct such estimator nor its effects on motion feasibility.

Additionally, the control system has the following simplifications and considerations:
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• Further measurement-related dynamic effects are neglected, such as sensor and state

estimator dynamics.

• All implementation issues are disregarded. It is assumed that control strategies are

possible to implement in the ROV’s control computer. Also, discretisation-related effects

on controllers are not studied.

• High-level control strategies, such as mission and trajectory planning, are not considered.

• From all controllable degrees of freedom, yaw is the most important one to control,

followed by heave [26].

2.3.1 THRUST ALLOCATION

Thrust allocation is the most basic action towards controlling an ROV, even when the vehicle

is manually controlled and no feedback control strategy has been implemented. The task of

thrust allocation is to translate motion commands in three-dimensional space into thruster

commands [36]. This means finding a mapping from a vector

τu =
[
Xu Yu Zu Ku Mu Nu

]ᵀ
,

representing motion commands in the forces and moments space, into a thrusters command

vector u =
[
u1 · · · ui · · · ur

]ᵀ
.

To find such map, Eq. (2.16) is often used to define an inverse map, i.e., from three-dimensional

forces and moments space to thruster forces space. Depending on the thrusters number and

how they are distributed, the system may be under-actuated, fully actuated, or over-actuated.

For matrix T ∈ R6×r in (2.16), this can be determined from whether its rank is less, equal, or

greater than the degrees of freedom. For an under-actuated system one can define a mapping

that represents a fully actuated system on a reduced space, e.g., Rr. For an over-actuated

system there is not a unique inverse map.

A common way to define an inverse map is by using the Moore-Penrose pseudo-inverse as

T† = Tᵀ(TTᵀ)−1.

With this pseudo-inverse, an inverse mapping is defined as

fu = T†τu. (2.20)

This mapping computes the amount of thrust at all thrusters fu from a τu that represents a

command for the desired net body forces and moments vector, i.e.,

τu =
[
Xu Yu Zu Ku Mu Nu

]ᵀ
.
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Then, fu is a vector of thrust commands given by fu =
[
fu1

· · · fui · · · fur

]ᵀ
.

Once fu is computed, it is necessary to compute the input to each thruster, i.e., all ui in

(2.16). To improve linearity of the control loop, it is convenient to acknowledge in (2.18)

that thrust is proportional to the square of the propeller’s velocity, as well as that propeller’s

velocity is often proportional to control input. Then, from (2.18)

n = sign(f)

√∣∣∣∣ 1

ρKT (J)D4
f

∣∣∣∣
and considering that ni = nimax

ui, one could define the expression for the thruster input ui as

ui =
sign(fui)

nmaxi

√∣∣∣∣ 1

ρKTD4
fui

∣∣∣∣, (2.21)

where choosing KT = KT0
= KT (0), the thrust coefficient at bollard pull, is customary. This

map fu 7→ u is represented by

u = f †u(fu). (2.22)

Finally, as one could notice, because τu are force/moments commands and are expressed in

force/moments units, it is convenient to compute such values from normalised inputs. This

can be written, for each force/moment, as Xu = XmaxuX , Yu = YmaxuY , Zu = ZmaxuZ ,

Ku = KmaxuK , Mu = MmaxuM , and Nu = NmaxuN . Please note that all u(·) ∈ [−1, 1] and

all terms like Xmax are a constant that represents the maximum force/moment. This defines

the normalised input command

uc =
[
uX uY uZ uK uM uN

]ᵀ
.

Figure 2.5 illustrates the aforementioned thrust allocation algorithm and how all pieces come

up together.

2.3.2 CONTROL

Three types of control are considered: manual, multiloop PID, and non-linear PID. In man-

ual control all degrees of freedom are manipulated by the operator. This means that no

feedback from measurements is used; the only required component is thrust allocation. In a

multi-loop PID, some or all degrees-of-freedom use feedback control, either to maintain any

degree-of-freedom at a constant value or to operate in a fly-by-wire fashion. In a non-linear

PID, all degrees of freedom are feedback-controlled in order to execute previously established

trajectories or keep position in the NED frame {n}.
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Figure 2.5. Simple thrust allocation algorithm

2.3.2.1 Open-loop control

Open-loop or manual control is an algorithm that converts operator commands into thruster

commands without any feedback from (motion) sensors. The commonly controlled degrees of

freedom on an ROV are surge, sway, heave, and yaw, i.e., three-dimensional translation and

heading. This means that manual control requires a joystick or equivalent to capture signals

jX , jY , jZ , and jN , corresponding to the aforementioned degrees-of-freedom. In this case,

joystick signals jX , jY , jZ , and jN are processed to compute uX , uY , uZ , and uN respectively,

i.e., control commands. Signal processing often includes filtering and normalisation. This

processing is represented by functions FX(jX), FY (jY ), FZ(jZ), and FN (jN ). Moreover, for

degrees-of-freedom roll and pitch one assumes uK = uM = 0; these degrees-of-freedom are

not controlled and naturally stable. These ideas are illustrated as block diagrams in Fig. 2.6.

THRUST
ALLOCATION ROV

Figure 2.6. Manual control algorithm
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2.3.2.2 Multi-loop PID

The multi-loop PID is a simple multi-variable feedback control strategy. It is a rather flexible

control scheme because it uses a number of PID algorithms in an ad hoc configuration or

structure. The basic PID algorithm used herein is

u(t) = PID(ysp, y(t)) = KP (ysp − y(t)) +KI

∫ t

0
(ysp − y(t))dt−KDẏ(t),

where y is the controlled variable; ysp set-point; u control command; and KP , KI , and KD

tuning parameters.

A straight-forward approach to control an ROV is to use a PID controller for each controlled

degree of freedom. As mentioned before, the most commonly controlled degrees of freedom

are those related to surge, sway, heave, and yaw. In this case, a multi-loop PID is defined to

control surge velocity u, sway velocity v, depth/altitude z and heading ψ. A diagram of this

multi-loop PID is shown in Fig. 2.7.

THRUST
ALLOCATION ROV

Figure 2.7. Simple multiloop PID

More specifically, surge and sway PIDs, identified as PIDu(usp, u) and PIDv(vsp, v) respec-

tively, are used to control surge and sway velocities u and v in order to operate in a fly-by-wire

fashion. Joystick commands jXand jY are then related to their respective velocity set-points.

Heave PID, identified as PIDz(zsp, z), is used to control vertical position. Vertical position

could be depth or altitude. In this PID, the derivative of the controlled variable, ż, could be

replaced by heave velocity w, i.e., ż = w. Joystick command jZ is then related to the desired
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depth or altitude. Yaw PID, identified as PIDψ(ψsp, ψ), is used to control heading. In this

PID, the derivative of the controlled variable, ψ̇, could be replaced by yaw angular rate r,

i.e., ψ̇ = r. Joystick command jN is then related to the desired heading.

Taking into account this multi-loop PID structure, a transition from manual control to feed-

back control could be made by adding PIDs one-by-one. Given that yaw is the most important

degree-of-freedom to control, followed by heave [26], a heading-depth multi-loop PID controller

is illustrated in Fig. 2.8. In this case, there is feedback control on yaw and heave and manual

control on surge and sway velocities.

ROVTHRUST
ALLOCATION

PID

PID

FEEDBACK

OPERATOR
COMMANDS

CONTROL
COMMANDS

THRUSTER
COMMANDS

SURGE
SWAY

HEADING

HEAVE STATE

Figure 2.8. Heading-depth multiloop PID

2.3.2.3 Non-linear PID

Feedback control is often approached by using a non-linear PID scheme. In this case, all de-

grees of freedom are feedback-controlled in order to execute previously established trajectories

or keep position in the NED frame {n}; this means controlling ROV’s configuration (position

and attitude) η and its derivative η̇. But, because ROV’s net forces and moments are defined

in body frame {b}, defining the control law requires using kinematic transformation J(η).

The non-linear PID control law is then

uc = −J(η)−1

(
Kpη̃ + Kd

˙̃η + Ki

∫ t

0
η̃(t)dt

)
, (2.23)

where η̃ = η− ηd is the error and ηd a reference value related to operator commands. Here, a

regular PID scheme is used to define an intermediate control command in NED space, then

inverse transformation J−1(η) is used to map this intermediate control command into body

frame {b}, to finally compute control command uc. A block diagram of the control scheme is

illustrated in Fig. 2.9.

Put differently, Fig. 2.10 illustrates the idea of non-linear PID control in the ROV’s motion
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THRUST
ALLOCATION

NON-LINEAR
PID ROV

Figure 2.9. Non-linear PID block diagram

space. Here, configuration η is given by the position and orientation of frame {b} with

ACTUAL
CONFIGURATION

DESIRED
CONFIGURATION

ERROR

Figure 2.10. Illustration of non-linear PID in the ROV

respect to frame {n}. The figure shows two configurations: actual configuration η and desired

configuration ηd. The difference between those two configurations is the error, given by η̃ =

η−ηd. If a PID algorithm is computed from η and η̇, control action Kpη̃+Kd
˙̃η+Ki

∫ t
0 η̃(t)dt

is defined in {n} space. By using inverse transformation J−1(η) this action is transformed

into {b} space.



Chapter 3

Study subjects

Throughout this thesis, three ROVs are used as study subjects, namely UPB’s visor3, UPB’s

Pionero500, and NTNU’s Minerva. The three ROVs span the observation and mid-size

classes and offer different types of information. Because UPB’s ROVs are in-house devel-

opments, they will serve as study subjects for developing models from scratch, as well as

illustrating the different procedures and methodologies proposed in this thesis. Particularly,

because Pionero500 is under development it will be useful to carry through design-related

analyses. Conversely, because Minerva was industrially produced and has been widely tested

at NTNU, available models will be useful for directly illustrating the different procedures and

methodologies without further modelling. This chapter describes the aforementioned ROVs

and presents information useful for performing computations on models such as (2.5).

The required modelling information focuses around the properties necessary to compute mass

and inertia, hydrostatics, hydrodynamics, actuators, and thrust allocation. To model mass

and inertia, one requires properties such as mass, moments of inertia, and coordinates of the

centre of mass (or centre of gravity). To model hydrostatics, one requires information about

weight and payload, as well as centre of buoyancy and any means to compute buoyancy force,

like knowing the ROV’s volume and water’s density. In order to model hydrodynamics, one

requires parameters for, e.g., quadratic/linear drag and added mass. Nevertheless, because

hydrodynamics will be approached later on, this subject is treated here rather superficially.

Furthermore, in order to model actuators, it is necessary to know each thruster’s location

and orientation. This may be divided into propeller and motor/drive information. The

propeller information may be propeller type, diameter, and pitch-diameter ratio or any other

73
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information useful to compute or estimate thrust coefficient. The motor/drive information is

often related to knowing the limitations it poses on the propeller, such as maximum rotational

speed. Finally, because the possibilities are many, for each ROV one alternative to the thrust

allocation algorithm will be presented.

3.1 VISOR3

visor3, depicted in Fig. 3.1, is an experimental, observation-class ROV developed in UPB

during the late 2000’s. This ROV was first developed for surveillance and inspection of port

facilities [100, 57], but, afterwards, it has been used as a test-bed for studying numerous

ROV-related subjects [131, 98, 147, 8, 7, 106, 56, 92, 31, 133]. It has capability for capturing

video and measuring pressure (depth) and temperature [57].

(a) (b)

Figure 3.1. visor3 ROV: (a) picture and (b) CAD. These images correspond to ca. 2009 version of

this ROV. Since then, visor3 has been subject to many updates.

visor3’s mass and volume properties are estimated from experimental and computed infor-

mation. Moments of inertia (radii of gyration), position of the centre of mass, and position

of the centre of buoyancy, as well as a first estimation of the volume and mass, are calculated

using a comprehensive CAD model. Then, mass and volume are corroborated through exper-

iments. The geometry, and consequently mass and volume properties, has varied during the

years. In this study, a fixed geometry and set of parameters are used. A summary of these

parameters is shown in Table 3.1.
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Table 3.1. visor3 mass and volume properties

Property Variable Value Units

Mass m 62.94 kg

Radius of gyration x kxx 0.2120 m

Radius of gyration y kyy 0.1969 m

Radius of gyration z kzz 0.2157 m

Vertical distance between c.o.m. and c.o.b. rg 0.02 m

As part of this thesis’ preliminary works, a manoeuvring model was obtained using visor3’s

geometry [98]. The manoeuvring model is a meta-model assembled from CFD computations,

using MARIN’s RANS equations solver ReFRESCO. The manoeuvring model in component

form has the structure

X = (Xu|u||u|+Xu|v||v|+Xu|w||w|)u+Xvrvr +Xu|r|u|r|, (3.1a)

Y = (Y|u|v|u|+ Yv|v||v|+ Yv|w||w|)v + Yu|r|u|r|+ Yv|r|v|r|, (3.1b)

Z = (Z|u|w|u|+ Z|v|w|v|+ Zw|w||w|)w, (3.1c)

K = Kpp+Kp|p|p|p|+ (Kvww +Kv|w||w|)v, (3.1d)

M = Mqq +Mq|q|q|q|+ (M|u|w|u|+Mw|w||w|)w +Mv|w|v|w|

+Mab1(u
2 − w2)uw| sin(α/2)|+Mab2 |uw2|sign(uw), (3.1e)

N = Nrr +Nr|r|r|r|+ (N|u|v|u|+Nv|v||v|+Nv|w||w|)v

+Nab1(u
2 − v2)uv| sin(β/2)|+Nab2 |uv2|sign(uv)

+Nvrvr +N|ur||ur|sign(r). (3.1f)

In this model, terms such as Xu|u|, Xu|v|, Xu|w|, and so on are the manoeuvring coefficients.

This structure is chosen so that the model captures the variation obtained from CFD compu-

tations; this is shown in [98]. The coefficients are specified in Table 3.2.

visor3’s propulsion system has four thrusters to control four degrees of freedom, namely surge,

sway, heave, and yaw. The general distribution is illustrated in Fig. 3.2. This configuration

gives all three degrees of freedom in the horizontal plane; conversely, the fourth degree of

freedom is heave (vertical motion). All thrusters have fixed position and orientation, and

motion control is obtained by varying the propeller’s velocity as follows:

• Two longitudinal thrusters, located port and starboard, are combined to control both

surge and yaw.

• One lateral tunnel thruster controls sway. It is slightly displaced towards the bow with

respect to the geometrical centre of the ROV. This and the two previous thrusters are

able to fully control motion in the horizontal plane.
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Table 3.2. Manoeuvring coefficients

Coeff. Value Coeff. Value Units

Xu|u| −72.5609 Yv|v| −78.1767

Zw|w| −95.8881 Xu|v| −21.5006

Xu|w| −34.0911 Y|u|v −67.0239 N/(m/s)2

Yv|w| −24.9222 Z|u|w −77.8589

Z|v|w −47.4107

Kvw −3.8601 Mu|w| −1.8696

Mw|w| −2.6395 Mv|w| −0.5831 Nm/(m/s)2

N|u|v −0.3147 Nv|v| −3.4828

Nv|w| −2.0364

Xu|r| −78.1726 Xvr −3.8179 N/(m rad/s2)

Yv|r| −89.4249 Yu|r| −11.5705

Nvr −3.9045 N|ur| −1.1103 N/(rad/s2)

Mab1 5.7699 Nab1 −4.8905 Nm/(m/s)4

Mab2 −10.3963 Nab2 −5.9839 Nm/(m/s)3

Kp −0.3894 Mq −0.9437 Nm/(rad/s)

Nr −1.7661

Kp|p| −1.5274 Mq|q| −1.5478 Nm/(rad2/s2)

Nr|r| −1.0540

• One vertical tunnel thruster controls heave.

• Roll and pitch are not controlled: the hydrostatic restoring moments allow the ROV to

be naturally stable in these two degrees of freedom.

The parametrisation used to compute thruster position and orientation is shown in Table 3.3,

where rHx = 0.22 m, rHy = 0.25 m, rHz = 0.185 m, rTx = 0.414 m, and rTz = 0.185 m.

Table 3.3 shows also the parameters required to estimate thrust coefficient.

visor3’s thrusters were developed in-house. This means that the limitations imposed by the

motors, such as maximum propeller speed, are not known beforehand and must be computed.

Each thruster has a brushless DC motor and gearbox, as well as required electronics and

drivers. All thrusters use the same motor-reducer combination. To compute the limitations

imposed by the motor-propeller combination, a model for electrical/mechanical power con-

version in steady-state is considered. This model considers that available power is used to

produce motion and counteract propeller’s torque. Also, it is considered that energy is not
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Figure 3.2. Thrusters distribution

Table 3.3. Propeller attributes

Parameter Starboard Port Transversal Vertical

Propeller diameter (mm) 101.6 101.6 91.44 91.44

Number of blades 4 4 4 4

Pitch-diameter ratio 1.275 1.275 1.0 1.0

Position x (m) −rHx −rHx rTx 0

Position y (m) rHy −rHy 0 0

Position z (m) rHz rHz rTz 0

Unitary vector [ 1 0 0 ]ᵀ [ 1 0 0 ]ᵀ [ 0 −1 0 ]ᵀ [ 0 0 1 ]ᵀ

accumulated neither by inertia nor inductance. The model could be written as

ω =
1

Z

(
n0u−

1

Zη

dn

dM
Q(ω, Va)

)
,

where ω is propeller’s angular speed, Va advance velocity, n0 motor’s no-load speed, u driver’s

normalised control signal (∈ [−1, 1]), dn/dM motor’s speed/torque gradient (assumed con-

stant), Q(ω, Va) propeller’s torque, Z reducer’s ratio, and η reducer’s efficiency. The pro-

peller’s torque is computed as Q = ρKQ(J)D5|ω|ω, where KQ(J) is torque coefficient and

J = Va/(Dω) is advance ratio. All motor-reducers use the parameters shown in Table 3.4.

Thrust allocation for visor3 fits a four-degree-of-freedom formulation. Thus, the vector of

thrust forces is f = [ f1 f2 f3 f4 ]ᵀ, representing starboard, port, transversal, and verti-

cal thrusters respectively. This four-degree-of-freedom formulation eliminates non-controlled,

naturally stable pitch and roll motions. For this ROV’s thrusters position and orientation,
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Table 3.4. Motor-reducer parameters

Parameter Value Units

n0 5952 rpm

dn/dM 6.16 rpm/mNm

Z 3.5 -

η 0.8 -

map (2.17) is given by 

τX

τY

τZ

τK

τM

τN


=



1 1 0 0

0 0 −1 0

0 0 0 1

0 0 rTz 0

rHz rHz 0 0

rHy −rHy −rTx 0




f1

f2

f3

f4



From this complete thruster configuration mapping a dimension-reduced mapping may be

obtained. In this reduced mapping, roll and pitch degrees-of-freedom are eliminated. Thus,
τX

τY

τZ

τN

 =


1 1 0 0

0 0 −1 0

0 0 0 1

rHy −rHy −rTx 0



f1

f2

f3

f4


An inverse mapping computed from the dimension-reduced mapping becomes

f1

f2

f3

f4

 =


1/2 −rTx/(2rHy) 0 1/(2rHy)

1/2 rTx/(2rHy) 0 −1/(2rHy)

0 −1 0 0

0 0 1 0



τX

τY

τZ

τN


This mapping represents Eq. (2.20), one part of the complete thrust allocation algorithm.

3.2 PIONERO500

Pionero500 is UPB’s latest ROV development and the first one in the mid-size range. It is

rated to operate up to 500-m depth. Currently, it is being developed for offshore exploration,

and, as of mid-2018, it had begun the test stages. It is equipped with three cameras, lighting

system, CTD, and navigation sensors such as IMU, altimeter, and USBL.
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Figure 3.3. Pionero500 CAD

Pionero500’s overall dimensions are l = 1.26 m, b = 1.00 m, and h = 0.78 m. The mass

comes from measurements and is 264 kg. The moments of inertia and centre of mass are

computed by using a comprehensive CAD model. A summary of these parameters is shown

in Table 3.5.

A hydrodynamic model for Pionero500 is not available beforehand. Nevertheless, an initial

estimate of drag may be computed from assuming the drag coefficient of a rectangle, i.e.,

CD = 1.2. From this assumption an uncoupled drag matrix is defined as

D =
1

2
ρWCD diag{bh|u|, lh|v|, lb|w|, 0, 0, 0}.

Please note that velocities in this drag matrix must be relative and the relative sub-index is

dropped.

Pionero500’s propulsion system has six thrusters to control four degrees of freedom: surge,
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Table 3.5. Pionero500 mass and volume properties

Property Variable Value Units

Mass m 264 kg

Radius of gyration x kxx 0.1767 m

Radius of gyration y kyy 0.2379 m

Radius of gyration z kzz 0.1584 m

Radius of gyration x-y kxy 0.0031 m

Radius of gyration x-z kxz −0.0150 m

Radius of gyration y-z kyz 0.0010 m

Position of the centre of mass rbg/b [ 0 0 −0.23 ]ᵀ m

sway, heave, and yaw. The general distribution is illustrated in Fig. 3.4; please note how

thrusters are numbered. This configuration gives all three degrees of freedom in the horizontal

plane; the fourth degree of freedom is heave (vertical motion). All these thrusters have fixed

THRUSTER 2THRUSTER 3

THRUSTER 4

THRUSTER 5 THRUSTER 6

THRUSTER 1

Figure 3.4. Pionero500’s thruster distribution. The figure was created by the author from Pio-

nero500’s CAD model and the CAD render was obtained thanks to Sergio Suárez.

position and orientation. Motion control is obtained by varying the propeller’s velocity as

follows:

• Four thrusters, numbered 2, 3, 5, and 6 in Fig. 3.4, are located in the horizontal plane to

jointly control surge, sway, and yaw.

• Two vertical thrusters, numbered 1 and 4 in Fig. 3.4, control heave. These two thrusters

are assumed to operate redundantly.
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• Roll and pitch are not controlled. As usual, the hydrostatic restoring moments allow the

ROV to be naturally stable in these two degrees of freedom.

All thrusters used in Pionero500 are the same model. The thrusters parameters are shown

in Fig. 3.6. The parametrisation used to compute thruster position and orientation is shown

in Table 3.7, where rHx = 0.387 m, rHy = 0.348 m, rVy = 0.414 m, and α = 30 deg.

Table 3.6. Technadyne thrusters attributes

Parameter Parameter

Propeller diameter (mm) 120.7

Forward bollard pull (N) 146.8

Backward bollard pull (N) 85.85

Maximum speed (rpm) 3000

Table 3.7. Pionero500 thrusters distribution

Parameter T 1 T 2 T 3 T 4 T 5 T 6

Position x 0 rHx rHx 0 −rHx −rHx
Position y rVy rHy −rHy −rVy −rHy rHy

Position z 0 0 0 0 0 0

Unitary vector x 0 cosα cosα 0 cosα cosα

Unitary vector y 0 − sinα sinα 0 − sinα sinα

Unitary vector z 1 0 0 1 0 0

Thrust allocation for Pionero500 fits a formulation where four-degree-of-freedom motion

is obtained through controlling six actuators. Thus, f = [ f1 f2 f3 f4 f5 f6 ]ᵀ is the

vector of thrust forces that represents thrusters as numbered in Fig. 3.4. For this ROV, map

(2.17) is given by

τX

τY

τZ

τK

τM

τN


=



0 cosα cosα 0 cosα cosα

0 − sinα sinα 0 − sinα sinα

1 0 0 1 0 0

rVy 0 0 rVy 0 0

0 0 0 0 0 0

0 −rzz rzz 0 rzz −rzz





f1

f2

f3

f4

f5

f6


where rzz = rHx sinα + rHy cosα, representing z-moment equivalent radius. From this, if

one assumes that forces due to vertical thrusters satisfy f1 = f4 = f14, the mapping may be
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rewritten as 

τX

τY

τZ

τK

τM

τN


=



0 cosα cosα cosα cosα

0 − sinα sinα − sinα sinα

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −rzz rzz rzz −rzz




f14

f2

f3

f5

f6

 ,

where, as one could notice, roll and pitch moments are eliminated. Consequently, a reduced

mapping could be written as
τX

τY

τZ

τN

 =


0 cosα cosα cosα cosα

0 − sinα sinα − sinα sinα

2 0 0 0 0

0 −rzz rzz rzz −rzz




f14

f2

f3

f5

f6

 .
Then, the inverse mapping to define a thrust allocation algorithm, obtained from the thrust

configuration matrix pseudo-inverse, is
fu14

fu2

fu3

fu5

fu6

 =


0 0 1/2 0

1/(4 cosα) −1/(4 sinα) 0 −1/(4rzz)

1/(4 cosα) 1/(4 sinα) 0 1/(4rzz)

1/(4 cosα) −1/(4 sinα) 0 1/(4rzz)

1/(4 cosα) 1/(4 sinα) 0 −1/(4rzz)




Xu

Yu

Zu

Nu


or equivalently, by using the assumption fu1

= fu4
= fu14

,

fu1

fu2

fu3

fu4

fu5

fu6


=



0 0 1/2 0

1/(4 cosα) −1/(4 sinα) 0 −1/(4rzz)

1/(4 cosα) 1/(4 sinα) 0 1/(4rzz)

0 0 1/2 0

1/(4 cosα) −1/(4 sinα) 0 1/(4rzz)

1/(4 cosα) 1/(4 sinα) 0 −1/(4rzz)




Xu

Yu

Zu

Nu

 .

This mapping represents Eq. (2.20) of the complete thrust allocation algorithm.

An alternative to this thrust allocation algorithm is to define a normalised version. For the

normalised version the maximum body forces and moments are defined as (please refer to,

e.g., Fig. 2.5)

Xmax = βX
(
4 cosαKTD

4n2
max

)
,

Ymax = βY
(
4 sinαKTD

4n2
max

)
,

Zmax = βZ
(
2KTD

4n2
max

)
, and

Nmax = βN
(
4rzzKTD

4n2
max

)
.
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This definition assumes that maximum body load due to thrusters is a factor β(·) ∈ [0, 1]

of the best case scenario of all possible thrusters contributing to each degree-of-freedom, at

bollard pull and maximum speed. This given, the complete thrust algorithm may be written

as 

f̂u1

f̂u2

f̂u3

f̂u4

f̂u5

f̂u6


=



0 0 1 0

1 −1 0 −1

1 1 0 1

0 0 1 0

1 −1 0 1

1 1 0 −1




βX 0 0 0

0 βY 0 0

0 0 βZ 0

0 0 0 βN



uX

uY

uZ

uN



and

ui = sign(f̂ui)

√
|f̂ui |,

for i = 1, . . . , 6. Factors β(·) weigh the amount of power each degree-of-freedom receives from

thrusters. This normalised algorithm is more convenient for implementation.

3.3 MINERVA

Minerva is NTNU’s Sperre SUB-fighter 7500 ROV (see Fig. 3.5), used for biological and

archaeological research and sampling, as well as for research on marine cybernetics. It is

rated at a 700 m working depth, has a 600 m tether for power and communications, and

is usually deployed from NTNU’s research vessel (R/V) Gunnerus. For a more complete

description, see for instance [122]. The model used within this thesis has the same parameters

that were used by NTNU’s AUR-Lab Minerva simulator during boreal fall 2016.

Minerva’s overall dimensions are l = 1.44 m, b = 0.82 m, and h = 0.80 m, and its mass is

460 kg. The moments of inertia are computed by assuming the radii of gyration of a box,

this is kxx = 1
12

(
b2 + h2

)
, kyy = 1

12

(
l2 + h2

)
, and kzz = 1

12

(
b2 + l2

)
. The properties are

summarised in Fig. 3.8.

Hydrodynamics model assumes constant, diagonal added mass, and linear and quadratic drag.

The added mass matrix is

MA = −diag{293., 302., 330., 110., 56., 55.},

linear drag matrix is

DL = −diag{29., 41., 254., 34., 59., 45.},
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Figure 3.5. NTNU’s Minerva, during an operation in Trondheim’s Fjord during fall 2014. The picture

was taken by Elkin Taborda and is being used with his permission.

and quadratic drag matrix is

DNL = −diag{292.|u|, 584.|v|, 635.|w|, 84.|p|, 148.|q|, 100.|r|}.

Minerva’s propulsion system has five thrusters to control four degrees of freedom, namely

surge, sway, heave, and yaw. Its thrusters configuration gives all three degrees of freedom in

the horizontal plane; the fourth degree of freedom is heave (vertical motion). Motion control

is obtained by varying the propeller’s velocity as follows:

• Two unidirectional, longitudinal thrusters, located port and starboard, are combined to

control both surge and yaw. These thrusters are slightly rotated by an angle α = 10 deg.

• One bidirectional, lateral thruster controls sway. It is slightly displaced towards the bow

with respect to the geometrical centre of the ROV. This and the two previous thrusters

are able to fully control motion in the horizontal plane.

• Two unidirectional, vertical thrusters control heave. These thrusters are assumed to

operate redundantly.

• Roll and pitch are not controlled. As in the other ROVs, hydrostatic restoring moments

allow the ROV to be naturally stable in these two degrees of freedom.

The parameters used to compute thruster position and orientation and propeller thrust coef-
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Table 3.8. Minerva mass and volume properties

Property Variable Value Units

Mass m 460 kg

Radius of gyration x kxx 0.1093 m

Radius of gyration y kyy 0.2261 m

Radius of gyration z kzz 0.2288 m

Position of the centre of gravity rg 0.12 m

ficient are shown in Table 3.9. The thrust coefficient for unidirectional thrusters is computed

Table 3.9. Minerva’s propeller attributes

Parameter Starboard Port Lateral Vertical-1 Vertical-2

Propeller diameter (mm) 220 220 190 220 220

Maximum speed (rpm) 1450 1450 1450 1450 1450

Position x (m) −0.57 −0.57 0.166 0 0

Position y (m) 0.24 −0.24 0 0.2 −0.2

Position z (m) 0 0 0.3 0 0

Unitary vector x cos(α) cos(α) 0 0 0

Unitary vector y sin(α) − sin(α) −1 0 0

Unitary vector z 0 0 0 1 1

using a 1-3-quadrant formulation. The thrust coefficient in the first quadrant, where propeller

and advance velocity are positive, is

KT (J)1 = 0.24J3 − 0.25J2 − 0.66J + 0.5.

The thrust coefficient in the third quadrant, where propeller and advance velocity are negative,

is

KT (J)3 = 0.025J3 − 0.28J2 − 0.17J − 0.15.

For bidirectional thrusters first quadrant thrust coefficient is given by KT (J)1 and third

quadrant thrust coefficient by −KT (J)1. Second and fourth quadrants, where propeller and

advance velocities are different, are not considered because they are not easily predictable [36].

Thrust allocation for this ROV fits a formulation where four-degree-of-freedom motion is

obtained through controlling five actuators. Thus, f = [ f1 f2 f3 f4 f5 ]ᵀ is the vector of

thrust forces that represents starboard, port, transversal, vertical-starboard, and vertical-port

thrusters respectively. This formulation does not take into account non-controlled, naturally

stable pitch and roll motions.
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For this ROV, map (2.17) is given by

τX

τY

τZ

τK

τM

τN


=



cosα cosα 0 0 0

sinα − sinα 1 0 0

0 0 0 1 1

−rHz sinα rHz sinα −rLz rVy −rVy
rHz cosα rHz cosα 0 0 0

−rzz rzz rLx 0 0




f1

f2

f3

f4

f5

 ,

where rzz = rHx sinα + rHy cosα, representing z-moment equivalent radius due to starboard

and port thrusters.

From this, if one assumes that forces due to vertical thrusters satisfy f1 = f4 = f14 and,

furthermore, roll and pitch degrees-of-freedom are eliminated, the mapping may be rewritten

as 
τX

τY

τZ

τN

 =


cosα cosα 0 0

sinα − sinα 1 0

0 0 0 2

−rzz rzz rLx 0




f1

f2

f3

f4

f5


Then, the inverse mapping is

f1

f2

f3

f4

 =


1

2 cosα
rLx

2(rLx sinα+rzz) 0 − 1
2(rLx sinα+rzz)

1
2 cosα − rLx

2(rLx sinα+rzz) 0 1
2(rLx sinα+rzz)

0 rzz
rLx sinα+rzz

0 sinα
2(rLx sinα+rzz)

0 0 1/2 0



τX

τY

τZ

τN


This mapping represents Eq. (2.20) of the complete thrust allocation algorithm.



Chapter 4

Tools from sphere geometry

In the chapters to come, the treatment of many concepts will be geometrical. This is stated for

two reasons: first, model variables exist in some geometrical space and through their variations

that space is explored; second, models are made up of mappings between two spaces, i.e., to

transform one geometrical space into another. Even though all variables treated here lie in

Euclidean space, many variables are better defined by non-Euclidean subspaces. An example,

of remarkable importance to this work, is the space of three-dimensional unitary vectors,

which resembles a spherical surface. The problem of exploring this type of spaces is not

trivial, if being efficient at that exploration is a concern (as it is when performing demanding

computations). Altogether, this chapter’s purpose is two-fold: introduce tools to deal with

the problem of distributing of points in a spherical space and make a first application by

performing graphical representations of some of this work’s models.

4.1 SPHERICAL GEOMETRY

One of many examples where geometry concepts are useful is manoeuvring model (2.13): a

mapping τH : R6 × R6 → R12, that maps relative velocity and acceleration into a vector of

forces and moments, i.e., (νr, ν̇r) 7→ τH . (Please note that an abuse of notation is used: the

same symbol is used to represent both the mapping and elements of the image set.) The spaces

of νr and ν̇r are both six-dimensional. Focusing on νr and using the same concept of Eq. (2.1),

a velocity vector is composed by both a linear and angular term. Assuming that these vectors

87
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represent velocities in body frame {b}, this derives in vectors vr =
[
ur vr wr

]ᵀ
∈ R3 and

ω =
[
p q r

]ᵀ
∈ R3; hence, νr =

[
vr ω

]ᵀ
. This same idea could be applied to ν̇r.

A convenient way to understand the behaviour of velocity components vr and ω is by writing

each vector as a multiplication of the magnitude and unitary vector. Further focusing on vr,

one has νr = V eν , where V is magnitude and eν is a unitary vector. Geometrically, the space

of unitary vectors such as eν is a unitary sphere. Because the direction of relative velocities

is important to this work, its geometry will be as well.

4.1.1 TWO-DIMENSIONAL CASE

In general, problems related to ROV motion are three-dimensional. Nevertheless, surface

vessels or ROV planar motion, for instance, may be analysed in two dimensions. There is

a relevant difference between the geometry of orientations in two and three dimensions. For

instance, if one wishes to analyse different orientations in two dimensions, it is straight-forward

to define a uniform distribution: it suffices to separate each direction by a constant angle.

Mathematically, the unitary circumference (or sphere in R2) is a one-dimensional space defined

as S1 = {x ∈ R2 | ||x||2 = 1}. More explicitly, x =
[
x y

]ᵀ
and ||x||2 = x2 + y2. To

parametrise an element in S1, it is common to define a mapping S1 : R→ S1, i.e., that maps

a one-dimensional Euclidean space region into points of the circumference. Such map is given

by q 7→ (x, y) and defined as

[
x

y

]
=

[
cos(q)

sin(q)

]
. (4.1)

An N -point uniform distribution on S1 is given by {qi} =
(
i−1
N

)
2π, for i = 1, . . . , N .

4.1.2 SPHERE PARAMETRISATIONS

The unitary sphere in R3 is a two-dimensional space defined as S2 = {x ∈ R3 | ||x||2 = 1}.
More explicitly, x =

[
x y z

]ᵀ
and ||x||2 = x2 + y2 + z2. A common way to parametrise

an element in S2 is by defining a mapping S2 : R2 → S2, i.e., that maps a two-dimensional

Euclidean space region into points of the three-dimensional sphere. Two classical parametri-

sations are discussed here: S2
s, using spherical coordinates (or Euler angles) and, S2

c , using

cylindrical coordinates.
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Using S2
s, one has a map (q1, q2) 7→ (x, y, z), defined by x

y

z

 =

 cos(q1) cos(q2)

sin(q1) cos(q2)

sin(q2)

 . (4.2)

To cover the complete sphere, it is enough to define a region such that q1 ∈ (−π, π] and

q2 ∈ [−π/2, π/2]. Figure 4.1 illustrates how a (points) lattice in R2 maps into S2. Also, using

150 100 50 0 50 100 150

q1 (deg)

100

50

0

50

100

q
2
(d
e
g
)

(a) (b)

Figure 4.1. Spherical coordinates parametrisation: (a) 3D geometry and (b) 2D parametrisation

S2
c , one has a map (q1, q2) 7→ (x, y, z), defined by x

y

z

 =

 cos(q1)
√

1− q2
2

sin(q1)
√

1− q2
2

q2

 . (4.3)

To cover the complete sphere, it is enough to define a region such that q1 ∈ (−π, π] and

q2 ∈ [−1, 1]. Figure 4.2 illustrates how a lattice in R2 maps into S2.

A difference between the two options is the way they map areas in R2 into S2. This can be

qualitatively checked by comparing Figs. 4.1 (a) and 4.2 (a). More concretely, for S2
s, one has

that the tangent space is given by basis vectors

tq1 =
[
− sin(q1) cos(q2) cos(q1) cos(q2) 0

]ᵀ
and

tq2 =
[
− cos(q1) sin(q2) − sin(q1) sin(q2) cos(q2)

]ᵀ
.

In addition, one has ||tq1 × tq2 || = | cos(q2)|, meaning that for a (q1, q2) the area differential

is dA = | cos(q2)|dq1dq2. This results shows how at different q2 the area gets distorted when
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Figure 4.2. Cylindrical coordinates parametrisation: (a) 3D geometry and (b) 2D parametrisation

mapping from R2 to S2. This explains why, when using this parametrisation, areas get smaller

near the poles, as Fig. 4.1 (a) illustrates. Additionally, note that q2 = ±π/2 are singular

points. Subjectively speaking, this parametrisation does not deliver a ‘fair’ distribution of

points in S2: points are sparse near the sphere’s equator and close near the poles.

Conversely, for S2
c , one has that the tangent space is given by basis vectors

tq1 =
[
− sin(q1)

√
1− q2

2 cos(q1)
√

1− q2
2 0

]ᵀ
and

tq2 =
[
− cos(q1) q2√

1−q22
− sin(q1) q2√

1−q22
1
]ᵀ
.

In this case, one has ||tq1 × tq2 || = 1, meaning that for a (q1, q2) the area differential is

dA = dq1dq2. This particular parametrisation does not distort area differentials between R2

and S2, as it is fairly apparent from Fig. 4.2 (a). Thus, area-wise, this last parametrisation

allows one to better translate uniform point distributions in R2 to S2. Note that q2 = ±1

are singular points. Subjectively speaking, this parametrisation gives a ‘fairer’ distribution of

points in S2 from a regular distribution of points in R2.

4.1.3 UNIFORM POINT DISTRIBUTIONS ON A SPHERE

The concept of uniform N -point distribution in S2 is not trivial, because there is not an

absolute criterion of uniformity for arbitrary N . The Platonic solids give an analytical solution

for some N ≤ 20; nonetheless, for larger N the solution is not unique. This subject has been

approached for a while and numerous solutions exist [60, 109, 17]. Two classical cases are

the stable carbon-60 molecules (N = 60) where atoms are arranged in a spherical football
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pattern [109] and Tammes’ sphere packing problem, who studied the distribution of pores on

pollen grains [60].

There are many criteria for measuring distribution uniformity. Two basic approaches may be

classified as distance- and energy-based. The former evaluates point distributions based on

the relative distance between all possible pairs of points; the latter evaluates a distribution

based on measuring total potential energy as if each point were a charged particle. Focusing

on distance-based criteria, it is necessary to use, e.g., the Euclidean norm or any version of a

cosine norm. For arbitrary points x1 and x2, the Euclidean distance is

de(x1,x2) = ||x2 − x1||.

The cosine distance is

dc(x1,x2) = 1− xᵀ
1x2

||x1|| ||x2||
.

Furthermore, when points are in S2, the cosine norm becomes dc(x1,x2) = 1 − xᵀ
1x2. This

last norm is consistent with a spherical geometry, because the dot product is closely related

to the angle between two vectors and such angle is related to a distance measured over an

arch. Because of this, often this distance is represented by the separation angle given by

θsep = cos−1 (xᵀ
1x2) = cos−1 (1− dc(x1,x2)) .

