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RESUMEN

Abstract

High modal coupling in multimode fibers is perhaps one of the most critical barriers

unlocking the all-photonic systems multiplexed by modes. Regarding multimode vortex

fibers that propagate modes with orbital angular momentum (OAM) the degeneracy

amongst modes is a problem that prevents the exploitation of the infinite-dimensional

basis allowed by OAM states. In this work, we propose the use of dielectric metamateri-

als in vortex fibers. Metamaterials in waveguides have been demonstrated to be helpful

in modifying the modal behavior in photonic structures. We propose a new class of

vortex fibers with a modified cladding made of metamaterial to lift the degeneracy be-

tween OAM modes, increasing thus the number of stable OAM states. We also show a

better purity of the OAM modes in the vortex solid fiber using the proposed metamate-

rial, reaching a reduction of approximately -30 dB between the TE01 and OAM1 modes

when the fiber is bending up to 1 cm. Besides, we achieve additional non-degenerate

modes in the air-core vortex fiber using this metamaterial cladding, which means an

increase of available independent OAM states.

Finally, we show the main challenges still open in this technology, and that arise from

the results of this doctoral work, such as tailoring dispersion in vortex fibers, design of

vortex fibers in polymer/plastic to be used in other applications of short lengths (less

than 100 m), the coupling of OAM modes to chips in planar waveguides.

Resumen

El alto acoplamiento modal en fibras multimodo es quizás una de la barrera más cŕıtica

para desbloquear los sistemas fotónicos multiplexados por modos. En cuanto a las fi-

bras de vórtice multimodo que propaga modos con momento cinético orbital (OAM),

la degeneración entre modos es un problema que impide la explotación de la base de di-

mensión infinita permitida por los estados de OAM. En este trabajo se propone el uso de



metamateriales dieléctricos en fibras de vortice. Se ha demostrado que los metamateri-

ales en gúıas de ondas son útiles para modificar el comportamiento modal en estructuras

fotónicas. Proponemos una nueva clase de fibras vortices con un revestimiento mod-

ificado de metamaterial para elevar la degeneración entre modos OAM, aumentando

aśı el número de estados OAM estables. También mostramos una mejor pureza de los

modos OAM en la fibra sólida de vórtice usando el metamaterial propuesto, alcanzando

una reducción de aproximadamente -30 dB entre los modos TE01 y OAM1 cuando la

fibra se dobla hasta 1 cm. Además, conseguimos modos adicionales no degenerados en

la fibra de vórtice de núcleo de aire utilizando este revestimiento metamaterial, lo que

significa un aumento de los estados de OAM independientes disponibles.

Finalmente, se muestran los principales desaf́ıos que todav́ıa se abren en esta tecnoloǵıa,

y que surgen de los resultados de este trabajo de doctorado, como la adaptación de la

dispersión en fibras vortices, el diseño de fibras vortices en poĺımero o plástico para

otras aplicaciones de longitudes cortas ( distancias menores de 100 m), el acoplamiento

de modos OAM a chips usando gúıas de ondas planares.

PALABRAS CLAVE:

Keywords: Optical Communication, Space Division Multiplexing, Optical Modes, Or-

bital Angular Momentum of light, Vortex fiber.

Palabras claves: Comunicaciones Opticas, Multiplexación por division de espacio,

Momentum angular orbital de la luz, fibra vortex.



1. INTRODUCTION

1.1. OPTICAL FIBER COMMUNICATION AND SPACE-DIVISION MUL-

TIPLEXING

The Erbium-doped-fiber-amplifiers (EDFA) and the wavelength-division-multiplexing

(WDM) technologies developed in the 1990’s have enabled the transmission of huge

amount of data in the current global optical communication systems. Internet appli-

cations such as video-on-demand (VOD), high definition TV, ultrahigh-definition video

transmission and digital cinema have generated an exponential growth for the demand

of bandwidth in the optical communication networks [20–24], increasing demand will

achieve the theoretical capacity limit of standard silica single mode fibers (SMF) given

by the nonlinear Shannon limit.

Considering a wavelength range of about 400 nm (from 1200 up to 1600 nm, or 50 THz)

with a channel signal to noise ratio (SNR) of 20 dB, and a spectral efficiency (SE) of

6.6 bit s−1Hz−1, the value of the capacity limit for SMF is ∼300 Tbps [25, 26]. The

detrimental effects due to nonlinearities and losses can be reduced by using new special

fibers with large modal area (LMA) [27,28], and low loss, or with hollow core photonic

bandgap fibers (PBGF) [2]. However, these fibers do not have enough low nonlinearity

and loss to improve significantly the capacity of fiber channels [26].

Another explored option consisting of to optimize the channel capacity through mod-

ulation formats as a way to increase the data carrying capacity. Researchers have

explored every available degree of freedom: time, wavelength, polarization and phase

(quadrature) in order to exploit as much as possible the installed fiber infrastructure.

Those efforts have resulted in commercial systems that, nowadays, are operating near

the Shannon limit.

The problem is that assuming a traffic growth from 30% to 60% per year, in a pe-
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riod from 5 to 10 years, will be necessary commercial systems operating beyond the

Shannon limit (See Figure 1.1a). This leads to the imminent “optical networks capacity

crunch” (See Figure 1.1b). In order to avoid this collapse, the scientific community

has been looking for other options, one of them considering the old idea that fibers can

easily support hundreds of spatial modes. This multiplexing technology is so called as

space division multiplexing (SDM), which has become in the most promise candidate to

overcome capacity crunch of optical networks [2].

SDM is the theme of the present doctoral work. The nomenclature SDM includes two

different concepts. In the former, the idea is related with the transmission of information

through several parallel fibers, or through multicore fibers (MCFs). In the latter, the

technique involves the use of multiple data pathways by using the same fiber, which

is in other words, the transmission of information in several modes, either by using

multimode fibers (MMF) or few mode fibers (FMF) (all-solid or hollow-core), instead

of SMF (See Figure 1.2). This is called mode division multiplexing (MDM), offering a

great potential to increase the capacity of optical fiber networks because allows, like

WDM, to use a single fiber to transmit multiple independent channels [2].

In MDM, each mode can carry an independent data channel, allowed by the orthog-

onality amongst them. There are several types of orthogonal modal basis sets that

are potential candidates for such MDM systems. One of them is based on the or-

bital angular momentum (OAM) of light. Others are based on cylindrical vector beams

(CVBs), and Hermite-Gaussian-like beams (HG) generated by different linear combi-

nations of CVBs, which are know as linearly polarized modes (LP-basis) [29]. These

sets are supported by multimode fibers of different kinds for short and long links, as

was recently demonstrated in several works [30, 31]. This new technology presents two

options: (i) The use of complicated specially designed fibers to support either OAM

or HGs with low-crosstalk, but without multiple-input multiple-output (MIMO) digital

signal processing (DSP) [3]; (ii) The use of simple FMF that support HGs or CVBs

with higher crosstalk, but assisted by MIMO DSP to separate the channels/modes [31].

Both options have been explored last years, however, in order to reach an all-photonic

communication system is recommended to avoid the MIMO DSP.

One of the main challenges to make SDM technology more attractive is related with

the development of capacities to allow the integration with other technologies such as

WDM. Integration capacity is based on the concept of “optical parallelism” [32], which
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(a)

(b)

Figure 1.1: (a) North American Internet traffic in Petabytes/month according to

several studies, such as Minnesota Internet Traffic Study (MINTS) and Cisco: (See

Figure 1 in [1]). c© 2012 IEEE. With permission, from [1]. (b) Capacity evolution for

different communication systems (See Figure 1 in [2]). c© 2013 IEEE. With

permission, from [2].
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Figure 1.2: Cross sections of a singlemode fiber and fibers supporting spatial

multiplexing. c©2012 IEEE. With permission, from [1]

was introduced, in the past for the quadrature modulation formats, where the phase

and the amplitude of the signal are independently modulated, in one or in the two

possible states of light polarization [33].

The WDM technique can be considered within the concept of parallelism in the fre-

quency dimension. Multiple carries are grouped to form a single logical interface which

integrates multiple technologies (for instance, WDM and PolMux), it is defined the

so-called super-channel. Using super-channel technologies, optical interfaces rates of

terabits per second and beyond are feasible today ( [33], pag. 32). However, even

considering all this improvements, the capacity can be increased by a maximum factor

of approximately five. Undoubtedly, this will be a critical stopgap solution in the near

future, but the point is that none of these techniques would provide a sustainable path

to overcome the optical capacity crunch.

To increase the optical capacity in the optical networks for the next several decades,

the optical parallelism must be extended to another physical dimensions, and the only

dimension not exploited yet is“the space”. A possible adoption of SMD in future optical

networks can be made following one of these two “integration” visions: A fully-SDM
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system and an upgrade-path vision. i) The “grand vision” of an ultrahigh capacity,

fully-SDM systems. ii) The “upgrade-path” vision, where SDM components and links

operating with other technologies like SDM, are gradually added to the existing SDM-

infrastructure.

The “grand vision” is based on the use of flexible devices for actively multiplexing or

demultiplexing the desired spatial channels as much as possible. The “upgrade vision”

is based on the gradual replacement of the existing infrastructure [33], of specific fiber

optical communications or free-space links. The key here is not scalability but com-

patibility, however, in this vision low-crosstalk solutions are extremely important to

obtain a “hybrid-SDM” network, without the necessity of MIMO DSP. This vision is

very interesting because could be implemented quite soon. For instance, it would be

possible with the partial replacement of the installed infrastructure in access networks

with high congestion without changing the surrounding network, or installing hybrid

SDM systems between optical and free-space links. It should be possible this upgrade

through the more compact solution like integrated devices [34, 35]. The “integration”

is key for the success of the SDM technology being a priority in both, incremental

upgrades and fully SDM systems.

While SMD looks like offering promising results, this new technology have a limitations

arising by the mode coupling in MMF. Modes in a MMF are ideally orthogonal to each

other and no coupling amongst them is expected. Besides, different modes have different

effective indices or propagation velocities. However, the refractive index profile in a real

fiber is perturbed for the diameter induced variations during the fabrication, and also

the fiber bending changes the effective index of the modes and the field distributions,

leading to values of the overlap integral different from zero [36], which means a loss of

orthogonality. Also, inhomogeneity of the material can create birefringence that causes

mode coupling for the non-degenerate or near degenerate modes. Finally, the refractive

index can change in the longitudinal z axis creating mode coupling (distributed along

z) if the spatial frequency of the perturbation matches the beat length between two

modes (see for example grating based mode couplers in [37]).

In the case of multiple optical paths (modes or cores) traveling in a fiber, there are

two basic tradeoff solutions: (i) Strong-coupling regime (typically greater than 1 km):

This scheme could be implemented in fibers with a large number of modes, which could

share, for instance, the same optical amplifier, but with the drawbacks of the complexity
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of the MIMO-DSP schemes for mitigating mode coupling unavoidable increasing as the

number of modes increasing. The fiber design is more complex in order to reach a

low modal differential group delay, and more complex mode couplers are required. An

example of this kind of fiber is the FMF with step or parabolic index [38]. Couplers and

switches are designed on chips based on Si-technology in order to make post-processing

of the optical signal. In this case, it is necessary to analyze carefully the control of the

crosstalk and the losses for the fiber to chip couplers. (ii) weak-coupling regime (typically

less than 1 km) where the crosstalk is smaller, and may be implemented in fibers with

simpler design, but with the drawbacks of limited number of spatial paths. Crosstalk

could be compensated with methods that use computationally intensive adaptive optics

feedback algorithms [39]. These methods “back off” the effect of mode coupling by

sending a desired superposition of modes at the input, so that desired output mode

can be obtained. This approach is limited, since mode coupling is a random process

that can change on the order of a millisecond in conventional fibers [39], therefore,

the adaptation of this method can be problematic in long-haul systems, where the

signal delay can be tens of milliseconds [40]. On the other hand, there are different

kinds of low crosstalk fibers such as the MCF with a long (almost 1 km) beat length

between cores, the multimode photonic bandgap fiiber (PBGF) with a high difference

between the modal effective indices [30], and multimode fibers with an special index

profile, which is sculpted for a OAM state propagation over long lengths [41]. These

special fibers are well-know as vortex fibers, and have allowed OAM propagation in

tipically distance of around 1 km [3], and recently, in 2016 of up to 13.4 km [42].

The PBGFs were another option to increase optical channel capacity due to the low

nonlinearity. However, recently have been shown that this low nonlinearity is not

enough for a significant increasing of the capacity [26, 43]. Multimode PBGFs have

attracted the interest of the scientific community because appear as the best option

to implement SDM scheme with low latency [44] in data center networks. Somewhat

unconventional transmission at 2.08 µm has also been demonstrated in 290 m-long

photonic crystal fibers, though still with high losses (4.5 dB/km) [45].

Vortex fibers can be used to transmit multiple independent OAM modes encoding

information in all the modes. We show in Figure 1.3 the set up of one of the most

recent experiment reported by [3]. In this experiment, they use a continuous wave laser

operating at 1550 nm was modulated using a 50 GBaud QPSK signal, and subsequently

split into four arms of standard single mode fiber of different lengths to produce a
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sufficient delay in order to obtain four decorrelated data channels. Two of the four

channels were converted into the `=±1 OAM modes (modes A and B in green and blue,

respectively) using fork-holograms of topological charge `=±1, created with a spatial

light modulator (SLM-1). OAM modes was sending through QWP@45o (Quarter Wave

Plate) to produce two polarization states of light: s = 1 or s = −1 for the OAM

modes. The other two polarization of LP01 or HE11 modes (C and D in red) were

left unchanged. These mode are then propagated through 1.1 km of vortex fiber, as

Figure 1.3 shows. With all four channels enabled simultaneously, the demultiplexing

system sorts the modes according to their OAM (`) and spin (s) values, using another

SLM (SLM-2) and a combination of a QWP@45o and a polarizer, respectively. The

resulting output was mapped back into a conventional Gaussian-shaped beam with a

planar phase, which was routed to a coherent receiver by coupling into an SMF [3].

Figure 1.3: Experimental setup for a WDM-OAM multiplexing. From [3]. With

permission from AAAS

Figure 1.4a shows a variety of spiral interference patterns that come to CCD camera at

different wavelengths across C-bands, qualitatively indicative of broadband transmission

of a pure OAM state obtained at the output of the 1.1 km vortex fiber in the setup

shown in Figure 1.3. 2 OAM modes and 10 WDM channels (from 1546.64 to 1553.88 nm)

observed in Figure 1.4b were transmitted for the OAM-WDM experiment. Transmission

of 20 channels (OAM-MDM and WDM), resulted in a total transmission capacity of
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1.6 Tbps under the FEC limit (Figure 1.4c shows typical constellation diagrams that

were recorded).

Figure 1.4: OAM-WDM experiment (a) Spiral interference patterns of OAM states.

(b) 10 WDM channels across C-band. (c) Constellation diagrams of 16-QAM

modulation (Back-to-back: B2B) for the demultiplexed ` = ±1 mode at 1550-64 nm

(Channel A). From [3]. With permission from AAAS

The aforementioned experiment show that the vortex fibers are a new possibility for a

future network capacity increase. This special class of MMFs are capable of reducing

mode coupling avoiding MIMO-DSP equalization. In this dissertation we present a new

possibility of design still unexplored, which consists of the use of anisotropic metama-

terials to “lift” the mode degeneracy amongst vector modes, reducing in this way the

mode coupling. Before we go further into details of our proposal, we first introduce the

orbital angular momentum of light.
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1.2. ORBITAL ANGULAR MOMENTUM OF LIGHT

Linear momentum of light p is one of the fundamental quantity in classical electrody-

namics [46]. This is proportional to time average Poynting vector 〈S〉=1
2
Re(ExH*),

where E is the electric field and H is the magnetic field. The Poynting vector associated

with an electromagnetic plane wave is purely longitudinal (z-propagation direction), and

linear momentum is parallel to it (see Figure 1.5a). However, a plane wave carries in-

finite energy, but this is not physically realizable. In practice, all generated optical

beams have finite energy and are solution of the paraxial wave equation, leading to a

non-vanishing component of the linear momentum in the transverse plane (henceforth

named the azimuthal component of p→pφ (see Figure 1.5b) [47]). Under this approxi-

mation, such a paraxial beam might posses a net orbital angular momentum (OAM) in

the propagation direction as a consequence of having a transverse component of linear

momentum [48].

(a)pφ=0 (b)pφ 6=0

Figure 1.5: (a) Linear momentum of light p associated with an electromagnetic plane

wave in the free space (r→∞). pφ=0. (b) Paraxial approximation of a generated

optical beam which have an azimuthal component of linear momentum of light pφ 6=0.

Adapted from [4]

In the paraxial approximation a value of pφ 6=0 leads a light field having an `-dependent

and azimuthally varying phase given by e`φ in addition to e−ikz. ` is an integer called

as “topological charge”, which counts the number of intwined helices (i.e., the number

of 2π phase shifts along the circle around the beam axis). ` is assumed as positive,

negative, or even a zero value, corresponding to clockwise or counterclockwise phase

helices or a gaussian beam (i.e., no helix), respectively (see Figure 1.6 [4]).
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Figure 1.6: Light beams with different +` values. Adapted from [4]

Angular momentum is imparted by spinning (spin angular momentum → SAM) (see

Figure 1.7a) or orbiting around an axis (orbital angular momentum → OAM), (see

Figure 1.7b) [5].

(a)SAM (b)OAM

Figure 1.7: (a) A spinning object carrying SAM and (b) and orbiting object carrying

OAM. With permission from [5]. Copyright 2015 Optical Society of America

Then, a light beam may also posses these two types of angular momentum. The first

one, the SAM is associated with circular polarization of light. This mechanical property

of light was demonstrated by Poynting in 1909 (see Ref. [49]). He showed by use of a

mechanical analogy, that circularly polarized light should exert a torque per unit area

on a quarter-wave birefringent plate, equal to λ/2π (λ is the wavelength) times the

light energy per unit volume. When the energy of each photon crossing the surface is

associated with ~ω, we obtain the result that circularly polarized photons each carry ~
units of angular momentum. The effect was experimentally detected about twenty years

after Poynting’s death by Beth [50]. The second one, the OAM is associated with the

azimuthal phase dependence of light ei`φ. These light beams carry OAM independent

of the polarization state [4]. This OAM would have a value of L=`~ per photon. Just

as with circularly polarized light, the sign of the OAM momentum (±`) indicates its

handedness with respect to the beam direction [51].
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One can understand momentum of light properties without reference to photons. The

total angular momentum of any light field could be considered in terms of a sum of spin

(SAM) and orbital (OAM) contributions. These contribution are independent features

of the optical field in the paraxial limit. The SAM contribution is associated with the

polarization of the electric field (see Figure 1.8a), and the OAM contribution is caused

by the azimuthal component of the Poynting vector e`φ, which gives a helical phase front

resulting in a twisting of wave vector (see Figure 1.8b). These components produce an

orbital angular momentum parallel to the beam axis. Because the momentum circulates

about the beam axis, such beams are said to contain an optical vortex [51].

(a) (b)

Figure 1.8: (a) A circular polarized light beam carrying SAM, and (b) Twisting of

wave vector of an OAM-carrying light beam. With permission from [5]. Copyright

2015 Optical Society of America

The most common form of helically phased beam is the so-called Laguerre-Gaussian

(LG) laser mode (see Figure 1.9) [51]. Other examples of beams that have non-zero

OAM include free space Bessel, Mathieu, and Ince-Gaussian beams. These OAM beams

have been used in widespread scientific and technological applications, such as optical

twister, atom manipulation and free-space classical and quantum communications [52].

There are many approaches for creating OAM beams, the most common methods con-

verts a Gaussian beam into OAM beam using a spiral phase plate, phase hologram with

a spiral phase pattern or phase hologram with a “fork” pattern (see Figure 1.10). There

are also different ways to detect an OAM beam, such as using a conjugated helical phase

or using a plasmonic detector [5].

Besides, there are several works on creating OAM modes in fibers [53–55], however, in

all these cases the fiber lengths were short, due to the fact that OAM modes are subject
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(a) (b)SAM interaction (c)OAM interaction

Figure 1.9: (a) Illustration of an intensity partner of a LGp` beam with `=1: LG01.

(b) Circularly polarized LG01 beam, that carry spin angular momentum (SAM),

which can rotate an object (gray sphere) around straight arrow green axis upon

illumination. (c) LG01 beam can transfer orbital angular momentum (OAM) and also

rotate an object under an “orbit” even at much higher rates. SAM and OAM

interaction are described in details in [6]. With permission from c©Wikipedia

to mode coupling, inhibiting the possibility to obtain a pure OAM mode in long lengths.

Recently, Ramachandran and its group in Boston University [3] have introduced a new

class of fibers called vortex fibers to overcome this drawback, allowing OAM mode

propagation for longer fiber lengths (13.4 km in 2016). These new class of MMFs has

been used as a new alternative implementing MDM systems. However, even though

mode coupling has been reduced, this is limited by the effective index separation of

the vector modes within almost degenerated groups, enabled by the index profile of the

vortex fiber. One can think that if the mode coupling is reduced even more, which

means an increase in the effective index separation between vector modes, then there

would have the possibility to send more OAM modes to longer fiber lengths. The

focus of this dissertation is to propose a new approach of design of vortex fibers that

consists of using metamaterials as cladding to reduce the mode coupling and increase

the number of propagated OAM modes.