Distance-based distributions have two classical approaches that are mutually dual: packing

and covering problems. Conceptually, these problems are not exclusive to spherical geometry

and can be formulated on a Euclidean space as well. An N -point distribution is given by the

finite set of points X(N) = {x1,x2, . . . ,xN}, where xi for i = 1, . . . , N are points in S2.

The packing problem proposes computing the maximin-distance criterion δ
(
X(N)

)
, which is

the minimum distance among all point pairings. More explicitly, it is given by [17]

δ
(
X(N)

)
:= min

1≤i<j≤N
d(·)(xi,xj), (4.4)

where d(·) is any of the aforementioned distance measures. Therefore, the best packing is the

one that maximises δ
(
X(N)

)
, i.e.,

X
(N)
∗ = arg max δ

(
X(N)

)
.

Figure 4.3 (a) shows a solution to the packing problem for N = 116, taken from N. Sloane’s

web-page [117]. The optimal maximin distance, namely δ∗ = δ
(
X

(N)
∗

)
, has a geometrical

meaning: δ∗/2 may be used as radius to draw circular caps with centres on all xi; these caps

never overlap and at most become tangent.
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(a) (b)

Figure 4.3. Uniform distribution of points on a sphere for N = 116: (a) packing and (b) covering. The

data used to construct these plots were obtained from N. Sloane’s web-page: http://neilsloane.com

[117, 115]

The covering problem proposes computing the minimax-distance criterion ρ
(
X(N)

)
. Com-

puting this criterion for distribution X(N) requires exploring the distance between all x ∈ S2,

such that x 6= xi, and its closest xi and, finally, choosing the largest among all computed

distances. Mathematically, this is

ρ
(
X(N)

)
:= max

x∈S2,x 6=xi
min

1≤i≤N
d(·)(xi,x), (4.5)

From this criterion, the best covering is the one that minimises ρ
(
X(N)

)
, i.e.,

X
(N)
∗ = arg min ρ

(
X(N)

)
.

Figure 4.3 (b) shows a solution to the covering problem for N = 116 taken from N. Sloane’s

web-page [115]. The optimal minimax distance, namely ρ∗ = ρ
(
X

(N)
∗

)
, has a geometrical

meaning: ρ∗ may be used as radius to draw circular caps with centres on all xi; these caps

cover all the sphere’s surface.

4.2 GRAPHICAL REPRESENTATIONS

The graphical representations aim at answering the question of how points in the unitary

sphere get mapped into some other surface by functions that appear on ROV motion models.

http://neilsloane.com
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Mathematically, this means that the functions are manipulated so their domain gets restricted

to the unitary sphere; then, the effect of the mapping is depicted as some transformation of

the sphere. To do this, consider the graph (r,x) defined by r = f(x), where r is a scalar,

f : S2 → R, x ∈ S2, and x =
[
ex ey ez

]ᵀ
. This graph can be depicted in three dimensions

by the set x = rex, y = rey, and z = rez and, for instance, whenever r is constant, the region

is a sphere with radius r.

Two types of graphical representations are discussed: those related to the mass matrix and

manoeuvring meta-models. The former is primarily intended as a introduction to the idea of

plotting graphs related to model functions. The latter is considered important in this work

because it is aimed at illustrating the ability of the meta-model’s basis functions to represent

the geometry of more complex models.

4.2.1 INERTIA VISUALISATION

As mentioned in Chapter 2, the matrix of inertia (as defined by Eq. (2.6)) is given by

MRB =

[
M11 M12

M21 M22

]
,

where M11 = mI3×3 is the mass matrix,

M22 = Ib =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz


is the inertia tensor measured with respect to CO, and

M21 = Mᵀ
12 = mS(rbg) =

 0 −mzg myg

mzg 0 −mxg
−myg mxg 0

 .
Matrix MRB takes part in model (2.5) through the rigid-body inertia term

MRB ν̇ =

[
M11ν1 + M12ν2

M21ν1 + M22ν2

]
.

As one could check, embedded in this term are functions f11 = M11ν1, f12 = M12ν2, f12 =

M21ν1, and f22 = M22ν2. More specifically, f11 explains inertia force due to linear acceleration,

f12 inertia force due to angular acceleration, f21 inertia moment due to linear acceleration, and

f22 inertia moment due to angular acceleration. (Functions f12 and f21 are not to be confused

with Coriolis effects.)
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A representation for these functions may be done by assuming that velocities lie on the unitary

sphere, i.e., considering only the velocity direction by defining e1 = ν1/||ν1|| and e2 = ν2/||ν2||.
According, to this, the functions can be further normalised to define new functions

f̂11 =
1

m
M11e1 = I3×3e1,

f̂12 =
1

||mrbg||
M12e2,

f̂21 =
1

||mrbg||
M21e1,

f̂22 =
1

trace(M22)
(M22) e2.

These functions give way to radii defined from each function’s magnitude, i.e., r(·,·) = ||̂f(·,·)||.
For instance, matrix M11, related to mass, can be represented by radius r11 = 1, meaning

that the effect on inertial force due to linear acceleration is equal at all directions.

Matrix M12 can be represented by radius

r12 =
√

(egyez − egzey)2 + (egzex − egxez)2 + (egxey − egyex)2,

where ebg = rbg/||rbg|| =
[
egx egy egz

]ᵀ
is the unitary vector of the centre of mass position.

The resultant geometry is illustrated in Fig. 4.4. In Fig. 4.4 (a), the case where the centre of
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Figure 4.4. Representation of mass matrix off-diagonal blocks: M12, M21

mass coordinates are in the z-axis direction is shown. Please note how the surface collapses

to zero around the z-axis direction. This means that when accelerating in the z-axis direction

there is no inertial force due to angular accelerations. Conversely, the radius goes to its

maximum along directions in the xy-plane, meaning that when accelerating in the xy-plane

the inertial forces due to angular accelerations is maximum. In Fig. 4.4 (b), a case where
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the centre of mass coordinates are in the xz-plane is shown. Please note how the surface is

essentially the same but rotated: the surface’s axis remains coincident with the centre of mass

coordinates direction.

Additionally, please note that for matrix M21, radius r21 = r12. This means that the inertial

moment due to linear acceleration follows an analogous pattern to matrix M12’s. For exam-

ple, when there is yaw acceleration there is no inertial moment due to linear accelerations.

Conversely, when there are roll and/or pitch accelerations the inertial moments due to linear

accelerations is maximum.

Matrix M22 can be represented by radius

r22 =
√

(kxxex + kxyey + kxzez)2 + (kxyex + kyyey + kyzez)2 + (kxzex + kyzey + kzzez)2,

where the k(·,·)’s are trace-normalised radii of gyration. The resultant geometries related to

Pionero500 and Minerva are illustrated in Fig. 4.5. The main difference between the two
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Figure 4.5. Representation of inertia matrix M22: (a) Pionero500’s and (b) Minerva’s

ROV’s models lies in that Minerva’s inertia matrix is diagonal, i.e.,

r22 =
√

(kxxex)2 + (kyyey)2 + (kzzez)2,

and in that of Pionero500 some products of inertia are non-zero. Please note how, compar-

atively, Pionero500’s graph is less symmetric. Note also that the radius is larger around the

directions with greater rotational inertia.
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4.2.2 POLYNOMIALS FOR META-MODELLING

Manoeuvring meta-model (2.13), a model for hydrodynamic forces and moments, is often

written in component form, i.e., τH =
[
X Y Z K M N

]ᵀ
, a vector with three force

and three moment components. Additionally, each component is approximated by using some

subspace of functions, defined by some basis. For instance, for load X one has

X =
∑
i

Xi gXi(νr, ν̇r),

where the Xi are coefficients and gXi are the basis functions. Often νr and ν̇r are written

in their components as well, where, dropping the sub-index for convenience, one writes νr =[
u v w p q r

]ᵀ
and ν̇r =

[
u̇ v̇ ẇ ṗ q̇ ṙ

]ᵀ
.

A common basis for X load due to drag is given by fX = {u, u|u|, u|v|, u|w|}, that includes a

linear term and quadratic terms in modulo form. This basis gives way to meta-models such

as

X(u, v, w) = Xuu+Xu|u|u|u|+Xu|v|u|v|+Xu|w|u|w|.

In these meta-models one might consider various spaces: input space, e.g., that of (u, v, w);

output space, e.g., that of X; and coefficient coordinates space, e.g., that of

(Xu, Xu|u|, Xu|v|, Xu|w|).

This is to say that, considering that the output space is a transformation of the input space,

the reachable output space results from finding proper coefficient coordinates in the directions

given by the functions basis. This means that a good meta-model depends on properly

choosing basis functions and computing coefficients. Here, the problem of visualising the

basis functions is considered.

To develop visualisations related to the basis functions, the input space is restricted to the

unitary sphere, i.e., u2 + v2 +w2 = 1 and the output space is represented by x = ru, y = rv,

and x = rw, where r ≥ 0 is the magnitude of each basis function. For instance, for basis

function u, the visual representation is given by x = |u|u, y = |u|v, and x = |u|w, and for

basis function u|u|, the visual representation is given by x = u2u, y = u2v, and x = u2w

(redundancy u2u is intended).

As a first approach, two-dimensional representations are considered. Figure 4.6 (a) depicts

the space of linear basis functions u and v as the (x, y) graph given by x = |u|u and y = |u|v
for basis function u. Conversely, the graph given by x = |v|u and y = |v|v depicts the space

of basis function v. Furthermore, Fig. 4.6 (b) depicts the space of quadratic basis functions
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|u|u and |v|v as the graph x = u2u and y = u2v for basis function |u|u and the graph x = v2u

and y = v2v for basis function |v|v.
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Figure 4.6. Representation of basis functions in two-dimensions, part 1: (a) u and v and (b) u|u| and

v|v|. Please note the dotted line in (b) that allows comparing linear to quadratic functions

Moreover, Fig. 4.7 (a) depicts the space of cross-coupled basis function |v|u as the graph

x = |uv|u and y = |uv|v. In the figure, it is compared to the quadratic basis functions of

Fig. 4.6 (b). The effect of considering a cross-coupling term is illustrated in Fig. 4.7 (b),

where the solid (black) line represents the output space given by some linear combination of

quadratic and cross-coupling basis functions, i.e., |u|u and |v|u. Please note how the space it

is able to represent is richer.
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Figure 4.7. Representation of basis functions in two dimensions: part 2

Three-dimensional representations are considered next. Figure 4.8 (a) depicts the space of
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quadratic basis function |u|u as the (x, y, z) graph given by x = u2u, y = u2v, and z = u2w.

This is the same function as in Fig. 4.6 (b) but extended to the z-axis. Cross-coupling functions

are considered in Figs. 4.8 (b) and (c). Figure 4.8 (b) depicts the space of basis function |v|u
as the graph given by x = |uv|u, y = |uv|v, and z = |uv|w. This is the same function as

in Fig. 4.7 (a) but extended to the z-axis. Conversely, Fig. 4.8 (c) depicts the space of basis

function |w|u as the graph given by x = |uw|u, y = |uw|v, and z = |uw|w. Finally, Fig. 4.8 (c)

illustrates how a linear combination of basis functions |u|u, |v|u, and |w|u looks like.
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Figure 4.8. Representation of basis functions in three dimensions
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4.3 INTEGRATION

Consider the computation of area integrals over S2, i.e., integrals of functions of x ∈ S2 where

x =
[
x y z

]ᵀ
. Such integrals are in general∫

S
f(x, y, z)dS,

where dS is a properly defined area differential.

4.3.1 SECOND MOMENT INTEGRALS

Considering functions of the type used on meta-models’ bases, e.g., {x, x|x|, x|y|, x|z|}, one

can argue that some important integrals are those of the second order moments, i.e., of the

functions and their combinations over the whole domain. This is called the basis function

moment matrix and its components may be computed as

Mij =

∫
S

fi fj dS,

where i and j are indices on the basis list.

For instance, for the previously defined list, some possible integrals are, e.g., M11 =
∫
S x

2dS,

M22 =
∫
S x

4dS, and M23 =
∫
S |x|

3|y|dS. These integrals can be computed analytically and a

summary of these is shown in Table 4.1. These integrals represent the variance and covariance

related to the functions basis.

Table 4.1. Basis functions second moment integrals∫
S fi fj dS x x|x| x|y| x|z|

x 4π/3 symm symm symm

x|x| π 4π/5 symm symm

x|y| π/2 16/15 4π/15 symm

x|z| π/2 16/15 8/15 4π/15

4.3.2 APPROXIMATIONS BY LEBESGUE INTEGRATION

The aforementioned integrals may be approximated in a practical manner by using the idea of

Lebesgue integrals. In this case, the approximations depend on having a uniform distribution
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of N points in the sphere, so that all points have equal probability of occurring. The Lebesgue

integral is written as ∫
S

f(x, y, z)dµ(x, y, z),

where µ(x, y, z) is the area measure at each specified point. For a sphere, the area measure

satisfies
∫
S dµ(x, y, z) = 4π. Then, because equal probability is assigned to each point, i.e.,

each point is inside a subset with measure 4π/N , the integral may be approximated as∫
S

f(x, y, z)dµ(x, y, z) =
4π

N

N∑
i=1

f(xi, yi, zi),

which is a simpler computation. A numerical comparison between the analytical solution and

Lebesgue integral approximation is shown in Table 4.2, where covering and packing uniform

distributions of N = 116 points, as shown in Figs. 4.3 (a) and (b), were used.

Table 4.2. Approximation of integrals using Lebesgue integration on N = 116 points

Term Analytical L-Covering L-Packing

x-x 4.1887902 4.17945531 4.18999603

x|x|-x 3.14159265 3.13307049 3.14704616

x|y|-x 1.57079633 1.55716479 1.56813755

x|z|-x 1.57079633 1.56069676 1.5736585

x|x|-x|x| 2.51327412 2.50593996 2.52024737

x|y|-x|x| 1.06666667 1.05297611 1.06642479

x|z|-x|x| 1.06666667 1.05744632 1.06946316

x|y|-x|y| 0.83775804 0.83748503 0.82985865

x|z|-x|y| 0.53333333 0.52770889 0.53838156

x|z|-x|z| 0.83775804 0.83603031 0.83989001



Chapter 5

Design of computer experiments

In the context of this thesis, any computation scenario is a computer experiment. Con-

sequently, any selection of computation scenarios is a computer experiment design. It is

rather common to select different computation scenarios heuristically, specially because myr-

iad computations, like time-domain simulations, run in the order of seconds or milliseconds.

Nonetheless, a heuristic approach to define scenarios may be inconvenient when dealing with

resource-demanding computations, such as those of computational fluid dynamics (CFD). In

consequence, heuristic designs will refer to choosing the scenarios without using any formal

procedure or criterion. Conversely, to use more systematic alternatives, this chapter intro-

duces methods to formally organise computer experiments (or designs) that will be useful in

the topics to come.

5.1 TECHNIQUES FOR THE DESIGN OF COMPUTER EXPERIMENTS

Design of computer experiments (DoCE) is a well-established discipline [44]. In [75, 50] one

can find a broad review on the subject and in [44] a comprehensive reference textbook. The

contents of this chapter are based on [60, 109, 44, 75, 96, 17, 50]; however, some fundamental

concepts are presented here rather hastily. As mentioned, computer experiments can be

understood as sets of simulation scenarios. In the language of DoE, those sets have factors,

i.e., qualitative or quantitative variables of the computational model that could be modified

at will. For example, inflow velocity could be a quantitative factor and turbulence model a

101
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qualitative one. Herein, factors are also called inputs. Geometrically, factors define a domain

or input variable space, or simply input space. For instance, if inflow direction is the input,

then Figs. 4.1, 4.2, and 4.3 of Chapter 4 illustrate an input space. A point in the input

space defines a particular computation or experimental point. A run or trial is a computation

over an experimental point: this constitutes an important difference to ‘real’ experiments,

because all trials over the same experimental point run give the same result. The result of a

computation is called the response. A design table or design is a list of experimental points

that somehow fill the input space.

Roughly speaking, DoCE can be classified as shown in Fig. 5.1. DoCE methods could be static

or adaptive. For static methods, the design table is computed once and then executed; adap-

tive methods update the design table depending on the responses. This work only considers

static methods; thus, adaptive methods are out of scope. Subsequently, static methods can

be model-free or model-based (the names system-free and system-aided are also used [50]).

Model-free methods concentrate on properly filling the input space, without regarding the

purpose of the experiments. These methods are convenient for exploratory analyses, when

the experiments purpose is not clear, and, perhaps, for mixed-purpose cases. Model-based

methods take advantage of knowing the purpose of the experiments beforehand: they go be-

yond filling an input space and further use the model and response spaces. These methods

may consider, among others, regression, integration, and interpolation as purposes.

DESIGN OF
COMPUTER

EXPERIMENTS

STATIC

ADAPTIVE

MODEL-BASED

MODEL-FREE

Figure 5.1. DoCE classification

It is important to mention that this work goes as well beyond the idea of widely used (full)

factorial design. Simply put, a full factorial design discretises each of the s inputs (factors)

in, let us say, nj levels. Then, the design table is constructed by combining all possible level

combinations: a total of n1 × n2 × . . . × ns runs. This type of design grows unmanageably

when the number of inputs or levels is increased. For instance, for a 2-input design with 5

levels at each variable the number of combinations is 25, but with 10 levels at each variable,
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the number of combinations is 100. In cases such as viscous-flow computations, there is a

considerable difference between performing 25 rather than 100 computations.

5.2 MODEL-FREE DESIGNS

Model-free DoCE methods are also called space-filling methods, because the purpose is to fill

the input space properly. Supposing there are s input variables, the input space may be an

s-dimensional hypercube (a hypercube region in Rs). Without losing generality, this space

could be restricted to the unitary hypercube Cs1 ⊂ Rs, where each variable lies in the range

[0, 1]. Moreover, this work also considers input spaces such as S2 (please note that general

spaces such as Sn−1 are possible but not considered here). Space filling methods could be

(pseudo) random or use a uniformity criterion to construct design tables. Among (pseudo)

random methods, one can find Monte-Carlo Sampling (MCS) or Latin-Hypercube Sampling

(LHS). Uniform designs may be deterministic and have a lattice design, such as the commonly

used full-factorial design of DoE or equivalent, or have some level of randomness.

Hypercubic and spheric spaces are both relevant to this work. Some problems arrange nat-

urally in one or other topology. Hypercubic spaces arise when variables can be defined by

simple intervals and normalised to [0, 1] (or equivalent). Here, spheric spaces (S2) arise when

considering three-dimensional orientation as an input. S1 may be considered by defining an

interval in R, i.e., one of some hypercube’s dimensions. Also, it is possible to construct designs

in S2 from designs in R2 by using, e.g., parametrisation (4.3). The usage of this parametrisa-

tion is proposed here as a plausible practical approach. Furthermore, hypercube and spheric

spaces are not mutually exclusive; on the contrary, they are considered complementary to

each other.

In the methods to come the following definitions are used:

• The input space is given by s inputs in a unitary hypercube Cs1.

• The total number of runs is given by N .

• A design is given by X(N) = {x1,x2, . . . ,xN}, where each xi ∈ Cs1 and

xi =
[
xi1 x21 . . . xis

]ᵀ
.
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5.2.1 A BRIEF NOTE ON MONTE-CARLO DESIGNS

Monte-Carlo Design (MCD) is an option for construction of design tables. A MCD with N

runs is constructed by selecting (pseudo) random values for each input at each run i. This

type of design is straightforward to construct, suitable for exploratory analysis and where

computations run rather fast.

5.2.2 LATIN HYPERCUBE DESIGN

A Latin Hypercube Design (LHD), i.e., constructed by using LHS, is a widely used method for

constructing design tables. A standard Latin Hypercube divides each hypercube’s dimension

equally. Supposing one wants an experiment with a total of N runs, each dimension is divided

in N parts. In the design table, each row represents an experimental run and each column

an input. Table 5.1 shows how the process may look like for a 2-input, 8-run design (s = 2,

N = 8); this table facilitates explaining the process. The runs will be numbered from 1

Table 5.1. LHD table

Run Step 1 Step 2, random Step 2, mid-point

q1 q2 q1 q2 q1 q2

1 7 3 6.215 2.191 6.5 2.5

2 3 1 2.419 0.375 2.5 0.5

3 8 7 7.934 6.414 7.5 6.5

4 6 2 5.492 1.239 5.5 1.5

5 5 5 4.916 4.889 4.5 4.5

6 2 4 1.814 3.416 1.5 3.5

7 1 6 0.729 5.657 0.5 5.5

8 4 8 3.106 7.621 3.5 7.5

to N , i.e., from a list {1, 2, . . . , N}. Then, to obtain each column representing an input, a

random permutation of the list should be computed, this is Step 1 in Table 5.1. Then, to

the permuted list a number between 0 and 1 should be substracted, either a random quantity

(Step 2, random) or 0.5 (Step 2, mid-point). Finally, to match a unitary hypercube and

compute a proper X(N), the results must be normalised by N . In Fig. 5.2, this process is

further illustrated in (a) R2 and (b) S2 spaces (S2 space was obtained using parametrisation

(4.3) over an eighth sphere). As it becomes apparent in Fig. 5.2 and seeing the 2-D plot as

rows and columns, this design organises points so that there is just one point for each row and

column. As one may expect, each time a LHD is constructed a different result is obtained,
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Figure 5.2. LHD example

and, therefore, some designs will fill the space better than others. Fig. 5.2 (b) shows how the

design looks in S2, using parametrisation (4.3) over an eighth sphere.

5.2.3 ORTHOGONAL HYPERCUBE DESIGN

A drawback of LHS is that it could leave some sections on the space unexplored, this has been

remarked by, e.g., [44, 50]. An Orthogonal Hypercube Design (OHD) may be understood as

a type of LHD that keeps a level of randomness but gives guarantees that all regions are

explored. Here, a basic version of OHD is considered. First, define a number n. Then, the

space is divided into ns big chunks and, subsequently, each chunk in ns smaller pieces. The

experiment has a total of N = ns runs. The idea behind this OHD is that each big chunk gets

one point that is randomly located in one of the smaller pieces, following the rules of LHD.

As in LHD, each dimension gets divided in N parts.

Table 5.2 shows how the process may look like for a 2-input problem where n = 3; hence,

the number of runs is N = 9. From Step 1, it is apparent how the table has three big

sections that are identified by repeated numbers from 1 to 3, written as {1, 1, 1, 2, 2, 2, 3, 3, 3}.
Note how 1 → {1, 2, 3}, 2 → {4, 5, 6}, and 3 → {7, 8, 9}. Then, q1 is obtained from random

permutations on the same section. Afterwards, q2 is constructed from a permutation of

{1, 1, 1, 2, 2, 2, 3, 3, 3}, namely {1, 2, 3, 1, 2, 3, 1, 2, 3}. Note how q2 is obtained from a random

permutation that holds the rule 1 → {1, 2, 3}, 2 → {4, 5, 6}, and 3 → {7, 8, 9}. Finally, Step
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Table 5.2. OHD table

Run Step 1 Step 2, random Step 2, mid-point

q1 q2 q1 q2 q1 q2

1 1 → 1 1 → 1 0.869 0.758 0.5 0.5

2 1 → 2 2 → 4 1.284 3.242 1.5 3.5

3 1 → 3 3 → 8 2.076 7.269 2.5 7.5

4 2 → 5 1 → 3 4.928 2.013 4.5 2.5

5 2 → 4 2 → 6 3.827 5.000 3.5 5.5

6 2 → 6 3 → 9 5.046 8.205 5.5 8.5

7 3 → 8 1 → 2 7.196 1.192 7.5 1.5

8 3 → 9 2 → 5 8.434 4.636 8.5 4.5

9 3 → 7 3 → 7 6.467 6.221 6.5 6.5

2 is the same as in LHD, where the final number is calculated in a mid-point or randomly.

This design table requires normalisation as well.

Figure 5.3 illustrates this process in R2 (a) and S2 (b) spaces. Figure 5.3 (a) shows the design

0 2 4 6 8
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0

2

4

6

8

q
2

(a) (b)

Figure 5.3. OHD example

in R2. This plot shows the 9 big chunks used to equally divide the space, as well as the 9

equal parts that divide each chunk. Each big chunk has one experimental point located inside

one small part, either at the centre or at a random location. Each dimension is divided in 9
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parts. As in LHD, this design organises points so that there is just one point for each row

and column.

5.2.4 MEASURES OF UNIFORMITY

There are numerous criteria for assessing uniformity of a design. Three major categories

are discrepancy-, distance-, and energy-based. All criteria allow one to compute an index

to objectively identify the better of any two design table options. Among discrepancy-based

criteria one can find star-, centred- and wrap-around-discrepancy. Among distance-based

criteria one can find the aforementioned (in Sec. 4.1.3) minimax and maximin distances. And

among energy-based criteria one can find Coulomb-, s-, and logarithmic-energy measures.

Measurements of discrepancy look forward to computing how well points are distributed in

relation to regions of the input space. This is, a relation between an hyper-volume measure in

Cs1 and the count of points that lie inside. For computing star-discrepancy, let us suppose that

x is any point in the input space. Subsequently, this point defines a hyper-volume [0,x), the

hypercube defined by vertices 0 and x. This, consequently, defines a corresponding volume

measure Vol ([0,x)) and a count of points of X(N) that lie inside, defined as #
(
X(N), [0,x)

)
.

From these definitions, the star-discrepancy is computed by performing a search among all

x ∈ Cs1 and checking the largest difference between the fraction of points inside the hyper-

volume and corresponding volume measure. Mathematically, this is

D∗

(
X(N)

)
= max

x∈Cs1

∣∣∣∣∣#
(
X(N), [0,x)

)
N

−Vol ([0,x))

∣∣∣∣∣ .
This discrepancy measure create regions with respect to the origin 0. Other measures of

discrepancy have the same concept as star-discrepancy but differ in the way they create the

regions.

Centred discrepancy is computed by defining the hyper-volume related to an arbitrary x using

points x and its closest corner of Cs1. Mathematically, this is computed as follows

[
DC

(
X(N)

)]2
=

(
13

12

)s
− 2

N

N∑
k=1

s∏
j=1

[
1 +

1

2
|xkj − 0.5| − 1

2
|xkj − 0.5|2

]

+
1

N2

N∑
k=1

N∑
j=1

s∏
i=1

[
1 +

1

2
|xki − 0.5|+ 1

2
|xji − 0.5| − 1

2
|xki − xji|

]
.

Wrap-around discrepancy follows the idea of not using any corner of Cs1 and mathematically



CHAPTER 5. DESIGN OF COMPUTER EXPERIMENTS 108

is computed as

[
DW

(
X(N)

)]2
= −

(
4

3

)s
+

2

N2

N∑
k,j=1

s∏
j=1

[
3

2
+ |xki − xji|(1− |xki − xji|)

]
.

Distance-based criteria are often computed by using minimax and maximin distances. These

distances could be measured either in Rs or S2. For S2, these distances where defined by

eqs. (4.4) and (4.5) as δ
(
X(N)

)
and ρ

(
X(N)

)
. For Rs, the definitions are similar but using

the Euclidean norm. Maximin distance is

δ
(
X(N)

)
:= min

1≤i<j≤N
de(xi,xj)

and minimax distance is

ρ
(
X(N)

)
:= max

x∈Rs,x 6=xi
min

1≤i≤N
de(xi,x).

Energy-based criteria use Coulomb-, s-, and logarithmic-energy measures. Coulomb energy is

given by

EC

(
X(N)

)
=

N−1∑
k=1

k∑
j=1

1

||xj − xk||
,

s-energy (2-energy being the most common) is given by

Es

(
X(N)

)
=

N−1∑
k=1

k∑
j=1

1

||xj − xk||s
,

and log-energy is given by

Eln

(
X(N)

)
=

N−1∑
k=1

k∑
j=1

ln
1

||xj − xk||
,

5.3 DESIGNS FOR META-MODEL REGRESSION

When data from computer experiments are available, a linear least-squares regression may be

used to find a meta-model. Here, recalling the example of load X from eq. (2.14), one has

that a meta-model is

X =
∑
i

Xi gXi(νr, ν̇r).
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To make the analysis general, assume that any load component y ∈ R is modelled exactly by

y = f(x),

where function f : Rn → R defines the map x 7→ y. A meta-model is supposed to approximate

f and make an estimate ŷ of y. Such estimate is given by [130]

ŷ =

M∑
i=1

bi gi(x) =
[

g1(x) · · · gM (x)
]

b1
...

bM

 = gᵀ(x)b = bᵀg(x), (5.1)

where M is the function’s basis dimension, bi support coefficients, and gi basis functions.

Because the estimate is not exact, the residual function is given by

r(x) = y − ŷ = f(x)− gᵀ(x)b,

and the exact model may be written as

y = ŷ + r(x) = gᵀ(x)b + r(x),

where e = r(x) represents the error at any x. Here, r(x) is assumed a zero-mean, Gaussian

normal distribution with variance σ2.

To find the metamodel coefficients, let us suppose there is a set of N database entries, where

for each j = 1, . . . , N one has y(j) and x(j). This means that a design given by X(N) =

{x1,x2, . . . ,xN} was carried through. Then, eq. (5.1) may be applied to each entry. Finally,

all resultant equations may be written in matrix form as

y(1)

...

y(j)

...

y(N)


=



g1(x(1)) · · · gi(x
(1)) · · · gM (x(1))

...
...

...

g1(x(j)) · · · gi(x
(j)) · · · gM (x(j))

...
...

...

g1(x(N)) · · · gi(x
(N)) · · · gM (x(N))





b1
...

bi
...

bM


.

Please note that a superscript identifies a database entry and a subscript each different coef-

ficient. In compact form this is

Y = GXb,

where GX depends on the basis functions and design X(N). From this, the least-squares

estimate for the coefficients is

b̂ =
(
Gᵀ
XGX

)−1
Gᵀ
XY.
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Resulting from this regression, the covariance of parameters b̂ is

Cov(b̂) = σ2
(
Gᵀ
XGX

)−1
,

and the prediction variance is [60]

Var(ŷ) = σ2g(x)ᵀ
(
Gᵀ
XGX

)−1
g(x).

These assess the uncertainty on the parameters and estimate. As it becomes apparent, un-

certainties depend on design X(N) and the way it fills the basis functions space. Therefore,

to come up with a design that considers uncertainty of the regression, the integrated variance

could be used as index to assess a particular design. The integrated variance is [60]

IVar =

∫
R

1

σ2
ŷdµ(x) =

∫
R

g(x)ᵀ
(
Gᵀ
XGX

)−1
g(x)dµ(x) = trace

(
MR

(
Gᵀ
XGX

)−1
)
, (5.2)

where

MR =

∫
R

g(x)ᵀg(x)dµ(x).

The index depends on the particular design X(N) and the basis function’s moment matrix

MR (refer back to section 4.3), that ultimately depends on which basis functions were used.

Please note that here Lebesgue integration notation was used, as it is customary in statistics.

5.4 USEFUL DESIGNS

Different types of designs for exploring a spherical space (S2) are proposed here. In general,

these designs could be regarded as zero-, one-, two-, and three-dimensional. Dimensionality

here is understood as the way the points in the sphere are parametrised. Zero-dimensional

designs come from selecting interesting, isolated points. One-dimensional designs are defined

from line parametrisations, e.g., using the sphere’s canonical big circles through parametrisa-

tions such as (4.1). Two-dimensional dimensional designs come from surface parametrisations

such as S2
s defined by (4.2) and S2

c defined by (4.3); in all cases they represent mappings from

R2 to S2. Finally, three-dimensional designs come from distributing points directly in the

sphere by using any distribution criterion, such as covering, packing, or any other.

5.4.1 ZERO-DIMENSIONAL DESIGNS

Zero-dimensional designs are ad hoc selections of important points. An immediate solution is

to use the main axes’ directions, i.e., a three-point design with{[
1 0 0

]ᵀ
,
[

0 1 0
]ᵀ
,
[

0 0 1
]ᵀ}

,
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and a six-point design where the set{[
−1 0 0

]ᵀ
,
[

0 −1 0
]ᵀ
,
[

0 0 −1
]ᵀ}

is added. This design is a de facto alternative for, e.g., computing hydrodynamic loads or

three-dimensional motion simulation. This is considered a reference design because any other

design should be worth the effort of more computations, i.e., should provide better-metric

results.

5.4.2 ONE-DIMENSIONAL CIRCLE-BASED DESIGNS

One-dimensional designs are parametrised in terms of one parameter. These are designs

that geometrically resemble points on a circle (line) in S2, so their parameter is an angle.

More specifically, these could be designs where, e.g., only xy-, xz-, and yz-plane points are

considered. This type of designs are computed from circle parametrisations such as (4.1) of

Sec. 4.1.1.

Designs based on circles could be computed by using an Nc-point uniform distribution on S1.

This one is given by a uniform distribution of a parameter q such that {qi} =
(
i−1
Nc

)
2π, for

i = 1, . . . , Nc. From this an xy design is given by sets of points{[
cos qi sin qi 0

]ᵀ}
,

an xz design by {[
cos qi 0 sin qi

]ᵀ}
,

and a yz design by {[
0 sin qi cos qi

]ᵀ}
.

From these three circles one could explore a two-dimensional space by choosing one circle,

e.g., in the xy-plane: these will be called one-circle designs (1CD). One can define also a

three-dimensional space by choosing, e.g., the three circles: these will be called three-circle

designs (3CD).

Furthermore, 3CDs (or any other design) could be combined and/or clipped to explore a whole,

half, or eighth sphere. This is made to exploit any symmetry in the problem. To illustrate

these designs, Fig. 5.4 (a) shows a complete 3CD, Fig. 5.4 (b) a half 3CD considering xz-plane

symmetry, and Fig. 5.4 (b) an eighth 3CD considering all planes symmetry. Half-sphere 3CDs

are important to this work because ROVs often have xz-plane symmetry.

Something important to take into account when considering such designs is the number of

experimental points required. Table 5.3 addresses the amount of required experimental points
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Figure 5.4. One-dimensional designs on a sphere

Table 5.3. Number of experimental points for three-circle designs

Nc ∆qi Eighth Half Whole

8 π/4 6 13 18

12 π/6 9 21 30

16 π/8 12 29 42

20 π/10 15 37 54

24 π/12 18 45 66

28 π/14 21 53 78

32 π/16 24 61 90

36 π/18 27 69 102

from a base uniform distribution of parameter q, when considering complete, half, or eighth

spheres. The number of experimental points shown eliminates all possible redundancies.

The data in the table could be generalised by considering the expressions further shown in

Table 5.4.

5.4.3 TWO-DIMENSIONAL FULL-FACTORIAL DESIGNS

As expected, two-dimensional designs are parametrised in terms of two parameters. These are

designs that fill the S2 space by using a two dimensional parametrisation such as S2
s defined by

(4.2) and S2
c defined by (4.3). This parametrisation makes it possible to create a full factorial

design (lattice or grid) in R2 and translate it to S2, similar to those shown in Figs. 4.1 and

4.2.

A representation of the experimental points for a whole, half, and eighth sphere is shown

in Fig. 5.5. To compute the designs, n is chosen as the number of divisions on a quarter
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Figure 5.5. Two-dimensional FFD on a sphere: (a) whole, (b) half, and (c) eighth. The • marker

corresponds to S2
s and × marker to S2

c

Table 5.4. Number of experimental points for each type of design

Eighth Half Whole

3-circle 3n 8n− 3 12n− 6

Full factorial n2 + n+ 1 4n2 + 1 8n2 − 4n+ 2

circle (π/2), e.g., giving angle increments of π/(2n). The plots in Fig. 5.5 illustrate as well a

comparison of the distribution given by mappings S2
s and S2

c . The two mappings give different

distributions, with S2
s generating a greater concentration of points near the sphere’s poles.

The number of experimental points could be computed from n, the amount of subdivisions

made on a quarter circle (π/2). The expressions to compute these are shown in Table 5.4.

Please note that to relate these designs to aforementioned circle designs the relation n =

Nc/4 applies. These expressions allow one to illustrate how the number of experimental

points increment when increasing the number of base subdivisions. An illustration of how the

number of experimental points increases is shown in Fig. 5.6: one-dimensional designs grow

linearly and two-dimensional quadratically. The plot is truncated at 100 experimental points:

amounts around this value become impractical for time-consuming simulations. Furthermore,

it becomes apparent how these full-factorial designs grow prohibitively large.

It is possible to use metrics to compare uniformity among three-circle (3CD) and full factorial

(FFD) designs using spherical and cylindrical parametrisations over half sphere. Figure 5.7

shows maximin distance in terms of minimum separation angle (θsep in Sec. 4.1.3) and 2-

energy (s-energy, with s = 2). Good distributions have big separation angles and low energy.

From the plots, it becomes apparent that a FFD with cylindrical coordinates gives better

distributions when increasing the number of experimental points. Consequently, from now

on, S2
c (cylindrical coordinates) will be the preferred two-dimensional parametrisation. Thus,
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this parametrisation will serve as well as reference for comparing further two- and three-

dimensional designs.
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Figure 5.7. Metrics comparison for three-circle and spherical full-factorial designs over half sphere

5.4.4 TWO-DIMENSIONAL HYPERCUBE-BASED DESIGNS

The two-dimensional hypercube-based designs presented here are computed from an Orthog-

onal Hypercube Design (OHD), as shown in Sec. 5.2.3. The hypercube design table is mapped

to a spherical domain by using mapping S2
s defined by (4.2) or S2

c defined by (4.3), but, as

previously mentioned, the cylindrical parametrisation (S2
c) is preferred. The designs are ob-

tained from random permutations, but it is possible to select the best from a selected number
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Figure 5.8. Two-dimensional OHD on a sphere when using different metrics to choose the best design:

(a) 9-, (b) 25-, and (c) 49-point distributions.

of permutations according to different uniformity measures. The following considerations are

taken into account:

• The best of 106 permutations is chosen.

• The domain is half sphere.

• Uniformity measures to select be best design are wrap-around discrepancy, centred dis-

crepancy, minimum distance, and 2-energy. These uniformity measures are computed as

shown in Sec. 5.2.4, considering the point distribution on a hypercube.

This gives way to OHD distributions that have different number of experimental points and

exhibit different measures of uniformity. As an illustration, Fig. 5.8 shows distributions for

9, 25, and 49 experimental points, when choosing the best with respect each mentioned

uniformity measure.

Furthermore, Fig. 5.9 shows the behaviour of each distribution when using uniformity mea-

sures over the sphere, as computed in Sec. 4.1.3, namely minimum distance and 2-energy. The

measures of the OHDs are compared to a spherical FFD using a cylindrical parametrisation.

From the plots it is possible to conclude that a FFD gives better uniformity metrics, meaning

that OHD are more adequate for exploratory analyses when certain level of randomisation is

desired. Conversely, OHD are not so adequate when a uniform exploration of the space is

desired.

5.4.5 THREE-DIMENSIONAL SPACE-FILLING DESIGNS

Three-dimensional designs are obtained by distributing points directly in S2, by using criteria

such as covering, packing, minimum-energy, or any other. These designs were discussed in
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Figure 5.9. Metrics comparison for two-dimensional OHD over half sphere
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Figure 5.10. Three-dimensional designs on a whole sphere when using different types of distributions:

(a) 24, (b) 48, and (c) 96 points.

Sec. 4.1.3 and are available [117, 115, 118, 116]. Four types of arrangements are considered,

namely packings [117], coverings [115], t-designs [118], and minimal energy [116]. Some of

these designs are illustrated in Fig. 5.10.

The uniformity of these designs is evaluated over arrangements on a whole sphere and using

minimum separation angle (θsep) and 2-energy. These results are shown in Fig. 5.11. As one

could expect, designs that optimise minimax distance deliver best (higher) separation angles;

conversely, designs that optimise energy deliver lower energy. The graphs are compared to

results obtained for FFD using cylindrical coordinates parametrisation: one could notice from

Fig. 5.11 that three-dimensional designs give better metrics in all cases.
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Figure 5.11. Metrics comparison for different three-dimensional designs over a whole sphere

5.4.6 DESIGN METRICS FOR META-MODEL REGRESSION

A simple, uncoupled model for drag forces may be written as

X = Xu|u|u|u|,

Y = Yv|v|v|v|,

Z = Zw|w|w|w|.