1.3. GOALS AND THESIS ORGANIZATION

Practical communication distances, over vortex fibers, have been achieved only for

special case of the lowest order ±` = 1 that yield 2-OAM states [3], and, recently for
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Figure 1.10: Three approaches to convert a Gaussian beam into an OAM beam.(a) A

spiral phase plate. (b) A phase hologram with a spiral phase pattern, or (c) a phase

hologram with a “fork” pattern. c©2015 IEEE. With permission from [5]

[42] ±` = 6, 7, 8 that yield 12-OAM states. Modal coupling amongst OAM modes that

comes from degeneracies of the vector modes prevents the exploitation of the infinite-

dimensional basis allowed by OAM states. Our proposal of vortex fibers with cladding

in metamaterials is conceived as a way to tackle this problem by achieving both a lifting

in the degeneracy between vector modes within a group, as well as the increase in the

number of independent OAM modes.

This dissertation is organized into 6 chapters. Besides this introductory chapter which

is intended to provide a brief background and outline of the study, the contents of

rest of the chapters are organized as follows: we start in Chapter 2 introducing the

mathematical description of MMFs using electromagnetic theory in order to explain

the physical origin of the degeneracies amongst vector modes, then in Chapter 3 we

explain how the OAM modes can exist in fibers, and which are the conditions necessary

for uncoupled propagation. In chapter 4 we show the numerical simulations of vortex

fibers with solid and air-core [3,9]. In chapter 5, we study the dielectric metamaterials,

and the fabrication techniques. Here, we also explain our designs of vortex fiber with

a cladding in metamaterial to increase the number of available OAM modes, and also

confine and reduce the coupling strengths under perturbations like the bends. Finally,

we discuss the future works and perspective.
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2. MULTIMODE FIBERS

In this chapter, we describe the electromagnetic theory of multimode fiber in a weakly

guided approximation to obtain the expressions of the bound modes, as well as the

origin of the degeneracies amongst vector modes. Understanding the phenomenology

behind the degeneracies among modes will help to design other possible vortex fibers.

2.1. OPTICAL FIBER WAVEGUIDE THEORY

Optical fiber waveguides have been widely studied in the literature [7,56,57]. These are

cylindrical waveguides with one or multiples cores of high refractive index surrounded

by a cladding of low refractive index. In an ideal case, the cores have a circular shape,

the cladding is limited in extent, and also it is assumed no changes across longitudinal

dimension. The cladding refractive index is slightly lower compared with the core, in

order to describe light propagation in a weakly guided approximation. In this sub-

section, we describe the propagation of light along optical fiber waveguides in regions

sufficiently far from any source of excitation, where the spatial steady state is reached,

so these spatial steady states are described by bound modes on the waveguide. Bound

modes are solutions of the source-free Maxwell equation, and are formed by resonance

conditions in the waveguide cross-section (see [7], pag. 209). These bound modes are

called fiber modes, which constitute an orthogonal basis with eigenstates characterized

with both the different values of refractive effective indices: neffj or, equivalently prop-

agation constants: βj, and eigenvectors that give the transverse spatial distributions of

the fiber modes.

Optical fibers can support a certain number of modes limited by the index contrast,

light wavelength, and core size. There are two classes of fibers: one of them are the

singlemode fibers (SMFs) that propagate the fundamental mode (HE11 or LP01) with
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two polarizations, and the other is the multimode fiber (MMF) with large core radius

or high contrast index to propagate the fundamental mode and also higher order modes

(HOMs). MMFs with a step-index profile guide modes in “groups”, where within each

group modes have almost the same effective index (they typically have a difference of

∼ 10−6). These groups of modes are said “almost degenerate”. This degeneracy could

be lifted in certain fiber designs with the objective of achieving propagation of OAM

modes [10]. A criterion to consider a lifting of the degeneracy consists of achieving a

difference of effective index of around 10−4 between the modes within a group. This

effect will be explained in next sections.

2.1.1. Homogeneous vector wave equations

Mathematical description of modes will be made following the Snyder&Love approach

in [7]: sections 11-14. To describe a waveguide, we introduce cartesian axes xy that

coincide with the transverse section, and z axis that coincides with longitudinal axis

of the waveguide. The variation in refractive index over the waveguide cross-section is

given by the profile n(x,y) with nco being maximum refractive index of the core, and

ncl the refractive index of an uniform cladding, where nco > ncl for the waveguide to

provide guidance. If a waveguide has a refractive-index profile that does not vary along

z, i.e. n=n(x,y), then the waveguide is translationally invariant, therefore this fact

enables us to express the modal fields (electric (equation (2.1)) and magnetic (equation

(2.2)) fields) in the separable form:

Ej (x, y, z) = ej (x, y)exp(iβjz), (2.1)

Hj (x, y, z) = hj (x, y)exp(iβjz), (2.2)

where βj is called the propagation constant or eigenvalue of the jth-mode. Generally

each mode has a unique value of βj. We assume that all fields contain the implicit time

dependence exp(−iωt), where ω is the angular frequency associated with optical light

wavelength λ.

The electric and magnetic fields Ej and Hj of a bound mode (eigenvector of the jth-

mode) are source-free solutions of Maxwell’s equations, or, equivalently, the homoge-

neous vector wave equations:

{∇2
t + n2k2 − β2

j }ej = −{∇t + iβj ẑ}etj · ∇tln n
2, (2.3)
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{∇2
t + n2k2 − β2

j }hj = ∇tln n
2 × ({∇t + iβj ẑ} × hj ), (2.4)

that assumes µ = µ0, n=n(x,y) is the refractive index profile, k=2π/λ is the free-space

wavenumber, λ is the free-space wavelength, ∇2
t is the transverse Laplacian and ∇t

is the transverse vector gradient operator with the subscript denoting the transverse

components. Electric and magnetic fields can be expressed with cartesian or cylindrical

components (see pag. 239 in Snyder&Love [7])

2.1.2. Nature of hybrid modes

The terms involving ∇tln n2 in equations (2.3) and (2.4) couple various field compo-

nents. This term describes polarization phenomena due to the waveguide structure and,

it is responsible for the hybrid nature of the modal fields. A circular waveguide pos-

sesses hybrid modes denoted as: HEl+1 ,mandEHl−1 ,m . These modes can be understood

using a local plane-wave interpretation. Consider a ray propagating in the core of the

fiber, in general, this ray follows the helical or skewer trajectory in circular waveguides

with step or graded-index profiles. Following the direction of the electric field vector

along a skew ray path using the local plane-wave description, we conclude about the

impossibility of maintaining either ezj=0 or hzj=0 because the direction of propagation

rotates along the ray trajectory. Consequently, a skew ray needs mixes between trans-

verse electric (TE) and transverse magnetic (TM) polarizations at each reflection, so

that the corresponding modal fields couple both ezj and hzj field components, consistent

with the definition of hybrid modes. Consequently, all hybrid mode are composed of

skewed rays.

The ∇tln n2 term in the vector wave equation (2.3) describes the rotation of the electric

vector. The smaller ∇tln n2 value, the greater the axial distance z which is required for

the ray path to complete a full period. Consequently, regardless of how small the value

of ∇tln n2 , the electric field vector must eventually rotate through 360o.

To summarize, the waveguide structure has polarization properties by virtue of its

cross-sectional geometry and refractive-index profile. These effects are built into the

vector wave equations (2.3) and (2.4) through the ∇tln n2 term, which is responsible for

the hybrid modes. Ignoring this term completely disregards polarization properties of

the waveguide structure and leads to the scalar wave equation with solutions of modes

with linear polarization (LP-modes). (For physical explanation of hybrid modes see
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Snyder&Love [7]: sections 11, pag. 225-226)

2.1.3. Modal parameteres

The modal fields of an optical waveguide depend on the refractive-index profile, the

cross-sectional geometry, and the frequency or wavelength of the source of excita-

tion. From these parameters, we can define dimensionless quantities to characterize

the waveguide. The waveguide or fiber parameter V and the profile height parameter ∆

are defined thus:

V =
2πρ

λ
(n2

co − n2
cl)

1/2 (2.5)

∆ =
1

2

{
1− n2

cl

n2
co

}
, (2.6)

where ρ is the core radius. A waveguide is said to be multimode if V�1, when many

bound modes can propagate. Otherwise, when V is sufficiently small so that only the

two polarization states of the fundamental mode can propagate, the waveguide is said

to be singlemode. For example, a circular fiber with a step-index profile is single-mode

when V<2.405.

2.1.4. Weakly guided approximation

The vector fields depicted in equations (2.1) and (2.2) are solution of the homogeneous

vector wave equations (2.3) and (2.4), however, there are few known refractive-index

profiles that lead to exact solutions for the modal fields. One of them is the step-profile

index which is one of practical interest in fiber design. In this subsection, we show

the modal field solutions using weakly guided approximation which considers ∆ � 1,

or equivalently, nco∼=ncl. This approximation leads to a solution in terms of a scalar

wave equation, instead of vector solutions of the vector wave equation (see a physical

explanation in [7]: sections 13, pag. 282). Modal fields of weakly guiding waveguides

can be derived by applying perturbation methods to Maxwell’s equations (see section 32

in [7]), so the electric and magnetic fields E and H of individual bound modes (in this

subsection we omit the modal subscript, since only individual modes are considered) of

a waveguide are expressed as:

E(x, y, z) = e(x, y)exp(iβz) = (et + ẑez)exp(iβz) (2.7)
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H(x, y, z) = h(x, y)exp(iβz) = (ht + ẑhz)exp(iβz), (2.8)

where subscripts t and z denote transverse and longitudinal components respectively.

If nco∼=ncl, ∆ can be rewritten as:

∆ =
1

2

{
1− n2

cl

n2
co

}
∼=
nco − ncl
nco

, (2.9)

and the refractive index can be written thus:

n2(x, y) = n2
co {1− 2∆f(x, y)} (2.10)

where f=0 at the maximum index (center of the core) and f=1 in the cladding.

Ignoring polarization effects contained in the the ∇tln n2 term of the vector wave equa-

tion, each component of the transverse electric field et satisfies the scalar wave equation:

{∇2
t + k2n2(x, y)− β̃2}et = 0, (2.11)

with components of the transverse magnetic field ht given by:

ht = nco

(
ε0
µ0

) 1
2

ẑ× et, (2.12)

where k=2π/λ, the free-space wavelength is λ. Although the cartesian components of

et satisfy equation 2.11, their spatial dependence can be determined in any cylindrical

coordinate systems, e.g. in cylindrical polar coordinates et=et(r,φ). β̃ denotes the

propagation constant for the scalar wave equation, as distinct from the exact propaga-

tion constant β for the vector wave equation (see Snyder&Love [7]: sections 13-4, pag.

284). Any solution of the scalar wave equation and its first derivatives are continuous

everywhere. Together with the requirement that et be bounded, this property leads to

an eigenvalue equation for the allowed values of β̃.

Taking into account waveguide polarization properties a correction δβ to the scalar

propagation constant β̃ must be added . To determine δβ exactly we would have to

solve the vector wave equation. However, the ∇tln n2 term is small for weakly guiding

waveguides, so we use simple perturbation methods. For a waveguide with step-profile

δβ is given by (see Snyder&Love [7]: sections 13-6, pag. 287):

δβ ∼=
ρ(2∆)3/2

2V

∮
l

(∇t · et)et · n̂dl

/∫
A∞

e2
tdA (2.13)

where A∞ is the infinite cross-section of the waveguide, and l is the contour along the

interface and n̂ is the unit outward normal on the waveguide cross-section.

41



In a weakly guiding waveguide, longitudinal components can be considered much smaller

respect to transverse components. These components are expressed approximately in

terms of et and ht (see Snyder&Love [7] pag. 625):

ez ∼=
i(2∆)

1
2

V
(ρ∇t · et), (2.14)

hz ∼=
i(2∆)

1
2

V
(ρ∇t · ht), (2.15)

2.2. MODES IN AN OPTICAL FIBER

Following the development of Snyder&Love [7] section 14-2 pag. 303, we consider a

fiber of circular cross-section to solve the scalar wave equation derived from weakly

guiding approximation (see equation (2.4)). We solve analytically by the separation of

variables considering an step-index profile given in the equation (2.10), to obtain an

approximate solution for the modal fields of the equations (2.7) and 2.8. Also, we will

find the propagation constants (eigenvalue) β̃ for each mode, that are classified in terms

of azimuthal (l) and radial (m) numbers → βlm. For the case of l=0, the solutions

can be separated into two classes that have either transverse electric (TE0m), i.e ez=0

(so called “radial” modes), or transverse magnetic (TM0m) fields, i.e hz=0 (so called

“meridional” modes). In the case of l 6=0, both electric and magnetic field have non-zero

z-component, and depending on which one is more dominant are denoted as: HEl+1,m

and EHl−1,m. These modes are so-called the hybrid modes.

The solutions of the scalar wave equation (2.4) for a fiber of circular cross-section, of

refractive-index profile n(r) and core radius ρ, have the separable form (see pag. 303 of

Snyder&Love [7]) :

Ψ = Fl(r)cos(lφ), Ψ = Fl(r)sin(lφ), (2.16)

where l=0,1..., φ and r are azimuthal and radial coordinates, respectively, and Fl(r)

satisfies the ordinary differential equation that comes from weakly guiding approxima-

tion: {
d2

dr2
+

1

r

d

dr
+ k2n2(r)− l

r2
− β2

}
Fl(r) = 0 (2.17)
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We use n2(R) = n2
co{1-2∆f(R)}, where the radial coordinate r is normalized by radius

ρ, which denotes the core radius, thus R = r/ρ. This leads to:

{
d2

dR2
+

1

R

d

dR
− l

R2
+ Ũ2 − V 2f(R)

}
Fl(R) = 0 (2.18)

where Ũ contains the polarization correction δβ in a weakly guiding approximation:

Ũ2 ∼= ρ(k2n2
co− β̃2)

1
2 , (2.19)

β̃ ∼= β + δβ (2.20)

This scalar wave equation has two solutions for each value of β̃ for its higher-order

modes, corresponding to values of l > 1. Thus the direction of et, takes the form:

et = Fl[{acos(lφ) + b sin(lφ)}x̂ + {ccos(lφ) + d sin(lφ)}ŷ] (2.21)

where a, b, c and d are constants. There are four sets of values for these constants,

corresponding to two pairs of orthogonally polarized modes (4-fold degenerate). Scalar

wave equation for a circular waveguide depends on the polarization corrections through

term Ũ , if the equation (2.21) satisfies the scalar equation, the term of the polarization

correction can be rewritten as (see pag. 305 of Snyder&Love [7]):

I1 =
(2∆)3/2

4ρV

∫∞
0
RFl(dFl/dR)(df/dR)dR∫∞

0
RF 2

l dR
, (2.22)

I2 =
l(2∆)3/2

4ρV

∫∞
0
F 2
l (df/dR)dR∫∞

0
RF 2

l dR
(2.23)

that indicates that polarization correction has different values within the same group

of modes with the same azimuthal value (l), even if the fiber is perfectly circular. This

will be very important to understand the development of special type of fiber for OAM

propagation.

→ Fundamental HE11 and HE1m (l=0) modes: Each mode has a transverse electric

field whose electric field direction, or polarization, is parallel to one of an arbitrary

pair of orthogonal directions in the fiber cross-section. Thus, the fundamental HE11

mode and HE1m modes are always uniformly polarized. There is only one solution
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of the scalar wave equation for these modes, corresponding to l=0. For convenience

we take one mode to be x-polarized and the other y-polarized. The transverse and

also longitudinal fields of HE11 mode and HE1m modes are shown in Table 2.1. The

subscript t and z denote transverse and longitudinal components, respectively; and x̂,

ŷ and ẑ are unit vectors parallel to cartesian axes.

Table 2.1: Transverse and longitudinal components of the fundamental HE11 mode and

HE1m (l=0) modes. With permission from [7], c© Chapman and Hall, pag. 304.

Mode eti hti ezi hzi δβi

Even HE1m x̂F0 nco

(
ε0
µ0

) 1
2
ŷF0 i (2∆)

1
2

V
G0 cosφ inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G0 sinφ I1

Odd HE1m ŷF0 −nco
(
ε0
µ0

) 1
2
x̂F0 i (2∆)

1
2

V
G0 sinφ −inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G0 cosφ I1

→ Higher-order modes (l>1). For each (l>1), there are four modes. These modes are

no longer uniformly polarized, i.e. the direction of eti depends on the position in the

fiber cross-section. These mode are denote as HEl+1,m. The HE1m modes showed in

the previous table are a particular case of the HEl+1,m modes when l=0. The transverse

and longitudinal fields of these modes are shown in Tables 2.2 and 2.3.

Table 2.2: Transverse components of HEl+1,m modes. With permission from [7], c©
Chapman and Hall, pag. 304.

Mode eti hti

Even HEl+1,m {x̂ coslφ - ŷ sinlφ}Fl nco

(
ε0
µ0

) 1
2 {x̂ sinlφ + ŷ coslφ}Fl

TM0m (l=1) {x̂ coslφ + ŷ sinlφ}Fl −nco
(
ε0
µ0

) 1
2 {x̂ sinφ - ŷ cosφ}F1

Even EHl−1,m (l>1) {x̂ coslφ + ŷ sinlφ}Fl −nco
(
ε0
µ0

) 1
2 {x̂ sinlφ - ŷ coslφ}Fl

Odd HEl+1,m {x̂ sinlφ + ŷ coslφ}Fl −nco
(
ε0
µ0

) 1
2 {x̂ coslφ - ŷ sinlφ}Fl

TE0m (l=1) {x̂ sinlφ - ŷ coslφ}Fl nco

(
ε0
µ0

) 1
2 {x̂ cosφ + ŷ sinφ}F1

Odd EHl−1,m {x̂ sinlφ - ŷ coslφ}Fl nco

(
ε0
µ0

) 1
2 {x̂ coslφ + ŷ sinlφ}Fl
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Table 2.3: Longitudinal components of HEl+1,m modes. With permission from [7], c©
Chapman and Hall, pag. 305.

Mode ezi hzi δβi

Even HEl+1,m i (2∆)
1
2

V
G−l cos(l + 1)φ inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G−l sin(l + 1)φ I1 − I2

TM0m (l=1) i (2∆)
1
2

V
G+

1 0 2(I1 + I2)

Even EHl−1,m (l>1) i (2∆)
1
2

V
G+
l cos(l − 1)φ −inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G+
l sin(l − 1)φ I1 + I2

Odd HEl+1,m i (2∆)
1
2

V
G−l sin(l + 1)φ −inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G−l cos(l + 1)φ I1 − I2

TE0m (l=1) 0 inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G+

1 0

Odd EHl−1,m i (2∆)
1
2

V
G+
l sin(l − 1)φ inco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G+
l sin(l − 1)φ I1 + I2

, where G∓l is given by:

G∓l =
dFl
dR
∓ l

R
Fl. (2.24)

and Fl is a solution that depends on index profile n(R).

n(R) =

nco, 0 6 R 6 1

ncl, 1 6 R 6∞
(2.25)

Assuming that the fiber is weakly guiding, we have a solution for equation (2.17).

The l=0 solution gives the radial dependence of the fundamental HE11 and remaining

HE1m modes, which are a Bessel function of the first kind J0 for the core, and a modified

Bessel function of the second kind K0 for the cladding. The modal properties of the

fundamental mode can be found in [7], pag. 313.

Besides, higher order modes (l > 1) have solutions of Fl and G±l in terms of Bessel

function and modified Bessel function of order l. Continuity of Fl and dFl/dR (i.e.

boundary conditions of H and E in R = 1), leads to the eigenvalue equation for the

propagation constant (βj), or equivalently the effective index (neff ) for each mode:

Ũ
Jl+1(Ũ)

Jl(Ũ)
= W̃

Kl+1(W̃ )

Kl(W̃ )
, (2.26)

Ũ2 + W̃ 2 = V 2. (2.27)
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Finally, we find solutions to all four even and odd HEl+1,m and EHl−1,m modes, and

TM0m and TE01 modes when l = 1 (see pag. 319 in [7]). Numerical solution of the

equations (2.26) and (2.27) leads to the modes in terms of Ũ and V parameters, as

shown in Figure 2.1.

Figure 2.1: Numerical solutions of the eigenvalue equation 2.26, showing the mode

labelling and the corresponding values of l and m. The values along the dashed line

are the cutoff values of each modes. With permission from [7], c© Chapman and Hall,

pag 307

2.2.1. Polarization correction

In the case of step-index fiber, the modes belonging to a “group” that have almost the

same propagation constant are considered as “almost degenerate”, also meaning that

the polarization correction (δβ) value can be considered quite small (see polarization

corrections in [7] pag. 319). As an example, Figure 2.2 shows the first-order group

formed by TE01, TM01, HEeven,odd
21 modes with l = 1 and m = 1, and also the group
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formed by the two polarizations of the fundamental mode HEeven
11 (x-polarized), HEodd

11

(y-polarized) modes with l = 0.