In this case the load meta-model bases are BXc = {u|u|}, BYc = {v|v|}, and BZc = {w|w|}.
A metric based on integrated variance for N experimental points may be given from (5.2) as

IVaru =
4π

5

(
1∑N
i=1 u

4
i

+
1∑N
i=1 v

4
i

+
1∑N

i=1w
4
i

)
.

This metric sums the integrated variance related to all three loads meta-models.

A similar procedure may be followed for a model that takes into account cross-coupled effects,

namely

X = Xu|u|u|u|+Xu|v|u|v|+Xu|w|u|w|,

Y = Yv|v|v|v|+ Yv|u|v|u|+ Yv|w|v|w|,

Z = Zw|w|w|w|+ Zw|u|w|u|+ Zw|v|w|v|.

In this case the loads meta-model bases are BXc = {u|u|, u|v|, u|w|}, BYc = {v|v|, v|u|, v|w|},
BZc = {w|w|, w|u|, w|v|}. The metric based on integrated variance for N experimental points,

that sums the all three loads effects, may be given from (5.2) as

IVarc = trace
(
MR

((
Gᵀ
XGX

)−1
+
(
Gᵀ
Y GY

)−1
+
(
Gᵀ
ZGZ

)−1
))

,
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where

MR =
1

15

 12π 16 16

16 4π 8

16 8 4π

 , GX =


u1|u1| u1|v1| u1|w1|

...
...

...

uN |uN | uN |vN | uN |wN |

 ,

GY =


v1|v1| v1|u1| v1|w1|

...
...

...

vN |vN | vN |uN | vN |wN |

 , and GZ =


w1|w1| w1|u1| w1|v1|

...
...

...

wN |wN | wN |uN | wN |vN |

 .
Figure 5.12 shows a comparison of the aforementioned indices for selected designs over a whole

sphere and different number of experimental points, namely 3CD, FDD using cylindrical coor-

dinates, OHD selected from best centred discrepancy, and minimal-energy three-dimensional

distribution. Worth mentioning, when the model is uncoupled, 3CDs show the best behaviour

compared to other types of designs; conversely, when the model is cross-coupled, 3CD shows

the worst behaviour. Moreover, for the cross-coupled model and distributions different to

3CD the integrated variance is improved mainly by increasing the number of experimental

points: the difference among designs is small.
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Figure 5.12. Integrated variance comparison for different designs over a whole sphere: (a) uncoupled

model and (b) cross-coupled model.
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Hydrodynamics and cable modelling
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Chapter 6

Hydrodynamics

This chapter develops an approach to study ROV hydrodynamics and manoeuvring by means

of viscous-flow computations and time-domain simulations. In this approach, a Reynolds-

Averaged Navier-Stokes (RANS) equations solver is used to apply the virtual captive test

(VCT) approach, where experimental fluid dynamics (EFD) conditions are simulated to ob-

tain the forces and moments exerted by the fluid onto the vehicle at certain flow condi-

tions. Here, the work by Toxopeus [126], that applied this approach to ships and submarines

(DARPA SUBOFF), is used as baseline and adapted to include ROVs’ particularities. The

data available from the computations are assembled into a meta-model that computes forces

and moments faster. Then, the meta-model allows one to implement time-domain simulations

for manoeuvring and feedback control studies.

The main objective consists in finding a simplified model for ROV’s hydrodynamic loads,

expressed through a regression function or meta-model obtained from a set of viscous flow

computations. By using a modular approach [126], the idea is to compute forces and moments

on the bare hull (ROV body), and then include other loads independently, such as thruster

forces. The thruster forces may be obtained from models such as the Wageningen propeller

series [74] and expressed through the model given by Eqs. (2.18) and (2.19). Given the

many different phenomena possible, this work will focus on including drag considering three-

dimensional relative motion, uncoupled rotational roll-pitch-yaw moments, and uncoupled

added mass, which are the most relevant phenomena to include into an ROV model [48].

120
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6.1 METHODOLOGY OVERVIEW

In order to study ROV hydrodynamics as proposed, a four-step methodology is suggested. As

illustrated in Fig. 6.1, the four main stages are 1) computer experiments design, 2) viscous-

flow computations, 3) meta-model assembly, and 4) time-domain manoeuvring simulations. In

brief, the three first stages look forward to obtaining a proper hydrodynamics meta-model in

a systematic manner; the fourth stage uses the obtained meta-model for further time-domain

motion simulation.

1

2

3

4

COMPUTER
EXPERIMENTS
DESIGN

META-MODEL
ASSEMBLY

VISCOUS-FLOW
COMPUTATIONS

TIME-DOMAIN
MANOEUVRING
SIMULATIONS

DESIGN
TABLE

DATA META-MODEL

COMPUTATIONS
RESULTS

Figure 6.1. Manoeuvring study methodology

Stage one, computer experiments design, aims to determining what viscous-flow computations

have to be done. Its results are condensed in design tables that specify a list of computation

scenarios and their corresponding input values. In Fig. 6.1, the dotted lines suggest that

experiment designs are fed with knowledge from further stages. Stage two, viscous-flow com-

putations, carries through the previously specified computation scenarios. This stage deals

with common CFD discipline: obtaining a proper computational discretised domain, comput-

ing using CFD code, and post-processing the obtained data. The main result of this stage is a

data-base that relates kinematic conditions and hydrodynamic loads. Stage three, meta-model

assembly, deals with assembling a proper meta-model from the data at hand. The result of

this stage is a mathematical description of the relationship between kinematic conditions and

hydrodynamic loads. Stage four, time-domain manoeuvring simulations, makes use of the

obtained meta-model into time-domain simulations that test different ROV motion scenarios.

Depending on whether the obtained results and overall process are satisfactory, the results

may be considered final or reconsidered in another computer experiment design.
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6.2 CONCEPTUAL TOOLS FOR VISCOUS-FLOW COMPUTER EXPERI-

MENTS

6.2.1 A NOTE ON COMPUTER EXPERIMENT DESIGN’S WORK-FLOW

Computer experiments design is a stage of the overall methodology that aims to determining

what viscous-flow computations have to be done. The results of this stage are condensed in

design tables that specify the list of computation scenarios with their corresponding input

values. In general, the design of computer experiments stage may be approached by a three-

part work-flow: 1) conceptual design, 2) selection of DoCE techniques, and 3) computation

of design tables. The first part, conceptual design, requires one to clarify what the problem

to solve is and translate it in terms of simulation scenarios: more specifically, the selection

of the viscous-flow scenarios to compute. The second part, selection of DoCE techniques,

acknowledges the myriad methods available to construct design tables. Each formal DoCE

method follows after a specific purpose; therefore, this part aims to selecting appropriate

techniques for the problem at hand. Finally, the third part, consists in applying the selected

technique to compute the design table.

6.2.2 A NOTE ON HYDRODYNAMICS DIMENSIONLESS QUANTITIES

As part of defining and understanding hydrodynamics computer experiments, dimensionless

quantities are used, namely Reynolds and Keulegan-Carpenter numbers. The Reynolds num-

ber is a dimensionless quantity that measures the ratio between inertial and viscous flow

effects. The number is given by

Re =
ρuL

µ
=
uL

ν
,

where ρ is flow density, u flow speed, L a characteristic length, µ absolute viscosity, and ν

relative viscosity.

The Keulegan-Carpenter number is a dimensionless quantity that measures the relative im-

portance between drag and inertia forces in oscillatory flow conditions. The number is given

by

KC =
V T

L
,

where V is flow velocity amplitude, T period, and L characteristic length.
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6.2.3 COMPUTATION SCENARIOS

The first part of conceptual design is to clarify the problem to solve. The main problem is

to carry through viscous-flow computations to gather data of kinematic conditions and loads,

in order to develop a global hydrodynamics model to study time-domain motion. This model

was introduced in Sec. 2.2.3.3 and given by (2.13). In the model, hydrodynamic forces and

moments are functions of relative velocity and acceleration, i.e., νr and ν̇r: this is written as

τH (νr, ν̇r). The model is often expressed in component form, meaning that

τH =
[
X Y Z K M N

]ᵀ
.

This implies that hydrodynamic loads are treated as individual scalar functions of relative

velocities and accelerations. Explicitly and generally, this is

X =X(ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr),

Y =Y (ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr),

Z =Z(ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr),

K =K(ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr),

M =M(ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr),

N =N(ur, vr, wr, pr, qr, rr, u̇r, v̇r, ẇr, ṗr, q̇r, ṙr).

Geometrically, the hydrodynamics model is a map from the space of relative velocities and

accelerations to the space of forces and moments. Considering this, viscous-flow computation

scenarios are means to explore the space of relative velocities and accelerations, i.e., the

domain set; consequently, the results of the computations are the corresponding image set

elements. Then, the meta-model is an approximation of the map between the domain and

image set elements that can be obtained from the data. All told, the selection of the type of

viscous-flow computations is related to the way the domain set is explored.

Choosing the type of simulation scenarios relies on what can be computed using viscous-flow

simulation code: CFD code capabilities and gathered experience. Among the computation

options, one can find, e.g., steady-state computation of forces and moments at different in-

coming current directions, unsteady imposed rotation computations, and imposed harmonic

displacement computations. These types of viscous-flow scenarios are selected based on pre-

vious gathered experience (see e.g. [98]).
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6.2.3.1 Steady-state flow computations at different inflow directions

Steady-state flow computations at different inflow directions are scenarios that assume a

constant flow around the vehicle. When considering different directions of inflow velocity,

these computations allow one to study loads as a function of velocities around the main axes

as well as non-linear cross-coupling effects between these velocities. In this case, the relative

velocity around the vehicle can be parametrised by ur

vr

wr

 = Ueν1 = U

 eu

ev

ew

 ,
where U is the magnitude and eu, ev, and ew are director cosines. As one could expect, the

design tables related to computations selecting various eu, ev, and ew are defined by using

point distributions on S2, as proposed in Chapter 5 and further illustrated in Sec. 5.4.

Moreover, forces and moments can be made non-dimensional, i.e., for a generic force F and

moment M one has coefficients CF and CM such that

CF =
F

1
2ρAU

2
and CM =

M
1
2ρALU

2
,

where ρ is density, A is a projected area, and L is a length. This gives way to the definition

of non-dimensional forces and moments

CX =
X

1
2ρAyzU

2
, CY =

Y
1
2ρAxzU

2
, CZ =

Z
1
2ρAxyU

2
,

CK =
K

1
2ρAyzLxU

2
, CM =

M
1
2ρAxzLyU

2
, CN =

N
1
2ρAxyLzU

2
;

where Axy, Axz, and Ayz are projected areas and Lx, Ly, and Lz are lengths. Figure 6.2 shows

how these areas and lengths are defined. This non-dimensional description assumes that the

coefficients are defined for a determined flow regime. For an ROV, the flow regime usually

ranges around Reynolds numbers in the order of 105–106.

This given, non-dimensional forces and moments become a function of the director cosines

solely, such that one can write

C(·) = C(·)(eu, ev, ew).

For instance, for x-axis non-dimensional force one can write a meta-model

CX(eu, ev, ew) = CX,u|u|eu|eu|+ CX,u|v|eu|ev|+ CX,u|w|eu|ew|+ · · · , (6.1)

such that the x-axis force can be computed as

X =
1

2
ρAyzU

2CX(eu, ev, ew).



CHAPTER 6. HYDRODYNAMICS 125

Figure 6.2. Areas and lengths for non-dimensional forces and moments

Please note that this meta-model only takes into account dependence on relative flow direction.

Please note as well the use of the ellipsis: here and from this point on, this will mean that

the model shown is only one part and not the whole model.

6.2.3.2 Steady-state flow computations for circular manoeuvres in the plane

Steady-state flow computations for circular manoeuvres in the plane are scenarios that assume

a constant flow around the vehicle while rotating at a constant angular speed. In this case,

the velocity vector lies in a plane perpendicular to the angular speed vector. This type of

scenarios allow one to study cross-coupling effects between linear velocities and angular rates.

Moreover, when the manoeuvre is performed in the horizontal plane, the relative velocity is

given by u = Ueu, v = Uev, and w = 0; additionally, the only angular velocity component is

yaw r. In horizontal plane motion, these scenarios allow one to compute cross-coupling effects

among surge, sway, and yaw velocities.
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To make the analysis non-dimensional, the non-dimensional yaw rate is defined as γr = rLx/U ,

so that yaw velocity is given by r = Uγr
Lx

. In other words, this parametrisation forces circular

motion with speed U and radius R = Lx/γr. Moreover, director cosines may be parametrised

by eu = cosβ and ev = sinβ, where β is drift angle. With this information, these computations

can be parametrised by a two-dimensional hypercube, i.e., C2
1 as illustrated in Sec. 5.2.

Taking these ideas into account, non-dimensional forces and moments become a function of

the director cosines eu and ev and non-dimensional rate γr. For instance, for x-axis non-

dimensional force one can write a meta-model such as

CX(eu, ev, γr) = · · ·+ CX,u|r|eu|γr|+ CX,vrevγr + · · ·

and for y-axis non-dimensional force one can write a meta-model such as

CY (eu, ev, γr) = · · ·+ CY,v|r|ev|γr|+ CY,ureuγr + · · · .

Please note that this meta-model only takes into account cross-dependence between horizontal

plane flow direction and yaw angular rate.

6.2.3.3 Unsteady flow computations using harmonic (or arbitrary) imposed motion in trans-

lation and/or rotation

When performing unsteady flow computations using harmonic imposed motion in translation

or rotation, velocity or angular rate is variable. This means that these computations study

loads dependence on velocity and acceleration. A common way to formulate such dependence

is through Morison’s equation [9]. For instance, x-axis force exerted by the fluid may be

expressed as

X = ρ∇CX,u̇u̇+
1

2
ρAyzCX,u|u|u|u|

or, equivalently, using manoeuvring coefficients as

X = Xu̇u̇+Xu|u|u|u|.

Analogously, for x-axis (rolling) moment one has

K = ρ∇L2
xCK,ṗṗ+

1

2
ρAyzL

3
xCK,p|p|p|p|

and using manoeuvring coefficients as

K = Kṗṗ+Np|p|p|p|+Npp.
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Computations to obtain these coefficients customarily impose harmonic motion, e.g., for x-

direction displacement one has

x(t) = xmax sin
(

2π
T t
)
,

where xmax is motion amplitude and ωx angular frequency; consequently, x-direction velocity

is

u(t) = xmax
2π
T cos

(
2π
T t
)
,

where velocity amplitude is umax = xmax
2π
T . Equivalently for K, one has that rolling angle is

φ(t) = φmax sin
(

2π
T t
)

and rolling rate is

p(t) = φmax
2π
T cos

(
2π
T t
)
,

where the rolling rate amplitude is pmax = θmax
2π
T . As expected, this type of computations is

primarily parametrised in terms of the frequency and amplitude of the imposed motion, e.g.,

xmax and φmax and T . Related to these parameters is Keulegan-Carpenter number, which for

X is

KCX =
umaxT

Lx
= 2π

xmax

Lx

and for K is

KCK = pmaxT = 2πφmax.

It is important to acknowledge that, besides in-line motion around the main axes, the direction

of the imposed motions could be parametrised as well by using point distributions on S2, as

it was done in Sec. 6.2.3.1. Because unsteady computations are intrinsically expensive, it

becomes difficult to pursue this road.

6.2.4 COMPUTATIONS UNCERTAINTY

Numerical computations on a mathematical model carry uncertainty and errors. Uncertainty

refers to determining a region where the solution lies within certain degree of certainty: an

interval of confidence. Determining an error requires that a ‘true’ solution is available; this

requires a comparison between the expected value of experimental data and computations.

Those errors and uncertainties may come from the model itself and from how correctly the

model is resolved through numerical computations. The former case refers to how accurately

the model represents reality and is called validation. The latter case refers to the mathematical

exercise of quantifying how well the numerical computation resolves the model and is called

verification [40]. Validation assesses the model and verification the computation.
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Regarding verification, a clear distinction must be made between verifying the code, namely

code verification, or a particular solution, namely solution verification: code verification should

precede solution verification. Code verification concentrates on assessing errors between a

model and the code that solves the model. This procedure may be understood as a responsi-

bility of those who write the code and is often approached practically by the method of the

manufactured solutions (MMS) [39]. Conversely, solution verification is a responsibility of

those who use the code to solve a particular problem. Solution verification require assessing

errors and uncertainties during a particular computation.

Computation errors have three main sources [126]: round-off, iterative, and discretisation

error. Round-off errors are commonly considered negligible because processors use double-

precision arithmetic and the other errors are of greater significance. Iterative errors arise

when the modelling equations are not resolved enough along iterations [40]. Spatial discreti-

sation is usually quantified by performing grid refinement studies [38]. Because validation

measures how well models represent reality, it requires the comparison of model predictions

with experimental data coming from physical models. Validation requires measuring numeri-

cal, experimental, and parameter uncertainties and errors. Theory and examples on solution

verification and validation are available in various sources, see for instance [40, 126, 95].

Generally, uncertainty is approached as a point-wise problem, i.e., assessed for each unique

computation scenario [126, 38]. As mentioned, the three main sources of error in computa-

tions are round-off, iterative, and discretisation errors. Round-off error are due to arithmetic

machine precision: they become important for highly refined grids and often are neglected.

Iterative errors come from lack of equation resolution along iterations; this is because the

model equations are non-linear. Iterative errors are assessed at each individual computation

by checking the results at each iteration step. Finally, discretisation errors are due to the

approximation of continuum differential equations into approximated discrete-algebraic equa-

tions. These last errors are of special interest because, unlike the past two, they are reduced

by improving the computational domain.

The discretisation error εφ is assessed from a variable φ that stands for any integral or other

functional of a local flow quantity. In this work, φ represents forces and moments integrated

over the body surface for any given computation. A practical solution to compute the dis-

cretisation error is by assuming that the error follows some predictable, convergent behaviour:

the computations approach the exact solution by improving the grid. The error behaviour is

often predicted by using Richardson extrapolation, i.e.,

εφ ≈ δRE = φ− φ0 = αhp, (6.2)

where φ0 is an estimation of the exact solution, h the typical cell size, α a constant, and p
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the order of convergence. If p is known or assumed two grids suffice to find α and φ0, when

p is unknown three grids suffice. Nevertheless, as shown in [38], in practical applications

it is better to find the parameters from four (or more) grids using least-squares estimation.

Because the discretisation error is unknown, the discretisation uncertainty is computed as the

absolute value of the error times a factor of safety, i.e.,

Uφ = |εφ|Fs.

Often, Fs = 1.25 when p is close to 2 and Fs = 3 otherwise. This is because p should reflect

the fact that numerical methods often have order-2 accuracy [38].

Whenever φ does not show asymptotic behaviour, uncertainty is quantified by using Student’s

t-distribution [126]. By using this distribution, a confidence interval [φmin, φmax] is obtained

by using the 95 % percentile. From this, uncertainty is computed as

Uφ = 1
2 (φmax − φmin) .

Iterative uncertainty is denoted as Ui and computed as

Ui = 1
2 (max(φ)−min(φ)) .

This is done when φ shows oscillatory convergence along iterations. Given that φ is distributed

inside an interval, the central value is determined from the median. In the computations to

come, uncertainty and central value are computed from a number of n last iterations where

φ shows apparent, sustained oscillations.

6.3 VISCOUS-FLOW COMPUTATIONS ON VISOR3

This section applies viscous-flow computations for obtaining a hydrodynamic forces and mo-

ments model for visor3 (refer back to Sec. 3.1 for a description of visor3). The viscous-flow

solver used in this section is MARIN’s ReFRESCO (that will be described later). The

computations were carried out during an internship in MARIN during Fall 2015. In order to

compute non-dimensional forces and moments, relevant lengths and projected areas of visor3

are specified in Table 6.1 and illustrated in Fig. 6.3.

6.3.1 REFRESCO

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible

flows using the Navier-Stokes equations, complemented with turbulence models, cavitation
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Table 6.1. visor3 areas and lengths values for non-dimensional forces and moments computations

Parameter Value Units

Axy 0.27843306 m2

Ayz 0.18735244 m2

Axz 0.25253246 m2

Lx 0.66 m

Ly 0.70 m

Lz 0.69 m

Figure 6.3. visor3 areas and lengths description for non-dimensional forces and moments computations

models, and volume-fraction transport equations for different phases [134]. The equations are

discretised using a finite-volume approach with cell-centred collocated variables, in strong-

conservation form, and a pressure-correction equation based on the SIMPLE algorithm is

used to ensure mass conservation [71]. Time integration is implicit using first or second-order

backward schemes. At each implicit time step, the non-linear system for velocity and pressure
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is linearised with Picard’s method and either a segregated or coupled approach is used. In

the latter, the coupled linear system is solved with a matrix-free Krylov subspace method

using a SIMPLE-type preconditioner [71]. A segregated approach is always adopted for the

solution of all other transport equations. The implementation is face-based, which permits

grids with elements consisting of an arbitrary number of faces (hexahedrals, tetrahedrals,

prisms, pyramids, etc.), and if needed h-refinement (hanging nodes). State-of-the-art CFD

features such as moving, sliding, and deforming grids, as well automatic grid refinement are

also available. For turbulence modelling, RANS/URANS, SAS, and DES approaches can be

used (PANS and LES are being currently studied). The code is parallelised using MPI and

subdomain decomposition and runs on Linux workstations and HPC clusters. ReFRESCO is

currently being developed, verified, and validated at MARIN (in the Netherlands) [37, 128, 73,

104, 141, 69] in collaboration with IST (in Portugal) [94], USP-TPN (University of Sao Paulo,

Brasil) [105], TUDelft (Technical University of Delft, the Netherlands) [71], UoS (University

of Southampton, UK) [61] and recently UTwente (University of Twente, the Netherlands) and

Chalmers (Chalmers University, Sweden).

In these computations, the steady-state and unsteady Navier-Stokes (NS) equations were

solved for single-phase turbulent incompressible flow using ReFRESCO at different scenarios.

As a starting point, turbulence is modelled using Menter’s Shear-Stress Transport model, as

used in [127]. For the sake of clarity, steady-state computations will refer to using numerical

solvers for the steady-state NS equations; conversely, unsteady computations will refer to

using numerical solvers for the unsteady NS equations.

6.3.2 COMPUTATIONAL DOMAIN

In this work, Hexpress is used to obtain the computational domain. Hexpress is a non-

structured, hexahedral mesh generator software for complex arbitrary geometries. The ob-

tained meshes are non-conformal and body-fitted and are obtained in a volume-to-surface

approach, where there is no need for the creation of a surface mesh. This software, for in-

stance, allows one to create computational domains to be used in RANS computations from

CAD imported files; it includes tools for mesh refinement and optimisation, as well as for the

insertion of viscous layers. See for example [41], for an application of Hexpress, where the

computational domain for analysing the hull of a ship is created.

visor3’s computational domain is shown herein. The computational domain is a non-structured

grid made of hexagonal elements that represents the body of water surrounding the ROV. Two

geometries are of importance for defining the computational domain: the ROV’s and outer
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boundary’s. The geometry of the ROV’s surface is shown in Fig. 6.4 (a). Here, this surface is

always considered a no-slip boundary. The surface is a simplified geometry of the ROV that

lights

frame

thrusters

hull

domes

lights

ring edges
ring details

(green)

frame

thruster

umbilical

cylinder

(a) (b)

Figure 6.4. visor3 simplified geometry and boundary conditions

includes four lights, protecting frame, hull, and external thrusters. The hull is represented

by a cylinder with two hemispheres, including also the most relevant section changes and a

simplified tether connection. The external thrusters do not include nozzles and propellers;

also the tunnel thrusters and their tunnels are not included. The lights are cylinders without

section changes. Other geometrical features were considered negligible. Figure 6.4 (b) shows

different regions on the surface. These regions are chosen so as to define differentiated grid

refinement parameters: smaller geometrical features require more grid refining and vice versa.

A spherical geometry was used for the outer boundary: this geometry allows different types

of computations keeping the same grid. Two options for defining boundary conditions on

the sphere were used. The first option is simpler from a CAD perspective: create a whole

spherical surface and then the viscous flow solver defines what part of the surface is inflow,

outflow, or wall. Figure 6.5 (a) shows how half a domain may look like and Fig. 6.5 (b) shows

a diagram of how the solver defines the outer boundaries depending on the inflow’s relative

direction: this is known as boundary auto-detection.

The second option consists in creating a divided sphere surface using CAD software. This

divided sphere has bottom and top caps that are defined as wall boundaries. It also has

lateral panels that are defined either as wall, inflow, or outflow boundaries depending on each

computation’s inflow direction. The sphere divisions are shown in Fig. 6.6.

Mesh preparation in Hexpress follows a series of steps: initial mesh, adaptation, snapping,

optimisation, and addition of viscous layers. The initial mesh is a box-shaped grid, adapta-

tion refines the grid around the boundaries, snapping trims the initial grid according to the
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Figure 6.5. Boundaries autodetection

domain’s boundaries and optimisations corrects the cells geometry, and the addition of viscous

layers further refines the grid so the discretisation captures viscous flow near no-slip bound-

aries. visor3’s mesh and, furthermore, any other ROV could be obtained from processing

half the geometry, taking advantage from xz-plane symmetry.

The overall cell size and, thus, the number of elements are mainly affected by the initial

mesh and adaptation settings. Figure 6.2 shows different values used for obtaining different

visor3’s grids (half grid).

Table 6.2. Initial mesh settings

Nb. cells total 1372 2048 4000 6912 16384 23328

Nb. cells x 14 16 20 24 32 36

Nb. cells y 7 8 10 12 16 18

Nb. cells z 14 16 20 24 32 36

To perform adaptation, Fig. 6.4 (b) shows the surfaces used and Table 6.3 Hexpress’s pa-

rameters. For the sake of generalisation, Nr will be considered the maximum number of

refinement steps. In this example, among all grids, this value ranges from 8 to 10, depending

on the initial mesh size. Then, less refined cells will have either Nr − 1 or Nr − 3 refinement

steps. This means that if the most refined surface has 10 refinements, other surfaces have
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Figure 6.6. Division of the spherical outer domain

either 7 or 9 refinements.

Table 6.3. Adaptation refinement parameters

Surface group Max. nb. of Adaptation Target Max. Refinement

refinements criteria cell size aspect ratio diffusion

Domes Nr − 3 Distance 0 0 0 2 3

Cylinder Nr − 3 Distance 0 0 0 2 3

Ring edges Nr − 3 Distance 0 0 0 2 3

Umbilical Nr − 3 Distance 0 0 0 2 3

Lights Nr − 1 Distance 0 0 0 2 3

Frame Nr − 1 Distance 0 0 0 2 3

Thrusters Nr Distance 0 0 0 2 4

Ring details Nr Distance 0 0 0 2 3

To perform snapping and optimisation, few settings diverged from the default in these two

steps. There were no changes in the default during snapping and there were two main changes

in the optimisation settings: first, the number of optimisation steps were chosen as four and,

second, the minimum orthogonality angle threshold was chosen as 35 deg. This often prevented

final cell angles below 20 deg. The complete parameters used are shown in Table 6.4.

To add viscous layers, Hexpress uses a simplified procedure for the user to define the amount
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Table 6.4. Grid optimisation parameters

Parameter Value

Max. nb. of external optimisation 4

Max. nb. of invalid cells 100

Max. nb. of final optimisation iterations 7

Percentage of vertices to optimise during final optimisation 3.0

Max. nb. of orthogonality optimisation iterations 4

Minimal optimisation threshold (deg) 35

of viscous layers required for each surface based on the Reynolds number and the expected y+

value. These parameters are specified in Fig. 6.5. The expected y+ value was varied among

different grids, but in general the most common value, along with the other parameters, is

shown in Table 6.5. Nevertheless, different computations were performed to determine a grid

that has adequate y+ values (see Sec. 6.3.3).

Table 6.5. Viscous layers parameters

Parameter Value Units

Reference velocity 1.5 m/s

Reference length 0.66 m

Kinematic viscosity 1.002e-6 m2/s

y+ 0.5 -

As expected, different settings will lead to different grids, even when there are just slight

variations. Nevertheless, Fig. 6.7 shows how the grid looks like after all steps.

6.3.3 VERIFICATION COMPUTATIONS

To define an appropriate computational domain, different verification computations were car-

ried out to study the influence of grid-related parameters such as domain size, mesh refine-

ment, viscous layers, and flow regime. This is made to assess the uncertainty due to making

computation-related decisions. These verification computations had the following goals:

• Definition of viscous layers so that y+ is adequate.

• Definition of the size of the whole computational domain. Because the computation

domain has a spheric outer boundary, this refers to choosing and adequate domain radius.

• Evaluation of different levels of grid refinement. In this case the main idea is to assess



CHAPTER 6. HYDRODYNAMICS 136
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Figure 6.7. Resulting grid for visor3: (a) projection on the body surface and (b) central plane

the level of uncertainty related to using different grids with different number of cells.

• Evaluation of the effect of inflow velocity’s magnitude in non-dimensional force. In other

words, the idea is to verify how non-dimensional force varies with flow regime.

In all simulations a unique flow condition was imposed: constant inflow velocity along surge

direction at 1.5 m/s. A slight exception is done when the effect of different magnitudes of

inflow velocity is evaluated; in this part only flow direction is kept constant.

6.3.3.1 Viscous layers

When defining the computational domain, setting of the viscous layers is based on an initial

guess given from reference velocity, reference length, kinematic viscosity, and expected y+:

Table 6.5 showed the typical values used. Here, three simulations were carried out using three

grids with different values for the first layer’s thickness in order to determine an adequate

value for it. Table 6.6 shows some relevant parameters for each simulation. The results for

Table 6.6. Viscous layer analysis simulation parameters

Case 1 2 3

First layer thickness (m) 4.35e-5 1.74e-5 8.70e-6

Grid’s nb. of cells 10526132 12698946 14843124

maximum and average y+ for the three options are shown in Fig. 6.8 (a). This plot shows

dependence of y+ on first layer thickness in log-log scale. Consequently, this result is used as

guideline for choosing first layer’s thickness in further computations. Moreover, Fig. 6.8 (b)
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Figure 6.8. y+ (a) at different first layer thicknesses and (b) relation between y+ and non-dimensional

force

illustrates how non-dimensional force in x-direction is affected when y+ has values above and

below 1. Because the main result from the simulations is body forces and moments, this

figure indicates how uncertainty is introduced by non adequate y+ values (i.e., y+ > 1).

Furthermore, Fig. 6.9 illustrates how y+ varies among all grids and shows where the most

critical regions are.

Case 1 (less refined) Case 2 Case 3 (more refined)

Figure 6.9. y+ visualisation in different grids

6.3.3.2 Computational domain size

Given that the external boundary of the domain is spherical, its size is measured using radius R

and non-dimensional radius R/Lx. The radii used ranged from 5Lx to 22.7Lx. The parameters

used in each simulation case are show in Table 6.7. These settings were chosen so after N

adaptations (and before snapping, optimising, and viscous layers addition) the cell size was
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almost the same in all cases.

Table 6.7. Computational domain size cases

Case 1 2 3 4 5 6 7

Radius (R/Lx) 22.7 15.2 15.2 10.6 9.5 7.6 5.0

Radius (m) 15 10 10 7 6.25 5 3.3

Init. grid nb. cells (half) 6912 2048 16384 5324 4000 2048 4000

Nb cells x 24 16 32 22 20 16 20

Nb cells y 12 8 16 11 10 8 10

Nb cells z 24 16 32 22 20 16 20

Max nb. of ref. Nr 10 10 9 9 9 9 8

Cell size after Nr ref. (m) 1.22e-3 1.22e-3 1.22e-3 1.24e-3 1.22e-3 1.22e-3 1.29e-3

Nb cells final (whole) 14.4M 14.4M 14.4M 13.8M 14.4M 14.4M 12.9M

Figure 6.10 shows values for non-dimensional force in surge direction at different domain radii,

as well as a quantification of non-dimensional force uncertainty. Uncertainty shown in the

figure is computed from iterative uncertainty Ui and UG1
assuming asymptotic convergence.

Total uncertainty is computed from Euclidean norm, assuming uncertainties are uncorrelated,

as

U =
√
U2
i + U2

G1
.

The plots show how uncertainty behaves when using smaller domains. This indicates that for

the smallest domain, uncertainty is dominated by domain size; conversely, from that size on,

iterative uncertainty is dominant. Based on these results, in further simulations, a radius of

9.5Lx is used.

6.3.3.3 Mesh refinement

Computations to estimate uncertainty due to grid refinement were carried out. Table 6.8 shows

some of the parameters used for creating grids with different levels of refinement. Figure 6.11

shows results for non-dimensional force in x-direction, as well as an estimation of uncertainty.

Uncertainty shown in the figure is computed from iterative uncertainty Ui, uncertainty due

to domain size UG1
, and uncertainty due to level of refinement UG2

. Domain size uncertainty

was obtained in Sec. 6.3.3.2. Uncertainty due to level of refinement is obtained by computing

95 % percentile uncertainty from Student’s t-distribution of the medians. As before, total

uncertainty is computed from Euclidean norm, assuming uncertainties are uncorrelated, as

U =
√
U2
i + U2

G1
+ U2

G2
.
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Figure 6.10. Behaviour of non-dimensional force and uncertainty at different domain sizes
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Figure 6.11. Non-dimensional force at different levels of refinement
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Table 6.8. Mesh refinement settings

Case 1 2 3 4 5 6

Domain radius (m) 6.25 6.25 6.25 6.25 6.25 6.25

Nb cells init mesh (half) 1372 2048 4000 6912 16384 23328

Nb cells x 14 16 20 24 32 36

Nb cells y 7 8 10 12 16 18

Nb cells z 14 16 20 24 32 36

Initial cell lenght (m) 0.8929 0.7813 0.6250 0.5208 0.3906 0.3472

Max nb of refs. (Nr) 9 9 9 9 9 9

Min cell size (m) 0.01395 0.01220 0.00976 0.00813 0.00610 0.00542

Nb of cells 8.4M 10.2M 14.4M 19.1M 29.2M 35.6M

6.3.3.4 Variations on Reynolds number

This set of computations was done to verify the variation of non-dimensional force as a function

of Reynolds number ranging in values from 1·104 to 3·106. More specifically, a Reynolds

number list

{1 · 104, 3 · 104, 1 · 105, 3 · 105, 4 · 105, 6 · 105, 8 · 105, 1 · 106, 2 · 106, 3 · 106}

was used. The corresponding inflow velocities are computed by using the Reynolds number

definition

Re =
uLx
νw

.

The results are shown in Fig. 6.12. From the results it is apparent that non-dimensional force

varies with Reynolds number: non-dimensional force increases for lower Reynolds numbers.

The medians of the computations were fit into a meta-model where force depends linearly and

quadratically on velocity, this means that non-dimensional force has a model

CX =
CXl

Re
+ CXq

. (6.3)

This fit includes only data from computations with Reynolds values up to 1·106: this is because

visor3 does not operate beyond that regime.

Uncertainty related to choosing this meta-model is quantified by using Student’s t-distribution

uncertainty on the regression error. The resultant fit and confidence interval are depicted in

Fig. 6.12. Figure 6.12 includes as well an estimation of the uncertainty of each computation;

rather predictably, the model has greater uncertainty for Reynolds greater than 1·106.

Finally, in order to further illustrate the model, Fig. 6.13 (a) shows variation on force X as a

function of velocity u, when X is computed in Newton and computed from X = 1
2ρAyzU

2CX .
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Figure 6.12. Non-dimensional force at different levels of refinement

The model is depicted with (black) dashed lines; the confidence interval of the force is depicted

with (black) dotted lines. The depicted confidence interval reunites all sources of uncertainty:

domain size, grid refinement, iterative, and Reynolds number. The magnitude of all compo-

nents, as well as consolidated uncertainty are shown in Fig. 6.13 (b). Total uncertainty is

measured as

U =
√
U2
i + U2

G1
+ U2

G2
+ U2

Re.

From these results, it becomes apparent that the contribution of numerical computation un-

certainty to the total uncertainty is small compared to that of assuming model (6.3).

6.3.4 VISCOUS-FLOW COMPUTATIONS

According to Sec. 6.2.3, viscous-flow computations of visor3 include the following types of

computations:

1. Group 1: steady-state computations of forces and moments for different inflow directions.

2. Group 2: steady-state computations of forces and moments for circular manoeuvres in

the XY plane.

3. Group 3: unsteady computations of forces and moments for rotation around the XYZ

axes. For roll and pitch motion, oscillations were used; for yaw motion, acceleration
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Figure 6.13. Non-dimensional force at different velocities

curves were considered.

All computations are run for a total of 2000 iterations. From these iterations, the last 500

are used to obtain the data to be further used. The central value is computed by using the

median. From Sec. 6.3.3, uncertainty tends to be dominated first from fitting data to a meta-

model and second by iterative uncertainty. Because of this and the fact that the uncertainty

analysis was made only for x-direction inflow, uncertainty will be depicted in the plots by

using error bars from iterative uncertainty as it was computed in Sec. 6.3.3.

6.3.4.1 Steady-state flow computations at different inflow directions

Steady-state computations of forces and moments for different inflow directions are param-

etrised by using three-circle designs (3CD), as shown in Sec. 5.4.2. Even though circle designs

are a poor choice for meta-model regression (see Sec. 5.4.6), they have the great advantage

of allowing one to interpret the data easier, i.e., to understand motion by seeing data around

the main planes. All computations within this group were made using a 14M-cell grid with

whole external boundary as explained by Fig. 6.5. The circle designs are

• xy-design, given in degrees by

qi = {0, 10, 15, 20, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180};

• xz-design, given in degrees by

qi = {−180,−158,−130,−90,−49,−21, 0, 21, 49, 90, 130, 158}; and
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• yz-design, given in degrees by qi = {−90,−49,−21, 0, 21, 49, 90}.

For these designs, redundant computations were avoided and xz-plane symmetry was assumed.

As it becomes apparent, these designs are not completely uniform: for xy-design the experi-

mental points are chosen heuristically, they are relatively more numerous, and, consequently,

their maximin distance is smaller. Figure 6.14 shows a visualisation of some computations

of the xy-design. In contrast, xz- and yz-designs are less numerous. Their distribution is

apparently arbitrary but it corresponds to a programming error committed when automating

the computations. (This error was considered not relevant enough to redo the computations.)

It is important to note that xz-design does not take advantage of symmetry but yz-design

does.

Figure 6.14. Flow visualisation at different inflow drift angles

Figures 6.15 and 6.16 summarise the results obtained for non-dimensional forces and moments

from all computations. The main intention behind these polar plots is to illustrate the geom-

etry behind loads and moments behaviour. In the plots, the radius represents the magnitude

of the non-dimensional forces and moments according to the definitions in Sec. 6.2.3.1; the

plots are done by using the methods proposed in Sec. 4.2. Because xz-plane symmetry was

assumed, faded points and lines represent data reflected on the xz-plane. In order to under-

stand the plots more intuitively, all plots depict an ROV that projects light from its front

forward.

Figure 6.15 (a), xy-plane plot, represents a top-view slice of the magnitude of non-dimensional

forces CX and CY (primarily) as a function of relative velocity direction. This plot exhibits

better resolution compared to Figs. 6.15 (b) and (c) due to the way the designs were organised.

It is relevant to note the relative magnitude among CX , CY , and CZ : CX and CY are of
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Figure 6.15. Results for forces at different inflow drift angles

comparable magnitude and CZ is relatively small. As expected CX tends to vanish in y-

direction and CY in x-direction.