(a) HEeven
11 HEodd

11

(b) TE01 HEodd
21 HEeven

21 TE01

Figure 2.2: First modes in a step index fiber. (a) Fundamental mode HE11 is “linearly

polarized (LP)” and corresponds to the group with l=0 (b) Higher order modes

correspond to the group with l=1. These modes are no longer LP. Adapted from [8]

δβ is considered one of the most important parameters in the design of OAM fibers.

OAM modes are derived from HEl+1,m and EHl−1,m modes, and might be used as

independent channels as long as the degeneracy is lifted in the modes into the same

group. As an example, the polarization correction between TM01 and HEeven
21 modes is

given by:

δβ = −(2∆)3/2

ρ

W̃ Ũ2

V 3

K1(W̃ )

K2(W̃ )
. (2.28)

In general, for all modes of an step-index fiber there is an increase of δβ by increasing

the refractive index contrast, and a reduction of this term by decreasing the fiber radius,

as mode order increases (see Figure 2.3).

It is considered that the modes become in “quasi non-degenerate” as δβ increase. δβ

is responsible for interference effect depending on z between pairs of modes with the

same scalar propagation constant. As β can change with perturbations along z, then

both the perturbations and the δβ are responsible for interference amongst modes of
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Figure 2.3: δβ and its dependence with the order of higher order modes

the same group, inhibiting thus the propagation of a unique mode without coupling

with the others.
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3. OAM MODES IN FIBERS AND MODE STABILITY

We show how a multimode fiber possesses vector modes that can be combined to give

OAM modes. This is through a basis transformation that leads to modes with a non-

zero azimuthal component of a Poynting vector proportional to ei`φ. In this chapter, we

demonstrate how the OAM modes can exist in a fiber. We also discuss the conditions

for uncoupled propagation of OAM modes in long lengths, when the fiber is under

external perturbation such as bends.

3.1. OAM MODES IN FIBERS

3.1.1. Poynting vector, linear momentum and angular momentum of light

Using Mikonski definition [58], linear momentum density p, and angular momentum

density j, of a light beam may be calculated from the electric and magnetic fields [59]:

p = ε0E×H (3.1)

j = ε0(r× E×H) = r× p = ε0r× S (3.2)

with r as position and S is Poynting vector. The total angular momentum J, and

angular momentum flux Φj can be defined as:

J =

∫ ∫ ∫
jdV (3.3)

Φj =

∫ ∫
jdA (3.4)

Let us define the time average of the angular momentum flux 〈Φj〉:

〈Φj〉 =

∫ ∫
〈j〉dA, (3.5)
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as well as time average of the energy flux 〈ΦW〉 in order to verify whether certain modes

have OAM. From here, we follow the development showed in [11] pag. 17-20:

〈ΦW〉 =

∫ ∫
〈Sz〉dA, (3.6)

In order to leave only z-component of the angular momentum density non-zero, the

momentum density j, or equivalently the Poynting vector should have only azimuthal

components φ:

〈j〉z = ε0r× 〈E×H〉φ = r× pφ = ε0r× 〈Sφ〉 (3.7)

where the time-averaged Poynting vector 〈S〉=Re(S), with S = 1
2
E ×H∗ still referred

to as “Poynting vector” expressed directly in terms of the phasors.

Any angular momentum component in z direction, by definition, requires a component

of linear momentum in the xy plane, i.e., light with transverse momentum compo-

nents. This fact leads to an inexistent of components of angular momentum for both

a transverse plane wave or a transverse electromagnetic mode (TEM), since the linear

momentum of this wave/mode, is only in the propagation direction z, and there can not

have any component of angular momentum in the same direction. Hence, an angular

momentum in the z direction requires a component of electric or magnetic field also

in the z direction. Consequently, the hybrid modes of an optical fiber with non-zero

components of electric or magnetic field comprise a natural modal set for the generation

and propagation of OAM modes.

3.1.2. OAM modes in fibers: the role of hybrid modes

Considering hybrid modes HEeven,odd
l+1,m /EHeven,odd

l−1,m :

HEeven,odd
l+1,m = Fl,m(r)

{
x̂ coslφ− ŷ sinlφ

x̂ sinlφ+ ŷ coslφ

}
eikz,HE .z (3.8)

EHeven,odd
l−1,m = Fl,m(r)

{
x̂ coslφ+ ŷ sinlφ

x̂ sinlφ− ŷ coslφ

}
eikz,EH .z (3.9)

where Fl,m(r) is the mode’s electric field envelope, where m is the radial mode number

and m-1 the number of zeroes in F, and kz is the longitudinal wave vector of the mode,

related to the effective index by kz = 2πneff/λ. HEl+1,m/EHl−1,m even and odd so-

lutions are degenerate with each other in circular fiber with conventional step/gradual
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index profile. However, HEl+1,m and EHl−1,m are not degenerate, which means that

kz,HE 6= kz,EH . Hybrid modes are not used as independent channel in fiber communi-

cation links because are easily coupled among them under perturbations, moreover, it

is very difficult to excite them by means of a external source circularly or linearly po-

larized because the polarization structure of these modes is spatially varying, as shown

in Figure 3.1.

Figure 3.1: Plot of the electric field of (a)HEeven
31 and (b)EHeven

11 mode in an air-core

fiber reported in [9] (similar polarization patterns exist for any weakly- guiding

circular fiber) (c) Plot of the electric field of an OAM mode made of complex

combinations of the HEeven
31 and HEodd

31 . Note that the complicated

spatially-dependent polarization has given way to a spatially uniform circular

polarization. This figure was taken from Supplementary Materials in [9]. With

permission from [9]. Copyright 2015 Optical Society of America.

Let us now focus on a specific complex linear combination between the pair of degenerate

solutions (even and odd) of the hybrid modes HEeven,odd
l+1,m , EHeven,odd

l−1,m with π/2 phase

shift among them [60]:

V ±l,m = HEeven
l+1,m ± iHEodd

l+1,m = σ̂±Fl,m(r)e±ilφeikz,HE .z (3.10)

W±
l,m = EHeven

l−1,m ∓ iEHodd
l−1,m = σ̂±Fl,m(r)e∓ilφeikz,HE .z (3.11)

where σ̂± = x̂± iŷ indicates left and right handed circular polarizations, and l is named

as ` or state of topological charge of OAM mode. This linear combination showed in

equations (3.10) and (3.11) comes from observing azimuthal dependence of the phase

e±i`φ. It is evident from equations (3.10) and (3.11) that these combination between

fiber modes are OAM states, with ` = ±l for V ±l,m and ` = ∓l for W±
l,m. In addition,
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OAM modes have spatially uniform polarizations making easier their modal excitation

compared with the complex modal excitation of hybrid modes, as is shown in Figure

3.1. The two classes of OAM states V ±l,m and W±
l,m are distinguished by comparing

the handedness of OAM and circular polarization, with V ±l,m possessing spin angular

momentum (SAM) and orbital angular momentum of the same handedness, and W±
l,m

the opposite handedness. We refer to this two classification as “spin-orbit aligned”

and “spin-orbit anti-aligned”, respectively. We define four states derived from V ±l,m and

W±
l,m of the same l,m as “OAM family” (see Supplementary Materials in [9]). However,

before go further, let us show whether these OAM modes can exist in an optical fiber

or not.

3.1.3. Can OAM modes exist in an optical fiber?

Following the development showed in [11] pag. 17-20, and considering HEeven
l+1,m and

HEodd
l+1,m modes, if we denote the electric field of these modes as e1 and e2, and magnetic

fields as h1 and h2, the expression for this new mode can be written as:

e = e1 + ie2 (3.12)

h = h1 + ih2 (3.13)

Using a simple coordinate transformation from cartesian to cylindrical coordinates,

and expressions for HEeven
l+1,m and HEodd

l+1,m modes given by equations (3.8) and (3.9), we

derive the radial and longitudinal components of the electric and magnetic fields as:

er = ei(l+1)φFl(R), (3.14)

hr = −inco
(
ε0
µ0

) 1
2

ei(l+1)φFl(R), (3.15)

ez = i
(2∆)

1
2

V
G−l e

i(l+1)φ, (3.16)

hz = nco

(
ε0
µ0

) 1
2 (2∆)

1
2

V
G−l e

i(l+1)φ, (3.17)

All quantities with ei(l+1)φ dependence indicates that these modes might be OAM,

similarly to free space case (Laguerre-Gaussian modes). Besides, it can be shown that

the complex linear combination of the EHeven,odd
l−1,m modes gives similar results as equation

(3.17), except the OAM is ei(l−1)φ and the SAM of these states are of the opposite signs.
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From equation (3.17), we conclude that in an ideal fiber, OAM mode exists. However, we

have considered a fiber as perfectly symmetric, assuming no longitudinal perturbations

in the fiber profile. In a real fiber, random perturbations along z can induce coupling

between spatial and polarization modes, causing possibility coupling amongst OAM

modes. Let us explain in the follow subsection the conditions to guarantee uncoupled

OAM propagation.

3.2. FIBER MODE COUPLING

Modes in an optical fiber form an orthogonal basis, and no coupling amongst them is

expected. In an ideal scenario, a fiber cross-section is ideally circular and is assumed

no change along the longitudinal axis (z). However, in a real fiber, the refractive

index profile is perturbed by the diameter induced variations and inhomogeneity of

the material during the fabrication process. Likewise, external perturbations like fiber

bends, twist and microbending change the field distributions of the modes, leading to

coupling amongst them, which means a loss of orthogonality [36].

Mode coupling effects were widely studied in the 70’s by Marcuse in [61] (Chapter 3-5),

but recently, these effects have become in relevant to develop MDM optical communi-

cation systems [37], for example, how this can influence the modal dispersion and mode

dependent loss and gain in MDM systems [40].

To characterize the strength of the overall coupling, we consider a “correlation length”,

over which the local eigenvectors (modal field distribution) can be assumed constant.

In the weak-coupling regime, the fiber length is not much longer than the correlation

length. In the strong-coupling regime, the fiber length far exceeds the correlation length

[62]. Depending on the strength of mode coupling, detection systems can be divided

into direct and coherent. Direct detection is used in communication systems operating

in weak-coupling regime, otherwise, if the communication system operates in strong-

coupling regime the coherent detection is used in order to compensate the crosstalk

that comes from mode coupling [62].

By the origin, mode coupling can be classified as “distributed”, caused by random per-
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turbations along propagation axis (z) in fibers, or “discrete”, caused by the connections

between dissimilar waveguides or fibers. We focus on the former; this is the most im-

portant for us because higher order modes within the same group or in near groups

suffer mainly strong coupling.