Analogous behaviour is evidenced in Figs. 6.15 (b) and (c). Figure 6.15 (b), yz-plane plot,

represents a front-view slice that shows primarily the magnitude of non-dimensional forces CY

and CZ as a function of relative velocity direction. Figure 6.15 (c), xz-plane plot, represents

a side-view slice that shows primarily the magnitude of non-dimensional forces CX and CZ

as a function of relative velocity direction. In general, forces do not exhibit symmetry with

respect xy and yz planes, but assuming such symmetry may be considered reasonable and

practical.
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Figure 6.16 is Fig. 6.15 non-dimensional moments counterpart. As it becomes apparent, the

way moments vary with direction is more complex compared to forces’. It may be conjectured

that this is due to visor3’s relatively complex geometry.
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Figure 6.16. Results for moments at different inflow drift angles

In order to be more specific, Fig. 6.16 (a), xy-plane plot, represents the top-view slice of the

magnitude of non-dimensional moments as a function of relative velocity direction. In xy-

plane motion, the most relevant non-dimensional moment component is CN . This moment

is not symmetric with respect to yz-plane and its magnitude is larger when relative velocity

goes forward compared to backward. This behaviour, as it is shown in Fig. 6.16 (b) and (c),

is replicated analogously in the other planes: CK in yz-plane and CM in xz-plane.
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6.3.4.2 Steady-state flow computations for circular manoeuvres in the plane

Steady-state computations of forces and moments for circular manoeuvres in the plane were

done in the xy-plane exclusively. Because motion is restricted to the xy-plane, direction is

parametrised by using a one-circle design (1CD), as shown in Sec. 5.4.2. Conversely, rotation is

parametrised by using non-dimensional angular rate (see Sec. 6.2.3.2). These two parameters

are combined by using a full-factorial design (FFD) were all combinations of the following

parameters were performed:

• 1CD with qi = {0, 30, 60, 90} (in degrees), and

• γr = {0.03, 0.1, 0.3}.

This makes a total of 12 different computations. Figure 6.17 shows a visualisation of one of

such computations.

Figure 6.18 summarises the results obtained for non-dimensional forces and moments from

all computations. As usual, because xz-plane symmetry was assumed, faded points and lines

represent data reflected on the xz-plane. These plots show the contour of non-dimensional

forces and moments for the different values of non-dimensional yaw angular rate γr.

From Fig. 6.18 (a), it becomes apparent that for γr from 0 to 0.1 the increase of non-

dimensional force is small compared to that of γr = 0.3. Conversely, from Fig. 6.18 (b),

it becomes apparent that non-dimensional moment is indeed affected by γr, but the effect is

less relevant than it is for non-dimensional forces.

6.3.4.3 Unsteady flow computations using harmonic and arbitrary imposed motion in rota-

tion

Unsteady computations of forces and moments for rotation were done around the x, y, and

z axes. In this sense, these computations used three-point, zero-dimensional designs as speci-

fied in Sec. 5.4.1. More specifically, harmonic oscillations were used for roll and pitch motions;

conversely, an acceleration ramp was used for yaw motion. For both roll and pitch motion,

the parameters in Table 6.9 were used to define harmonic motion. In order to transition from

equilibrium to regular harmonic motion, the amplitude is modulated by a cycloidal function

for a number of start-up periods: this type of imposed motion is native to ReFRESCO.

Figure 6.19 (a) shows how the imposed angular motion looks like in position and velocity, as

well as the resulting computed roll and pitch moments.
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Figure 6.17. Flow visualisation for computations of circular manoeuvres in the xy-plane

For yaw motion, the acceleration ramp was defined by using cycloidal functions that transition

from zero to non-zero angular velocity. The acceleration ramp is given for yaw rate r by the

function

r(t) =
∆ψ

∆t

(
1− cos

( π
∆t

(t− t0)
))

,

for t ∈ [t0, t0 + ∆t], where ∆ψ and ∆t are respectively the angle and time used to transition.
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Figure 6.18. Results for forces at different combinations of inflow direction and yaw rotation

Table 6.9. Forced oscillation parameters for roll and pitch

Parameter Value Units

Frequency 3.0 rad/s

Amplitude 5 deg

Total number of periods 3 -

Start-up periods 1 -

Time step 0.005 s

In this case, the curve is computed so that after rotating for 90 degrees the ROV has a

maximum angular rate at the end of the acceleration ramp of 1.8 rad/s. Figure 6.19 (b)

shows the angular position and velocity as a function of time for this experiment, as well as

the resulting computed yaw moment.

6.3.5 META-MODEL ASSEMBLY

After obtaining a data-base from viscous-flow computations, it is necessary to define an ad-

equate meta-model structure and then compute a regression to determine its parameters.

Computing the meta-model requires both selecting the meta-model’s basis functions and com-

puting the coefficients. The selection of the meta-model’s basis functions requires computing

the regression and obtaining a measure for the uncertainty when a particular set of basis

functions are used; consequently, the selected basis functions set is the one that delivers the

smallest uncertainty. The process of assembling meta-models is divided according to the type
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Figure 6.19. Imposed motion: (a) roll and pitch and (b) yaw

of computations pursued previously. In this section, a model for drag due to incoming flow

is assembled first and a model for moments due to rotating on a spot is assembled second.

These two models are then frozen to finally assemble a model for combined translation and

rotation in the horizontal plane.

6.3.5.1 A note on choosing appropriate basis functions for the meta-model

A case in point for the adequacy of basis functions to be used in meta-models can be con-

structed from obtaining non-dimensional forces CX and CY from computations in xy-plane

(see Fig. 6.15 (a)). The basis functions are those that allow one to write meta-models such as

that of Eq. (6.1), e.g., a basis {eu|eu|, ev|ev|, eu|ev|, ev|eu|} . The results from using different

basis and procedures for obtaining the coefficients is summarised in Fig. 6.20.

A first hypothesis is to obtain the model from the minimum information possible, i.e., to

obtain CX from one computation when incoming flow is aligned with x-axis and, analogously,

obtain CY from one computation when incoming flow is aligned with y-axis. When this idea is

extended to CZ , this type of computer experiment design fits a three-point, zero-dimensional

design, as mentioned in Sec. 5.4.1. In this case, the model for non-dimensional forces is

CX(eu, ev, ew) = CX,u|u|eu|eu|,

CY (eu, ev, ew) = CY,v|v|ev|ev|.

This type of model is uncoupled, because, e.g., CX does not depend on ev and vice versa.

The result from using this procedure is shown in Fig. 6.20 (a) and (b) as the 1-point graphs.

As the plot illustrates, this method is not good at capturing the behaviour of the remaining

data; additionally, by using it, drag is under-predicted.
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Figure 6.20. Meta-models comparison for (a) CX and (b) CY in the xy-plane

A second hypothesis is to obtain the model from all available data for the uncoupled model

used previously. The result from using this procedure is shown in Fig. 6.20 (a) and (b) as

the uncoupled graphs. As the plot shows, this model fits the data better, but in some regions

over-predicts and in others under-predicts force. More relevantly and from a qualitative

perspective, this type of model does not reflect the geometry observed in the data.

A third hypothesis is to add to the meta-model basis cross-coupled terms. This means adding

terms where, e.g., CX depends on ev. In this case, the meta-model becomes

CX(eu, ev, ew) = CX,u|u|eu|eu|+ CX,u|v|eu|ev|,

CY (eu, ev, ew) = CY,v|v|ev|ev|+ CY,v|u|ev|eu|.

The result from using this model is shown in Fig. 6.20 (a) and (b) as the cross-coupled graphs.

As the plot shows, this model fits the data and reflects the geometry observed in the data

better, compared to its competitors.

Besides the uncertainty expected when any meta-model is used, it is important to acknowledge

that these types of meta-models assume that loads are symmetrical with respect to all axes.

Taking into account that in general forces are not symmetrical, the use of these meta-models

will add to the uncertainty. Because this, uncertainty related to choosing one meta-model or

another will be discussed next.
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6.3.5.2 Assembling a model for drag due to incoming flow

In this section a model for non-dimensional forces and moments due to changing inflow direc-

tion is obtained. This model uses the data obtained in Sec. 6.3.4.1 and is intended to predict

the behaviour illustrated in Figs. 6.15 and 6.16. This means that regressions are computed

from all the data illustrated in these figures. For both forces and moments, the meta-model

is chosen from three alternatives based on a measure of uncertainty related to the meta-

model. Meta-model uncertainty is measured by computing an error between the data and

meta-model prediction, and then obtained by computing a zero-mean 95 % percentile interval

from Student’s t-distribution. The results from performing the regressions and computing the

uncertainties is summarised in Fig. 6.21. The figure shows uncertainty for models 1, 2, and 3

for each force and moment; the models are explained next.
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Figure 6.21. Meta-model uncertainty comparison for different types of meta-model

Forces include models obtained from 1) uncoupled, 2) cross-coupled, and 3) linear-quadratic,

cross-coupled basis functions. Both uncoupled and cross-coupled basis functions use quadratic

functions in modulo form.

• Model 1 is obtained from an uncoupled basis where CX only depends on eu and so on.

The model for each force is written as

CX(eu, ev, ew) = CX,u|u|eu|eu|+ · · · ,

CY (eu, ev, ew) = CY,v|v|ev|ev|+ · · · ,

CZ(eu, ev, ew) = CZ,w|w|ew|ew|+ · · · .

This model is the simplest but, from the results Fig. 6.21, is the one that shows more

uncertainty. Please note that this is the type of model used in Minerva (see Sec. 3.3). In
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general, and acknowledging the discussion in the previous section, it is not a good choice

for the model.

• Model 2 is obtained from a cross-coupled basis where, for instance, CX , besides of its

dependence on eu, depends on ev and ew as well. In this case, the model for each force

is written as

CX(eu, ev, ew) = CX,u|u|eu|eu|+ CX,u|v|eu|ev|+ CX,u|w|eu|ew|+ · · · ,

CY (eu, ev, ew) = CY,v|u|ev|eu|+ CY,v|v|ev|ev|+ CY,v|w|ev|ew|+ · · · ,

CZ(eu, ev, ew) = CZ,w|u|ew|eu|+ CZ,w|v|ew|ev|+ CZ,w|w|ew|ew|+ · · · .

this type of model is less simple but, from the results Fig. 6.21, it improves the uncertainty

greatly; consequently, this is a better choice for the model.

• Model 3 is the same as the previous one but includes a linear component; consequently,

the model for each force is

CX(eu, ev, ew) = CX,ueu + CX,u|u|eu|eu|+ CX,u|v|eu|ev|+ CX,u|w|eu|ew|+ · · · ,

CY (eu, ev, ew) = CY,vev + CY,v|u|ev|eu|+ CY,v|v|ev|ev|+ CY,v|w|ev|ew|+ · · · ,

CZ(eu, ev, ew) = CZ,wew + CZ,w|u|ew|eu|+ CZ,w|v|ew|ev|+ CZ,w|w|ew|ew|+ · · · .

From the results in Fig. 6.21, this model makes an improvement in the uncertainty, but

the improvement is small.

From the models at hand, Fig. 6.22 illustrates the geometry of the selected meta-model for

each force, as well as how the model represents the data points. Based on the information in

Fig. 6.21, Model 2 is selected as the best option for all forces.

Moments include models obtained from second-order, third-order, and square-root basis func-

tions.

• Model 1 is obtained from a second-order basis with a quadratic term in modulo form and

a regular cross-coupled term. The model for each moment is written as

CK(eu, ev, ew) = CK,w|w|ew|ew|+ CK,vwevew + · · · ,

CM (eu, ev, ew) = CM,w|w|ew|ew|+ CM,uweuew + · · · ,

CN (eu, ev, ew) = CN,v|v|ev|ev|+ CN,uveuev + · · · .

Taking into account the results in Fig. 6.21, the behaviour of uncertainty is different

depending on the particular moment. For CM and CN , it shows the worst uncertainty

metric, but for CK the behaviour is comparable to that of other meta-models.
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Figure 6.22. Meta-models’ three-dimensional illustration

• Model 2 adds a third-order term that captures the variation observed in the moment

better. This will become rather evident from Figs. 6.24, 6.25 and 6.26. In this case, the

model for each force is written as

CK(eu, ev, ew) = CK,w|w|ew|ew|+ CK,vwevew + CK,vw2evew|ew|+ · · · ,

CM (eu, ev, ew) = CM,w|w|ew|ew|+ CM,uweuew + CM,uw2euew|ew|+ · · · ,

CN (eu, ev, ew) = CN,v|v|ev|ev|+ CN,uveuev + CN,uv2euev|ev|+ · · · .

From the point of view of uncertainty, these models show acceptable behaviour compared

to its competitors.

• Model 3 adds an additional term that uses a square-root basis function. This component

looks forward to capture non-symmetry of the moments. By using this term, the model
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for each moment becomes

CK(eu, ev, ew) =CK,w|w|ew|ew|+ CK,vwevew + CK,vw2evew|ew|+

CK,vw2(v2 − w2)evew

√
1
2(1− v) + · · · ,

CM (eu, ev, ew) =CM,w|w|ew|ew|+ CM,uweuew + CM,uw2euew|ew|+

CK,vw2(u2 − w2)euew

√
1
2(1− w) + · · · ,

CN (eu, ev, ew) =CN,v|v|ev|ev|+ CN,uveuev + CN,uv2euev|ev|+

CK,vw2(u2 − v2)euev

√
1
2(1− u) + · · · .

From the results Fig. 6.21, there is not a clear improvement from using this basis function.

As it was done with the forces, Fig. 6.22 illustrates also the geometry of the selected meta-

model for each moment, as well as how the model represents the data points. For CK Model

1 was used; conversely, for CM and CN Model 2 was used.

Figure 6.23 illustrates uncertainty of the meta-model selected for each force. All plots show

iterative, meta-model, and total uncertainties: respectively, Ui, Umm, and U . As usual, total

uncertainty is computed from Euclidean norm. These results suggest that between iterative

and meta-model uncertainty the more relevant is meta-model uncertainty.
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Figure 6.23. Uncertainty of the selected meta-model

Finally, Figs. 6.24, 6.25, and 6.26 further illustrate data and meta-models in a two-dimensional,

Cartesian representation. These plots show data-points as dots and meta-model as a solid line;

furthermore, the interval given by total uncertainty is depicted by dotted lines. In Fig. 6.24
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an xy-plane illustration is shown. In this plot, forces and moments are plotted against a

drift angle β, which is computed as β = arctan2(eu, ev). To better interpret this angle, zero

degrees represent relative velocity along positive x-axis and 180 degrees along negative x-axis.

Conversely, 90 degrees represent relative velocity along positive y-axis and 180 degrees around

negative y-axis. In this case, relative velocity along z-axis is zero.
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Figure 6.24. Meta-model curves in cartesian representation: xy-plane

In Fig. 6.25 an xz-plane illustration is shown. In this plot, forces and moments are plotted

against an attack angle α, which is computed as α = arctan2(ew, eu). As it was done previ-

ously, to better interpret α, zero degrees represent relative velocity along positive x-axis and

180 degrees along negative x-axis, similarly as in the xy-plane plots. On the other hand, in

this case, 90 degrees represent relative velocity along positive z-axis (downward relative mo-

tion) and 180 degrees around negative z-axis (upward relative motion). In this case, relative

velocity along y-axis is zero.

In Fig. 6.26 a yz-plane illustration is shown. In this plot, forces and moments are plotted

against a drift angle β, which is computed as α = arctan2(ev, ew). As usual, to better inter-

pret this drift angle, zero degrees represent relative velocity along positive z-axis (downward

relative motion) and 180 degrees along negative z-axis (upward relative motion). Then, 90

degrees represent relative velocity along positive y-axis and 180 degrees around negative y-axis

. In all cases relative velocity along x-axis is zero.



CHAPTER 6. HYDRODYNAMICS 156

150 100 50 0 50 100 150
1.0

0.5

0.0

0.5

1.0

Fo
rc

e

CX
CY
CZ

150 100 50 0 50 100 150
Attack angle (deg)

0.10

0.05

0.00

0.05

0.10

M
o
m

e
n
t

CK
CM
CN

Figure 6.25. Meta-model curves in cartesian representation: xz-plane
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Figure 6.26. Meta-model curves in cartesian representation: yz-plane

The drag forces model is finally

CX(eu, ev, ew) = CX,u|u|eu|eu|+ CX,u|v|eu|ev|+ CX,u|w|eu|ew|+ · · · , (6.4)

CY (eu, ev, ew) = CY,v|u|ev|eu|+ CY,v|v|ev|ev|+ CY,v|w|ev|ew|+ · · · , (6.5)

CZ(eu, ev, ew) = CZ,w|u|ew|eu|+ CZ,w|v|ew|ev|+ CZ,w|w|ew|ew|+ · · · . (6.6)
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Conversely, the drag moments model is

CK(eu, ev, ew) = CK,w|w|ew|ew|+ CK,vwevew + · · · , (6.7)

CM (eu, ev, ew) = CM,w|w|ew|ew|+ CM,uweuew + CM,uw2euew|ew|+ · · · , (6.8)

CN (eu, ev, ew) = CN,v|v|ev|ev|+ CN,uveuev + CN,uv2euev|ev|+ · · · . (6.9)

For the models the coefficients obtained from the regression are

• CX,u|u| = 0.78, CX,u|v| = 0.23, CX,u|w| = 0.33.

• CY,v|u| = 0.52, CY,v|v| = 0.60, CY,v|w| = 0.24.

• CZ,w|u| = 0.58, CZ,w|v| = 0.32, CZ,w|w| = 0.67.

• CK,w|w| = 0.001, CK,vw = 0.064.

• CM,w|w| = −0.036, CM,uw = 0.137, CM,uw2 = −0.340.

• CN,v|v| = 0.039, CN,uv = −0.141, CN,uv2 = 0.302.

6.3.5.3 Assembling a model for moments due to rotating on a spot

In this section a model for moments due to rotating on a spot is obtained. This model uses

the data obtained in Sec. 6.3.4.3 and is intended to predict the behaviour shown in Fig. 6.19.

As mentioned, roll and pitch come from imposed harmonic oscillation and yaw from a smooth

acceleration ramp. Harmonic imposed motion consists of three rotation periods from which

the first one is a start-up period. The smooth acceleration ramp uses cycloidal functions. In

order to compute curve-fit regression for roll and pitch, only data from the two last periods is

used. Conversely, for yaw’s acceleration ramp, only data from half a revolution is used, i.e.,

angles from 0 to 180 degrees: this is done so the ROV does not encounter its own wake.

The meta-model is written in terms of manoeuvring coefficients as

K = Kpp+Kp|p|p|p|+Kṗṗ,

M = Mqq +Mq|q|q|q|+Mq̇ q̇,

N = Nrr +Nr|r|r|r|+Nṙṙ.

The regression is computed from a least-squares curve fit with restrictions in the coefficients,

so that only positive coefficients are obtained. From this restriction, coefficients Kp, Mq, and

Nr are zero. The fitted curves along the data are shown in Fig. 6.27 The figure includes as

well a measure of meta-model uncertainty computed from the error between the data and

meta-model prediction. As usual, uncertainty is obtained by computing a zero-mean 95 %

percentile interval from Student’s t-distribution.
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Figure 6.27. Meta-model curves for rotating on a spot

Once the manoeuvring coefficients are known it is possible to compute non-dimensional mo-

ments according to the formulation in Sec. 6.2.3.3. More explicitly, the coefficients are com-

puted as

CK,p|p| =
Kp|p|

1
2ρAyzL

3
x

, CM,q|q| =
Mq|q|

1
2ρAxzL

3
y

, CN,r|r| =
Nr|r|

1
2ρAxyL

3
z

,

CK,ṗ =
Kṗ

ρ∇L2
x

, CM,q̇ =
Mq̇

ρ∇L2
y

, CN,ṙ =
Nṙ

ρ∇L2
z

;

Finally, the coefficients are

• CK,p|p| = 0.114, CM,q|q| = 0.120, CN,r|r| = 0.041,

• CK,ṗ = 0.023, CM,q̇ = 0.042, CN,ṙ = 0.032.

6.3.5.4 Assembling a model for combined translation and rotation in the horizontal plane

In this section a model for forces and moments due to combined translation and rotation in the

horizontal plane is obtained. This model uses the data obtained in Sec. 6.3.4.2 and is intended

to predict the behaviour shown in Fig. 6.18. The meta-model considered here includes non-

dimensional forces and moments CX , CY , and CN , as it is customary in horizontal plane
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motion. The two-basis-function meta-model considered for these loads is

CX(eu, ev, γr) = · · ·+ CX,u|r|eu|γr|+ CX,vrevγr + · · · ,

CY (eu, ev, γr) = · · ·+ CY,v|r|ev|γr|+ CY,ureuγr + · · · ,

CN (eu, ev, γr) = · · ·+ CN,|v|r|ev|γr + CN,|u|r|eu|γr + · · · .

The selection of the meta-model consists of selecting from using the first basis function only,

namely Model 1, or the two basis functions, namely Model 2. Because in Secs. 6.3.5.2 and

6.3.5.3 models for CX , CY , and CN were already approached, the regressions computed in

this section are done from the residuals between the data in Fig. 6.18 and the predictions of

Eqs. (6.4)–(6.9).

As usual, the selection between Model 1 and 2 is based on measured uncertainty by com-

puting a zero-mean 95 % percentile interval from Student’s t-distribution. After computing

the required regressions, three measures of uncertainty are depicted in Fig. 6.28. Model 0
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Figure 6.28. Uncertainty of the different meta-models for combined translation and rotation in the

horizontal plane

uncertainty is computed from the error between the data in Fig. 6.18 and the predictions of

Eqs. (6.4)–(6.9), i.e., if Models 1 and 2 are not considered. This uncertainty is computed

for all non-dimensional forces and moments and serves as baseline for evaluating how the

model gets improved by further regressions. Model 1 and 2 uncertainties are computed from

the error between the data in Fig. 6.18 and the residuals after the corresponding regression.

Additionally, Fig. 6.28 includes a dotted black line that indicates the uncertainty computed

in Sec 6.3.5.2 and shown in Fig. 6.23. This illustrates how uncertainty is bigger when this

new set of data is included.

From the results in Fig. 6.28, Model 1 is selected for CX and Model 2 for CY and CN .
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Consequently the model for combined rotation and translation in the horizontal plane becomes

CX(eu, ev, γr) = · · ·+ CX,u|r|eu|γr|+ · · · , (6.10)

CY (eu, ev, γr) = · · ·+ CY,v|r|ev|γr|+ CY,ureuγr + · · · , (6.11)

CN (eu, ev, γr) = · · ·+ CN,|v|r|ev|γr + CN,|u|r|eu|γr + · · · . (6.12)

In order to illustrate this model, Fig. 6.29 shows a Cartesian representation similar to that

of Fig. 6.24 where CX , CY , and CN are plotted against drift angle β = arctan2(eu, ev);

accordingly, Fig. 6.29 shows CX , CY , and CN against drift angle for γr = 0 (no rotation) and

γr = 0.3. Particularly, the figure shows how the model for CX and CY fit to the increment of
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Figure 6.29. Meta-model curves for combined translation and rotation in the horizontal plane

these loads when non-dimensional yaw rate increases to γr = 0.3; it shows as well how CN is

modified for γr = 0.3. Finally, after computing the regression, the coefficients are

• CX,u|r| = 0.93,

• CY,v|r| = 0.90, CY,ur = −0.10,

• CN,|v|r = 0.036, CN,|u|r = −0.016.

6.3.5.5 Complete meta-model

The results from the previous sections are combined here to write a complete meta-model

for hydrodynamic forces and moments in component form. The model is written in terms of
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full dimensional loads, is dependent on full-dimensional velocities and accelerations, and uses

non-dimensional loads’ coefficients. The model is then given by

X =1
2ρAyz

(
CX,u|u|u|u|+ CX,u|v|u|v|+ CX,u|w|u|w|+ LxCX,u|r|u|r|

)
, (6.13)

Y =1
2ρAxz

(
CY,v|u|v|u|+ CY,v|v|v|v|+ CY,v|w|v|w|+ LyCY,v|r|v|r|+ LyCY,urur

)
, (6.14)

Z =1
2ρAxy

(
CZ,w|u|w|u|+ CZ,w|v|w|v|+ CZ,w|w|w|w|

)
. (6.15)

K =1
2ρAyzLx

(
CK,w|w|w|w|+ CK,vwvw + L2

xCK,p|p|p|p|
)

+ 1
2ρ∇L

2
xCK,ṗṗ, (6.16)

M =1
2ρAxzLy

(
CM,w|w|w|w|+ CM,uwuw + CM,uw2uw|w|+ L2

yCM,q|q|q|q|
)

+

1
2ρ∇L

2
yCM,q̇ q̇, (6.17)

N =1
2ρAxyLz

(
CN,v|v|v|v|+ CN,uvuv + CN,uv2uv|v|+

LzCN,|v|r|v|r + LzCN,|u|r|u|r + L2
zCN,r|r|r|r|

)
+ 1

2ρ∇L
2
zCN,ṙṙ. (6.18)

This model could be straight-forwardly written in terms of manoeuvring coefficients as well.

6.4 PRELIMINARY TIME-DOMAIN SIMULATIONS OF VISOR3

In order to test the time-domain meta-model for hydrodynamic forces and moments, two

types of preliminary time-domain simulations that do not involve thrusters are computed,

namely free drift and impulse responses. The former evaluates when the ROV drifts because

of incoming current in the horizontal plane; the latter evaluates when the different degrees of

freedom are excited and energy dissipates due to interaction with the fluid. These simulations

are preliminary because they are intended to evaluate the obtained hydrodynamics meta-

model without much ado about time-domain simulation: these topics will be further dealt

with in Chapters 8 and 9. However, the simulations presented in this section are numerical

solutions of model (2.5) when the right-hand side of the equation is zero (i.e., external forces

are zero), the particulars of visor3’s model, as explained in Sec. 3.1, are taken into account,

and the hydrodynamic model given by Eqs. (6.13)–(6.18) is used.

6.4.1 FREE DRIFT

Free drift motion is computed by simulating constant current that comes from four different di-

rections, namely from current direction angles of 5, 30, 60, and 85 deg (see Fig. 6.30). Incoming

current magnitude is 0.2 m/s, representing low-magnitude, near-calm current. The simulation

time window is 60 s. The resultant computed trajectories are illustrated in Fig. 6.30. Because
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Figure 6.30. Free drift trajectories

of free drift, the ROV’s overall motion direction is determined by flow direction. Nevertheless,

it can be noticed how the ROV is not able to compensate for yaw moment naturally: it does

not keep its heading while drifting. This is expected from the behaviour of CN where incom-

ing flow at different angles produces yaw moment (see Fig. 6.16); consequently, this moment

changes the ROV’s heading over time. These results suggest that the ROV requires active

yaw control to compensate for cross-flow-induced yaw moment.

6.4.2 IMPULSE RESPONSES

Impulse response simulation is done by exciting all six degrees of freedom individually. The

main intention is to show how energy dissipates when the particular degree of freedom is ex-

cited and how it is coupled with other degrees of freedom. To check behaviour of displacement

degrees of freedom, velocities u, v, and w are plotted with respect to time; conversely, to check

behaviour of rotational degrees of freedom, Euler angles φ, θ, and ψ are plotted with respect

to time in most cases (with the exception of yaw).
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Surge impulse response is done by defining an initial surge velocity (u) of 0.5 m/s and sim-

ulating a time window of 30 s. The results are shown in Fig. 6.31. The figure shows how u
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Figure 6.31. Surge impulse response

dissipates according to quadratic drag. A relevant behaviour is the way pitch is excited by

surge motion, compared to any other degree of freedom. This suggests that pitch oscillation

frequency should be taken into account when designing forward motion controllers.

Sway impulse response is done by defining an initial sway velocity (v) of 0.5 m/s and simulating

a time window of 30 s. The results are shown in Fig. 6.32. The figure shows the dissipation of v

according to quadratic drag. A relevant behaviour is the way all rotational degrees of freedom

are excited by sway motion. Besides roll and pitch oscillations, sway motion is accompanied

by a change of heading; this is evidenced by the way ψ goes of the chart in Fig. 6.32. This

suggests that pure sway motion requires active control of heading.

Heave impulse response is done by defining an initial heave velocity (w) of 0.5 m/s and

simulating a time window of 30 s. The results are shown in Fig. 6.33. As in the previous

cases, the figure shows the dissipation of w according to quadratic drag. Similarly as in

surge, pitch is excited by heave motion and is more relevant to this degree of freedom that

to any other. This suggests that heave motion gets benefited by considering pitch oscillation

frequency during control design.
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Figure 6.32. Sway impulse response
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Figure 6.33. Heave impulse response

Roll impulse response is done by defining an initial roll angle (φ) of 15 deg and simulating

a time window of 30 s. The results are shown in Fig. 6.34. The figure shows the dissipation
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Figure 6.34. Roll impulse response

of φ according to quadratic roll moment. A relevant behaviour is the way sway gets slightly

excited by roll motion. Pitch impulse response is done by defining an initial pitch angle (θ) of
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Figure 6.35. Pitch impulse response
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15 deg and simulating a time window of 30 s. The results are shown in Fig. 6.35. The figure

shows the dissipation of θ according to quadratic pitch moment. A relevant behaviour is the

way surge gets slightly excited by roll motion.

Yaw impulse response is done by defining an initial yaw angular velocity (r) of 0.5 rad/s and

simulating a time window of 120 s. The results are shown in Fig. 6.36. The figure shows how
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Figure 6.36. Yaw impulse response

r dissipates according to quadratic yaw moment and evidences the speed of convergence. In

this case, excitation of yaw does not excite any other degree of freedom.

6.5 CONCLUDING REMARKS

This chapter proposed a methodology for obtaining a meta-model for the hydrodynamic forces

and moments that act on an ROV. The model is intended to be useful in time-domain simula-

tions. The data used to compute regressions come from viscous-flow computations. In order

to organise the computations, the language of design of computer experiments was used.

The process of obtaining a hydrodynamics meta-model was done for visor3, by using MARIN’s

viscous-flow solver ReFRESCO; the computations were arranged using three-circle designs.

In all viscous-flow computations, the computational domain is a non-structured grid that uses

a spherical outer boundary; the domain was computed using Hexpress.

Three types of viscous-flow computations were used: variations on incoming flow direction in

steady state, circular manoeuvres in steady state, and imposed (unsteady) motion. The most

intensive computations were done when incoming flow direction was varied. A future step

should concentrate on the particularities of the other two types of computations.
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The approach used in this thesis quantifies the numerical uncertainty due to different sources:

domain size, level of grid refinement, iterative error, and that of simplifying the complete phe-

nomenon by a single meta-model. The results indicate that the uncertainty due to simplifying

by a meta-model that envelopes all the hydrodynamics is larger than that of other sources.

Naturally, experimental validation are not included given the goals of this thesis; nevertheless,

experimental validation is an important future step.

The foundations of performing computations using spherical space geometry, i.e., spherical de-

signs, were laid out in Chapters 4 and 5; nevertheless, spherical designs were not implemented

in this chapter; as mentioned, the computations on visor3 were arranged using three-circle

designs. From results in Sec. 5.4.6, three-circle designs are not a good option for regression

purposes, because they deliver a larger integrated variance when the meta-models include

cross-coupled terms, indicating that spherical arrangements are a better choice. Nonetheless,

three-circle designs were considerably useful when interpreting the results in the main planes.

This is because they allowed one to analyse the pertinence of using certain meta-model’s basis

functions, i.e., based on how well they reproduce the observed geometry.

All told, an interesting future step could be to compute a meta-model of Pionero500 and

implement the aforementioned ideas that could not be fulfilled, such as make use of spherical

designs to arrange the viscous-flow computations, study the particularities of other types of

viscous-flow computations, and validate the results experimentally.



Chapter 7

Cable modelling

There are numerous approaches to modelling slender structures for underwater applications,

such as catenary [64, 1, 66], beam/rod [62, 16, 19], collection of masses [35], or collection

of rigid bodies [67, 113, 93]. Given that there is not previous knowledge about ROV cable

modelling in UPB’s ROV development group, this chapter may be considered as well as a local

knowledge building block for further work. Through this work, the name cable is the generic

way to refer to any slender structure related to an ROV system. Names such as catenary,

beam, or rod are specific to the theory used to analyse cable mechanics.

A first step to study cable mechanics is to focus on the static and dynamic catenary formula-

tion. This is done in order to test different modelling and numerical computation approaches,

without taking into account the effect of cable’s internal material mechanics; as a result,

the usefulness of a catenary approach for ROV motion studies is tested. After that, linear

elasticity is considered to study the effect of internal material mechanics.

This chapter focuses on solving steady-state and dynamic problems that are related and

useful for ROV applications. Steady-state computations have two purposes: the first purpose

is straight-forward, to obtain cable-induced loads in static (or pseudo-static) conditions; the

second purpose is to properly initialise dynamic computations. Dynamic computations are

the ultimate goal; they are useful to further predict the effect of the cable on ROV motion.

Because cable models are non-linear, any numerical method requires proper initialisation.

Consequently, the first problem consists in studying strategies to compute an initial geometry

given operation conditions such as cable’s attachment points, dimensions, weight, and current

profile. The second problem consists in quantifying the amount of drag accumulation that

168
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the ROV withstands due to steady-state current profiles. Finally, the third problem consists

in computing motion scenarios in dynamic conditions.

7.1 MOTION KINEMATICS IN CARTESIAN SPACE

Mechanically, cables are structural components where one of its dimensions is several orders of

magnitude larger that the other (two) dimensions, i.e., its length is several orders of magnitude

larger than its diameter. Because of this, in a spatial sense, cables are one-dimensional

structures and can be represented by a curve. Accordingly, the position of a cable point with

respect to a NED frame {n} is given by r(s) ∈ R3, where s ∈ [0, L] ⊂ R is the Lagrangian

coordinate along its length. L is the total length and r(s) defines a curve that describes the

cable geometry. See Fig. 7.1.

North

East

Down

Water surface

Figure 7.1. Cable description
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In component form, rn(s) can be written as

r(s) =
[
x(s) y(s) z(s)

]ᵀ
. (7.1)

As expected, x and y are North and East horizontal coordinates and z a vertical coordinate

directed positive downwards; the vertical direction coincides with the direction of gravity. The

tangential direction at any point is given by

et(s) =
∂r(s)

∂s
, (7.2)

and in component form it may be written as

∂r

∂s
=
[

∂x
∂s

∂y
∂s

∂z
∂s

]ᵀ
.

When loads can be placed on a plane, a two-dimensional kinematic formulation suffices. This

is valid, for instance, where weight is the only external load. In such case r(s) can be written

as

rn(s) =
[
x(s) z(s)

]ᵀ
,

where x and z are the horizontal and vertical coordinates respectively. The tangential direction

at any point is
∂r

∂s
=
[

∂x
∂s

∂z
∂s

]ᵀ
.

Orientation along the cable is represented by rotation matrix R(s) (see Fig. 7.1), which defines

a frame continuum depending on s. There are many options for parametrising such matrix,

and they often guarantee that one of the frame’s basis vectors coincides with et.

It is possible to parametrise R(s) by using Euler angles, this was proposed in [62]. Here, the

successive rotations convention is the same as in [48]: first, a rotation around the y−axis an

angle θ and, second, a rotation of the resulting frame around its x−axis an angle φ. When

performing these rotations, it is assumed that et is initially aligned with the z−axis. More

explicitly, it is possible to define

Rn
c (s) = Rn

c (θ(s), φ(s)) = Ry(θ)Rx(φ) =

 cos θ sin θ sinφ sin θ cosφ

0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ

 . (7.3)

This matrix takes a vector on a cable’s frame and obtains its representation on frame {n}.
More explicitly, for an arbitrary vector in the cable’s frame coordinates Vc =

[
Vt Vn1

Vn2

]ᵀ
one has  Vx

Vy

Vz

 = Rn
c (θ, φ)

 Vn1

Vn2

Vt

 and

 Vn1

Vn2

Vt

 = Rn
c (θ, φ)ᵀ

 Vx

Vy

Vz

 .
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From these results the cable frame’s unitary basis vectors are given on {n} as

enn1
=
[

cos θ 0 − sin θ
]ᵀ
,

enn2
=
[

sin θ sinφ cosφ cos θ sinφ
]ᵀ
, and

ent =
[

sin θ cosφ − sinφ cos θ cosφ
]ᵀ
.

Additionally, according to (7.2), the components of et may be expressed as

∂x

∂s
= sin θ cosφ, (7.4)

∂y

∂s
= − sinφ, and (7.5)

∂z

∂s
= cos θ cosφ. (7.6)

When variables are expressed on the cable’s frame, derivation must account for magnitude

variation as well as for direction variation. For instance, given an arbitrary vector V its total

derivative with respect to space is given by the expression

DV

Ds
=
∂V

∂s
+ Ω×V, (7.7)

where Ω =
[

Ω1 Ω2 Ω3

]ᵀ
, which accounts for direction variation. This vector, for trans-

formation (7.3), is given by [48]

Ω =


∂φ
∂s

0

0

+ Rx(φ)ᵀ

 0
∂θ
∂s

0

 =


∂φ
∂s

cosφ∂θ∂s
− sinφ∂θ∂s

 . (7.8)

Additionally, the total derivative of V with respect to time is given by the expression

DV

Dt
=
∂V

∂t
+ ω ×V, (7.9)

where ω =
[
ω1 ω2 ω3

]ᵀ
, which accounts for direction variation. This vector, for trans-

formation (7.3), is given by [48]

ω =


∂φ
∂t

0

0

+ Rx(φ)ᵀ

 0
∂θ
∂t

0

 =


∂φ
∂t

cosφ∂θ∂t
− sinφ∂θ∂t

 . (7.10)
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7.2 EXTERNAL LOADS

In the models to come, the cable’s load per unit length q is defined as

q = w + d, (7.11)

where w is weight and buoyancy and d is drag. More specifically w is assumed a constant

field in Euclidean space and d a variable field. These fields are shown on a cable segment in

Fig. 7.2 (a).

(a) (b)

Figure 7.2. Cable loads

7.2.1 WEIGHT AND HYDROSTATICS

The load due to weight and buoyancy may be written in Cartesian coordinates with respect

to {n} as

wn =
[

0 0 w̄
]ᵀ
,

where w̄ is the cable’s weight in water per unit length, defined as w̄ = ρcAg − ρwAg. In

this expression, ρc is cable density, ρw water density, g acceleration due to gravity, A = π
4d

2

cross-section area, and d diameter.

Load wn is directed along the z-axis of {n}. In the cable frame and using (7.3), it is given as

wc = Rn
c (θ, φ)ᵀ

 0

0

w̄

 =

 −w̄ sin θ

w̄ cos θ sinφ

w̄ cos θ cosφ

 . (7.12)



CHAPTER 7. CABLE MODELLING 173

7.2.2 DRAG DUE TO CURRENT

Drag is dependent on the cable’s velocity relative to water. Relative velocity is defined as

vr = v − VC , where v = v(s) is the velocity of a cable element and VC is current. For

irrotational currents, angular velocities are ignored. In inertial frame {n}, Vn
C is given by

Vn
C =

[
VCx VCy VCz

]ᵀ
.

As shown in Fig. 7.2 (b), relative velocity vr can be written in tangential and normal compo-

nents, i.e., vr = vt + vn. Tangential velocity is defined as vt = (vᵀ
r et) et and normal velocity

as vn = vr − vt. This distinction between tangential and normal velocities acknowledges

that drag effects are different over those two directions. Accordingly, drag per unit length is

defined as

d = −1

2
ρwd

(
Ct|vt|vt + Cn|vn|vn

)
, (7.13)

where ρw is water density, d cable diameter, and Ct and Cn drag coefficients. In [46], such

coefficients are defined as Ct = Cdft(ϕ) and Cn = Cdfn(ϕ), where ft and fn are load coefficient

functions dependent on incidence angle ϕ and Cd is drag coefficient.

Using the cable frame, relative velocity is given as vcr =
[
vn1

vn2
vt

]ᵀ
and velocity as

vc =
[
vcn1

vcn2
vct

]ᵀ
. Using (7.3), relative velocity becomes vn1

vn2

vt

 =

 vcn1

vcn2

vct

−Rn
c (θ, φ)ᵀ

 VCx

VCy

VCz



=

 vcn1
− VCx cos θ − VCz sin θ

vcn2
− VCx sin θ sinφ+ VCy cosφ+ VCz cos θ sinφ

vct − VCx sin θ cosφ+ VCy sinφ+ VCz cos θ cosφ

 . (7.14)

Thus, the drag vector for unit length is given by

d = −1

2
ρwdCd

 fn(ϕ)vn1

√
v2
n1

+ v2
n2

fn(ϕ)vn2

√
v2
n1

+ v2
n2

ft(ϕ)vt|vt|

 . (7.15)

7.2.3 ADDED MASS

Hydrodynamic added mass depends on relative acceleration and is often considered as an

increase of the mass. As a result, relative acceleration is defined as ar = a − aC , where

a = a(s) is cable acceleration and, furthermore, aC = 0. Hence, ar = a.
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Similarly as with relative velocity, acceleration a can be written in tangential and normal

components, i.e., a = at + an. Tangential acceleration is defined as at = (aᵀet) et and normal

acceleration as an = a − at. This distinction between tangential and normal acceleration

allows one to assume that added mass is a normal effect only. Accordingly, added mass load

is

ma = −maan. (7.16)

Subsequently, a complete inertial term becomes ma + maan, where ma accounts for added

mass per unit length and m = ρcA for mass per unit length. Throughout this work, it is

assumed that added mass is equivalent to the mass of the displaced volume, i.e., ma = ρwA.

Using the cable frame, mass and added mass can be expressed by 3× 3 matrix

mc = diag{m+ma,m+ma,m}.

So that the inertial term becomes mcac.

7.3 INEXTENSIBLE CATENARY STATICS IN CARTESIAN SPACE

A cable may be considered an inextensible catenary if it does not accumulate energy through

deformation. More specifically, this means that it does not deform axially and bends and twists

without resistance. The inextensible catenary is the most basic representation of a cable and

a starting point for constructing the required building blocks to study ROV cable mechanics.

This section considers the classic catenary in steady-state, subject to a constant field per unit

length. The solutions provided here are mainly useful to compute initial conditions for ROV

cable problems in steady-state and dynamic conditions.

The formulation herein uses catenary theory available in [64, 120]. The main assumption is

that the cable only sustains tensile forces. To frame a model, suppose that an inextensible

catenary hangs between two fixed points, namely r0 and rN . Then, for a static inextensible

catenary, the forces balance is given by

dF

ds
+ q = 0, (7.17)

where F is the internal force vector and q is the external forces field vector per unit length,

measured with respect an inertial frame. One assumes that there are no moment loads and,

as mentioned, F is always tangent to the catenary curve. This may be expressed as

F = ||F||et = ||F||dr

ds
, (7.18)
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where ||F|| is the magnitude of F that describes the catenary’s internal tension T , i.e., T =

||F||. Please note that derivatives are not partial because s is the only independent variable

in this problem.

This problem can be reduced to two-dimensions. In this case F is given by

F =

[
Fx

Fz

]
and the magnitude by ||F|| =

√
F 2
x + F 2

z . When weight is the only external load, the force

field may be written in two-dimensional Cartesian coordinates as

q = w =

[
0

w̄

]
,

where w is the catenary’s weight in water per unit length.

7.3.1 ANALYTIC SOLUTION

Provided that position and conditions at the left boundary, namely at s = 0, are known and

weight is the only load, Eq. (7.17) has analytical solution. Such boundary conditions may be

written as r0 = r(0) =
[
x0 z0

]ᵀ
and F(0) =

[
H V

]ᵀ
, with V > 0. Conversely, (7.17)

becomes
d

ds

[
Fx

Fz

]
+

[
0

w̄

]
= 0, (7.19)

If one integrates (7.19) from s = 0 to an arbitrary length s, it becomes

F =

[
Fx

Fz

]
=

[
H

V − w̄s

]
. (7.20)

According to (7.20), the horizontal load is constant through all the length; the vertical load

varies linearly.

Then, considering that ||F|| =
√
F 2
x + F 2

z =
√
H2 + (V − w̄s)2, an expression for the cable

geometry can be established. Using the definitions in (7.1), (7.2), (7.18) and (7.20) one obtains

the expression [
H

V − w̄s

]
=
√
H2 + (V − w̄s)2

[
dx
ds
dz
ds

]
,

which arranged and in integral form is∫ x

x0

dx =

∫ s

0

H√
H2 + (V − w̄s)2

ds,∫ z

z0

dz =

∫ s

0

V − w̄s√
H2 + (V − w̄s)2

ds.
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The integral gives an expression for x and z coordinates, namely

x =x0 +
|H|
w̄

(
asinh

(
V

H

)
− asinh

(
V − w̄s
H

))
,

z =z0 +
1

w̄

(√
H2 + V 2 −

√
H2 + (V − w̄s)2

)
.

Using these expressions, provided that left-boundary force is known, it is possible to calculate

the catenary’s coordinates at any given length s. For instance, the right boundary coordinates

xL and zL, when s = L is the total length, are

xL = x(L) =x0 +
|H|
w̄

(
asinh

(
V

H

)
− asinh

(
V − w̄L
H

))
,

zL = z(L) =z0 +
1

w̄

(√
H2 + V 2 −

√
H2 + (V − w̄L)2

)
.

7.3.2 CANONICAL CATENARY SOLUTION

The catenary may be represented using non-dimensional quantities. To do so, all distances are

made non-dimensional using the total cable length L and all loads are made non-dimensional

using the total cable weight in water w̄L; moreover, it is assumed that x0 = z0 = 0 without

losing generality. Consequently, non-dimensional distances and forces become xδ = x/L,

zδ = z/L, sδ = s/L, h = H/(w̄L), v = V/(w̄L), fx = Fx/(w̄L), and fz = Fz/(w̄L). This gives

the expressions

fx =h and

fz =v − sδ

for the forces and

xδ = |h|
(

asinh
(v
h

)
− asinh

(
v − sδ
h

))
and

zδ =
√
h2 + v2 −

√
h2 + (v − sδ)2

for the coordinates. Additionally, the expression of the end coordinates becomes

xδN = xδ(1) = |h|
(

asinh
(v
h

)
− asinh

(
v − 1

h

))
and (7.21a)

zδN = zδ(1) =
√
h2 + v2 −

√
h2 + (v − 1)2. (7.21b)
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7.3.3 SHOOTING ALGORITHM

As formulated, the catenary solution allows one to calculate the forces and coordinates when

the left boundary conditions are known. This problem corresponds to an initial-value problem.

If conversely one wants to know the forces and geometry of the catenary when the right and

left boundary coordinates are specified, the proposed solution is not suited to do so. This

problem corresponds to a boundary-valued problem. An alternative to solving this problem

consists in computing the so-called shooting algorithm, where code iterates over the initial

conditions, or left boundary conditions, and solves the initial-value problem until the right

boundary conditions are met.

Because the initial-value problem has analytical solution, the shooting algorithm may be

solved as a non-linear algebraic equation. This is equivalent to finding the roots of the

equation

f(h, v) =

[
f1(h, v)

f2(h, v)

]
=

 |h| (asinh
(
v
h

)
− asinh

(
v−1
h

))
− xδN

√
h2 + v2 −

√
h2 + (v − 1)2 − zδN

 , (7.22)

given any combination of xδN and zδN .

The Jacobian of f(h, v), which is used for instance in a root-finding algorithm, is given by

Jf (h, v) =

[
∂ f1
∂h

∂ f1
∂v

∂ f2
∂h

∂ f2
∂v

]
, (7.23)

where

∂ f1

∂h
= sign(h)

(
asinh

(v
h

)
− asinh

(
v − 1

h

))
+

v − 1√
h2 + (v − 1)2

− v√
h2 + v2

,

∂ f1

∂v
=

|h|√
h2 + v2

− |h|√
h2 + (v − 1)2

,

∂ f2

∂h
=

h√
h2 + v2

− h√
h2 + (v − 1)2

, and

∂ f2

∂v
=

v√
h2 + v2

− v − 1√
h2 + (v − 1)2

.

7.3.4 NUMERICAL RESULTS ON THE ANALYTIC SOLUTION

As indicated by (7.22), for any given xδN and zδN there are h and v that satisfy the equation.

Two things can be stated: first, as suggested previously, xδN and zδN can be found by using
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a root-finder algorithm over (7.22); and second, there are functions h and v so that h =

h(xδN , zδN ) and v = h(xδN , zδN ) represent the same set as (7.22). For the former, if a root-

finder algorithm is to be used, initial conditions are needed, and for the latter, given the

absence of analytical solution, they may be approximated by using numerical solutions and,

for instance, a polynomial regression model.

A combination of the two previously mentioned elements may be used as follows: use the

results of numerical computations to find meta-models for h and v, and use the results of

the meta-model to initialise a shooting algorithm. This has the advantage that the shooting

algorithm is initialised near the solution, hence requiring less iterations. This will be explored

later.

All root-finding problems of the form f(x) = 0, where x is a vector of unknowns, are solved

by using Python’s ScyPy optimisation module. The fsolve function is used, which is a

wrapper that uses FORTRAN-MINPACK’s hybrd and hybrj algorithms [111]. All default

options work well on all problems, unless explicitly stated. In all the cases the Jacobian of

the function is explicitly declared to the solver, for instance, (7.23) is provided along (7.22).

7.3.5 PROBLEM’S DOMAIN

Before performing further computations, the problem’s domain is parametrised. The target

position is given by xδN = rl sin θl and zδN = rl cos θl. The problem is solved only in the first

quadrant, this means that θ ∈ [0, π/2]. The solutions in the second quadrant are symmetric

to the ones of the first quadrant (the functions that define xδN and zδN are even). The limits

of rl, given that the catenary is inextensible, are strictly between 0 and 1. Nevertheless,

values approaching 1 require the catenary to be highly tensioned. Such results are not in the

interests of this work. For this reason a different range for rl is to be used. In this work,

values for rl such that
√
h2 + v2 < 1 are used. This means that tension at the left boundary

is less than total weight.

The problem’s boundary may be found by setting h = sin θf and v = cos θf in (7.21), enforcing

unitary tension at the left boundary. This gives the expressions

xδN max = | sin θf |
(

asinh

(
cos θf
sin θf

)
− asinh

(
cos θf − 1

sin θf

))
and (7.24a)

zδN max = 1−
√

sin θf
2 + (cos θf − 1)2. (7.24b)

The limits of the problem are given by the set defined in (7.24a) and (7.24b), and the results

are illustrated in Fig. 7.3.
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Figure 7.3. Problem domain

7.3.6 ENERGY FUNCTION

The shooting algorithm can be understood, according to Eq. (7.22), as finding the roots of f.

Conversely, they can be understood as well as a minimisation problem of the functional

J(h, v) =
1

2
fᵀ(h, v) f(h, v). (7.25)

This can be seen as a potential energy functional related to the problem. Moreover, the

gradient of such function can be computed as

∇J(h, v) = fᵀ(h, v)Jf (h, v), (7.26)

where Jf (h, v) is calculated according to (7.23).

7.3.7 ILLUSTRATIVE CASES

For the sake of illustration, different solutions of the problem are computed. The solutions

presented herein contain all the possible combinations for θl = 15, 45 and 75 deg and rl =

0.25, 0.50 and 0.75. Each of the cases has the following computations: 1) computation of the
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shooting algorithm to find h and v such the catenary reaches the required right boundary

position, 2) computation of the resultant catenary geometry, i.e., xδ and zδ coordinates, and

3) evaluation of the energy functional (7.25).

The results of the computations are shown in Figs. 7.4 and 7.5. Figure 7.4 shows the resultant

geometries. Moreover, Fig. 7.5 illustrates the contours of the energy functions: each row

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

z

Figure 7.4. Catenary resultant geometry

represents a different value of θl, increasing from up to down. Each column represents a

different value of rl, increasing from left to right. Additionally, the dot represents the solution

to the shooting algorithm problem.

7.3.8 INITIAL CONDITIONS

The objective of this section is to find suitable initial conditions for the shooting algorithm.

To do such thing, several computations are performed in a Monte-Carlo fashion. For each

iteration pseudo-random values are chosen for rl and θl inside the domain of the problem.

For these conditions, the shooting algorithm is computed to find the corresponding values of

h and v. Each Monte-Carlo run consist of N iterations; in this case N = 1 × 106 is chosen.

Three different Monte-Carlo runs are performed like this:
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Figure 7.5. Energy function contours

1. Ad-hoc values of h and v are chosen to initialise the root-finding algorithm. In this case,

values of h = 0.2 and v = 0.5 are used.

2. From the previous results, calculate the 50 % percentile of all computed values of h and

v and use these values to initialise the root finding algorithm.

3. From the previous results, find a regression model that allows the estimation of values of

h and v as a function of rl and/or θl to better-initialise the root-finding algorithm. To

find a suitable regression model, a covariance analysis is performed to select the variables

to be used in a regression polynomial.

To check the effectiveness of each initial-condition option, the number of evaluations of the

function performed by the root-finding algorithm at each iteration are computed and com-

pared.

The results overview is as follows:
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1. With the chosen ad-hoc values of h and v the iterations’ number of function evaluations

have a 50 % percentile of 10. Excluding outliers, the number of evaluations range between

9 and 12.

2. The 50 % percentile values of h and v, rounded to the fourth decimal, are h = 0.0375 and

v = 0.6233. Using these values as initial conditions the iterations’ number of function

evaluations have a 50 % percentile of 8 and, excluding outliers, the number of evaluations

range between 4 and 12. These initial conditions represent a better option compared to

previous ad-hoc values.

3. From the previous results, the resultant regression model is given by

hinit =2.87784412x5
δN − 4.49604799x4

δ + 2.73869239x3
δ − 0.381152054x2

δ

+ 0.149027798xδ, (7.27)

vinit =− 0.10729293z3
δ + 0.09862232z2

δ + 0.50221887zδ + 0.5. (7.28)

The derivation of these functions will be further discussed. Using these functions to

compute the initial conditions the iterations’ number of function evaluations have a 50 %

percentile of 5 and, excluding outliers, the number of evaluations range between 4 and

7. This one, compared to the previous two, represent the best option for initialising the

root-finding algorithm.

The results discussed herein are summarised in Fig. 7.6. To obtain the regression model two

Figure 7.6. Number of function evaluations at each run

steps are followed: first, a covariance analysis is used to choose suitable model’s independent
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variables; second, different polynomial regressions are tested and, based on the behaviour of

the residuals, a polynomial degree is chosen.

The correlation coefficients of variables h, v,
√
h2 + v2, atan(h/v), xδN , zδN , rl, and θl were

computed; however, h, v, xδN , and zδN where considered enough to construct a regression

model. Figure 7.7 shows scatter plots of h and v as functions of xδN and zδN resulting from

all iterations. For illustration purposes, only 0.2 % of the total computed data is shown in

the figure. Additionally, the shade of grey represents the amount of correlation: white and

black correspond to correlation coefficients of 0 and 1 respectively.
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Figure 7.7. Correlation plots

Figure 7.8 shows the residual values resultant from choosing polynomials of different degrees

as regression functions, as well as the difference between consecutive residuals. The degree

of the polynomial used for the approximated function is chosen so that the difference of

consecutive residuals reaches at least 1. This gives a polynomials of degrees 5 and 3 for h and

v respectively.

Tables 7.1 and 7.2 show all polynomials’ coefficients from degrees 0 to 5. Coefficients’ are

truncated to the fourth decimal and residuals are presented as whole numbers.
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Figure 7.8. Residuals plots

Table 7.1. Regression polynomials coefficients for h

Degree 1 x x2 x3 x4 x5 Residual

0 0.0806 11268

1 −0.0409 0.4147 1747

2 0.0117 −0.0906 0.6762 384

3 −0.006 0.2338 −0.3923 0.8867 259

4 0.0021 −0.0044 1.0027 −1.7959 1.6126 237

5 −0.001 0.1490 −0.3812 2.7387 −4.4960 2.8778 234

The zero crossings of the functions may be found analytically from (7.21). When xδN = 0,

h = 0, and for zδN = 0, v = 1/2. Moreover, if h = 0 and 0 < v < 1 are assumed, then

v =
1+zδN

2 . This can be considered while further constructing regression functions. The

regression functions (7.28) will be used to give an initial guess to the shooting algorithm.

These functions, along with scatter data of 0.2 % of the simulations, are shown in Fig. 7.9.

As a practical recommendation from this section, if a unique set of values for h and v is to be

used then initialising the algorithm with h = 0.0375 and v = 0.6233 is a good choice. A better

choice is to use functions (7.28) and compute initial values depending on the right boundary

coordinates.
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Table 7.2. Regression polynomials coefficients for v

Degree 1 x x2 x3 x4 x5 Residual

0 0.6523 15052

1 0.5006 0.5186 188

2 0.4982 0.5414 −0.03058 185

3 0.5003 0.5022 0.0986 −0.1073 183

4 0.4998 0.5177 0.0079 0.0672 −0.1049 183

5 0.5000 0.5101 0.0762 −0.1567 0.1967 −0.1421 183
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Figure 7.9. Regression functions

7.3.9 OPTIMAL CATENARY CONFIGURATION

For the catenary, an optimisation problem can be stated as follows: if a position in the xz-

plane should be reached at the right boundary, find the optimal cable length so that the

tension at the left boundary is a minimum. This may be stated as

min
1

2
||TδN ||2,

subject to the catenary model.

For this problem, a different model description is formulated in order to include the cable

length as an optimisation variable. More conceptually, it is necessary to include the fact that

if the cable length is greater then the cable tension should be greater as well; in opposition, if
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the catenary length approaches the span between the two boundaries, the tension increments

also. These opposed effects should derive an optimal configuration placed in between.

This new formulation requires a non-dimensional model different to the canonical one. Let

the coordinates of the left boundary be given by xN = rl sin θl zN = rl cos θl. Then, rl

is used to make all distances non-dimensional and wrl to make all loads non-dimensional.

Consequently, one defines that xδ = x/rl, zδ = z/rl, sδ = s/rl, l = L/rl, h = H/(wrl),

xδN = sin θl zδN = cos θl, v = V/(wrl), fx = Fx/(wrl), and fz = Fz/(wrl).

Using these definitions, the forces and coordinates model look similar to the canonical cate-

nary’s but gives a different description of the right boundary loads and coordinates. The right

boundary load is given by

fxN =h and

fzN =v − l

and the right boundary coordinates are given by

xδN = xδ(1) = |h|
(

asinh
(v
h

)
− asinh

(
v − l
h

))
and (7.29a)

zδN = zδ(1) =
√
h2 + v2 −

√
h2 + (v − l)2. (7.29b)

If the right boundary load is to be minimised, then the target function may be defined as

fT (h, v, l) =
1

2

(
h2 + (v − l)2

)
and its gradient by

∇fT =
[
h, v − l, l − v

]ᵀ
The catenary model (7.29a) and (7.29b) generates the constraints

c1(h, v, l) =|h|
(

arcsinh
(v
h

)
− arcsinh

(
v − l
h

))
− sin θl,

c2(h, v, l) =
√
h2 + v2 −

√
h2 + (v − l)2 − cos θl.

The gradients of these functions are

∇c1(h, v, l) =


sign(h)

(
asinh

(
v
h

)
− asinh

(
v−l
h

))
+ v−1√

h2+(v−l)2
− v√

h2+v2

|h|√
h2+v2

− |h|√
h2+(v−l)2

|h|√
h2+(v−l)2
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and

∇c2(h, v, l) =


h√

h2+v2
− h√

h2+(v−l)2
v√

h2+v2
− v−l√

h2+(v−l)2
v−l√

h2+(v−l)2

 .

The solution to this problem is illustrated in Fig. 7.10. A practical solution to this problem is

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

0.0
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1.0

z

Limits
Optimal position

Figure 7.10. Optimal configuration

shown in Fig. 7.11. Here, the catenary length to span l/rl is plotted as a function of θl, namely

the direction angle of the right boundary coordinate. The optimal ratio is compared to the

minimum ratio given by the boundaries in (7.24a) and (7.24b): ratios below the minimum

herein will represent a non-dimensional tension over 1.
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Figure 7.11. Optimal catenary length to span

7.4 DRAG CATENARY MECHANICS IN CARTESIAN SPACE: FINITE DIF-

FERENCES

7.4.1 STATICS

The model given by (7.17) and (7.18), namely

dF

ds
+ q =0 and

||F||dr

ds
=F,

may be discretised in N segments and N + 1 nodes. The discretisation of s is given by the

sequence sj = {0, s1, . . . , sj , . . . , sN}, where j = 0, . . . , N . Accordingly, variables F and r are

discretised so that Fj = F(sj) and rj = r(sj). This finite differences approach discretises

the differential equation with respect to the mid-segment using first order centred differences.

The derivatives become

dF

ds

∣∣∣∣
j− 1

2

≈Fj − Fj−1

∆sj
and

dr

ds

∣∣∣∣
j− 1

2

≈rj − rj−1

∆sj
,
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Also, for the other terms averages are adopted; these become

qj− 1

2
=

1

2
(qj−1 + qj) , Fj− 1

2
=

1

2
(Fj−1 + Fj) , and

||F||j− 1

2
=

1

2
(Tj−1 + Tj) .

Please note that the definition T = ||F|| was used here. This discretisation approach is similar

to that in the WHOI cable model [53, 54].

Taking this into account, the equations for segment j, with j = 1, . . . , N , are given by

Fj − Fj−1

∆sj
+

1

2
(qj−1 + qj) =0 and

(Tj−1 + Tj)
rj − rj−1

∆sj
= (Fj−1 + Fj) ,

where ∆sj = sj − sj−1. This gives the set of non-linear equations, for j = 1, . . . , N

f1j(Fj−1, rj−1,Fj , rj) =
Fj − Fj−1

∆sj
+

1

2
(qj−1 + qj) = 0 and (7.30)

f2j(Fj−1, rj−1,Fj , rj) = (Tj−1 + Tj)
rj − rj−1

∆sj
− (Fj−1 + Fj) = 0. (7.31)

Functions f1j and f2j in (7.30) and (7.31) are the model’s residuals.

7.4.2 DYNAMICS

The dynamics model may be obtained from a linear momentum balance. The model can be

written with respect to an inertial frame as

∂F

∂s
+ q =m

∂v

∂t
+ ma and

||F||∂r

∂s
=F,

where F is internal force, q force field per unit length, v = ∂r/∂t velocity, m mass per unit

length, and ma = maan load due to added mass. More explicitly, the model is

∂F

∂s
+ w + d =m

∂v

∂t
+maan and (7.32)

||F||∂r

∂s
=F. (7.33)

Using the same discretisation scheme as in the static problem, spatial derivatives are taken

with respect to the mid-segment and other quantities are averaged. Consequently,

∂F

∂s

∣∣∣∣
j− 1

2

≈Fj − Fj−1

∆sj
and

∂r

∂s

∣∣∣∣
j− 1

2

≈rj − rj−1

∆sj
,
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and non-derivative terms become

wj− 1

2
=

1

2
(wj−1 + wj) , dj− 1

2
=

1

2
(dj−1 + dj) ,

∂v

∂t

∣∣∣∣
j− 1

2

=
1

2
(aj−1 + aj) ,

anj− 1
2

=
1

2

(
anj−1

+ anj
)
, Fj− 1

2
=

1

2
(Fj−1 + Fj) , and ||F||j− 1

2
=

1

2
(Tj−1 + Tj) .

Taking this into account, the equations for segment j, with j = 1, . . . , N , are given by

Fj − Fj−1

∆sj
+

1

2
(wj−1 + wj) +

1

2
(dj−1 + dj) =

1

2
mj (aj−1 + aj) +

1

2
maj

(
anj−1

+ anj
)

and

(Tj−1 + Tj)
rj − rj−1

∆sj
= (Fj−1 + Fj) .

This gives the set of non-linear equations, for j = 1, . . . , N

f1j(Fj−1, rj−1,vj−1,aj−1,Fj , rj ,vj ,aj) =

1

2
mj (aj−1 + aj) +

1

2
maj

(
anj−1

+ anj
)

− Fj − Fj−1

∆sj
− 1

2
(wj−1 −wj)−

1

2
(dj−1 + dj) = 0 (7.34)

and

f2j(Fj−1, rj−1,Fj , rj) = (Tj−1 + Tj)
rj − rj−1

∆sj
− (Fj−1 + Fj) = 0. (7.35)

Functions f1j and f2j in (7.34) and (7.35) are the model’s residuals.

7.4.3 JACOBIANS OF THE DRAG FUNCTION

From all components of static and dynamic models, the computation of drag Jacobians present

the most difficulty. A function for drag per unit length, according to (7.13), is

d(r,F,v) = −1

2
ρwd

(
Ct|vt|vt + Cn|vn|vn

)
;

this model finally depends on r, F, and v. This comes from the way components are defined.

Dependence on F comes from the definition of tangential direction, i.e. et = F/||F||, that is

used when defining tangential and normal components of relative velocity, i.e., vt = (vᵀ
r et)et

and vn = (vr − vᵀ
r et)et. Dependence on v comes from the definition of relative velocity,

i.e., vr = v −Vn
c . Finally, dependence on r comes indirectly from the spatial distribution of

current velocity, this means that Vn
c (r). Assuming ρw, d, Ct, and Cn constant, the Jacobian

of d with respect to F is

KdF =
∂d

∂F
=

∂d

∂vt

∂vt
∂F

+
∂d

∂vn

∂vn
∂F

= −1

2
ρwd (Ct(vtI + vte

ᵀ
t )− Cn(vnI + vtneᵀ

n))
1

T
(vtI + etv

ᵀ
r ) (I− ete

ᵀ
t ) ,
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with respect to r is

Kdr =
∂d

∂r
=

(
∂d

∂vt

∂vt
∂vr

+
∂d

∂vn

∂vn
∂vr

)
∂vr
∂Vn

c

∂Vn
c

∂r

=
1

2
ρwd (Ct(vtI + vte

ᵀ
t )ete

ᵀ
t + Cn(vnI + vtneᵀ

n)(I− ete
ᵀ
t ))

∂Vn
c

∂r
,

and with respect to v is

Kdv =
∂d

∂v
=

(
∂d

∂vt

∂vt
∂vr

+
∂d

∂vn

∂vn
∂vr

)
∂vr
∂v

= −1

2
ρwd (Ct(vtI + vte

ᵀ
t )ete

ᵀ
t + Cn(vnI + vtneᵀ

n)(I− ete
ᵀ
t )) .

7.4.4 TANGENT LINEAR SYSTEM IN STEADY STATE

Because the static model is non-linear, the assembled residual function may be written as

f(X) = 0,

with linear Taylor-series expansion around X = X0

f(X) ≈ f(X0) +
∂f

∂X

∣∣∣∣
X=X0

(X−X0) = 0.

This lineal approximation can be rewritten as the linear equation system

Kf (X0)dX = −f(X0),

where

Kf (X0) =
∂f

∂X

∣∣∣∣
X=X0

and dX = X−X0.

The tangent linear system from (7.30) and (7.31) is

[
− 1

∆sj
I + 1

2KdFj−1

1
2Kdrj−1

1
∆sj

I + 1
2KdFj

1
2Kdrj

−I + (rj − rj−1)eᵀ
tj−1

−Tj−1+Tj
∆sj

I −I + (rj − rj−1)eᵀ
tj

Tj−1+Tj
∆sj

I

]
dFj−1

drj−1

dFj

drj

 =

[
−f1j

−f2j

]
.

7.4.5 DYNAMICS TIME INTEGRATION

Newmark-β is a classical algorithm for implicit time integration. This is, from known kine-

matic conditions rn, vn, and an, compute kinematic conditions in the next time step tn+1 =
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tn + ∆t, i.e., rn+1, vn+1, and an+1. The algorithm is [28]

an+1 =
1

β∆t2
(rn+1 − rn −∆tvn)−

(
1

2β
− 1

)
an, (7.36)

vn+1 =
γ

β∆t
(rn+1 − rn)−

(
γ

β
− 1

)
vn −∆t

(
γ

2β
− 1

)
an. (7.37)

The tangent linear system from (7.34) and (7.35) is

[
K1Fj−1

K1rj−1
K1vj−1

K1Mj−1
K1Fj K1rj K1vj K1Mj

K2Fj−1
K2rj−1

0 0 K2Fj K2rj 0 0

]


dFj−1

drj−1

dvj−1

daj−1

dFj

drj

dvj

daj


=

[
−f1j

−f2j

]

where

K1Fj−1
=

1

∆sj
I− 1

2
KdFj−1

+
1

2
KaFj−1

, K1rj−1
= −1

2
Kdrj−1

,

K1vj−1
= −1

2
Kdvj−1

, K1Mj−1
=

1

2
mjI +

1

2
maj

(
I− etj−1

eᵀ
tj−1

)
,

K1Fj = − 1

∆sj
I +

1

2
KFj−1

, K1rj = −1

2
Kdrj ,

K1vj = −1

2
Kdvj , K1Mj

=
1

2
mjI +

1

2
maj

(
I− etje

ᵀ
tj

)
,

K2Fj−1
= −I + (rj − rj−1)eᵀ

tj−1
, K2rj−1

= −Tj−1 + Tj
∆sj

I,

K2Fj = −I + (rj − rj−1)eᵀ
tj , and K2rj =

Tj−1 + Tj
∆sj

I.

From (7.36) and (7.37)

f3j(rn+1,an+1) = an+1 −
1

β∆t2
rn+1 +

1

β∆t2
(rn + ∆tvn) +

(
1

2β
− 1

)
an = 0 and

f4j(vn+1,an+1) = vn+1 −
γ

β∆t
rn+1 +

γ

β∆t
rn +

(
γ

β
− 1

)
vn + ∆t

(
γ

2β
− 1

)
an = 0,

the corresponding tangent system for the j-th node is

[
0 − 1

β∆t2 I 0 I

0 − γ
β∆tI I 0

]
dFj

drj

dvj

daj

 =

[
−f3j

−f4j

]
.
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7.5 DRAG CATENARY MECHANICS IN CARTESIAN SPACE: FINITE EL-

EMENTS

7.5.1 STATICS

The model given by (7.17) and (7.18), namely

dF

ds
+ q =0 and

||F||dr

ds
=F,

can be solved by using a finite element method (FEM) mixed formulation [28]. This means

that (7.17) and (7.18) are solved simultaneously for F and r, and both variables have the

same level of discretisation. This FEM formulation holds that similarity to the FD method.

Now, writing again the model, but using FEM notation one has

F,s + w + d =0 and (7.38)

||F||r,s − F =0. (7.39)

Note that in FEM notation F,s = dF/ds and r,s = dr/ds. Also note that load q is written

explicitly as a sum of weight and drag, i.e., w + d. This distinction is important because w

is assumed as a constant field over each cable segment and d variable. Equations (7.38) and

(7.39) are named the strong form of the model.

Using Galerkin formulation of weighted residuals, (arbitrary) weight functions w1(s) and

w2(s) are first defined to dot-multiply both sides of the equation and then integrate over the

domain s ∈ [0, L]. This gives∫ L

0
(F,s + w + d) ·w1(s)ds =0 and∫ L

0
(||F||r,s − F) ·w2(s)ds =0.

These integrals may be solved term-wise, i.e.,∫ L

0
F,s ·w1(s)ds+

∫ L

0
w ·w1(s)ds+

∫ L

0
d ·w1(s)ds =0 and∫ L

0
||F||r,s ·w2(s)ds−

∫ L

0
F ·w2(s)ds =0.

Finally, using integration by parts on the first equation, one obtains the static model in its

weak form, namely

F(s) ·w1(s)|L0 −
∫ L

0
F ·w1,sds+

∫ L

0
w ·w1(s)ds+

∫ L

0
d ·w1(s)ds =0 and (7.40)∫ L

0
||F||r,s ·w2(s)ds−

∫ L

0
F ·w2(s)ds =0. (7.41)
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This problem may be discretised in N segments and N + 1 nodes. The discretisation of s is

given by the sequence {s1, . . . , sj , . . . , sN+1}. This allows one to write a discretised version of

(7.40) and (7.41), namely

F(s) ·w1(s)|L0 +

N∑
j=1

(
−
∫ sj+1

sj

F ·w1,sds+

∫ sj+1

sj

w ·w1(s)ds+

∫ sj+1

sj

d ·w1(s)ds

)
=0

(7.42)

and

N∑
j=1

(∫ sj+1

sj

||F||r,s ·w2(s)ds−
∫ sj+1

sj

F ·w2(s)ds

)
=0.

(7.43)

Variables F, r, w1, and w2 are discretised using linear Lagrange polynomials. This means,

using F(s) as an example, that in s ∈ [sj , sj+1]

F(s) = Nj
1(s)Fj + Nj

2(s)Fj+1 =
[

Nj
1(s) Nj

2(s)
] [ Fj

Fj+1

]
,

where

Nj
1(s) =

sj+1 − s
sj+1 − sj

=
sj+1 − s

∆sj
and

Nj
2(s) =

s− sj
sj+1 − sj

=
s− sj
∆sj

.

Moreover, the derivatives become

F,s(s) = N′j1 (s)Fj + N′j2 (s)Fj+1 =
[

N′j1 (s) N′j2 (s)
] [ Fj

Fj+1

]
,

where

N′j1 (s) = − 1

∆sj
and N′j2 (s) =

1

∆sj
.

Taking this into account, the integral terms in (7.42) and (7.43) are as follows. For the internal

forces term one has∫ sj+1

sj

F ·w1,sds =

∫ sj+1

sj

(
Nj

1(s)Fj + Nj
2(s)Fj+1

)
·
(

N′j1 (s)w1j + N′j2 (s)w1j+1

)
ds

=
[

wᵀ
1j

wᵀ
1j+1

] ∫ sj+1

sj

[
N′j1 (s)

N′j2 (s)

] [
Nj

1(s) Nj
2(s)

]
ds

[
Fj

Fj+1

]

=
[

wᵀ
1j

wᵀ
1j+1

] [ −1
2 −1

2
1
2

1
2

][
Fj

Fj+1

]
.



CHAPTER 7. CABLE MODELLING 195

For the weight term one assumes that w is constant for each segment, i.e., w = wj , for

s ∈ [sj , sj+1]. Then, the expression becomes∫ sj+1

sj

w ·w1(s)ds =

∫ sj+1

sj

wj ·
(

Nj
1(s)w1j + Nj

2(s)w1j+1

)
ds =

[
wᵀ

1j
wᵀ

1j+1

] [ ∆sj
2 wj

∆sj
2 wj

]
.

For the drag term one has∫ sj+1

sj

d ·w1(s)ds =

∫ sj+1

sj

(
Nj

1(s)dj + Nj
2(s)dj+1

)
·
(

Nj
1(s)w1j + Nj

2(s)w1j+1

)
ds

=
[

wᵀ
1j

wᵀ
1j+1

] [ ∆sj
3 dj + ∆sj

6 dj+1
∆sj

6 dj + ∆sj
3 dj+1

]
.

For the force-magnitude-direction term, force magnitude is defined as ||F|| = T (s), and for a

segment T (s) = Nj
1(s)Tj + Nj

2(s)Tj+1; thus∫ sj+1

sj

||F||r,s ·w2(s)ds

=

∫ sj+1

sj

(
Nj

1(s)Tj + Nj
2(s)Tj+1

)(
N′j1 (s)rj + N′j2 (s)rj+1

)
·
(

Nj
1(s)w2j + Nj

2(s)w2j+1

)
ds

=
[

wᵀ
2j

wᵀ
2j+1

] [ −1
3Tj −

1
6Tj+1

1
3Tj + 1

6Tj+1

−1
6Tj −

1
3Tj+1

1
6Tj + 1

3Tj+1

][
rj

rj+1

]
.

The force term becomes∫ sj+1

sj

F ·w2(s)ds =

∫ sj+1

sj

(
Nj

1(s)Fj + Nj
2(s)Fj+1

)
·
(

Nj
1(s)w2j + Nj

2(s)w2j+1

)
ds

=
[

wᵀ
2j

wᵀ
2j+1

] [ ∆sj
3

∆sj
6

∆sj
6

∆sj
3

][
Fj

Fj+1

]
.

The discretised version of (7.42) and (7.43) is

F(s) ·w1(s)|L0 +

N∑
j=1

[
wᵀ

1j
wᵀ

1j+1

](
−

[
−1

2 −1
2

1
2

1
2

][
Fj

Fj+1

]

+

[
∆sj

2 wj
∆sj

2 wj

]
+

[
∆sj

3 dj + ∆sj
6 dj+1

∆sj
6 dj + ∆sj

3 dj+1

])
= 0 (7.44)

and

N∑
j=1

[
wᵀ

2j
wᵀ

2j+1

]([ −1
3Tj −

1
6Tj+1

1
3Tj + 1

6Tj+1

−1
6Tj −

1
3Tj+1

1
6Tj + 1

3Tj+1

][
rj

rj+1

]

−

[
∆sj

3
∆sj

6
∆sj

6
∆sj

3

][
Fj

Fj+1

])
= 0. (7.45)
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7.5.2 DYNAMICS

The dynamic model in (7.32) and (7.33), namely

∂F

∂s
+ w + d =m

∂v

∂t
+maan and

||F||∂r

∂s
=F.

can be solved as well by using a FEM mixed formulation. This means that (7.32) and (7.33)

are solved simultaneously for F and kinematic variables r and v. In FEM notation one has

F,s + w + d−maan −mv̇ =0 and (7.46)

||F||r,s − F =0. (7.47)

Equations (7.38) and (7.39) are the strong form of the dynamic model.

For using Galerkin formulation of weighted residuals, weight functions w1(s) and w2(s) are

defined. Dot-multiplying both sides of the equation by w1(s) and w2(s) and then integrating

over the domain s ∈ [0, L] gives∫ L

0
(F,s + w + d−maan −mv̇) ·w1(s)ds =0 and∫ L

0
(||F||r,s − F) ·w2(s)ds =0.

Using integration by parts in the first equation and writing the integrals term-wise, the weak

form becomes

F(s) ·w1(s)|L0 −
∫ L

0
F ·w1,sds+

∫ L

0
w ·w1(s)ds+

∫ L

0
d ·w1(s)ds

−
∫ L

0
maan ·w1(s)ds−

∫ L

0
mv̇ ·w1(s)ds = 0 (7.48)

and ∫ L

0
||F||r,s ·w2(s)ds−

∫ L

0
F ·w2(s)ds = 0. (7.49)

As before, this problem may be discretised in N segments and N + 1 nodes. The discretised

version of (7.40) and (7.41) becomes

F(s) ·w1(s)|L0 +

N∑
j=1

(
−
∫ sj+1

sj

F ·w1,sds+

∫ sj+1

sj

w ·w1(s)ds+

∫ sj+1

sj

d ·w1(s)ds

−
∫ sj+1

sj

maan ·w1(s)ds−
∫ sj+1

sj

mv̇ ·w1(s)ds

)
= 0 (7.50)
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and
N∑
j=1

(∫ sj+1

sj

||F||r,s ·w2(s)ds−
∫ sj+1

sj

F ·w2(s)ds

)
= 0. (7.51)

Variables F, r, w1, and w2 are discretised similarly to the static case, using linear Lagrange

polynomials. Consequently, all but inertial terms of (7.50) and (7.50) are solved as in the

static case. The additional terms are added mass given by

∫ sj+1

sj

maan ·w1(s)ds =

∫ sj+1

sj

maj

(
Nj

1(s)anj + Nj
2(s)anj+1

)
·
(

Nj
1(s)w1j + Nj

2(s)w1j+1

)
ds

=
[

wᵀ
1j

wᵀ
1j+1

]
maj

[
∆sj

3 anj + ∆sj
6 anj+1

∆sj
6 anj + ∆sj

3 anj+1

]

and inertia by

∫ sj+1

sj

mv̇ ·w1(s)ds =

∫ sj+1

sj

mj

(
Nj

1(s)v̇j + Nj
2(s)v̇j+1

)
·
(

Nj
1(s)w1j + Nj

2(s)w1j+1

)
ds

=
[

wᵀ
1j

wᵀ
1j+1

]
mj

∫ sj+1

sj

[
Nj

1(s)

Nj
2(s)

] [
Nj

1(s) Nj
2(s)

]
ds

[
v̇j

v̇j+1

]

=
[

wᵀ
1j

wᵀ
1j+1

]
mj∆sj

[
1
3

1
6

1
6

1
3

][
v̇j

v̇j+1

]
.