Regarding SMFs, these support the propagation in two linear polarizations of the fun-

damental mode. These two polarizations have an effective index separation on the order

of 10−7 [63], so external perturbations can easily couple one mode into another. Simi-

larly, higher order modes are very sensitive to distributed mode coupling. There have

been multiple efforts over the years to understand the relationship between effective

index separation ∆neff and mode coupling, especially in the context of understanding

microbend losses in SMF [63]. However, the effects of mode coupling intimately depend

on the electric field overlap between the modes of interest, and the form, symmetry,

and strength of perturbation on a fiber (See the chapter 4 of the Marcuse’s book [61]).

Only some phenomenological rules have been developed for a limited number of cases

[64]. One such rules have demonstrated that distributed mode coupling is inversely pro-

portional to ∆n−peff , with p ≥ 4 [65]. This has had broad experimental confirmation,

providing a degree of reliability, is that ∆neff ≥ 10−4 yields polarization maintaining

fibers in which the orthogonal polarizations of the fundamental modes, which are “al-

most degenerate”, remain stable for a length scale, or correlation length exceeding 100

m. Stability means both no coupling and no change in the modal field distribution of

each individual mode in a specific propagation length (“correlation length”). Likewise,

by adopting this criterion, the higher order modes belonging to the same group, which

are also “almost degenerate”, should stable in a scale of similar length, or even longer,

as long as ∆neff ≥ 10−4 amongst them [10].

3.2.1. Mode stability conditions

In particular, in a conventional MMF, the neff splitting between modes within a mode

group is much too small to isolate the modes from one another. Each LP mode gen-

erated by linear combination of the vector modes (HEl+1 ,m ,EHl−1 ,m ,TM0 ,m ,TE0 ,m)

randomly shares power due to longitudinal inhomogeneities caused by fiber bends, ge-

ometry imperfections during manufacture, and stress-induced index perturbations. For

this reason, in most MMFs, modes that are observed at the fiber output are in fact
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the linear combinations of the vector modes, and are considered linearly polarized (LP)

states [36]. In Figure 3.2, for example, the LP11 pattern is formed by interference of

two vector modes (HE even,odd
2 ,1 ,TM0 ,1 ,TE0 ,1 ) with slightly different neff .

Figure 3.2: Modal intensity patterns for the first higher order mode group: LP11-like

modes of the LP11 group. Arrows show the polarization of the electric fields.

HEeven,odd
2,1 , TE01 and TM01 are simulated vector eigenmodes coming from exact

vector solutions of the equation (2.18). This figure represents the unstable intensity

patterns of LP11 modes due to intermodal mode coupling between vector eigenmodes.

This pattern is commonly obtained at a fiber output [10].

This pattern is unstable which means that it is coupled with other vector modes, ex-

hibiting changes in the modal field distribution, that are observed as rotations at the

output of the fiber when perturbed. Note the striking similarity between the obtained

interference and the LP11 mode obtained from the scalar mode solution, however, care
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must be exercised when using the nomenclature LP to describe these states [10]. This is

the reason why in some papers these modes are called as LP-like modes. A true eigen-

mode (eigenvector) in a fiber is lengthwise invariant, that is, it would not change in size

or shape, even should not rotate during the propagation in the fiber. The LP11 state

shown in Figure 3.2 would switch its orientation as it propagates, even in a perfectly

unperturbed straight fiber. This is because constructive and destructive interference

lead to an LP11 pattern with 90 deg rotated intensity pattern, and light propagation in

the constitutive vector modes in a fiber will necessarily lead to such beating with a beat

length of λ/∆neff [36]. These patterns are known as polarization vortexes caused by

intermodal coupling phenomena, however their generation is limited to short lengths, so

this kind of conventional MMFs and even others such as protonic crystal and multicore

fibers do not allow propagation of polarization vortexes over reasonable long lengths.

Likewise, OAM modes with ` = 1, that are the linear combination of the HEeven,odd
2,1

can’t coexist in these fibers due to coupling to degenerate TE01 and TM01 modes. Even

OAM modes with ` > 1 formed with no degenerate modes HEl+1 ,m and EHl−1 ,m modes

neither would be propagated.

Following the phenomenological law proposed by [65] that indicates a strong exponential

reduction in mode coupling by increasing the ∆neff among modes, an example of a

desired solution to enable propagation of OAM modes with ` = ±1,±2 derived from

combinations of HEeven,odd
2,1 and HEeven,odd

3,1 , EHeven,odd
1,1 modes is shown in Figure 3.3b.

These desired solutions have been widely studied in [9, 11], which look for inhibiting

the coupling amongst almost degenerate modes within a specific group. Through a

fiber of special index profile shown in [11] the degeneracy among first-order modes

(LP11 group) is lifted, enabling propagation of OAM modes of ` = ±1. Similarly, in

[9] other special index profile that lifts the degeneracy of the highest-order mode is

also shown, enabling the stable propagation of OAM modes of ` = ±5 ± 6 ± 7. An

increase of stable OAM modes brings as consequence an increase in system capacity.

This doctoral work will show a new design of vortex fiber to improve the stability under

external perturbation like bends, and also how to increase the number of stable OAM

modes. Before going further, we will show a brief mathematical description of fiber

mode coupling phenomenon.
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Figure 3.3: Concept of the effective index separation for the mode groups: LP11 and

LP21. (a) Conventional MMF with small effective index separation resulting in mode

coupling. (b) Desired solution that leads a enough splitting amongst the modes into

the groups LP11 and LP21, that can be achieved by the design of a special index

profile.

3.2.2. Fiber mode coupling

For conventional MMF with small refractive index differences between core and cladding,

almost no-degenerate modes have almost equal effective index. In this case, OAM fam-

ily is susceptible to strong mode coupling from perturbations. In this subsection, we

mathematically describe mode coupling phenomenon.

Following the formulations of [9,61,66], we write the refractive index profile as n(r, z) =

n0(r) + nb(r, φ, z), where n0 is the fiber’s ideal profile and nb is a perturbation of index

profile, which is separable into transverse Nb(r, φ), and longitudinal parts f(z). The

coefficient of power coupling between modes j and k is then determined by:

〈Pj,k〉 =
ω2

c2
Φ(kz ,j − kz ,k)

(∫ ∫
rdrdφNbE ∗j Ek

)2

, (3.18)

where ω and c are the frequency and speed of light, Φ is the spatial power spectrum of

the autocorrelation of f(z), which could be derived considering a small index pertur-
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bation proportional to Fourier coefficients related to perturbation periodicity. Ej is the

normalized electric field of the jth mode, and Nb(r, φ) is the transverse perturbation.

If the spatial power spectrum of autocorrelation of f(z) is assumed to be of Gaussian

form, then:

Φ(kz ,j − kz ,k) =
√
πσ2Lce−[ 12 Lc(kz ,j−kz ,k )]

2

, (3.19)

where σ is the RMS deviation of f(z), and Lc is its correlation length. The angular

part of the perturbation p can be separated by:

Nb(r, φ) =
∞∑

p=−∞

Ñp(r)e
ipφ, (3.20)

where Ñp is the Fourier series coefficient of the perturbation corresponding to angular

momentum

If the jth and kth modes are OAM states expressed as:

Ψ` = êG(r)e i`φ (3.21)

where ê is a polarization, and G(r) the field’s radial envelope. Coupling from a mode

with OAM `j to one with `k depends on the inner product between the fields Ej = Ψ`j ,

Ek = Ψ`k and the perturbation. Thus, we can solve the overlap integral of equation

3.18, and simplify its angular part as:∫ ∫
rdrdφNbE

∗
jEk =

∫ a

0

Ñp(r)G
∗
j(r)Gk(r)rdr

∞∑
p=−∞

∫ 2π

0

ei(`k−`j+p)φdφ︸ ︷︷ ︸
angular part

, (3.22)

which vanishes unless

p− (`j − `k) = 0 (3.23)

In equation (3.19), Φ achieves maximum value for ∆neff = neffj − neffk , and maximum

exchange of power between modes will be achieved when they are phase matched. In

theory, two degenerate modes will never couple if the integral of equation (3.18) is zero.

However, in practice, any real perturbation will have some Fourier spectrum in both

azimuthal and radial coordinates, like in equation (3.19), thus, coupling between almost

degenerate modes is expected.

From the point of view of phase matching, only strong coupling between the spin-orbit

aligned states, (e.g. two V +
l,m states) would be expected. In view of coupling strength
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relative to the integral of equation (3.18), coupling is likely between spin-orbit anti-

aligned states V +
l,m and W−

l,m, since any perturbation will be sufficient to couple σ̂+ and

σ̂−. This latter is even less likely between OAM states coming from two quasi non-

degenerate modes (HEl+1,m and EHl−1,m), which are OAM states with opposite orbital

charges +` and −`.

Let us introduce an expression in order to quantify the “mode purity”, which measures

the ability of a perturbed OAM mode of remaining uncoupled with other OAM modes.

If we calculate the “mode purity” for each perturbed OAM mode, we obtain the OAM

spectra, also know as OAM charge weight distributions as:

Ci =

∫ ∫
E(x, y, z)Ψ∗i (x, y, z)dxdy (3.24)

where |Ci|2 is the OAM charge weight and
∑
|Ci|2= 1 is expected. E(x, y, z) is the

normalized electric field of the achieved mode in a perturbed fiber (e.g. in presence of

ellipticity of ring, twists or fiber bending). Ψi(x, y, z) is the normalized electric field

of eigenmodes in an ideal unperturbed fiber. Equation (3.24) is a simplified version of

the equation (3.18) considering all field components to extend its validity to the high

contrast case, but now taking into account the perturbed fields, instead of the perturba-

tion itself as was previously done. Note that if both fields are unperturbed Ci=0, which

means that the modes are perfectly orthogonal, and they are uncoupled. This equation

is used to estimate the mode coupling and crosstalk in presence of perturbations such

as fiber bending that will be described in the next section.

3.2.3. Model of a bent fiber

Bent waveguides have been modeled using an exact approach that uses full-vectorial

finite-element method in a local cylindrical coordinate system to describe bending loss

and modal distribution of the fields [67]. Likewise, other approach has been proposed

in [68] to model bending losses in optical waveguides, using transformation optics (TO)

technique. We use the latter technique (TO) to model a bent fiber shown in Figure 3.4.

The bending plane is parallel to the xz plane with R being the bending radius defined

from the origin to the center of the waveguide.