The discretised version of (7.50) and (7.51) is

F(s) ·w1(s)|L0 +

N∑
j=1

[
wᵀ

1j
wᵀ

1j+1

](
−

[
−1

2 −1
2

1
2

1
2

][
Fj

Fj+1

]
+

[
∆sj

2 wj
∆sj

2 wj

]

+

[
∆sj

3 dj + ∆sj
6 dj+1

∆sj
6 dj + ∆sj

3 dj+1

]
−maj∆sj

[
1
3anj + 1

6anj+1

1
6anj + 1

3anj+1

]
−mj∆sj

[
1
3

1
6

1
6

1
3

][
v̇j

v̇j+1

])
= 0

(7.52)

and

N∑
j=1

[
wᵀ

2j
wᵀ

2j+1

]([ −1
3Tj −

1
6Tj+1

1
3Tj + 1

6Tj+1

−1
6Tj −

1
3Tj+1

1
6Tj + 1

3Tj+1

][
rj

rj+1

]

−

[
∆sj

3
∆sj

6
∆sj

6
∆sj

3

][
Fj

Fj+1

])
= 0. (7.53)



CHAPTER 7. CABLE MODELLING 198

7.6 DYNAMICS AND LINEAR ELASTICITY USING CABLE FRAME CO-

ORDINATES

7.6.1 STRAIN KINEMATICS

All variables are represented as a function of s ∈ [0, L], the Lagrangian coordinate that

represents the non-stretched length of the cable. When the cable is stretched, the length is

represented by p ∈ [0, Ls]. The relationship of these two variables is given by the strain ε (see

e.g. [13, 62]), such that
∂p

∂s
= 1 + ε (7.54)

Throughout the whole study linear materials are assumed, this means that strain is related

to material properties and load by Hooke’s law ε = T
EA , where T is tension, E is Young’s

modulus, A = πd2/4 is transversal area, and d is the diameter.

A point on the cable is given at an inertial reference frame as r =
[
x y z

]ᵀ
. The variation

of the cable’s position along the stretched coordinate p is given by

∂r

∂p
=
[

∂x
∂p

∂y
∂p

∂z
∂p

]ᵀ
.

This derivative gives the tangential direction vector of the cable et, such that

et =
∂r

∂p
. (7.55)

Then, variation of the cable’s position along the non-stretched coordinate s is given by

∂r

∂s
=
∂r

∂p

dp

ds
,

which combined with (7.54) and (7.55) gives the expression

∂r

∂s
= et(1 + ε). (7.56)

7.6.2 STATICS EQUATIONS

The forces equilibrium equation can be written as [62]

DF

Dp
+ q = 0. (7.57)

This model indicates that variation on the internal load along the cable length is due to the

action of the external loads. Given that DF
Ds = DF

Dp
dp
ds and combining (7.54) and (7.57), the

forces model becomes
DF

Ds
+ q(1 + ε) = 0. (7.58)
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Moreover, the complete derivative in (7.58), using the definition in (7.7), can be further

detailed as
∂F

∂s
+ Ω× F + q(1 + ε) = 0. (7.59)

The moments equation is assumed as

DM

Dp
+
∂r

∂p
× F + me = 0, (7.60)

where M is the internal moments vector and me stands for externally applied moments for

unit length. If there are not externally applied moments (me = 0), it is considered that
DM
Ds = DM

Dp
dp
ds , the complete derivative is expanded as in (7.7), and the definition in (7.55) is

considered, then (7.60) becomes

∂M

∂s
+ Ω×M + et × F(1 + ε) = 0, (7.61)

Moment equation becomes important when bending is considered (torsion as well, but is not

included here).

7.6.3 DYNAMICS EQUATIONS

The forces equation can be written as [62]

m
Dv

Dt
=

DF

Dp
+ q, (7.62)

where m may represent either the mass per unit length or a mass matrix with different mass-

per-unit-length components and v represents velocity. Mass m should be defined as a matrix

when considering added mass.

This model indicates that variation on the internal load along the cable length is due to the

action of the external loads. Given that Dv
Ds = DF

Dp
dp
ds and combining (7.54) and (7.62), the

forces model becomes

m
Dv

Dt
=

DF

Ds
+ q(1 + ε). (7.63)

Moreover, the complete derivative in (7.63), using the definition in (7.7), can be further

detailed as

m

(
∂v

∂t
+ ω × v

)
=
∂F

∂s
+ Ω× F + q(1 + ε). (7.64)

Throughout this analysis moments are considered static, hence the model is the same as in

Eq. (7.61).
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7.6.4 COMPATIBILITY EQUATIONS

The compatibility equations arise from assuming a continuous cable, this means that it is

valid to write
∂

∂t

Dr

Ds
=

D

Ds

∂r

∂t
.

From this expression and using (7.56) it follows

∂

∂t

(
(1 + ε)t̂

)
=

Dv

Ds
.

If this expression is further developed the following additional system of equation is obtained

(1 + ε)ω2 =
∂u

∂s
+ wΩ2 − vΩ3, (7.65a)

−(1 + ε)ω1 =
∂v

∂s
+ uΩ3 − wΩ1, and (7.65b)

∂ε

∂t
=
∂w

∂s
+ vΩ1 − uΩ2. (7.65c)

7.7 STATICS COMPUTATIONS USING CABLE COORDINATES

In this section the difference among different two-dimensional models is taken into account.

The following modelling scenarios are considered:

• Inextensible cable subject to weight only.

• Extensible cable subject to weight only.

• Inextensible cable subject to weight and drag.

• Extensible cable subject to weight and drag.

• Inextensible cable subject to weight and drag, including bending effects.

• Extensible cable subject to weight and drag, including bending effects.

7.7.1 NON-DIMENSIONAL VARIABLES

Calculation of non-dimensional variables is based on two main scaling quantities: the cable’s

non-stretched length L and a measure of the total external load per unit length applied to

the cable q, adding weight and drag effects. The use of the former quantity is quite usual;

regarding the use of the latter quantity, it is more common to scale loads based on weight
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only (see for instance [62]). Given that it is convenient to study neutrally buoyant cables as

well, using a measure of the total load helps one to analyse the relative importance between

weight and drag.

The total load per unit length is given in (7.11), then a measure of the total load is

q = w̄ + d̄, (7.66)

where w̄ is the cable’s weight in water per unit length and d̄ is a metric of the total drag per

unit length. Such drag may be defined as

d̄ =
1

2
ρwdCdV̄

2, (7.67)

where V̄ is a reference velocity. Two possibilities for this velocity, based on a current profile,

are

V̄ = max(||Vc(s)||) or V̄ =

√∣∣∣∣∣∣∣∣ 1L
∫ L

0
|Vc(s)|ᵀVc(s)ds

∣∣∣∣∣∣∣∣. (7.68)

Application of the scaling quantities L and q gives the following non-dimensional variables:

• Distance-based variables are scaled as ŝ = s/L, x̂ = x/L, ŷ = y/L, and ẑ = z/L.

• Rotation-related variables are scaled, for i = 1, 2, and 3, as Ω̂i = LΩi,
dΩ̂i
dŝ = L2 dΩi

ds , and
d2Ω̂i
dŝ2 = L3 d2Ωi

ds2 .

• Tension is scaled as T̂ = T
qL .

• Weight and drag per unit length are respectively scaled as ŵ = w̄
q and d̂ = d̄

q . This gives

way to the property ŵ + d̂ = 1.

• Axial and bending flexibility are respectively scaled as cs = qL
EA and cb = qL3

EI . Following

this, strain may be defined as function of tension as ε = csT̂ .

• Velocities are scaled using the reference velocity such that for any velocity component

v̂ = v/V̄ .

7.7.2 DIFFERENT MODELS IN TWO DIMENSIONS

All the studied cases are two-dimensional. This means that the following simplifications are

always applied:

• In the transformation (7.3), the rotation around the x−axis is eliminated, this means

that φ = 0.

• Current profiles and, consequently, drag loads are restricted to the xz−plane.
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These assumptions have further consequences. The equations for cable element’s coordinates

(7.4)–(7.6) becomes

∂x

∂s
= sin θ(1 + ε), (7.69a)

∂y

∂s
= 0, and (7.69b)

∂z

∂s
= cos θ(1 + ε). (7.69c)

The rotation vector in (7.8) becomes

Ω =

 0

Ω

0

 =

 0
∂θ
∂s

0

 . (7.70)

The weight vector in (7.12) becomes

w = w̄

 − sin θ

0

cos θ

 . (7.71)

The drag vector in (7.15) becomes

d = −1

2
ρwdCd

 fn(ϕ)vn|vn|
0

ft(ϕ)vt|vt|

 , (7.72)

where vn1
was just taken as vn.

7.7.3 A NOTE ON NUMERICAL METHODS AND COMPUTATIONS

Three different types of numerical methods were used in a combined manner: 1) multi-variable

function root-finder, 2) ordinary differential equation (ODE) solver for initial value problems,

and 3) centred finite-differences about mid-segments. Details about its usage are as follows:

• Root finder: all problems of the form f(x) = 0 were solved using Python’s ScyPy optimi-

sation module. The function used is a wrapper that uses FORTRAN-MINPACK’s hybrd

and hybrj algorithms [111].

• ODE solver: all initial value problems of the form dx
ds = F(s,x), with x(0) = x0, where

solved using Python’s ScyPy integration module. The function used solves real-valued

variable-coefficient ordinary differential equations, with fixed-leading-coefficient imple-

mentation, using backward differentiation formulas (BDF) for stiff problems [110]. Given
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that all problems are boundary-valued, not initial-valued, this algorithm was used along

with the root-finder. Here, a shooting-algorithm-type scheme was used, where the root-

finder calculates the initial conditions that meet the boundary conditions requirement.

• Finite-differences scheme: all partial-differential equations of the form

K(Y, s)
∂Y

∂s
+ F (Y, s) = 0

where space-discretised using centered differences about half-grid points, as proposed in

[53, 54]. This means that the derivative is discretised so that

∂Y

∂s
≈ Yj − Yj−1

∆s
,

where ∆s is the discretised cable segment size. For the other functions evaluation at

mid-point is an average of adjacent grid-points, this means that, e.g.,

K(Yj− 1

2
, sj− 1

2
) ≈ 1

2
(K(Yj−1, sj−1) +K(Yj , sj)) .

This converts the differential equation into a problem of the form F(x) = 0, that is solved

using the root-finder previously discussed.

All cases simulate a cable that hangs between two points and are subject to the external and

internal loads specified. The first (left) hang point is considered fixed at the origin (x̂0 = 0

and ẑ0 = 0), the second (right) hang point is assumed fixed at a known (x̂N , ẑN ) position. The

different solutions are parametrised using the cable end-point coordinates in polar form; this

means that variables l =
√
x̂2
N + ẑ2

N and θl = atan(x̂N/ẑN ) are used to organise the different

computations. The following values are used to illustrate the results:

• l = 0.1, 0.3, 0.5, 0.7, 0.8, and 0.9.

• θl = 0, 15, 30, 45, 60, 75, and 90 deg.

When drag is taken into account a constant current profile given by v̂x = −1 and v̂z = 0 is

assumed. It is also assumed that drag acts directly on the cable’s normal direction and is

negligible on the tangential direction, this means that fn(ϕ) = 1 and ft(ϕ) = 0.

7.7.4 CASE 1: INEXTENSIBLE CABLE SUBJECT TO WEIGHT

For an inextensible cable with infinite bending flexibility subject only to weight loads the

following simplifications can be performed:

• The internal load is only tangential, meaning that F =
[

0 0 T
]ᵀ

.
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• Strain is zero, i.e., ε = 0.

Consequently, Eq. (7.59) becomes

∂

∂s

 0

0

T

+

 0
∂θ
∂s

0

×
 0

0

T

+

 −w̄ sin θ

0

w̄ cos θ

 =

 0

0

0

 ,
which leads to the system of equations

∂T

∂s
+ w̄ cos θ = 0 and (7.73a)

T
∂θ

∂s
− w̄ sin θ = 0. (7.73b)

These equations in non-dimensional form become

∂T̂

∂ŝ
+ cos θ = 0 and (7.74a)

T̂
∂θ

∂ŝ
− sin θ = 0. (7.74b)

This model has closed analytical solution given that initial conditions T̂ (0) = T̂0, θ(0) = θ0,

x̂(0) = 0, and ẑ(0) = 0 are known. The solution [64], assuming that h = T̂0 sin θ0 and

v = T̂0 cos θ0, is

T̂ =
√
h2 + (v − ŝ)2

x̂ =h

(
asinh

(v
h

)
− asinh

(
v − ŝ
h

))
, and

ẑ =
√
h2 + v2 −

√
h2 − (v − ŝ)2.

Since usually h and v are not known beforehand and the boundary conditions x̂(1) = x̂N and

ẑ(1) = zN are given, it is possible to configure this problem as a system of non-linear algebraic

equations that is solvable using a root-finder. After solving the equations, the resulting cable

profiles are shown in Fig. 7.12. Here, different colours represent different θl.

The behaviour of tension is shown as a function of l in Fig. 7.13 and as a function of θl in

Fig. 7.14. Continuous lines represent tension at the end-point; dashed lines represent tension

at the start-point. These results show that for small span between hanging points l and for

values of θl approaching 90 deg initial and end tensions tend to be similar, they differ when l

approaches full cable length and when θl approaches 0. It is important to consider that values

of tension are referenced here to the complete cable weight, this means that a tension equal

to 1 is equal to the total cable weight. Lower values of tension are generated when the profile

is close to vertical and l is at least lower than 0.8.
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Figure 7.12. Cable profile—case 1
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Figure 7.13. Cable tension as a function of l—case 1

7.7.5 CASE 2: EXTENSIBLE CABLE SUBJECT TO WEIGHT

For an extensible cable with infinite bending flexibility subject only to weight loads, as in the

previous case, the internal load is only tangential, meaning that F =
[

0 0 T
]ᵀ

still holds.

For this case, Eq. (7.59) becomes

∂

∂s

 0

0

T

+

 0
∂θ
∂s

0

×
 0

0

T

+

 −w̄ sin θ

0

w̄ cos θ

 (1 + ε) =

 0

0

0

 ,
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Figure 7.14. Cable tension as a function of θl—case 1

which leads to the system of equations

∂T

∂s
+ w̄ cos θ(1 + ε) = 0 and (7.76a)

T
∂θ

∂s
− w̄ sin θ(1 + ε) = 0. (7.76b)

These equations in non-dimensional form become

∂T̂

∂ŝ
+ cos θ(1 + csT̂ ) = 0 and (7.77a)

T̂
∂θ

∂ŝ
− sin θ(1 + csT̂ ) = 0. (7.77b)

This model has closed analytical solution given that initial conditions T̂ (0) = T̂0, θ(0) = θ0,

x̂(0) = 0, and z(0) = 0 are known. The solution [64], assuming that h = T̂0 sin θ0 and

v = T̂0 cos θ0, is

T̂ =
√
h2 + (v − ŝ)2

x̂ =h

(
csŝ+ asinh

(v
h

)
− asinh

(
v − ŝ
h

))
, and

ẑ =csŝ

(
v − ŝ

2

)
+
√
h2 + v2 −

√
h2 − (v − ŝ)2.

As in the previous case, this problem can be written as a system of non-linear algebraic

equations that is solvable using a root-finder; also the problem is parametrised similarly as

well. The only difference between this and the previous case lies in the fact that in this case

different values of cs are considered, namely cs = 0, 0.001, 0.01, and 0.1. After solving the

equations, the resulting cable profiles are shown in Fig. 7.15. Here, the slight variation of



CHAPTER 7. CABLE MODELLING 207

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

0.0

0.2

0.4

0.6

0.8

1.0

z

Figure 7.15. Cable profile—case 2

the profile at each position is given by the variation of cs, where the most sag is found when

cs = 0.1.

The behaviour of tension is shown as a function of l in Fig. 7.16 and as a function of θl

in Fig. 7.17. Continuous lines represent tension at the end-point; dashed lines represent

tension at the start-point. It is apparent from the results that flexibility of the cable becomes

important when the cable approaches its full extension; here, tension differs among different

values of cs when l > 0.8.
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Figure 7.16. Cable tension as a function of l—case 2
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Figure 7.17. Cable tension as a function of θl—case 2

7.7.6 CASE 3: INEXTENSIBLE CABLE SUBJECT TO WEIGHT AND DRAG

Relating simplifications, this case is similar to case 1, just that in this case the drag load is

included. Consequently, for this case Eq. (7.59) becomes

∂

∂s

 0

0

T

+

 0
∂θ
∂s

0

×
 0

0

T

+

 −w̄ sin θ

0

w̄ cos θ

+

 −
1
2ρwdCdfn(ϕ)vn|vn|

0

−1
2ρwdCdft(ϕ)vt|vt|

 =

 0

0

0

 ,
which leads to the system of equations

∂T

∂s
+ w̄ cos θ − 1

2
ρwdCdft(ϕ)vt|vt| = 0 and (7.79a)

T
∂θ

∂s
− w̄ sin θ − 1

2
ρwdCdfn(ϕ)vn|vn| = 0. (7.79b)

These equations in non-dimensional form become

∂T̂

∂ŝ
+ (1− d̂) cos θ − d̂ft(ϕ)v̂t|v̂t| = 0 and (7.80a)

T̂
∂θ

∂ŝ
− (1− d̂) sin θ − d̂fn(ϕ)v̂n|v̂n| = 0. (7.80b)

This model can be solved by either using a shooting algorithm or finite differences. In addition

to the previously discussed parametrisation, cases involving drag are parametrised using d̂.

The following values were tested d̂ = 0.1, 0.3, 0.5, 0.7, and 0.9. The resulting cable profiles,

after computing the models, are shown in Fig. 7.18. If the results of this figure are compared

to those on Fig. 7.12 (or even Fig. 7.15), the effect of drag becomes apparent at shaping the

profile of the cable.
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Figure 7.18. Cable profile—case 3

The behaviour of tension is shown as a function of l in Fig. 7.19 and as a function of θl in

Fig. 7.20. The different colours represent different values of d̂; for Fig. 7.19 at each colour

several values of θl are represented and for Fig. 7.20 at each colour several values of l are

represented. From these results, it is apparent that for higher values of d̂ (i.e., 0.7 or 0.9)

tension is higher when l approaches 1 and angle is closer to 0, this is due to larger amount of

cable facing drag. In the case of lower l, tension is less dependent on θl and mostly dependent

on d̂ only.
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Figure 7.19. Cable tension as a function of l—case 3

The behaviour of tension as a function of d̂ is shown in Fig. 7.21; here the different colours
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Figure 7.20. Cable tension as a function of θl—case 3

represent different values of l. From this figure it is interesting to see what happens when d̂

ranges between 0.5 and 0.7, where values of tension are approximately independent on l or θ

and relative lower than at other regions, at these values drag effect is similar or slightly higher

than weight. It is interesting also to see that for l < 0.8 tension values are significantly low

when drag increases, compared to those on different regions of the plot.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

0.9

0.8

0.7

0.5

0.3

0.1

Figure 7.21. Cable tension as a function of d̂—case 3



CHAPTER 7. CABLE MODELLING 211

7.7.7 CASE 4: EXTENSIBLE CABLE SUBJECT TO WEIGHT AND DRAG

This case is similar to case 2, but in this case the drag load is included. For this case Eq. (7.59)

becomes

∂

∂s

 0

0

T

+

 0
∂θ
∂s

0

×
 0

0

T



+


 −w̄ sin θ

0

w̄ cos θ

+

 −
1
2ρwdCdfn(ϕ)vn|vn|

0

−1
2ρwdCdft(ϕ)vt|vt|


 (1 + ε) =

 0

0

0

 ,
which leads to the system of equations

∂T

∂s
+

(
w̄ cos θ − 1

2
ρwdCdfn(ϕ)vn|vn|

)
(1 + ε) = 0 and (7.81a)

T
∂θ

∂s
+

(
−w̄ sin θ − 1

2
ρwdCdft(ϕ)vt|vt|

)
(1 + ε) = 0. (7.81b)

These equations in non-dimensional form become

∂T̂

∂ŝ
+ ((1− d̂) cos θ − d̂ft(ϕ)v̂t|v̂t|)(1 + csT̂ ) = 0 and (7.82a)

T̂
∂θ

∂ŝ
+ (−(1− d̂) sin θ − d̂fn(ϕ)v̂n|v̂n|)(1 + csT̂ ) = 0. (7.82b)

This model is solved similarly as in the previous case, regarding numerical methods and

parametrisation, but also in this case cs is parametrised as in case 3, i.e., cs = 0, 0.001, 0.01,

and 0.1. Comparing these results to those on Fig. 7.18 it is apparent that the cable profile is

only slightly modified when the cable becomes less rigid. The resulting cable profiles, after

computing the models, are shown in Fig. 7.22.

The behaviour of tension is shown as a function of l in Fig. 7.23 and as a function of θl in

Fig. 7.24. As in the previous case, the different colours represent different values of d̂; for

Fig. 7.23 at each colour several values of θl are represented and for Fig. 7.24 at each colour

several values of l are represented.

The behaviour of tension as a function of d̂ is shown in Fig. 7.25; here the different colours

represent different values of l. Most of the conclusions on the previous case hold at this one, as

it become apparent from the figures, tension is only slightly modified when the cable becomes

less rigid.
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Figure 7.22. Cable profile—case 4
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Figure 7.23. Cable tension as a function of l—case 4

7.7.8 CASE 5: INEXTENSIBLE CABLE SUBJECT TO WEIGHT AND DRAG, INCLUD-

ING BENDING EFFECTS

When bending is considered internal loads are not only due to axial strain, but for shear strain

as well. Here the moments equation in (7.61) becomes relevant, which for the two-dimensional

case can be rewritten considering that M =
[

0 EIΩ 0
]ᵀ

and F =
[
Fn 0 T

]ᵀ
. This
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Figure 7.24. Cable tension as a function of θl—case 4
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Figure 7.25. Cable tension as a function of d̂—case 4

becomes

∂

∂s

 0

EIΩ

0

+

 0

Ω

0

×
 0

EIΩ

0

+

 0

0

1

×
 Fn

0

T

 =

 0

0

0

 ,
where the expression of the shear force is found as

Sn = −EI ∂Ω

∂s
.
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This redefines the internal force as F =
[
Sn 0 T

]ᵀ
. Then, the forces equation (7.59)

becomes

∂

∂s

 Sn

0

T

+

 0

Ω

0

×
 Sn

0

T

+

 −w̄ sin θ

0

w̄ cos θ

+

 −
1
2ρwdCdfn(ϕ)vn|vn|

0

−1
2ρwdCdft(ϕ)vt|vt|

 =

 0

0

0

 ,
which leads to the system of equations

∂T

∂s
− SnΩ + w̄ cos θ − 1

2
ρwdCdfn(ϕ)vn|vn| = 0 (7.83a)

∂Sn
∂s

+ TΩ− w̄ sin θ − 1

2
ρwdCdft(ϕ)vt|vt| = 0, and (7.83b)

EI
∂Ω

∂s
+ Sn = 0. (7.83c)

These equations in non-dimensional form become

∂T̂

∂ŝ
− ŜnΩ̂ + (1− d̂) cos θ − d̂fn(ϕ)v̂n|v̂n| = 0 (7.84a)

∂Ŝn
∂ŝ

+ T̂ Ω̂− (1− d̂) sin θ − d̂ft(ϕ)v̂t|v̂t| = 0, and (7.84b)

1

cb

∂Ω̂

∂ŝ
+ Ŝn = 0. (7.84c)

The model is solved using finite differences only; it was difficult to use a shooting algorithm to

solve this model: when guessing different initial conditions the root-finding algorithm failed

to match the stated boundary conditions, giving way to non-realistic cable geometries. These

computations where parametrised also using different values of cb, i.e., cb = 100, 1000, 10000,

and 100000; greater values of cb represent negligible bending stiffness.

The resulting cable profiles, after computing the models, are shown in Fig. 7.26. Comparing

these results to those on Fig. 7.18 and 7.22 it is apparent that including bending effects affect

the way the profile is distributed in space; a greater bending stiffness (lower cb) generates

a greater bending radius. Also, it can be observed that greater bending stiffness (lower cb)

reduces sag below the left hanging point.

The behaviour of tension is shown as a function of l in Fig. 7.27 and as a function of θl

in Fig. 7.28. As in previous cases, the different colours represent different values of d̂; for

Fig. 7.27 at each colour several values of θl are represented and for Fig. 7.28 at each colour

several values of l are represented. Also, given that cb was varied as well, the effect of cb

variation appears in the plots as dispersion of the lines (different lines plotted next to each

other). The behaviour of tension as a function of d̂ is shown in Fig. 7.29; here the different

colours represent different values of l.
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Figure 7.26. Cable profile—case 5
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Figure 7.27. Cable tension as a function of l—case 5

The results on these plots suggest that bending stiffness does not greatly affect the value of

tension at the end-point. Values of tension are still greatly modified by d̂, which shows the

relative importance of drag compared to weight, and by l, how is the span between hanging

points compared to the total cable length.
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Figure 7.28. Cable tension as a function of θl—case 5
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Figure 7.29. Cable tension as a function of d̂—case 5

7.7.9 CASE 6: EXTENSIBLE CABLE SUBJECT TO WEIGHT AND DRAG, INCLUD-

ING BENDING EFFECTS

Following a similar procedure as in the previous case, but considering strain, the moments

equation becomes

∂

∂s

 0

EIΩ

0

+

 0

Ω

0

×
 0

EIΩ

0

+

 0

0

1

×
 Fn

0

T

 (1 + ε) =

 0

0

0

 ,
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from which the obtained expression of the shear force is

Sn = − EI

(1 + ε)

∂Ω

∂s
.

This redefines the internal force as

F =
[
Sn 0 T

]ᵀ
.

Then, the forces equation (7.59) becomes

∂

∂s

 Sn

0

T

+

 0

Ω

0

×
 Sn

0

T

+

 −w̄ sin θ

0

w̄ cos θ

+

 −
1
2ρwdCdfn(ϕ)vn|vn|

0

−1
2ρwdCdft(ϕ)vt|vt|

 =

 0

0

0

 ,
which leads to the system of equations

∂T

∂s
− SnΩ +

(
w̄ cos θ − 1

2
ρwdCdfn(ϕ)vn|vn|

)
(1 + ε) = 0, (7.85a)

∂Sn
∂s

+ TΩ +

(
−w̄ sin θ − 1

2
ρwdCdft(ϕ)vt|vt|

)
(1 + ε) = 0, and (7.85b)

EI
∂Ω

∂s
+ Sn(1 + ε) = 0. (7.85c)

These equations in non-dimensional form become

∂T̂

∂ŝ
− ŜnΩ̂ +

(
(1− d̂) cos θ − d̂fn(ϕ)v̂n|v̂n|

)
(1 + csT̂ ) = 0, (7.86a)

∂Ŝn
∂ŝ

+ T̂ Ω̂ +
(
−(1− d̂) sin θ − d̂ft(ϕ)v̂t|v̂t|

)
(1 + csT̂ ) = 0, and (7.86b)

1

cb

∂Ω̂

∂ŝ
+ Ŝn(1 + csT̂ ) = 0. (7.86c)

This model is solved mostly as in the previous case regarding numerical methods and parametri-

sation, but in this case cs is parametrised as cs = 0, 0.001, 0.01, and 0.1 and all computations

use a unique value for bending flexibility cb = 1000.

The resulting cable profiles, after computing the models, are shown in Fig. 7.30. As in other

previous results, comparing these results to those on Fig. 7.26 it is apparent that the cable

profile is only slightly modified when the cable becomes less rigid.

The behaviour of tension is shown as a function of l in Fig. 7.31 and as a function of θl in

Fig. 7.32. As in previous cases, the different colours represent different values of d̂; for Fig. 7.31

at each colour several values of θl are represented and for Fig. 7.32 at each colour several values

of l are represented. Also, given that cs was varied as well, the effect of cc variation appears

in the plots as dispersion of the lines. The behaviour of tension as a function of d̂ is shown

in Fig. 7.33; here the different colours represent different values of l. Most of the conclusions

on the previous case hold at this one, as it becomes apparent from the figures, tension is only

slightly modified when the cable becomes less rigid.
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Figure 7.30. Cable profile—case 6
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Figure 7.31. Cable tension as a function of l—case 6

7.8 DYNAMICS COMPUTATIONS USING CABLE COORDINATES

In this study the 2-dimensional dynamics analysis of an underwater cable is taken into account.

During the analysis the following phenomena are considered:

• Drag due to current.

• Weight and buoyancy.

• Rigid body mass and hydrodynamic added mass.
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Figure 7.32. Cable tension as a function of θl—case 6
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Figure 7.33. Cable tension as a function of d̂—case 6

• Tension and bending stiffness.

Throughout this section, the ideas regarding modelling and numerical schemes on [62, 53, 54]

are followed; nevertheless, the model specifics are included in this document.

7.8.1 NON-DIMENSIONAL VARIABLES

Calculation of non-dimensional variables is based on three basic scaling quantities: the cable’s

non-stretched length L, mass per unit length of the cable m, and gravity g. Application of
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these quantities gives the following non-dimensional variables:

• Time is scaled as t̂ =
√

g
L t

• Distance-based variables are scaled as ŝ = s/L, x̂ = x/L, ŷ = y/L, and ẑ = z/L.

• Curvature-related variables are scaled, for i = 1, 2, and 3, as Ω̂i = LΩi,
dΩ̂i
dŝ = L2 dΩi

ds , and
d2Ω̂i
dŝ2 = L3 d2Ωi

ds2 .

• Angular velocity variables are scaled, for i = 1, 2, and 3, as ω̂i =
√

L
g ωi.

• Linear velocity variables are scaled as û =
√

1
gLu, v̂ =

√
1
gLv, and ŵ =

√
1
gLw.

• Linear acceleration variables are scaled as ∂û
∂t = 1

g
∂u
∂t , ∂v̂

∂t = 1
g
∂v
∂t , and ∂ŵ

∂t = 1
g
∂w
∂t .

• Tension is scaled as T̂ = T
mgL .

• Axial and bending flexibility are respectively scaled as cs = mgL
EA and cb = mgL3

EI . Following

this, strain may be defined as function of tension as ε = csT̂ .

7.8.2 DYNAMICS MODEL IN TWO DIMENSIONS

In the two-dimensional case the following simplifications are applied:

• Displacement, velocity and acceleration are restricted to the xz−plane.

• In the transformation (7.3), the rotation around the x−axis is eliminated, this means

that φ = 0.

• Drag loads, i.e., current profiles, are restricted to the xz−plane.

2D assumptions are the same as those of the statics analyses. The equations for cable element’s

coordinates are given by(7.4)–(7.6)

∂x

∂s
= sin θ(1 + ε),

∂y

∂s
= 0, and

∂z

∂s
= cos θ(1 + ε).

The curvatures vector is given by (7.70)

Ω =

 0

Ω

0

 =

 0
∂θ
∂s

0

 .
Angular velocities vector becomes

ω =

 0

ω

0

 =

 0
∂θ
∂t

0

 .
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The inertia term becomes

m

(
∂V

∂t
+ ω ×V

)
=

 (m+ma)
(
∂û
∂t + ŵ ∂θ

∂t

)
0

m
(
∂ŵ
∂t − û

∂θ
∂t

)
 . (7.88)

The compatibility equations (7.65a)–(7.65c) are reduced to

(1 + ε)
∂θ

∂t
=
∂u

∂s
+ w

∂θ

∂s
, (7.89a)

∂ε

∂t
=
∂w

∂s
− u∂θ

∂s
. (7.89b)

The weight vector is given by (7.71)

w =

 −(m− ρwA)g sin θ

0

(m− ρwA)g cos θ

 .
The drag vector is given by (7.72)

d = −1

2
ρwdCd

 fn(ϕ)vn|vn|
0

ft(ϕ)vt|vt|

 ,
where vn1

was just taken as vn.

In the 2-dimensional case the moments equation becomes

∂

∂s

 0

EIΩ

0

+

 0

Ω

0

×
 0

EIΩ

0

+

 0

0

1

×
 Sn

0

T

 (1 + ε) =

 0

0

0

 ,
from which the obtained expression of the shear force is

EI
∂Ω

∂s
+ Sn(1 + ε) = 0. (7.90)

This redefines the internal force as

F =
[
Sn 0 T

]T
.

Then, the forces equation (7.64) becomes (m+ma)
(
∂û
∂t + ŵ ∂θ

∂t

)
0

m
(
∂ŵ
∂t − û

∂θ
∂t

)
 =

∂

∂s

 Sn

0

T

+

 0

Ω

0

×
 Sn

0

T



+

 −(m− ρwA)g sin θ

0

(m− ρwA)g cos θ

+

 −
1
2ρwdCdfn(ϕ)vn|vn|

0

−1
2ρwdCdft(ϕ)vt|vt|

 .
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This leads to the equations

(m+ma)

(
∂u

∂t
+ w

∂θ

∂t

)
=
∂Sn
∂s

+ ΩT − (m− ρwA)g sin θ(1 + ε)

− 1

2
ρwdCdft(ϕ)vt|vt|(1 + ε) (7.91a)

m

(
∂w

∂t
− u∂θ

∂t

)
=
∂T

∂ŝ
− ΩSn + (m− ρwA)g cos θ(1 + ε)

− 1

2
ρwdCdfn(ϕ)vn|vn|(1 + ε). (7.91b)

These equations are complemented with (7.69a), (7.70), (7.69c), (7.90), (7.89a), and (7.89b):

(1 + ε)
∂θ

∂t
=
∂u

∂s
+ w

∂θ

∂s
, (7.92a)

∂ε

∂t
=
∂w

∂s
− u∂θ

∂s
, (7.92b)

EI
∂Ω

∂s
= −Sn(1 + ε), (7.92c)

∂θ

∂s
= Ω, (7.92d)

∂x

∂s
= sin θ(1 + ε), (7.92e)

∂z

∂s
= cos θ(1 + ε). (7.92f)

7.8.3 DYNAMICS MODEL IN NON-DIMENSIONAL FORM

To formulate the equations in non-dimensional forms, in addition to the previously defined

quantities, the following variables are defined:

• ϑ = ρwA
m .

• ca = ma

m .

• ` = dL
A = 4L

πd .



CHAPTER 7. CABLE MODELLING 223

Then, the equations in non-dimensional form become

(1 + ca)

(
∂û

∂t̂
+ ŵ

∂θ

∂t̂

)
=
∂Ŝn
∂ŝ

+ Ω̂T̂

− (1− ϑ) sin θ(1 + csT̂ )

− 1

2
ϑCd`ft(ϕ)v̂t|v̂t|(1 + csT̂ ), (7.93a)

∂ŵ

∂t̂
− û∂θ

∂t̂
=
∂T̂

∂s
− Ω̂Ŝn

+ (1− ϑ) cos θ(1 + csT̂ )

− 1

2
ϑCd`fn(ϕ)v̂n|v̂n|(1 + csT̂ ), (7.93b)

(1 + csT̂ )
∂θ

∂t̂
=
∂û

∂ŝ
+ ŵ

∂θ

∂ŝ
, (7.93c)

cs
∂T̂

∂t̂
=
∂ŵ

∂ŝ
− û∂θ

∂ŝ
, (7.93d)

1

cb

∂Ω̂

∂ŝ
= −Ŝn(1 + csT̂ ), (7.93e)

∂θ

∂ŝ
= Ω̂, (7.93f)

∂x̂

∂ŝ
= sin θ(1 + csT̂ ), (7.93g)

∂ẑ

∂ŝ
= cos θ(1 + csT̂ ). (7.93h)

7.8.4 NUMERICAL PROBLEM FORMULATION

This section follows the methods on [53, 54]. The spatial discretisation is done using centered

differences about mid-segments and time discretisation is done using the generalised α-method.

The PDE system on (7.93a)–(7.93h) may be written in matrix form as

M(Y, s)
∂Y

∂t
+K(Y, s)

∂Y

∂s
+ F (Y, s) = 0, (7.94)

with Y =
[
u w θ T Ω Sn x z

]T
. This equation system is spatially discretised

using centred differences about mid-segments, i.e.,

∂Y

∂s

∣∣∣∣
j−1/2

≈ Yj − Yj−1

∆s
,

where j = 0, 1, . . . , N indicates the node number; this meas that the cable has N segments

and N + 1 nodes. The other components of the discretised version are assumed at the mid-

segment and calculated as an average of the surrounding nodes, this means that (7.94) for

each mid-segment becomes

Mj−1Ẏj−1 +Mj Ẏj +

(
Kj−1 +Kj

∆s

)
(Yj − Yj−1) + Fj−1 + Fj = 0, (7.95)
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where the overdot means differentiation with respect to time, Mj = M(Yj , sj), Kj = K(Yj , sj),

and Fj = F (Yj , sj). From (7.95) a system of 8N differential-algebraic equations may be

formed.

For time discretisation temporal weighted averages of the variables are used and for time

integration the generalised trapezoidal rule is used. If the time-weighted average is applied to

(7.95) each equation becomes

(1− αM )M i
j−1Ẏ

i
j−1 + αMM

i−1
j−1Ẏ

i−1
j−1 + (1− αM )M i

j Ẏ
i
j + αMM

i−1
j Ẏ i−1

j

+ (1− αK)

(
Ki
j−1 +Ki

j

∆s

)(
Y i
j − Y i

j−1

)
+ αK

(
Ki−1
j−1 +Ki−1

j

∆s

)(
Y i−1
j − Y i−1

j−1

)
+ (1− αK)F ij−1 + αKF

i−1
j−1 + (1− αK)F ij + αKF

i−1
j = 0. (7.96)

Then time integration of each variable Yj is done using the generalised trapezoidal rule

Y i
j = Y i−1

j + ∆t
(

(1− γ)Ẏ i−1
j + γẎ i

j

)
. (7.97)

Once (7.96) and (7.97) are defined for each mid-segment the time-advance problem can be

written as a root-finding problem. For instance, if the initial condition of each variable

Y i−1
j = Y 0

j is known and the next-time variable is Y i
j = Yj is unknown, Eq. (7.96) may be

rewritten as

(1− αM )Mj−1Ẏj−1 + αMM
0
j−1Ẏ

0
j−1 + (1− αM )Mj Ẏj + αMM

0
j Ẏ

0
j

+ (1− αK)

(
Kj−1 +Kj

∆s

)
(Yj − Yj−1)

+ αK

(
K0
j−1 +K0

j

∆s

)(
Y 0
j − Y 0

j−1

)
+ (1− αK)Fj−1 + αKF

0
j−1 + (1− αK)Fj + αKF

0
j = 0 (7.98)

and (7.97) may be rewritten as

Yj = Y 0
j + ∆t

(
(1− γ)Ẏ 0

j + γẎj

)
. (7.99)

Eqs. (7.98) and (7.99) become a root-finding problem of the form F (X) = 0, where X contains

variables for each Yj and Ẏj .

In the computations to come, the root finding problem of eqs. (7.98) and (7.99) was solved us-

ing Python’s ScyPy optimisation module. The function used is a wrapper that uses FORTRAN-

MINPACK’s hybrd and hybrj algorithms [111].
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7.8.5 PDE PROBLEM FORMULATION AND SOLUTION

The discretised PDE problem of (7.96) requires the definition of 8 variables per node. This

means that the problem has 8(N + 1) variables and, because each mid-segment gives 8 equa-

tions per node, 8N equations. This requires the definition of 8 boundary conditions. These

conditions will be discussed later at each case.

All computations used the following parameters, including cable properties and discretisation:

• Drag coefficient: Cd = 1.5.

• Cable diameter: d = 0.025 m.

• Cable density: ρc = 0.7 kg/m.

• Cable unstretched length: L = 100 m.

• Tension flexibility: cs = 0.001.

• Bending flexibility: b = 1000.

• Water density: ρw = 1025 kg/m3.

• Gravity: g = 9.81 m/s2.

• Number of cable segments: N = 50.

All computations start from a computed initial condition. Roughly, the procedure is as follows:

1. Use a shooting algorithm to solve the problem of a static catenary subject to weight

and drag. This model has tension as the only internal load and includes axial strain.

The inputs of the problem are the position of the two hanging points and a measure

of the proportion between drag and weight. The shooting algorithm is initiated from a

polynomial meta-model obtained from data of previously computed cases, i.e., the initial

guess of initial conditions is obtained from the meta-model. This algorithm calculates

the cable’s geometry and distribution of tension.

2. Calculate an estimate of curvature and shear force using discrete derivatives and the

previously computed geometry.

3. Solve a finite differences representation of the static problem including tension and bend-

ing, along with drag and weight. The initial guess is obtained from the calculations

obtained before.

7.8.6 CASE 1

In the first case considered, the left boundary has prescribed motion and the right boundary

is free to move. Also, at both ends a no-moment condition is considered. This means that
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at the left the following boundary conditions are used: u(0) = u0, w(0) = w0, Ω(0) = 0,

x(0) = x0, and z(0) = z0. At the right boundary the following conditions are used: Ω(L) = 0,

Sn(L) = 0, and T (L) = 0.

This formulation is used to compute two scenarios:

• The cable hangs on a fixed point; the motion is forced by the incoming current.

• To the previous scenario two control forces are added at the mid- and end-node. Also,

a proportional control law is added to force the two control points to prescribed desired

positions.

At both cases the left hanging point coordinates are x0 = 0 and z0 = 0 for any time. Also, for

both scenarios the right hanging coordinates at t = 0 has coordinates xN = 0 and zN = 90 m.

For the first scenario the cable hangs on a fixed point and the motion is forced by the incoming

current. Here, the results of applying a uniform-constant current of Vc =
[
−1.0 0.0

]T
m/s

are shown. The resultant behaviour of the cable profile is shown in Fig. 7.34 for a total of

60 s of simulation time; each profile is drawn every 1 s.
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Figure 7.34. Profile variation at free drift

For the second scenario a uniform-constant current of Vc =
[
−0.5 0.0

]T
m/s is used. Here,

it is desired that the mid-point of the cable reaches the coordinates

PN/2 =
[
−0.10 0.45

]T
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and the end-point the coordinates

PN =
[

0.20 0.80
]T
,

both in non-dimensional representation. To accomplish this, the proportional control law is

Fc = KP (Pd − P ),

there Fc is the applied force to each point, Pd is the desired position, P is the actual position,

and KP the proportional gain. For the two control points of this problem a high-gain value

of

KP =

[
100 0

0 100

]
was used. The resultant behaviour of the cable profile is shown in Fig. 7.35 for a total of 20 s

of simulation time; each profile is drawn every 1 s.
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Figure 7.35. Profile variation at a two-control-point experiment

7.8.7 CASE 2

In this case both boundaries have prescribed motion. This means that at the left the following

boundary conditions are used: u(0) = u0, w(0) = w0, x(0) = x0, and z(0) = z0. At the right

boundary the following conditions are used: u(L) = uN , w(L) = wN , x(L) = xN , and

z(L) = zN .
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This formulation is used to compute one scenario: the cable hangs on two fixed points; the

motion is forced by varying incoming current modelled as a 1st order Gauss-Markov Process.

At this scenario the following general conditions were used:

• Left hanging point coordinates: x0 = 0 y z0 = 0.

• Right hanging point coordinates: xN = 0 y zN = 90 m.

Also, the current variation during the simulation and the cable profile are shown in Fig. 7.36
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Figure 7.36. Current variation at each time step and cable profile

7.9 CONCLUDING REMARKS

This chapter approached the problem of modelling a cable that potentially connects a sub-

merged ROV with a (stationary) point in the surface. It posed that the starting point to

build-up knowledge in this matter is by considering the case of the classical catenary first

and, from that point on, construct more complicated cases. Considering this, the first model

was that of an inextensible catenary that bears a constant force field per unit length, such

as weight or weight in water; rather conveniently, this model has analytical solution under

some conditions. This simple case was extended then to the more complicated one where

hydrodynamic loads such as drag and added mass are considered. The type of model that

was considered last is that of a cable that includes as well elastic effects such as tension and

bending. In brief, the compendium of models herein are useful as a first approach to ROV

cable modelling that allow one to further compute simple motion-feasibility-related problems,

as well as to serve as a preamble to studying more complex or elaborated modelling theories.
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As mentioned, this work approached the modelling of an ROV cable using theories suited for

highly flexible elastic rods, by building from what are considered first steps. This meant that

some considerations of the model are founded on classical, simpler concepts. Geometry was

defined by using Euclidean geometry, opposed to the so-called geometrically exact approaches

that use differential manifolds. This can be evidenced by the description of position by vectors

and orientation by Euler angles. The theories applied here privilege those that consider the

cable a rod that is inextensible longitudinally, perfectly flexible under bending, and completely

rigid under torsion. Lastly, numerical schemes favour the finite differences method and slightly

address the finite elements method.

The catenary as scheme for modelling the cable was used extensively. The analytic solution,

accompanied by a shooting algorithm, was studied first as a means to come up with an

algorithm that is able to compute initial conditions; this initialisation algorithm is useful

in further more complex numerical schemes on the non-linear models. In the process, the

catenary was studied comprehensively, including computing some numerical results on the

analytic solution, computing the problem’s domain, definition of an energy function related

to the solution of the numerical problem, computation of the geometry in some illustrative

cases, computing regression formulas for an initial guess of the initial conditions, and, finally,

approaching the problem of computing an optimal catenary configuration.

For a catenary that bears weight and drag, the three approaches to solve the model were

a shooting algorithm for the ODE, finite differences, and finite elements, both in static and

dynamic conditions. This finite differences method discretises the differential equation with

respect to the mid-segment using first-order centred differences. This formulation leads to a

tangent linear system, for where the Jacobians of the drag function were the more complex

terms. For the dynamics case, the tangent linear system is compatible with a Newmark-β

time integration scheme. Conversely, the finite elements method used Galerkin’s convention

of weighted residuals, as well as a mixed formulation that assigns the same order of approxi-

mation to internal force and position.

The chapter closed by performing computations on the WHOI cable model, where the equa-

tions are specified using cable frame coordinates. These models were computed using the

finite differences method, where the differential equation is discretised with respect to the

mid-segment using first-order centred differences. In the computations, the variables were

written in non-dimensional form. The computations on the statics model were performed to

study the effect of different elasticity variables, such as those related to tension and bending.

Conversely, the computations on the dynamics model were carried out to study free drift

motion and propose a prototype concept for a cable that has two position-controllable points.
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Altogether, this chapter laid a collection of methods from the perspective of solving the ques-

tion, how to start modelling and computing the effect of a cable in an ROV? This approach

gives way to myriad routes for improvement: some of these routes are discussed next. The

way numerical methods are computed should be dealt with in detail, such as domain dis-

cretisation, equation discretisation schemes, convergence conditions, and so on. This work

used Euclidean geometry, a route for further work may be through using differential manifold

geometry. Elasticity was confronted, but it needs to be tackled even further. Experimental

validation of the numerical models needs to be addressed. Finally, methods for connecting

the computation of the cable and the ROV’s time-domain dynamics requires dedicated work,

because the models use different time and space scales, e.g., the cable often requires smaller

time resolution.



Part III

Manoeuvring and motion feasibility
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Chapter 8

Time-domain simulation framework

The goal of time-domain simulation is to solve model (2.5) and related equations. This

means to predict future behaviour from known initial conditions. In the context of this

work, this fundamentally means to predict the trajectory of state q(t), i.e., the time vehicle’s

configuration (position and orientation) η and velocity ν. Time domain-simulation requires

considering two main components: first, conceptualising simulations under the idea of object-

oriented programming, and, second, defining discrete-time integration algorithms. The former

is mostly useful to organise and configure simulation scenarios and the latter to numerically

compute the trajectory of state, q(t), for such scenarios.

8.1 OBJECT-ORIENTED SIMULATION FRAMEWORK

Object-oriented programming is a programming paradigm where objects are instances (a type

of variable) that have the ability to store data and contain routines, namely variables and

methods. The data contain parameters and internal processing variables, and the methods

contain algorithms that perform useful computations. In this context, objects represent mod-

elling blocks, its variables model parameters and useful variables, and its methods compute

models and other useful subroutines.

A starting point for developing a simulation framework using object-oriented idiosyncrasies is

model (2.5). Model (2.5) is shown again in Fig. 8.1 and their components indicated, namely

rigid body, hydrodynamics, hydrostatics, actuators, cable, and others. The main concept

232
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is to treat each of those components as objects. This means to define each model block as

an object; then, each object is able to store model parameters and compute model-related

subroutines. For instance, the rigid body block requires one to declare the vehicle’s mass,

moments of inertia, and centre of gravity; furthermore, its methods should include routines,

e.g., such as those to compute mass matrix MRB and Coriolis matrix CRB. Consequently,

a simulation framework for vehicle motion should conceptualise rigid body, hydrodynamics,

hydrostatics, actuators, and cable components as individual objects and their interactions.

RIGID BODY HYDRODYNAMICS

HYDROSTATICS

ACTUATORS

CABLE

WAVE

Figure 8.1. ROV model’s blocks

A more complete development of the idea of a motion simulation framework should include as

well other motion-related components such as thrust allocation, control, and environmental

behaviour. This idea is illustrated in Fig. 8.2. Here, an ambiance object, namely scenario,

is defined. The scenario conceptually defines everything that is needed to numerically solve

model (2.5) and related equations. Consequently, the scenario object includes simulation

parametrisation such as time-integration algorithm and subsequent configuration parameters,

as well as the system’s component blocks. In other words, the scenario is a wrapper of

everything required to simulate, and, as shown in Fig. 8.2, these fundamental components are

the ROV system and environment.

In Fig. 8.2, the ROV system object is a wrapper of vehicle, cable, thrust allocation, and

control objects. Conversely, the environment object fundamentally includes current and den-

sity objects. These last two provide means to compute current νc and density ρW to most

objects’ computations. Among the ROV system’s objects, the vehicle object is a wrapper

of rigid body, hydrodynamics, hydrostatics, and actuators. All these objects are included in

model (2.5) and previously described in Fig. 8.1. The rigid body object is of particular interest

because conceptually the ROV motion problem is the classic physics problem of integrating

rigid motion dynamic equations. In the end, all objects different to rigid body object provide

information to the rigid body object.

In Fig. 8.2, thrust allocation, control, and cable objects are treated separately from the

ROV system object. Thrust allocation and control objects are treated separately because,

conceptually, they represent algorithms to be implemented into the ROV’s computer. The

cable object is treated separately because it requires solving a different dynamics problem,
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ROV SYSTEM

CURRENT

ENVIRONMENT

SCENARIO

OPERATOR
COMMANDS

HYDRODYNAMICS

RIGID BODY

HYDROSTATICS

ACTUATORS

VEHICLE

THRUST
ALLOCATION

CONTROL

CABLE

DENSITY

Figure 8.2. Time-domain simulation object structure

i.e., solving any type of elastic rod model. Thrust allocation and control are the elements that

convert some sort of operator commands into thrusters commands. First, the control object

converts operator commands into control commands uc. Second, the thrust allocation object

converts the control commands into thrusters commands u. Finally, the control commands

alter the way actuators operate. As mentioned, the cable object requires solving different

dynamics in often different time and space scale resolutions. Because of this, the cable model is

computed separately to the rigid body dynamics problem. After the cable model is computed,

the coupling with the rigid body model is done through forces and moments vector τcable.

The framework in Fig. 8.2 shows everything that needs to be specified in order to be able to

simulate, in the sense that each of these objects and their parameters need to be declared.

Additionally, it shows what kind of data needs to be exchanged among objects in order to

pursue computations. Nevertheless, it is necessary to further specify how computations are

performed and how data is intechanged.
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8.2 TIME INTEGRATION

The main objective of time-domain simulation is to construct time trajectories of the state,

i.e., q(t). As mentioned, the state is defined as a Cartesian product of vehicle’s configuration

(position and orientation) and velocity, i.e., q =
[
ηᵀ νᵀ

]ᵀ
. The space defined by q is called

the state space. At each q a tangent space of vectors q̇ =
[
η̇ᵀ ν̇ᵀ

]ᵀ
could be defined. These

spaces are important because kinematic and dynamic models (2.2) and (2.5), namely

MRB ν̇ + CRB (ν) ν + MAν̇r + CA (νr) νr + D (νr) νr + g (η) = τ(u) + τcable + τwave.

and

η̇ = J(η)ν,

are defined as restrictions at those spaces. In other words, models (2.2) and (2.5) impose the

restrictions needed to uniquely find a trajectory q(t). For instance, assuming that ν̇ = ν̇c and

using a different order, one can write model (2.5) as

(MRB + MA) ν̇ = − (CRB (ν) ν + CA (νr) νr + D (νr) νr + g (η)) + τ(u) + τcable.

If one defines the total mass matrix MT = MRB + MA and a total load vector

fT (η, ν) = − (CRB (ν) ν + CA (νr) νr + D (νr) νr + g (η)) + τ(u) + τcable,

the model becomes the rigid body motion equation

MT ν̇ = fT (η, ν).

Finally, assuming MT is invertible, one obtains.

ν̇ = M−1
T fT (η, ν). (8.1)

This rigid body motion equation and kinematic transformation (2.2), η̇ = J(η)ν, explicitly

pose a relation between the state and vectors in its tangent space.

Because the resultant equations are in general not solvable using analytical methods, the

computation of trajectories is done discretely. This means that time becomes the sequence

t = {t0, t1, . . . , tk, tk+1, . . .}, with the time-step given by ∆t = tk+1 − tk for k = 0, 1, . . .. This

implies that variables are evaluated at discrete times and defined as ηk = η(tk), νk = ν(tk),

and qk = q(tk). Hence, the discrete-time integration problem becomes finding state qk+1,

at t = tk+1, from state qk, at t = tk. To accomplish this, two main types of algorithms (or

schemes) could defined: implicit and explicit.
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8.2.1 EXPLICIT SCHEMES

Integration schemes are often defined in vector spaces using the idea that the next-time

variable, e.g. qk+1, is obtained as the previous time variable, e.g. qk, plus some increment,

e.g. ∆q; this is qk+1 = qk + ∆q. In explicit schemes, the increments are dependent only on

previous-time variables, i.e., qk+1 = qk+∆q(tk). As the name suggests, the next-time variable

is explicitly computed from previous-time variables exclusively. The most immediate scheme is

a first-order Euler algorithm where derivatives are replaced by a first-order forward difference,

i.e., qk+1 = qk + ∆t q̇(tk). More explicitly, for state components, namely configuration and

velocity, this is

ηk+1 = ηk + ∆t η̇(tk),

νk+1 = νk + ∆t ν̇(tk).

By using kinematic transformation (2.2) and rigid-body equation (8.1), the integration scheme

becomes

ηk+1 = ηk + ∆tJΘ(ηk)νk,

νk+1 = νk + ∆tM−1
T fT (ηk, νk).

8.2.2 IMPLICIT SCHEMES

In implicit schemes the increment is dependent also on next-time variables, i.e., qk+1 =

qk + ∆q(tk, tk+1). In this case, next-time variables appear on the right side of the equation

as well. This means that the next-time variable appears implicitly in the equation. This now

requires the solution of an equation system, rather than a straight-forward vector addition.

The most straight-forward explicit scheme is a first-order Euler algorithm where derivatives

are replaced by a first-order backward difference, i.e., qk+1 = qk + ∆t q̇(tk+1). In this case,

velocity integration becomes

νk+1 = νk + ∆t ν̇(tk+1) = νk + ∆t ν̇k+1. (8.2)

To complete the algorithm, in model (2.5), η, ν and ν̇ are evaluated at time tk+1, i.e.,

MT ν̇k+1 = − (CRBνk+1 + (CA + D) (νk+1 − νc) + g (ηk+1)) + τ + τcable.

Please note that the definition of relative velocity, νr = ν− νc, was used. Combining this and

(8.2) the velocity update algorithm becomes the equation

[MT + ∆t(CRB + CA + D)] νk+1 = MT νk + ∆t [(CA + D) νc − g + τ + τcable] .

This equation defines next-time velocity νk+1 implicitly. A common way to solve the problem

is to compute ηk+1 explicitly and then νk+1 implicitly.
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8.2.3 SOLVERS IN PYTHON

More elaborated implicit and explicit schemes are already implemented in numerical comput-

ing software. For instance, Python has the ScyPy module that contains an implementation

of ordinary differential equation (ODE) solvers, with options such as [110]

• vode, a real-valued variable-coefficient ODE solver with fixed-leading-coefficient imple-

mentation, which includes implicit Adams method and an explicit method based on

backward differentiation formulas;

• lsoda, a real-valued variable-coefficient ODE solver with fixed-leading-coefficient imple-

mentation, with an automatic method for switching between implicit Adams method and

backward differentiation formulas; and,

• dopri5, an explicit Runge-Kutta method of order 4-5 that includes step-size control and

dense output.



Chapter 9

Manoeuvring time-domain

simulations

This chapter focuses on performing time-domain simulations using an ROV model to evaluate

its manoeuvring performance; consequently, it could be understood as a sequel of Chapter 6,

namely ROV hydrodynamics, where the concepts of Chapter 8, time-domain simulation, are

applied. By following this idea, manoeuvring time-domain simulations are regarded here as

a first approach to study ROV motion feasibility. This is done through the verification of

the performance of an ROV at different scenarios. The main advantage of pursuing this

approach is that motion performance can be evaluated qualitatively and quantitatively at

various conditions. The simulations become then a tool to understand the ROV’s manoeuvring

and make further design-, control-, and operation-related decisions.

The approach applied in this chapter uses visor3’s model to perform manoeuvring time-

domain simulations and subsequent analyses. More concretely, the different simulation sce-

narios include the following:

• Open-loop response to actuating thrusters individually, i.e., without using a thrust allo-

cation algorithm.

• Open-loop response to actuating thrusters through a thrust allocation algorithm.

• Closed-loop response to simple (multi-loop) PID algorithms.
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9.1 OPEN-LOOP, NO THRUST ALLOCATION

The first step in studying visor3’s manoeuvrability consists in simulating the ROV’s response

when the thrusters are actuated at will, without any means of control. Consequently, in this

section, all simulation scenarios consist in acting the thrusters selectively and individually at

a constant propeller speed in order to produce simple manoeuvres. The simulations herein

are grouped as calm-water and oblique-current manoeuvres.

9.1.1 CALM-WATER MANOEUVRES

Calm-water manoeuvres, where current is (exactly) zero, are regarded here as the first to ap-

proach because they are the simplest. The different manoeuvres are intended first to produce

motion along the four controllable degrees of freedom individually and, second, to produce

circular manoeuvres on the xy-plane.

9.1.1.1 Surge-direction thrust

In order to perform surge-direction motion, the same input is assigned to port and starboard

thrusters. In this case, different propeller speeds are tested to check forward and backward

motion, namely for propeller speeds of −500, −250, 250, and 250 rpm. The simulations are

run for 30 s and the results are illustrated in Figs. 9.1 and 9.2.
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Figure 9.1. Longitudinal thrust at calm water and different propeller speeds: trajectories
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Figure 9.1 shows the ROV trajectory at the different propeller speeds. Figure 9.1 (a) shows the

projection onto the xy-plane, i.e., a top-view projection of the motion; conversely, Fig. 9.1 (b)

shows the projection onto the xz-plane, i.e., a side-view projection of the motion. From

Fig. 9.1 (a) it becomes apparent that the ROV is able to keep its heading constant when not

perturbed by current. Nevertheless, from Fig. 9.1 (b), it becomes apparent that there is a

lift-force effect that alters vertical motion and increases with speed. Additionally, it can be

noticed that there is more advance in forward motion that in backward motion: this reflects

the propeller’s nature, not the hydrodynamic meta-model’s nature (as the model assumed

symmetry).
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Figure 9.2. Longitudinal thrust at calm water and different propeller speeds: kinematic variables

Figure 9.2 further shows the behaviour of kinematic variables, i.e., linear velocity components

u, v, and w and angular velocity components (angular rates) p, q, and r. From the figure

the coupling among surge, heave, and pitch becomes evident: surge motion alters pitch, and

changes in pitch produce a lifting force that alters vertical motion (heave). This condition

suggests that proper surge motion control requires addressing pitch and heave.

9.1.1.2 Sway-direction thrust

To perform sway-direction motion, a constant input is assigned to the lateral thruster. As

previously, different propeller speeds are tested to check both directions of motion, for pro-
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peller speeds of −500, −250, 250, and 250 rpm. The simulations are run for 30 s and the

results are illustrated in Figs. 9.3 and 9.4.
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Figure 9.3. Lateral thrust at calm water and different propeller speeds: trajectories

Figure 9.3 shows an xy-plane projection of the trajectory for the different propeller speeds.

From the figure, it becomes apparent that the ROV does not keep straight lateral motion to

the point of producing a small-radius circular trajectory. This behaviour can be attributed

mainly to the fact that the transversal thruster is displaced towards the bow. Furthermore,

Fig. 9.4 shows the behaviour of linear and angular velocity components. From the plots in this

figure, it becomes apparent that all degrees of freedom get excited; nevertheless, controlling

yaw is the most relevant condition to be considered.

9.1.1.3 Heave-direction thrust

To perform heave-direction motion, a constant input is assigned to the vertical thruster. As

usual, different propeller speeds are tested to check both directions of motion, for propeller

speeds of −500, −250, 250, and 250 rpm. The simulations are run for 30 s and the results are

illustrated in Figs. 9.5 and 9.6.

Figure 9.5 shows an xz-plane projection of the trajectory for the different propeller speeds.

In the figure the trajectory shown is approximately straight in all cases. More specifically,

Fig. 9.6 shows how vertical motion excites roll motion significantly and pitch motion in a

smaller degree; moreover, as a consequence of roll excitation, sway gets excited as well.
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Figure 9.4. Lateral thrust at calm water and different propeller speeds: kinematic variables
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Figure 9.5. Vertical thrust at calm water and different propeller speeds: trajectories

9.1.1.4 Yaw-inducing thrust

To induce yaw rotation, constant inputs are assigned to port and starboard thrusters with

opposing-direction thrust. As in the previous cases, different propeller speeds are tested to
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Figure 9.6. Vertical thrust at calm water and different propeller speeds: kinematic variables

check both directions of rotation, for propeller speeds of 250 and 250 rpm. The simulations

are run for 30 s and the results are illustrated in Fig. 9.7.
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Figure 9.7. Yaw-inducing thrust at calm water and different propeller speeds: kinematic variables
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From the kinematic variables shown in Fig. 9.7 it becomes apparent that yaw motion excites

all degrees of freedom in a small amount. This is attributed mainly to the propellers’ dis-

parity between forward and backward thrust, which produces a non-zero linear velocity; this

condition is susceptible of being attenuated by a thrust allocation algorithm.

9.1.1.5 Circular-trajectory-inducing thrust

To perform circular trajectories, constant inputs are assigned to port and starboard thrusters

with differential thrust. To do this, starboard thruster speed is 250 rpm and port thruster

speed is a fraction of starboard thruster’s, namely in percentages of 90, 93, 94, and 95 %. The

simulations are run for 120 s and the results are illustrated in Figs. 9.8 and 9.9.
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Figure 9.8. Circle-inducing thrust at calm water and different propeller speeds: trajectories

Figure 9.8 shows an xy-plane projection of the trajectory for the different simulations. In the

figure it is apparent how (even) this small disparity in thrust produces the different circular

trajectories. Furthermore, in Fig. 9.9 different phenomena are present: yaw rate stabilises in

a constant value related to the turning radius; sway velocity is non-zero, indicating horizontal

drift; surge motion, as usual, induces pitch and, consequently, a lift force that produces heave;

and, finally, roll gets excited to sustained oscillations.
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Figure 9.9. Circle-inducing thrust at calm water and different propeller speeds: kinematic variables

9.1.2 OBLIQUE-CURRENT MANOEUVRES

The oblique-current manoeuvres considered here concentrate on performing surge-direction

thrust at non-zero current. Different thrust conditions are tested by assigning different con-

stant propeller speeds to port and starboard thrusters; conversely, different current conditions

are tested by assigning different incoming current magnitudes and directions. The scenarios

are assembled by testing all combinations of the following input parameters:

• Propellers speeds of 200, 300, 400, and 500 rpm.

• Current magnitudes of 0.2 and 0.4 m/s, representing near-calm and light-current condi-

tions.

• Current directions of 15 and 45 deg.

The results from all these scenarios are grouped according to all combinations of current

conditions and illustrated by Figs. 9.10 and 9.11.

Figure 9.10 shows an xy-plane projection of the ROV’s trajectory in all cases. Figures 9.10 (a)

and (b) show behaviour at 0.2 m/s current. From the plots, it becomes apparent that the

ROV is able to withstand the imposed current for propeller speeds greater than 300 rpm for

both 15 and 45 deg current directions. Additionally, it is apparent how the ROV adopts
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Figure 9.10. Surge motion in oblique-current: trajectories

certain heading that is related to the incoming current direction and, subsequently, reaches

equilibrium around yaw. Simulated propeller speeds go up to 500 rpm, which are considerably

below their maximum. A reason for this is that, checking the results in Figs. 9.11 (a) and

(b), increasing propeller speeds produce variations of pitch angle that produce subsequent lift

force. Besides the tendency of increasing pitch angle, increasing lift makes the ROV not able

to keep horizontal motion.

Figures 9.10 (c) and (d) show the trajectories at 0.4 m/s current. In this case, it becomes

apparent that the ROV is not able to withstand the imposed current for the simulated propeller

speeds, at both 15 and 45 deg current directions: the ROV drifts backwards. As in the

previous two cases, the ROV reaches certain heading that is related to the incoming current

direction where equilibrium around yaw is achieved. It is possible for this ROV to simulate

propeller speeds beyond 500 rpm, but, as in the previous two cases and checking the results
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Figure 9.11. Surge motion in oblique-current: kinematic variables

in Figs. 9.11 (c) and (d), increasing propeller speeds produces variations of pitch angle and

lift force that induce vertical motion. These results evidence the difficulties of manoeuvring

visor3 in currents that are beyond near-calm; current magnitudes that are around 0.4 m/s

are considered light and do not allow the ROV to be easily manoeuvred without further

(feedback) control actions.

9.2 OPEN-LOOP, WITH THRUST ALLOCATION

The second step in studying visor3’s manoeuvrability consists in simulating the ROV’s re-

sponse when the thrusters are actuated by using a thrust allocation algorithm. Consequently,

in this section, all simulation scenarios consist in acting the thrusters through the thrust allo-
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cation algorithm indicated in Sec. 3.1 at a constant input command (virtual force command)

in order to produce simple manoeuvres. The simulations herein are grouped as calm-water

and oblique-current manoeuvres.

9.2.1 CALM WATER, DIFFERENT PROPELLER SPEEDS

In this section, calm-water manoeuvres, where current is (exactly) zero, are intended to pro-

duce motion along the four controllable degrees of freedom, namely surge, sway, heave, and

yaw, through the proposed thrust allocation algorithm.

9.2.1.1 Surge-direction command

In order to perform surge-direction motion, a virtual force command is assigned to surge

input, namely for commands equivalent to forces of −12, −3, 3, and 12 N to allow forward

and backward motion. The simulations are run for 30 s and the results are illustrated in

Figs. 9.12 and 9.13. Figures 9.12 (a) and (b) show the ROV trajectory at the different

surge commands: Fig. 9.12 (a) shows the projection onto the xy-plane and Fig. 9.12 (b) the

corresponding projection onto the xz-plane. Figure 9.13 further shows the behaviour of linear

velocity components u, v, and w and angular velocity components p, q, and r.
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Figure 9.12. Longitudinal thrust at calm water and different surge commands: trajectories

The main difference between manoeuvring with and without thrust allocation, besides easing

operator’s motion commands, is that the latter allows one to equate forward and backward

actions by acknowledging that forward and backward thrust coefficients are different. This

can be checked in Figs. 9.12 (a) and (b) by noticing that the ROV advances the same distance
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forward and backwards. More precisely, in this simulation a forward surge command of 3 N

assigns a propeller speed of 246 rpm to port and starboard thrusters; conversely, a backward

surge command of −3 N assigns a propeller speed of −305 rpm. This is more pronounced

at a greater force command: a forward surge command of 12 N assigns a propeller speed of

491 rpm and the corresponding backward surge command a propeller speed of −611 rpm.

0 5 10 15 20 25 30

0.2

0.0

0.2

V
e
lo

ci
ty

 (
m

/s
)

u
v
w

12 N
3 N

3 N
12 N

0 5 10 15 20 25 30
time (s)

0.2

0.1

0.0

0.1

0.2

A
n
g
u
la

r 
ra

te
s 

(r
a
d
/s

) p

q

r

Figure 9.13. Longitudinal thrust at calm water and different surge commands: kinematic variables

From Figs. 9.12 (a) and (b) and Fig. 9.13, it becomes apparent that the features of the ROV’s

motion are similar to those of the non-thrust-allocation case: the ROV is able to keep its

heading constant when not perturbed by current and there is a lift-force effect that alters

vertical motion and increases with speed. This condition suggests that proper surge motion

requires not only thrust allocation but addressing pitch and heave through feedback control.

9.2.1.2 Sway-direction command

In order to perform sway-direction motion, a virtual force command is assigned to sway

input, namely for commands equivalent to forces of −12, −3, 3, and 12 N to allow port- and

starboard-side motion. The simulations are run for 30 s and the results are illustrated in

Figs. 9.14 and 9.15. Figure 9.14 shows a projection onto the xy-plane of the ROV trajectory

at the different force commands. As usual, Fig. 9.15 further shows the behaviour of linear

velocity components u, v, and w and angular velocity components p, q, and r.
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Figure 9.14. Lateral thrust at calm water and different sway commands: trajectories
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Figure 9.15. Lateral thrust at calm water and different sway commands: kinematic variables

In sway motion, the thrust allocation algorithm effect is two-fold: besides equating port- and

starboard-side actions as it happened with surge motion, it performs a compensation of the

yaw moment induced by the fact that the lateral thruster is displaced towards the bow. The

compensation of the yaw moment induced by the lateral thruster is done by using port and
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starboard thrusters at opposed directions. For instance, when a sway force command of 12 N

is given to the thrust allocation algorithm, it assigns 949 rpm to the lateral thruster; then,

to compensate yaw moment it assigns as well 632 rpm to the port thruster and −786 rpm to

the starboard thruster.

From Figs. 9.14 and 9.15 one can acknowledge the fact that a sway force command does not

produce straight lateral motion, despite the aforementioned compensation of yaw performed

by the thrust allocation algorithm. As in the no-thrust-allocation case, a small-radius circular

trajectory is produced and, in this case, with yaw motion in the opposite direction. This effect

is attributed to the behaviour of hydrodynamic yawing moment; this means that despite

having a thrust allocation algorithm, feedback-controlling yaw is required to perform pure

sway motion.

9.2.1.3 Heave-direction command

In order to perform heave-direction motion, a virtual force command is assigned to heave

input, namely for commands equivalent to forces of −12, −3, 3, and 12 N to allow both

directions of motion. The simulations are run for 30 s and the results are illustrated in

Figs. 9.16 and 9.17. Figure 9.16 shows a projection onto the xz-plane of the ROV trajectory

at the different force commands. As in previous cases, Fig. 9.17 further shows the behaviour

of linear velocity components u, v, and w and angular velocity components p, q, and r.
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Figure 9.16. Vertical thrust at calm water and different heave commands: trajectories
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Similarly as in the surge-direction case, the main difference between manoeuvring with and

without thrust allocation resides in equating downward and upward actions. This can be

checked in Fig. 9.16 by noticing that the ROV advances the same distance downwards and

upwards. More precisely, in this simulation a downward heave command of 3 N assigns

a propeller speed of 474 rpm to the vertical thruster; conversely, an upward command of

−3 N assigns a propeller speed of −686 rpm. Moreover, at a greater force command, a

downward command of 12 N assigns a propeller speed of 948 rpm and the corresponding

upward command a propeller speed of −1373 rpm.
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Figure 9.17. Vertical thrust at calm water and different heave commands: kinematic variables

From Figs. 9.16 and 9.17, it becomes apparent that the features of the ROV’s motion are

similar to those of the non-thrust-allocation case: the ROV is able to keep its trajectory

approximately straight when not perturbed by current and the other degrees of freedom get

excited as usual. These results suggest that attention to roll motion ought to be taken into

account when controlling heave.

9.2.1.4 Yaw command

To induce yaw motion, a virtual force command is assigned to yaw input, namely for com-

mands equivalent to moments of −3, −0.75, 0.75, and e3 Nm to allow clockwise and counter-

clockwise motion. The simulations are run for 30 s and the results are illustrated in Fig. 9.18.
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Figure 9.18. Yaw-inducing thrust at calm water and different propeller speeds: kinematic variables

From the kinematic variables shown in Fig. 9.18 it becomes apparent that the thrust alloca-

tion algorithm attenuates the excitation of other degrees of freedom. For instance, residual

displacements, evidenced by the order of magnitude of u, v, and w, are greatly reduced.

9.2.2 SURGE MOTION IN OBLIQUE CURRENT

The oblique-current manoeuvres considered here replicate those in Sec. 9.1.2. More specifi-

cally, this means that the current conditions are the same as in Sec. 9.1.2, but different thrust

conditions are tested by assigning different surge force commands in forward direction, namely

commands equivalent to forces of 3, 6, 9, and 12 N. Concordantly, the results from all the

scenarios are grouped according to all combinations of current conditions and illustrated by

Figs. 9.19 and 9.20.

Figure 9.19 shows an xy-plane projection of the ROV’s trajectory in all cases. Figures 9.19 (a)

and (b) show behaviour at 0.2 m/s current and Figs. 9.19 (c) and (d) at 0.4 m/s. These motion

scenarios are fundamentally the same as without thrust allocation: the only difference in this

case is that motion is commanded by a virtual force. Because of this, the results are essentially

the same as without thrust allocation. The ROV is able to withstand an imposed current of

0.2 m/s for force commands starting around 6 N for both 15 and 45 deg current directions;
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Figure 9.19. Surge motion in oblique-current using thrust allocation: trajectories

conversely, the ROV is not able to withstand an imposed current of 0.4 m/s in any case shown.

In all cases is apparent how the ROV adopts certain heading related to the incoming current

direction by reaching equilibrium around yaw. Further checking the results in Figs. 9.20 (a),

(b), (c), and (d), increasing propeller speeds produces variations of pitch angle and lift force

that induce vertical motion. This confirms the aforementioned difficulties of manoeuvring

visor3 in currents that are not near-calm current, i.e., starting around 0.4 m/s, and that the

ROV is not easily manoeuvrable without further (feedback) control strategies.

9.3 PID CONTROL

The next step in studying visor3’s manoeuvrability consists in simulating the ROV’s response

when PID feedback control loops are implemented. From previous results, the most immediate
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Figure 9.20. Surge motion in oblique-current using thrust allocation: kinematic variables

control loops should be related to yaw and heave motion. For their simplicity, only simple,

uncoupled PID control loops are considered here. More concretely, this means that to control

yaw only heading and yaw rate are used as feedback and, conversely, to control heave only

depth (or perhaps altitude) and heave velocity are used.

In the analyses to come, yaw control is considered first and heave control second. In these two

cases, the control loops are heuristically tuned to an acceptable performance when subject to

set-point changes, at zero current, and when the other degrees of freedom are not willingly

disturbed. After the individual control loops are tuned, the response at certain motion sce-

narios is tested. First, the response to surge and sway is studied in calm water. Second, the

response to surge is studied in oblique current.
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9.3.1 YAW CONTROL

As mentioned, the implemented yaw control law uses only heading and yaw rate as feedback,

i.e.,

uN = KPψ(ψsp − ψ)−KDrr.

In the simulations, the tuning parameters, expressed in force and kinematic variables’ units,

are KPψ = 0.3 Nm/deg and KDr = 30 Nm/(rad/s). This control law is implemented in

discrete time with an update period (time step) of 0.1 s.

As shown in Fig. 9.21, the performance of the controller is verified by computing changes to

heading set-point, namely from 0 to 15, 30, 45, and 60 deg. The figure shows the response of

Euler angles, angular velocity components, yaw control command, and propellers speed. As

shown, the controller was tuned to a response time of 5–6 s, without overshoot in heading,

and without saturation in the actuators.
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Figure 9.21. Yaw control response

9.3.2 HEAVE CONTROL

The implemented heave control law uses only vertical coordinate and heave rate as feedback,

i.e.,

uZ = KPz(zsp − z)−KDww.

In the simulations, the tuning parameters, expressed in force and kinematic variables’ units,

are KPz = 20 N/m and KDw = 50 N/(m/s). As before, this control law is implemented in

discrete time with an update period (time step) of 0.1 s.
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The performance of the controller is verified by computing changes to vertical coordinate set-

point, namely from 0 to −2, −1, 1, and 2 m. For these cases, Fig. 9.22 (a) shows the response

of vertical coordinate and velocity components; conversely, Fig. 9.22 (b) show the response of

Euler angles and angular velocity components. Figure 9.23 shows control effort by plotting the

response of heave control command and propellers speed. As shown, the controller was tuned

to a response time of 10–12 s, without overshoot in vertical coordinate. From Fig. 9.22 (b),

it becomes noticeable how roll motion gets excited at magnitudes of roll angle in the order of

20 deg.
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Figure 9.22. Heave control response: kinematics
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Figure 9.23. Heave control response: actuators

9.3.3 RESPONSE TO SURGE-DIRECTION COMMANDS

Surge-direction motion is performed as in previous open-loop cases, but in this case afore-

mentioned yaw and heave controllers are active. To test the control system performance,
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a virtual force command is assigned to surge input, namely for forward motion commands

equivalent to forces of 3, 6, 9, and 12 N. The simulations are run for 60 s and the results are

illustrated in Figs. 9.24, 9.25, and 9.26. As usual, Figs. 9.24 (a) and (b) show the ROV tra-

jectory at the different surge commands: Fig. 9.24 (a) shows the projection onto the xy-plane

and Fig. 9.24 (b) the corresponding projection onto the xz-plane. Figure 9.25 further shows

the behaviour of vertical coordinate, linear velocity components, Euler angles, and angular

velocity components, and Fig. 9.26 illustrates control effort by plotting the response of heave

control command and propellers speed.
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Figure 9.24. Surge motion response: trajectories
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Figure 9.25. Surge motion response: kinematics

As it becomes noticeable in Fig. 9.24 and evident in Fig. 9.25, after implementation of the

heave control loop, the ROV is capable of keeping approximate horizontal motion. By using

heave control, the vertical thruster is active and works to compensate the lift effect: this is

apparent in Fig. 9.26. In addition, steady-state error in vertical coordinate is present, this is
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due, among other reasons, because the heave controller does not implement integral action.

Nevertheless, an important dynamic effect that is not compensated is excitation of roll and

pitch; from Fig. 9.25, one can notice that they are highly oscillatory.
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Figure 9.26. Surge motion response: actuators

9.3.4 RESPONSE TO SWAY-DIRECTION COMMANDS

Sway-direction motion is performed similarly as in the previous surge case, i.e., to test the

control system performance, a virtual force command is assigned to sway input, namely for

forward motion commands equivalent to forces of 2, 4, 6, and 8 N. The simulations are run for

60 s and the results are illustrated in Figs. 9.27, 9.28, and 9.29. Figure 9.27 shows the xy-plane

projection of the ROV trajectory at the different surge commands. Figure 9.28 further shows

the behaviour of linear velocity components u, v, and w and angular velocity components p,

q, and r, Fig. 9.29 (a) illustrates control effort by plotting the response of heave and yaw

control commands, and Fig. 9.29 (b) illustrates propellers speed.

The importance of a yaw control loop for sway motion was acknowledged in previous analyses.

From Fig. 9.27, it becomes apparent that after implementing the yaw control loop, the ROV

is capable of keeping approximate lateral motion that gets deviated with increasing speeds.

Moreover, as Fig. 9.29 shows, there is a control action related to yaw that increases with sway

speed.

Because the heave control loop works as well, the vertical thruster compensates to assuage

the lift effect: this is apparent in Fig. 9.29. Rather similarly as in the surge case, this

type of motion excites roll; from Fig. 9.28, one can notice its highly oscillatory behaviour.