TO considers that light propagation along a bent fiber located in the xyz coordinates

(see Figure 3.4a), is equivalent to light propagation along a straight fiber located in a
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Figure 3.4: (a) Top view of a fiber’s core with a bending radius R in xy plane (b)

Top view of the transformed straight waveguide νw plane. Adapted from [68]

new coordinate system uνw (see Figure 3.4b), through a coordinate transformation T:

T : u+ jw = Rln

(
x+ jz

R

)
(3.25)

If we apply this transformation to the first quadrant in the xyz coordinates, we can use

the formula given in [69]:
εi
ε

=
µi
µ

= QuQνQw/Q
2
i (3.26)

εi = εQuQνQw/Q
2
i µi = µQuQνQw/Q

2
i (3.27)

Q2
i = (∂x/∂i)2 + (∂y/∂i)2 + (∂z/∂i)2 (i = u, ν, w) (3.28)

and the transformation equation (3.25) to rewrite the permittivity and permeability as

tensors in the new coordinate system uνw:

εi
ε

=
µi
µ

=

 1 0 0

0 e2u/R 0

0 0 1

 (3.29)

This approach is based on the form invariance property of the Maxwell equations in any

coordinate system, that leads to the scalability of the permittivity and permeability by

a common factor in this new coordinate system. Thus, in a bent fiber one can solve the

eigenmodes supported by the straight fiber in uvw by taking into account this scaling

shown in equation (3.29), and to use the effective index of the eigenmodes neff and

transformation for eigenvector Ex = Eu/Qu, where Qu = eu/R in our case. This model

was implemented in Comsol 5.1 R© to compute perturbed fields of equation (3.24).
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4. VORTEX FIBERS

As aforementioned in section (3.21), the OAM mode instability problem in step-index

fibers, as shown in Figure 3.3 arises from the near-degeneracy amongst higher order vec-

tor modes described in section (2.2). OAM modes are ideally orthogonal but are easily

coupled under small perturbations, limiting their propagation to short fiber lengths on

the order of a few centimeters [53–55]. In this chapter, we describe a class of spe-

cialty fibers, introduced by [8]. One of them is all-solid, and fabricated in silica and

doped silica, and it is able of lifting the degeneracy amongst the modes belonging to

LP11(first-high order modes), which is formed by the vector modes: TM01, TE01, and

HEeven,odd
21 . Likewise, another special fiber with a part of air-core is able of lifting the

degeneracy, but amongst groups of high-order modes [9]. We explain the reasoning be-

hind untypical refractive index profile in these fibers, called vortex fibers, from now on.

Then, we numerically solve the vector equation (2.18) using the finite element method

implemented in Comsol 5.1 R© to compute modal effective indices, the modal dispersion,

as well as modal field distributions. We will show that in these fibers, there is a large

separation among effective indices within the mode group considered near-degenerate,

that can be several orders of magnitude higher than in conventional fibers, indicating in

this manner, a reduction of mode coupling according to the theory described in section

(3.2). Before we go further, let us analyze in detail these vortex fiber designs, as our

start point.

4.1. DESIGN OF VORTEX FIBER

Near-degeneracy among modes within a group is related to the polarization correction

term δβ of the equation (2.13) obtained by means of a first-order perturbative analysis.

Thus, for example, we calculate the scalar propagation constants of a LPlm group, which

are identical in scalar approximation, and then, the real propagation constants of the
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vector modes belonging to this group can be obtained through a vector correction (see

Table 2.3) and the equations (2.22) and (2.23). The magnitude of splitting depends on

the index contrast ∆ and the radial gradient of the field dFl/dR. We can intuitively

guess that an increase in ∆ would increase the mode splitting, and therefore it would

lift the degeneracy within of the group of modes. However, only an increase of ∆ is not

enough to lift the degeneracy because the modes become increasingly confined and the

field amplitudes dramatically decrease at waveguide boundary, reducing the dFl/dR

term of the equations (2.22) and (2.23), that also should be taken into account (See

details of this concept in [70]).

In particular, we focus on the first order LP11 group or OAM family of ` = 1. The

vector correction of the propagation constants β for the scalar solution are given by

(see Table 2.3):

δβTE01 = 0 (4.1)

δβTM01 = 2(I1 + I2) (4.2)

δβHEeven,odd21
= I1 − I2 (4.3)

where I1 and I2 were given by equations (2.22) and (2.23), and may be rewritten as in

[8]:

I1 =
δnmax

2a2ncoβ

∫
rE(r)

∂E(r)

∂r

∂(∆
n
/∆nmax)

∂r
dr (4.4)

I2 =
δnmax

2a2ncoβ

∫
E2(r)

∂(∆
n
/∆nmax)

∂r
dr (4.5)

where E(r) is the electric field profile for the scalar mode, a is the size of the waveguiding

core, ∆n(r)/∆nmax is the normalized index profile of the fiber. An index profile that

lifts the degeneracy should to maximize ∆n(r)/∆nmax while also maximizing the field

E(r) and the field-gradient ∂E(r)
∂r

at index step fibers.

We start by first considering a conventional fiber with step index profile. If we observe

the Figure 4.1a this index profile does not maximize the electric field E(r) or mode

intensity |E(r)|2 (in red) for the scalar LP11 mode. This condition is also not satisfied

only by increasing the relative index contrast ∆N/∆Nmax. Then, we conclude that a

waveguide whose profile mirror that mode itself (seeFigure 4.1b) can accomplish the

condition of high mode intensity close to the waveguide transition regions (boundaries),

maximizing ∂E(r)
∂r

as well as E(r). This is indeed what equations (4.1) - (4.5) demand-

i.e large separation in propagation constants requires large I1 and I2 values, which can
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be obtained when LP11 (or any higher order mode) power and its derivates resides close

to index boundary. This yields a fiber designed to have large degeneracy splittings. [70].

Figure 4.1: Normalized index profile (gray background), and corresponding mode

intensity |E(r)|2 for the scalar LP11 mode (red) for (a) conventional step-index fiber,

and (b) the ring-fiber (mirror design). c©2009 IEEE. With permission from [8]

This concept was demonstrated for the first time by Ramachandran in 2009 [8], and

based on this design goal of having vector modes almost non-degenerate with ∆neff >

10−4 has been possible. It can be applied in ring-fiber designs to propagate higher order

modes or OAM modes of ` > 1 with great stability [9,11]. Several ring fibers have been

designed for stable propagation of optical vortices [9, 11, 41, 60, 71–74]. In particular,

we are interested in the designs of [10]: solid design that splits the first group of higher

order mode (LP11 group, or OAM family of ` = 1); and in [9]: air-core design that

splits highest order mode to enable propagation of OAM families of ` = ±6,±7,±8.

4.2. ALL-SOLID VORTEX FIBER: NUMERICAL ANALYSIS

4.2.1. OAM±1, TM01 and TE01 modes

An optical microscope image (see Figure 4.2a) shows of the cleaved end-face of the

all-solid vortex fiber. It is specified using the convention dk110OD, like dk11OD105,

in which the number 105 is proportional to the core size (see [11] pag. 28). The inset
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shows the fiber core region surrounded by a trench and a ring region. Figure 4.2b shows

the measured refractive index profile reported in [3, 11]. We will show that this fiber

propagates the two polarizations of the fundamental mode HE11 (denoted LP01 in the

scalar approximation), and the modes HEeven,odd
21 , TM01, TE01 belonging to the first

mode group LP11. Besides, the index profile has a characteristic high-index ring that

serves to inhibit the near-degeneracy between HEeven,odd
21 and TM01, TE01 modes that

are usually coupled in conventional step-index fibers. HEeven,odd
21 modes yields an OAM

states of ` = ±1, called by simplicity OAM±1.

Figure 4.2: (a)Microscope image of the end-face of the all-solid vortex fiber (b).

Measured refractive index (red line), and numerically calculated mode profiles LP01

(black line), and OAM1. With permission from [11] c©Boston University, and from [3]

AAAS, respectively.

In order to study the modal properties of this fiber, we use the finite element method

implemented in Comsol 5.1 R© software to numerically solve vector wave equation (2.3)

for the vortex fiber. Using an interpolated index profile take from the measured profile

shown in Figure 4.2b, we draw the waveguide structure in Comsol 5.1 R©, which consists

of a solid core surrounded by circular concentric rings (see Figure 4.2a). The full-

structure was discretized by triangular elements of a size smaller than the wavelength,

and a perfect match layer (PML) of 1 µm was used to truncate the computational

domain after 52.5 µm. We compute the effective index as a function of the ligth

wavelength, and the modal field distribution of the propagated modes.

We find out a separation of approximately 3 × 10−3 (at 1550 nm) with respect to the
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fundamental HE11 mode, as well as a separation of approximately 1.1× 10−4 between

nearest neighbor first order modes (see Figure 4.3). Our results are in agreement with

the reported in [3, 11]

(a)Effective index as a function of light wavelength - solid vor-

tex fiber dk11OD105

(b)∆neff as a function of light wavelength - solid vortex fiber

dk11OD105

Figure 4.3: Numerically computed effective index of the all-solid vortex fiber

dk110D105 as a function of light wavelength.(a) Effective index of the fundamental

mode (HE11) and the first-order mode (b). Numerically calculated effective index

differences of the first-order modes TE01, HE21, and TM01 with respect to the

fundamental mode (HE11). This figure was made with the help of [12].
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We also obtain the mode profiles as is shown in Figure 4.4. Note that fundamental

mode (HE1,1) does not have a typical profile anymore as in the case of the conventional

step- index fiber; which is Gaussian-like. The HE21 mode intensity profile resembles a

doughnut shape due to refractive index ring structure.

(a)

(b) (c)

Figure 4.4: Mode profiles in 2D case.(a) Mode intensity profile proportional to the

Poynting vector for the HE11 and HE21. Arrows indicate the electric field

distributions. (b) Electric field profiles Ex and Ez for the HE11 and TE01 modes. (b)

Electric field profiles Ex and Ez for the HE21 and TM01 modes.

The Figure 4.5 reveals the phase profiles (see equation (3.10)) for OAM0 and OAM1

modes. We observe no change in the phase distribution for OAM0 as was expected.

Instead, OAM1 possesses an helicoidal phase distribution, in which the blue corresponds

to −pi and red to pi radians, so there is an azimuthal dependence of the phase showed

in the equation (3.10) for non-zero OAM fiber states.

We also obtain the radial electric field E(r) and its derivative (see Figure (4.6)). We
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Figure 4.5: Phase profile for (a) OAM0 (b)OAM1 modes.

find out a high mode intensity close to the waveguide transition regions (boundaries),

maximizing ∂E(r)
∂r

, as well as, maximizing E(r). These conditions are satisfied in this

vortex fiber, which is necessary to produce a split between the vector modes of the first

group LP11 as was described in section 4.1.

Figure 4.6: Radial electric field (EF) and its radial derived (DEF) in the ring’s area

4.2.2. Effect of increasing the ring’s width

Let us analyze the modal behavior in vortex fibers with large ring width. We focus in

the telecom wavelength of 1550 nm. We increase the ring diameter to achieve the index

profile reported in [11] pag.32 (see fiber named dk110OD160) in which higher order

modes are now guided. Figure 4.7a shows guiding of higher order modes belonging to
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LP11 group: TE01, HE21 and TM01; LP21 group: HE31 andEH11; LP02 group: HE12;

and LP31 group: HE41 and EH21.