Compensation of roll requires to be addressed to improve the control loop’s performance.
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Figure 9.27. Lateral thrust at calm water and different sway commands: trajectories
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Figure 9.28. Sway motion response: kinematics

9.3.5 RESPONSE IN OBLIQUE CURRENT

The oblique-current manoeuvres considered here replicate those in Sec. 9.1.2, but in this case

heave and yaw controllers are active and only 0.2 m/s current magnitude is considered. The

current angles are the same, i.e., 15 and 45 deg. Different thrust conditions are tested by

assigning different surge force commands in forward direction, namely commands equivalent

to forces of 3, 6, 9, and 12 N. Concordantly, the results from all the scenarios are grouped

according to the two different current angles and illustrated by Fig. 9.30.
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Figure 9.29. Sway motion response: commands

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
y (m)

2

0

2

4

6

8

10

12

x 
(m

)

3 N
6 N
9 N
12 N

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
y (m)

0

2

4

6

8

10

12

14
x 

(m
)

3 N
6 N
9 N
12 N

(a) (b)

Figure 9.30. Surge motion in oblique-current using heave-yaw PID control: trajectories

Figure 9.30 shows an xy-plane projection of the ROV’s trajectory in all cases. Figures 9.30 (a)

and (b) show behaviour at 15 and 45 deg respectively. From the figures, the effect of yaw

control is noticeable, because the ROV keeps heading approximately constant in all cases.

Nevertheless, the fact that sway is not compensated is evident because the ROV drifts laterally.

This effect can be addressed by adding a control loop to sway motion.

To reduce lateral drift, a simple sway motion PID loop may be given by the control law

uY = −KPvv −KIv

∫ t

0
vdt.

In the simulations, the tuning parameters, expressed in force and kinematic variables’ units,

are KPv = 40 N/(m/s) and KIv = 10 N/m. As before, when this control law is implemented
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in discrete time, a time step of 0.1 s is used. The results of implementing a sway control loop

are shown in Fig. 9.31. From observing the trajectories, the way lateral drift is compensated,

compared to the trajectories in Fig. 9.30, becomes apparent. This demonstrates the pertinence

of controlling sway, in addition to have and yaw, in the presence of disturbances such as

current.
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Figure 9.31. Surge motion in oblique-current using sway-heave-yaw PID control: trajectories

9.4 CONCLUDING REMARKS

This chapter focused on performing time-domain simulations using visor3’s time-domain

model, to study its manoeuvrability. Overall, three groups of motion simulations were pur-

sued: open-loop without thrust allocation, open-loop with thrust allocation, and multi-loop

PID control. Additionally, in all groups, both calm-water and oblique-current manoeuvres

were considered. Calm-water manoeuvres studied response of all controllable degrees of free-

dom (surge, sway, heave, and yaw), as well as circular motion where some degrees of freedom

are combined. Oblique-current manoeuvres studied surge motion only. Closed-loop manoeu-

vres studied multi-loop PID schemes that focus initially on heave and yaw control and lastly

on surge control. In this last case, the controllers are heuristically tuned to have acceptable

performance at changes in set-point. Then, the closed-loop response to commands in surge

and sway directions was studied first; conversely, the response to surge commands in oblique

current without and with sway control was studied second.

By and large, the difference between motion scenarios without and with thrust allocation is

that operator commands are simplified and thrust is equated between forward and backward
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motion. For the most part, the manoeuvring features in both cases are similar. Conversely

and expectedly, the dynamic response of the ROV is considerably affected by closed-loop

control. By using simple yaw and heave PID control, depth and heading are regulated when

moving around other degrees of freedom. According to the results, there is considerable room

for improvement for the control system response and robustness. Likewise, unwanted motion

around non-controlled degrees of freedom, i.e., roll and pitch oscillation, are left unaddressed.

As expected, this chapter’s work leaves space for copious directions of advancement. First,

a possible direction could be related to testing more complicated control schemes. Second,

another direction could be the validation of the manoeuvring features in the actual ROV.

Third, as it could be noted, integration with the cable model was not addressed as it is not

trivial. And last, these manoeuvring studies could be pursued for different ROVs, such as

Pionero500.



Chapter 10

Motion feasibility framework

This chapter proposes a framework for analysing motion feasibility in ROVs by means of

numerical computations of the dynamics equations. Motion feasibility analyses are understood

here as those that aim at answering questions about whether an ROV is able to move under

certain operation conditions. Because in general that aim is unmanageably broad, a framework

for analysing motion feasibility requires acknowledging the following aspects:

• An ROV integrates different components that affect whether an operation is feasible or

not and the influence of each component varies in importance.

• Operation-scenario considerations may vary from simple to complex.

• Motion feasibility is relevant at different moments in the ROV’s life cycle, for instance

in design, testing, and operation planning/execution to name a few. Subsequently, what

is known about the system varies at each stage, and what one wants to extract from the

analysis varies as well.

Taking these ideas into consideration, a motion feasibility analysis framework should have the

following desirable properties:

• The analysis should be possible to be carried through even when only basic information

is available; consequently, what basic information means should be stated.

• The analysis should be able to improve its accuracy when more detailed information is

added.

• The analysis should be able to be presented by means that are likely to be straightfor-

wardly understood by people whose work/training is ROV-related.

264



CHAPTER 10. MOTION FEASIBILITY FRAMEWORK 265

By using the ideas stated above, the motion feasibility framework proposed in this work is

stated in terms of the concept of ROV Dynamic Positioning Capability (ROV-DPCap): this

chapter’s objective is to show how this is possible.

10.1 DYNAMIC POSITIONING CAPABILITY IN ROVS

ROV Dynamic Positioning Capability (ROV-DPCap) analyses aim at determining whether an

ROV motion system has enough actuator capacity to withstand environmental and operation-

related loads, while keeping a prescribed position or motion. Moreover, it is understood that

an ROV’s Dynamic Positioning (DP) system is responsible for distributing power to the

actuators in order to keep a constant position and heading or attain a prescribed motion. In

this context, the DP system often includes, as subsystems, power, control (computer, sensors,

position reference systems, operator panels, etc.), and actuator components. For an ROV,

a DP system normally includes a human in the control loop, but it may function as well

autonomously in some cases.

Because the concept of DPCap was originally developed for ships and surface vessels, these are

used as a base to develop the DPCap framework for ROVs. The approach will be to extend

the DNVGL-ST-0111 standard [34] from surface vessels to ROVs. Accordingly, this chapter

proposes how to apply DPCap analyses to ROVs including the possibility of quasi-static and

dynamic studies, as well as considering generic site-independent and site-specific conditions.

Advances towards this goal were reported in [101]. To list some elements of ROV-DPCap,

ocean current is considered as the primary environmental variable to determine capability, 2D

and 3D plots are required to illustrate three-dimensional motion capability and account for

three-dimensional relative current/motion, and, finally, the effects of vertical current profile

on the cable and other depth- and operation-related loads might be included as well.

ROV-DPCap may be used to pursue offline analyses and serve as an online advisory/supervisory

tool as well. Offline analyses are those that can be performed before an operation: this ranges

from the design of a new ROV to planning an operation with an existing ROV. Possible

analyses may be choosing a thruster configuration, computing whether a system is deployable

into an specific location, e.g. in the Caribbean, among others. Conversely, as an online su-

pervisory system, DPCap can be used to advise whether during an operation a loss of motion

capability occurs, as well as to provide real-time operation decision-making information, such

as estimating the conditions that may constitute risk or operation impairment. This thesis

does not consider analyses or implementations of online advisory/supervisory tools.
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10.2 METHODOLOGY OVERVIEW

10.2.1 ROV-DPCAP NUMBER DEFINITION

ROV-DPCap number is a way to indicate, in a rather simple manner, what type of environ-

mental conditions an ROV is potentially capable to withstand. In this methodology, for an

ROV, current is considered the most important type among all environment load-inducing

conditions. For this reason, the ROV-DPCap number is quantified from incoming current.

Table 10.1 shows the relationship between incoming current and ROV-DPCap number. As

the table shows, ROV-DPCap number is defined by keeping a subjective parallel to Beaufort

(BF) scale’s numbers and definitions [34]. Also, the different ROV-DPCap numbers are re-

lated to a current value in m/s, i.e., ROV-DPCap numbers from 0 to 11 represent currents

starting from 0 to 2.2 m/s, by using 0.2 m/s steps.

Table 10.1. DPCap numbers

ROV-DPCap Beaufort Beaufort Current

number (BF) number description speed [m/s]

0 0 Calm 0.0

1 1 Light air 0.2

2 2 Light breeze 0.4

3 3 Gentle breeze 0.6

4 4 Moderate breeze 0.8

5 5 Fresh breeze 1.0

6 6 Strong breeze 1.2

7 7 Moderate gale 1.4

8 8 Gale 1.6

9 9 Strong gale 1.8

10 10 Storm 2.0

11 11 Violent storm 2.2

12 NA Hurricane force NA

This considered, a certain ROV-DPCap number indicates that the ROV can keep its position

at the corresponding ROV-DPCap number conditions and all conditions below, but not in the

conditions specified for the next DPCap number. This means, for instance, that if the ROV-

DPCap number is 5 then the ROV can withstand a current of 1.0 m/s but not a current of

1.2 m/s; furthermore, the exact limiting current should be somewhere in between 1.0 and

1.2 m/s.
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10.2.2 TYPES OF ANALYSES

The different types of ROV-DPCap analyses are obtained by using either steady-state, namely

pseudo-static, or dynamic balances and considering either standard or site-dependent condi-

tions. Firstly, a pseudo-static balance is a balance of forces and moments in steady-state con-

ditions, but external loads are augmented by using a factor of safety (e.g., 1.25) to account for

dynamic effects and non-modelled loads. A dynamic balance uses, e.g., Newton’s second law or

equivalent to consider transient phenomena such as the effect of time-dependent environmental

conditions, inertia, and control-system dynamics. Secondly, standard conditions refers to anal-

yses that allow one to potentially compare different ROVs as fairly as possible. Consequently,

in this framework, standard conditions refers to considering current-induced loads by using

the values stated in Table 10.1 and testing different relative current directions. Site-dependent

conditions refers to adding any other environment-induced or operation-related loads particu-

lar to each operation scenario, e.g., cable-, depth-, and wave-related loads. Roughly speaking,

standard conditions compare ROVs; site conditions assess operations.

The four types of ROV-DPCap analyses proposed are L2, L2s, L3, and L3s; this is done to

keep a parallel to the DNVGL-ST-0111 standard [34]. As mentioned, the different types of

analyses cover either quasi-static or dynamic conditions and either standard or site-specific

conditions; the name of each type of analysis is as follows:

• L2: quasi-static, standard conditions.

• L2s: quasi-static, site-specific conditions.

• L3: dynamic, standard conditions

• L3s: dynamic, site-specific conditions.

Table 10.2 summarises the aforementioned analysis classification.

Table 10.2. DPCap analyses

Balance type

Quasy-static Dynamic

Load Standard L2 L3

conditions Site-specific L2s L3s

Worth mentioning, the DNVGL-ST-0111 standard proposes as well a Level 1 (L1) analysis,

intended only for ship-shaped mono-hull vessels. Such type of analysis does not translate to

ROVs directly; thus, it is not considered here.
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10.2.3 ROV-DPCAP PLOTS

ROV-DPCap is illustrated by using DPCap plots. DPCap plots were born as polar graphs that

show the operational envelope of a vessel. They depict the limiting environmental conditions

a vessel can withstand in DP mode, at each direction (or at least a set of directions) in the

xy-plane and at normal and failure conditions. For ROVs, two types or plots are proposed

for presenting DPCap: 2D and 3D. In general, NED frame is used to draw these plots (x-

direction is considered positive from aft to bow, y-direction positive from port to starboard,

and z-direction positive down) following the convention in [48].

Two-dimensional plots are polar plots that show results for DP capability on the xy, xz, and

yz planes, i.e., considering that motion occurs only on the specified plane. These options are

depicted in Fig. 10.1. The polar angle and radius represent relative velocity direction and

ROV-DPCap number respectively. From the point of view of eq. (2.4), i.e.,

νr =
[
ur vr wr

]ᵀ
=
[
Vr cos(αr) cos(βr) Vr sin(βr) Vr sin(αr) cos(βr)

]ᵀ
,

each 2D plot is calculated by using the following considerations:

• xy-plane plot: αr = 0 and 0 ≤ βr < 360 deg, with 10 deg increments.

• xz-plane plot: βr = 0 and β = 90 deg, and 0 ≤ αr < 180 deg, with 10 deg increments.

• yz-plane plot: αr = 90 deg and 0 ≤ βr < 360 deg, with 10 deg increments.

Three dimensional plots show ROV-DPCap around all directions, i.e., from the point of view

of eq. (2.4), 0 ≤ α < 180 deg and 0 ≤ β < 360 deg. As illustrated in Fig. 10.1, 3D plots

are spherical plots where, similarly as in 2D plots, orientation and radius represent relative

velocity direction and ROV-DPCap number respectively. Please note how, in a red-white-blue

scale, colours show variation of ROV-DPCap number from 1 to 5. Red indicates the lowest

and blue the best capability. In this case, heave and sway motion are more restricted that

surge’s.

Recalling results from Chapter 4, geometrically, relative velocity could be represented by a

point in S2 (a two-dimensional sphere in R3) and the task of distributing points uniformly

therein is not trivial. For instance, the plot in Fig. 10.2 was computed by using a mapping

S2
s : R2 → S2, given by eq. (2.4) as

(αr, βr) 7→ (eu, ev, ew) = (cos(αr) cos(βr), sin(βr), sin(αr) cos(βr)),

i.e., using an Euler angles parametrisation. From Fig. 10.2, it becomes apparent that some

computation points regions are sparser that others. Here, fairer distributions of points on

the sphere will be useful for arranging DPCap computations and plots; consequently, further

results will require using concepts from design of computer experiments (see Chapter 5).
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Figure 10.1. 2D ROV-DPcap plots example

10.2.4 ROV-DPCAP ANALYSIS PROCEDURE

The process of computing an ROV-DPCap analysis is illustrated here by assuming standard

conditions, i.e., L2 and L3 analyses. The overall process follows three steps, namely

1. Pre-process: create a design table that specifies all the directions where the ROV-DPCap

number is computed. The result of this step is a design table with a list of unitary vectors

in R3, i.e., a list of points eνi ∈ S2, for i = 1, . . . , N .

2. Process: compute the limiting conditions and ROV-DPCap number for each point eνi

from the design table.

3. Post-process: create ROV-DPCap plots, auxiliary plots, and report results.



CHAPTER 10. MOTION FEASIBILITY FRAMEWORK 270

X

3
2
1
0
1
2
3
4

Y

2
1

0
1

2

Z

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

1

2

3

4

5

Figure 10.2. 3D ROV-DPcap plots example

Preprocess step requires defining a design table that follows similar guidelines as shown in

Chapter 5. For ROV-DPCap three types of designs are proposed here:

1. 1D: these designs are parametrised in terms of one parameter. These are designs that

geometrically resemble points on a circle (line) in S2, so their parameter is an angle. More

specifically, these are mainly designs where, e.g., only xy, xz, and yz plane points are

considered. This type of designs is considered in Sec. 4.1.1.

2. 2D: these designs are parametrised in terms of two parameters. These are designs that fill

the S2 space by using a two dimensional parametrisation such as S2
s and S2

c . In general,

these parametrisations are defined as (q1, q2) 7→ (eu, ev, ew), as specified in Sec. 4.1.2.

This makes it possible to create a full factorial design (lattice or grid) in R2 and translate

it to S2, similar to those shown in Figs. 4.1 and 4.2. This type of designs was used to

create the ROV-DPCap plot in Fig. 10.2.

3. 3D: these designs are obtained by distributing points directly in S2, by using criteria such

as covering or packing. These designs where discussed in Sec. 4.1.3. This type of designs

is illustrated in Fig. 4.3.

Process step is the core of ROV-DPCap analysis. It requires to loop around all N elements of

the design table and find the limiting condition that defines an ROV-DPCap number. This

loop is illustrated in Fig. 10.3 (a). The way the limiting condition is computed depends

on whether the analysis is L2, L2s, L3, or L3s. To illustrate the procedure, only standard

conditions are assumed, i.e., L2 and L3 for pseudo-static and dynamic cases respectively. An

algorithm to compute the limiting condition is shown in Fig. 10.3 (b). It is important to note

that the algorithm shown here is comprehensive; this means that all possible DPCap numbers
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Figure 10.3. ROV DPCap algorithm

are considered from 1 to the limiting condition. This is to say that a smarter algorithm may

be implemented, so that fewer computations are required to find the limiting condition at

each direction.

As illustrated in Fig. 10.3 (b), there is a relevant difference in the manner pseudo-static

analyses are performed compared to dynamic ones. Pseudo-static analyses require to compute

steady-state loads and augment them by using a factor of safety, usually 1.25. Then, the

augmented loads are used to compute required thruster forces by performing a steady-state

balance and using a thrust allocation scheme. Finally, the limiting condition is obtained

when any of the actuators is required to give more than 100 % thrust. Conversely, dynamic

analyses require to setup and run a time-domain simulation of the ROV’s motion during a

representative time-window. The limiting condition is obtained when, during motion, the

ROV surpasses certain position and heading bounds. Using the results in [122] as reference,

a ±0.2 m tolerance for position and a ±3 deg tolerance for heading may be proposed.

Post-process step requires consolidating stored results, creating ROV-DPCap and auxiliary

plots, and reporting results. The overall results include:
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• ROV-DPCap number at each condition.

• Thruster usage data and statistics.

• Time-domain motion variables for dynamic analyses and statistics.

10.3 ROV-DPCAP ANALYSES

This section shows how the considerations for each ROV-DPCap analysis type is taken into

account in the ROV model. The approach is to illustrate how model (2.5), namely

MRB ν̇ + CRB (ν) ν + MAν̇r + CA (νr) νr + D (νr) νr + g (η) = τ(u) + τcable + τwave,

is modified in each case. In all cases, model (2.16) for thrust forces is required, namely

τ = Tf(u).

This is specially important for L2 and L2s analyses, where special attention must be paid to

the behaviour of f(u). Thrust allocation plays an important role too, because inverse map

(2.20), i.e.

f(u) = T†u,

defines how control signals u are translated into thruster forces.

10.3.1 L2 ANALYSIS

For L2 analyses, steady-state conditions are assumed, i.e., ν̇ = ν̇r = 0. More specifically, the

following considerations are taken:

• Zero speed, i.e., ν = 0.

• The vehicle is well-balanced and all attitude angles are zero at equilibrium, i.e., φ = θ = 0.

Furthermore, it can be assumed that ψ = 0 without loss of generality.

• Zero payload, i.e., mp = 0 in (2.8).

• Neutral buoyancy, i.e., W = B. This makes the gravity vector equal to zero.

• Drag due to current is the only environmental load.

• All external loads are ignored.

This reduces model (2.5) to

D (νr) νr = τ,



CHAPTER 10. MOTION FEASIBILITY FRAMEWORK 273

i.e., thrusters compensate only for drag. Combining this with thrust net load and thrust

allocation and using factor of safety Fs, the steady-state balance for L2 analysis becomes

FsD (νr) νr = Tf(u),

along with thrust allocation maps (2.20) and (2.22), i.e., fu = T†τu and u = f †u(fu). The thrust

allocation algorithm is given by the sequence of maps that compute thruster commands from

virtual force command, i.e., τu 7→ fu 7→ u.

This considered, solving the pseudo-static balance problem requires finding virtual force com-

mand τu given νr. For this problem, the residual equation r(τu) = 0 becomes

r(τu) = FsD (νr) νr −T f
(
f †u

(
T†τu

))
= 0.

This equation is to be solved with a root-finding algorithm. After a solution for each νr is

found, a limiting condition is reached when for any thruster i the required propeller speed

surpasses its maximum, i.e., ni > nmaxi .

10.3.2 L2S ANALYSIS

For L2s analyses, steady-state conditions are assumed as well, but site-specific environmental

conditions and loads are included. More specifically, the following considerations are made:

• Zero speed, i.e., ν = 0.

• The vehicle is well-balanced and all attitude angles are zero, i.e., φ = θ = 0. Furthermore,

it can be assumed that ψ = 0 without loss of generality.

• Payload is included when applicable.

• Buoyancy is not necessarily equal to weight. This may produce a steady gravity load,

but, given that zero attitude is considered, restoring moments do not apply.

• All site-specific and depth-dependent environmental loads may be included. For instance,

wave loads may be considered if operating at wave influence zone; consequently, the

added mass coefficients will be frequency dependent as described in [43, 120], and the

assumptions of (2.9) do not hold.

• External loads, as well as depth- and site-dependent loads are included; for instance,

accumulated drag on the cable and closeness to bottom and underwater structures.

This reduces model (2.5) to

D (νr) νr + g (η)− τcable − τwave = τ,
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where g(η) =
[

0, 0, −(W −B), 0, 0, 0
]ᵀ
. Here thrusters compensate for drag and

other site-dependent loads. As it was done for L2 analysis, combining this with thrust net load

and thrust allocation and using factor of safety Fs, the steady-state balance for L2s analysis

becomes

Fs (D (νr) νr + g (η)− τcable − τwave) = Tf(u).

along with thrust allocation maps (2.20) and (2.22), i.e., fu = T†τu and u = f †u(fu). The

pseudo-static balance problem requires finding virtual force command τu given νr. For this

problem, the residual equation r(τu) = 0 becomes

r(τu) = Fs (D (νr) νr + g (η)− τcable − τwave)−T f
(
f †u

(
T†τu

))
= 0.

As before, this equation is to be solved with a root-finding algorithm. After a solution for

each νr is found, a limiting condition is reached when for any thruster i the required propeller

speed surpasses its maximum, i.e., ni > nmaxi . The computation of τcable is done as explained

in Chapter 7.

10.3.3 L3 ANALYSIS

For L3 analyses, dynamic conditions are assumed, i.e., ν̇ 6= 0 and ν̇r 6= 0. This type of analysis

requires the following considerations:

• DP control is activated: position and heading.

• The vehicle is well-balanced and all attitude angles are zero at equilibrium, but φ, θ, and

ψ are variable.

• Zero payload, i.e., mp = 0 in (2.8).

• Neutral buoyancy, i.e., W = B. This makes the first three components of the gravity

vector equal to zero but, in general, the restoring moments different to zero.

• Drag due to current is the only environmental load. Current may be time-variant.

• All external loads are ignored.

This reduces model (2.5) to

MRB ν̇ + CRB (ν) ν + MAν̇r + CA (νr) νr + D (νr) νr + g (η) = τ,

where

g(η) =
[

0, 0, 0, −(zgW − zbB) cos θ sinφ, (zgW − zbB) sin θ, 0
]ᵀ
.

This (ODE) model has to be solved along with models (2.16) and (2.20) for thrust net load

and thrust allocation, as well as with controller model (2.23) or equivalent. For L3 analyses,

limiting conditions depend on position and heading bounds.
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10.3.4 L3S ANALYSIS

For L3s analyses, dynamic conditions are assumed as well, but site-specific environmental

conditions and loads are included. More specifically, the following considerations are made:

• DP control is activated: position and heading.

• The vehicle is well-balanced and all attitude angles are zero at equilibrium, but φ, θ, and

ψ are variable.

• Payload is included when applicable.

• Buoyancy is not necessarily equal to weight. This makes that gravity forces as well as

restoring moments are included.

• All site-specific and depth-dependent environmental loads may be included. For instance,

wave loads may be considered if operating at wave influence zone; consequently, added

mass coefficients will be frequency dependent [43, 120] and assumptions of (2.9) do not

hold.

• External loads, as well as depth- and site-dependent loads are included; for instance,

cable’s accumulated drag and motion and closeness to bottom and underwater structures.

This makes that complete model (2.5) must be considered. This model has to be solved

along with models (2.16) and (2.20) for thrust net load and thrust allocation, as well as with

controller model (2.23) or equivalent. For L3s analyses, limiting conditions depend on position

and heading bounds.

10.4 CASE STUDIES

In this section different case studies are considered to illustrate the most important features

of ROV-DPCap, namely:

• L2 analysis of Minerva,

• L2 analysis of visor3,

• L2 analysis of two thruster configurations during ROV design, and

• L2s analysis where cable drag accumulation is considered.
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10.4.1 L2 ANALYSIS OF MINERVA

According to Sec. 10.3.1, the L2 analysis on Minerva is done by computing a quasi-static

balance of drag and thruster forces and using a thrust allocation algorithm. To compute the

quasi-static balance, a factor of safety Fs = 1.25 is used. The Minerva’s model and thrust

allocation algorithm used herein are as described in Sec. 3.3. After computing the thrust

allocation algorithm, the resulting two-dimensional plots of ROV-DPCap number are shown

in Fig. 10.4; moreover, the three-dimensional plots are shown in Fig. 10.5.
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Figure 10.4. 2D ROV-DPcap plots of Minerva

In Fig. 10.4 (a), the xy-plot illustrates the horizontal plane motion capability. From this

plot, it is apparent that there is more capability for forward motion, with ROV-DPCap

number around 4, than for backward motion, with ROV-DPCap number around 3: this

due to the difference between forward and backward thrust of unidirectional thrusters. It is

also apparent that there is more capability for overall surge motion than for sway motion,

where ROV-DPCap number is around 2. Conversely, xz- and yz-plots illustrate capability

for vertical motion: see Figs. 10.4 (b) and (c) respectively. For instance, the xz-plot shows

vertical motion capability compared to surge motion.

10.4.2 L2 ANALYSIS OF VISOR3

The L2 analysis on visor3 is done similarly as Minerva’s; consequently, the quasi-static

balance of drag and thruster forces is computed by using a factor of safety Fs = 1.25. The

visor3’s model and thrust allocation algorithm used herein are as described in Sec. 3.1. As

previously, after computing the L2 ROV-DPCap algorithm, the resulting two-dimensional

plots of ROV-DPCap number are shown in Fig. 10.6 and the three-dimensional plots are
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Figure 10.5. 3D ROV-DPCap plots of Minerva

shown in Fig. 10.7.
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Figure 10.6. 2D ROV-DPcap plots of visor3

Figure 10.6 (a) shows horizontal plane motion capability. This plot evidences the asymmetries

of surge and sway motions due to unidirectional thrusters. There is more capability for (surge)

forward motion, with ROV-DPCap number around 4, than for backward motion, with ROV-

DPCap number around 3. Conversely, there is more capability for starboard-side motion, with

ROV-DPCap number around 2, than for port-side motion, with ROV-DPCap number around

1. As in Minerva, it is also apparent that there is more capability for overall surge motion
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Figure 10.7. 3D ROV-DPCap plots of visor3

than for sway and heave motion, as it becomes apparent in xz- and yz-plots of Figs. 10.6 (b)

and (c). Comparing the plots with those of Minerva, this ROV has large unbalances of ROV-

DPCap number. This means that even though it could withstand surge direction current in

the range of 0.8 m/s in a best-case scenario, it could lose motion capability at small currents

in any other direction.

10.4.3 L2 ANALYSIS OF TWO THRUSTER CONFIGURATIONS DURING ROV DE-

SIGN

A ROV design-related analysis is addressed here through a minimalistic approach to L2 ROV-

DPCap, i.e., to elaborate 2D ROV-DPCap plots to compare two possible thruster configura-

tions using simplified models for drag and thrust. In this case, the drag model in (2.12) has

coefficients X|u|u = 206, Y|v|v = 347, and Z|w|w = 377 Ns2m−2 and he remaining coefficients

are assumed zero. The thrusters are rated to have 166.6 N of bollard pull in the forward

direction and 98 kg-f in the backward direction. For the sake of simplicity, it is assumed that

thrust is not reduced due to advance ratio, i.e., thrust coefficient is constant.

The two possible thruster configurations are as following: 1) 3 thrusters for motion in the
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xy-plane and 3 thrusters for vertical motion, given by the configuration matrix in (2.16)

T =



0.940 0.940 0 0 0 0.174

0.342 −0.342 1 −0.174 0.174 0

0 0 0 0.985 0.985 0.985

0 0 0 0.241 −0.241 0

0 0 0 −0.128 −0.128 0.379

−0.361 0.361 0.39 −0.023 0.023 0


,

and 2) 4 thrusters for motion in the xy-plane and 2 thrusters for vertical motion, given

configuration matrix (2.16),

T =



0.819 0.819 0.819 0.819 0 0

0.574 −0.574 −0.574 0.574 0 0

0 0 0 0 1 1

0 0 0 0 −0.24 0

0 0 0 0 0 0.42

0.007 0.007 −0.007 −0.007 0 0


.

The two resulting 2D ROV-DPCap plots are summarised in Fig. 10.8. There, it is appar-

ent how 3-3 configuration gives a more balanced but asymmetrical capability plot and 4-2

configuration gives more capability for motion in the xy-plane compared to vertical motion.
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Figure 10.8. 2D DPCap plots of the ROV design

10.4.4 L2S ANALYSIS WHERE CABLE DRAG ACCUMULATION IS CONSIDERED

The effects of drag due to the cable is addressed here by using L2s ROV-DPCap analysis.

To do so, the current profile of a location in the Colombian Caribbean is considered; more

specifically, the profile at coordinates 12 N-73 W, from May 14th, 2014 (Fig. 10.9). This

profile represents calm water conditions because current is always below 0.2 m/s.
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Figure 10.9. Current profile at 12 N-73 W.

This profile is obtained from the GLobal Ocean ReanalYses and Simulations (GLORYS2V3) of

the EU-Copernicus’s Marine Environment Monitoring Service (http://marine.copernicus.eu/)

[45]. The analysis is done for 4-2 configuration, where it is more likely to lose vertical motion

capability. Figure 10.10 shows a comparison between the xz-plane capability plots when the

ROV is unaffected by the cable (datum) and when the ROV is submerged at 300 m and the

cable accumulates drag. It is apparent that the ROV is able to maintain DP capability at
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Figure 10.10. XZ DPCap plot at 300 m

the specified depth; likewise, one can also see the effect of the vertical component of the cable

load where downward capability is reduced and upward capability increased.
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10.5 CONCLUDING REMARKS

This thesis centred its objectives on developing a framework for assessing motion feasibility in

ROVs; in accordance, this chapter stated that a convenient route for doing so is through the

concept of dynamic positioning capability (DPCap). In this last chapter, the concept of ROV-

DPCap was developed alongside the DNVGL-ST-0111 standard, which gives a framework

for assessing DPCap on surface vessels. Consequently, developing a DPCap framework for

ROVs required stating a definition of ROV-DPCap number, the types of analyses that can be

pursued, and two- and three-dimensional graphical representations.

This work proposed a definition of ROV-DPCap number that is based on current. In other

words, an ROV-DPCap number is indicative of the current magnitude the ROV can withstand.

Therefore, DPCap number becomes a way to quantify motion feasibility; this means that it

is possible to spot a situation where the operation is performed in a fragile condition, where

the ROV is perhaps near to lose its capability of keeping position or course.

This chapter specifies how to perform ROV-DPCap analyses, i.e., computing the ROV-DPCap

number at certain foreknown conditions. Similarly as in the DNVGL-ST-0111 standard, the

different types of analyses include all combinations of pseudo-static and dynamic motion

conditions, which can be evaluated at standard or site-dependent operation conditions. Stan-

dard conditions represent those were current-induced load is the only external stimulus; in

contrast, other external stimuli derive in site-dependent conditions. For instance, cable ef-

fects, waves, or any other depth-dependent effects are regarded as site-dependent conditions.

Correspondingly, the considerations for each type of analysis were explained in terms of the

ROV’s dynamics model, and a general algorithm is presented to compute the corresponding

ROV-DPCap number.

It was acknowledged that ROV-DPCap analysis is essentially three-dimensional; this is stated

in contrast to the fact that two-dimensional analyses suffice for surface vessels. This is impor-

tant to note, because the distribution of different orientations (directions) in three dimensions

is more intricate than that in two dimensions, when even distribution is a concern. Neverthe-

less, representation is two dimensions are valued as well because they are easier to interpret.

In order to illustrate how ROV-DPCap analyses work, some case studies were computed.

These computations are intended to illustrate the potentiality of this approach to ROV motion

feasibility analysis. They are regarded, in consequence, as a passageway to further work.

With everything considered, the prospects of motion feasibility are wide. The spherical geom-
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etry of the problem could be further exploited. The impact of the cable on motion feasibility

requires detailed attention. A reasonable next step would be to incorporate motion feasibil-

ity tools into ROV operations planning. And, so far, the type of studies are intended to be

performed in an offline fashion; this means that there is plenty of space to extend this work

to online analyses.



Part IV

Epilogue
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Conclusions and further work

CONCLUSIONS

This thesis proposed a framework for motion feasibility studies on ROVs based on time-domain

numerical solutions to models that span rigid-body dynamics, control algorithms, and elastic

rod dynamics. Hence, the thesis benefited from known rigid-body dynamics and control

theory and required emphasizing on modelling hydrodynamics and cable loads. Furthermore,

the thesis incorporated as well tools such as sphere geometry, design of computer experiments,

and object-oriented programming, which are all in all a fitting complement. The problem of

motion feasibility was addressed first by considering time-domain manoeuvring simulations.

Subsequently, with everything taken into account, a sound framework for analysing motion

feasibility was developed from the concept of ROV Dynamic Positioning Capability (ROV-

DPCap). To the author’s knowledge, the concept of ROV motion feasibility based on ROV-

DPCap, as well as a framework that integrates different motion-relevant components, has not

been treated previously; consequently, this was introduced as part of the author’s research.

Modelling ROV hydrodynamics played a central role in this thesis. Here, a methodology for

obtaining a meta-model for the hydrodynamic forces and moments that act on an ROV and

is useful in time-domain simulations was proposed. It is assumed that the source of data are

viscous-flow computations performed in available CFD code. More concretely, the complete

process was carried out for visor3, where the viscous-flow computations were performed in

MARIN’s viscous-flow solver ReFRESCO. This work emphasized the use of the language

of design of computer experiments and quantifying numerical uncertainty due to different

sources. Studying manoeuvring is commonplace for ships, but for ROVs is a ground that

is worth exploring through more research. In particular, this thesis stated that coming up

with simplified manoeuvring meta-models from viscous-flow computations requires addressing

design of computer experiments for spherical domains, the geometry of basis functions, and

uncertainty due to the meta-model itself as a major source of inaccuracy.
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Including the effects of a cable into ROV motion computations was a purpose of this thesis.

This topic proved to be unbounded given the numerous possibilities to approaching the model.

Acknowledging this, this thesis posited that it was more convenient, given this work’s limita-

tions, to establish a starting point that allows one to build-up further knowledge. Such point

of departure was the case of the classical catenary, which gives the basis for solving problems

were, e.g., drag accumulation is computed. The so-called drag-catenary model was approached

by using different numerical methods, namely shooting-algorithm, finite-differences, finite-

elements method. Elastic effects were approached and analysed by performing computations

on the WHOI cable model, both in steady-state and dynamic conditions.

The manoeuvring of ROVs was studied by performing computations on visor3’s model. These

computations were carried through on a tailor-made, object-oriented framework for ROV time-

domain simulation. The manoeuvring response of the ROV at different scenarios was done

in three steps: open-loop without thrust allocation, open-loop with thrust allocation, and

multi-loop PID control. The different scenarios include both calm-water and oblique-current

manoeuvres, by simulating, e.g., the response of all controllable degrees of freedom (surge,

sway, heave, and yaw) or circular motion. These simulations proved to be meaningful and

effective for gaining insight into the ROV’s manoeuvring attributes.

The concept of ROV-DPCap was put forward as a means for analysing and quantifying mo-

tion feasibility. Acknowledging the fact that DPCap is commonplace on surface vessels, this

thesis focused on tailoring the method for ROV particularities. This comprised the defini-

tion of ROV-DPCap number based on three-dimensional relative current as the main load-

inducing effect; specifying the types of analyses that can be pursued considering quasi-static

and dynamic conditions, as well as standard and site-dependent load conditions; and two-

and three-dimensional graphical representations. ROV-DPCap constitutes a promising topic

for further research on ROVs. To the author’s knowledge, DPCap studies for ROVs are a

contribution that resulted within the author’s research; it constitutes an innovative approach

to assessing motion feasibility for ROVs.

FURTHER WORK

An inevitable pathway to further work is to perform comprehensive experimentation. Because

this work was integrative, experimentation should range from testing individual models, such

as hydrodynamics and cable, to different assembly of different components.
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The topic reach of this thesis may become fractal. Most of the topics discussed here are

susceptible to be further researched in detail, namely rigid body dynamics; hydrodynamics,

CFD, and manoeuvring; cable and, in general, elastic components; (sphere) geometry and

design of computer experiments; and (undoubtedly) ROV-DPCap.

From all topics, cable modelling is particularly fractal and requires detailed attention. From

all possibilities, one that leads to simulations that make a compromise between computational

effort and accuracy seems outstandingly appealing. Moreover, another possibility of particular

practical interest is studying the possibility of seeing the cable as a controllable object.

The implications of designing more elaborate feedback control when there is better knowledge

on the ROV model (like hydrodynamics and cable) is to be addressed: it may improve features

such as manoeuvrability, energy consumption, and the scope of underwater operations.

A natural next step to ROV-DPCap analysis is to incorporate such analyses into ROV oper-

ation planning; and, furthermore, to extend it to become an online advisory tool.
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Appendix A: Maths

VECTOR DERIVATIVES

The derivatives herein are Jacobians. Vectors are in R3.

The magnitude (Euclidean norm) of x ∈ R3 is computed as

||x|| =
√
x2 + y2 + z2,

where x =
[
x y z

]ᵀ
. The unitary vector of x is computed as

et =
x

||x||
,

only if ||x|| 6= 0.

The derivative of ||x|| with respect to x is

∂||x||
∂x

= eᵀ
t .

If r ∈ R3 is an arbitrary vector, non dependent on x, the following derivative may be computed

∂||x||r
∂x

= reᵀ
t .

The derivative of et with respect to x is

∂et
∂x

=
1

||x||
(I− ete

ᵀ
t ) .

For an arbitrary vector v ∈ R3, its projection over an unitary vector et is

vt = vᵀet
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and the component over the direction et is

vt = (vᵀet)et.

The derivatives with respect to x, assuming v is independent of x, are

∂vt
∂x

=
1

||x||
vᵀ (I− ete

ᵀ
t ) and

∂vt
∂x

=
1

||x||
(vtI + etv

ᵀ) (I− ete
ᵀ
t ) .

The derivatives with respect to v are

∂vt
∂v

= eᵀ
t and

∂vt
∂v

= ete
ᵀ
t .

Another useful derivative is
∂||x||x
∂x

= ||x||I + xeᵀ
t .

INTEGRALS OF LINEAR LAGRANGE POLYNOMIALS

The basis functions of linear Lagrange polynomials are given by

Nj
1(s) =

sj+1 − s
sj+1 − sj

=
sj+1 − s

∆sj
and

Nj
2(s) =

s− sj
sj+1 − sj

=
s− sj
∆sj

.

They are useful to define linear functions for s ∈ [sj , sj+1].

Basis function derivatives are given by

N′j1 (s) = − 1

∆sj
and N′j2 (s) =

1

∆sj
.

Useful integrals are ∫ sj+1

sj

Nj
1(s)ds =

∫ sj+1

sj

Nj
2(s)ds =

1

2
∆sj ,∫ sj+1

sj

[
Nj

1(s)
]2

ds =

∫ sj+1

sj

[
Nj

2(s)
]2

ds =
1

3
∆sj ,

∫ sj+1

sj

Nj
1(s)Nj

2(s)ds =
1

6
∆sj ,∫ sj+1

sj

N′j1 (s)Nj
1(s)ds =

∫ sj+1

sj

N′j1 (s)Nj
2(s)ds = −1

2
,∫ sj+1

sj

N′j2 (s)Nj
1(s)ds =

∫ sj+1

sj

N′j2 (s)Nj
2(s)ds =

1

2
,
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∫ sj+1

sj

[Nj
1(s)]2N′j1 (s)ds =

∫ sj+1

sj

[Nj
2(s)]2N′j1 (s)ds = −1

3
,∫ sj+1

sj

[Nj
1(s)]2N′j2 (s)ds =

∫ sj+1

sj

[Nj
2(s)]2N′j2 (s)ds =

1

3
,∫ sj+1

sj

Nj
1(s)Nj

2(s)N′j1 (s)ds = −1

6
, and

∫ sj+1

sj

Nj
1(s)Nj

2(s)N′j2 (s)ds =
1

6
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