We can observe that ∆neff between HE11 modes and the vector modes belonging to

LP11 group decrease as a consequence of the increase in the modal content. Additionally

LP21 and LP31 groups can generate OAM2 and OAM3 modes, respectively, however,

they have a ∆neff of approximately 2 × 10−5 indicating higher mode coupling among

its vector modes, which suggests that they remain still almost degenerate, preventing

in this manner a stable propagation in long lengths.

Based on the simulations for the vortex fiber with a large ring, we can infer about

two important observations. First, it is reasonable for now to conclude that the mode

coupling can be higher in all-solid vortex fibers of a larger ring, as well as the number

of available OAM states becomes larger, but most of them can be unstable. Second, in

an ideal case, this all-solid vortex fiber should only propagate a few modes to avoid a

higher coupling with highest order modes.

4.2.3. OAM Spectra

Regarding the quantification of the mode coupling strength, we compute the OAM

spectra using the equation (3.24). We consider bend radius of 2 and 5 cm to obtain

perturbed electric fields by using the model of the subsection (3.2.3). Note that the

equation (3.24) gives a “mode purity” of zero value (Ci=0) as long as both fields are

unperturbed. We compute equation (3.24) for two unperturbed fields combining possi-

ble several cases and notice that in the most of the cases it yields a value of ∼ 120 dB,

indicating a perfect orthogonality between the modes, or equivalently a mode of high

purity.

The spectra was obtained using an own code in Matlab R© that numerically compute the

perturbed and unperturbed electric fields obtained from Comsol R©. Table 4.1 shows the

values in dB units indicating the coupling strength between perturbed OAM1, HE11y ,

and HE11x modes corresponding to first columns, and unperturbed TE01, TM01 and

OAM−1 modes corresponding to the first rows. We observe that mode coupling is more

intense to small bend radius of 2 cm.
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(a)Effective index as a function of light wavelength - solid vortex fiber

dk11OD160

(b)∆neff as a function of light wavelength - solid vortex fiber

dk11OD160

Figure 4.7: Numerically computed effective index of the all-solid vortex fiber

(dk110D160) as a function of light wavelength. (a) Effective index for guided modes

in the vortex fiber. (b) Effective index differences for guided modes in the vortex

fiber. This figure was made with the help of [12].
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We also observe high coupling strengths of values around 0 dB between the modes with

the same orbital charge `, which means that the propagation is not affected by the bend.

Otherwise, a lower coupling strength for the OAM modes of opposite orbital charge (`=1

and `=-1 highlighted by green). These results are relevant because allow affirming that

the propagation of OAM modes is very stable even under great perturbations like bends,

remaining coupled with itself and uncoupled with the others.

Table 4.1: OAM Spectra of the all-solid vortex fiber dk100OD105. Perturbed modes

are indicated in the first column. Fiber was bent with radii of (a) 5 cm and (b) 2 cm.

(a)Fiber bent with 5 cm

TE01 TM01 OAM−1 OAM1

OAM−1 -45 -39 -0.005 -58

OAM1 -47 -39 -58 -0.005

HE11y -30 -103 -33 -33

HE11x -111 -73 -78 -78

(b)Fiber bent with 2 cm

TE01 TM01 OAM−1 OAM1

OAM−1 -29 -23 -0.05 -48

OAM1 -31 -24 -48 -0.05

HE11y -22 -96 -25 -25

HE11x -120 -65 -70 -70

4.3. AIR-CORE DESIGN: NUMERICAL ANALYSIS

Figure 4.8a shows the an image of the cleaved end-face of a sample of the air-core vortex

fiber, and Figure 4.8b the measured index profile.

In this subsection, we describe the air- core vortex fiber that also enables conservation

of OAM. The air-core acts as a repulsive barrier, forcing the mode field to encounter

large index step between ring and cladding, yielding high mode confinement and also

satisfying the criteria mentioned in section 4.1. This design allows one to lift the near-
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Figure 4.8: (a) Microscope image and (b) measured index profile for the air-core

fiber. With permission from [9]. Copyright 2015 Optical Society of America

degeneracy among modes of the same group, or OAM states with the same |`| (opposite

orbital charges +` and −`), though the state with OAM and SAM aligned remain

degenerate with each other, but separate from those with OAM and SAM anti-aligned

[9]. This fiber supports stable OAM modes with large |`|, with low sensitivity to be

coupled in fiber bends.

4.3.1. Lifting the modal degeneracy of highest order modes

Practical communication distances have been achieved over fibers only for the special

case of the lowest order ` = 1 OAM states [3], however, ideally a multimodal system to

multiplex modes should have a large number of states. There is a fundamental problem

to exploit the infinite-dimensional basis allowed by OAM states because it is required a

medium in which this modal degeneracy is addressed. This air-core fiber was conceived

to face this problem because allows increasing the stable OAM modes.

We simulate this fiber using the finite element method implemented in Comsol 5.1 R©,

by using a step index profile shown in Figure 4.8b to draw the waveguide structure. The

full-structure was discretized by triangular elements of size smaller than the wavelength,

and a perfect match layer (PML) of λ was used to truncate the computational domain
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after 48.75 µm. We compute the effective index as a function of the wavelength of light,

and also obtain the modal field distribution of the propagated modes. We find up to 32

propagating modes including TE0,m, TM0,m and hybrid modes HEl+1,m and EHl−1,m,

some are shown in Figure (4.9).

Figure 4.9: Vector modes propagate in the air-core vortex fiber. The fundamental

mode HE11 is confined on the ring possessing a linear polarization. This fiber can

support HEm,2 modes with second radial order, like the mode HE22. Also, it can

support HEm,1 modes of our interest to shape the OAM basis. This figure was made

with the help of [12]

We find up to 16 OAM modes coming from V +
l,m and W+

l,m, in a broad window wave-

length from 1450 nm up to 1570 nm as shown in Figure 4.10a. We observe an neff

splitting amongst highest order OAM states, which are near-degenerate. According

to the phenomenological reasons described in the section (3.2) only OAM modes with

` = ±6,±7,±8 are stable, since ∆neff are large enough above 10−4 as shown by the

red circles in Figure 4.10b, whose values are shown in Table 4.2. Below ` =6, for which

OAM states are also supported, the neff splitting is too small and LP-like behavior is

expected. This ∆neff is slightly different from the already reported by [9], likely due
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to small changes in the simulated geometry, and core or cladding indices.

(a)Effective index as a function of the light wavelength - air core fiber

(b)∆neff vs. L=` at a telecom wavelength of 1550 nm - air -core

fiber

Figure 4.10: Effective index for OAM modes with L = ±` in an air core fiber. (a)

Effective index difference as a function of light wavelength. (b) Effective index

difference vs. ±` at a telecom wavelength of 1550 nm for the air-core vortex fiber.

This figure was made with the help of [12].
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Table 4.2: Effective index differences to assess the degeneracy among OAM modes.

The differences were computed between OAM modes with opposite orbital charges +`

and −`, which means the same ±|`| ((+) indicates spin-orbit aligned, and (-) indicates

spin-orbit anti-aligned)

Modes ∆neff

OAM+6 −OAM−6 ∼ 0.65959x10−4

OAM+7 −OAM−7 ∼ 0.96692x10−4

OAM+8 −OAM−8 ∼ 1.3455x10−4

OAM+8 −OAM7 ∼ 3.786x10−3

OAM+7 −OAM6 ∼ 0.3073x10−3

OAM spatial phase distribution is presented in Figure 4.11. Each state possesses total

angular momentum J, which have orbital `, and spin σ parts, that can be both positive

or negative. Thus, 4 OAM states for every |L| = |`| are expected. In Figure 4.11 we

also show the OAM modes with orbital charges ±`, which can be excited by a circular

polarization ±σ (left or right handed), that represents the SAM, yielding in this case,

12 OAM states.

We also compute the modal dispersions obtained by a numerical implementation of the

second derivative: ∂2β/∂ω2, using an own code in Matlab R©. Figure 4.12 shows the

modal dispersion for OAM modes with orbital charges of ` = 6, 7. These values are

very similar to already reported in [9]. Dispersion values at these wavelengths are in

order of magnitude quite similar to the standard singlemode fiber (e.g. 18 ps/nm km

at 1550 nm). This fact means that the OAM modes in this air-core vortex fiber can

be used as channels in optical communication systems multiplexed by modes without

troubles introduced by impairments associated with high dispersion values that limits

transmission at hight-rates.

4.3.2. Accidental degeneracies

In order to increase the volume of OAM states, a large index contrast, and also an

increase in the ring width are the most obvious alternatives. In this way, as mode

volume is increased, the number of m = 2 modes increases too. In an ideal fiber,
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Figure 4.11: Stable OAM states propagated in the simulated air-core vortex fiber.

Each SAM σ = ±1 produce two possible states for each OAM modes, yielding in this

case up to 12 OAM states.

Figure 4.12: Modal dispersion for the `=6, and 7 across C-band for the air-core fiber.

See Ref [9]. This figure was made with the help of [12]
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desired OAM states should come from hybrid modes HEl+1,m and EHl−1,m with any

azimuthal order l, and with this condition: (l,m) = (`, 1), which means only one

radial order. Modes with higher radial number (m > 1) should be suppressed because

they can lead to “accidental degeneracies” in which a mode with a number (`, 1) may

be degenerate with a mode with a number (`,m > 1), over some wavelength range.

Modes of different azimuthal symmetry have no anti-crossing that would prevent these

accidental degeneracies. However, in particular, the modes of same azimuthal symmetry

and different radial order could be easily coupled due to accidental degeneracies, as well

as by the similarity of the field distributions, that leads to values of the overlap integral

in equation (3.22) different from zero. This effect would destroy the fiber’s ability to

transmit higher-order OAM states with m = 1 over long distances.

An example of an “accidental degeneracies” between modes with radial order of m = 1

and m = 2 is shown in Figure 4.13 for the simulated air-core fiber, where we should be

avoided the operation in regions in which the modes with m = 2 are closely spaced in

neff to desired OAM modes with m = 1.

Figure 4.13: Accidental degeneracy between the (l,m)=(6,1) and (2,2) modes near to

1523 nm in the air-core vortex fiber. This figure was made with the help of [12].

The most apparently obvious design methodology for suppressing m > 1 coupling is to

make a thin, higher contrast ring, for which the m > 1 states simply are not guided [9].
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Although this alternative can be very efficient by inhibiting modes of m > 1, higher

index contrast only is achieved either by including dopants as Germanium (Ge) in the

ring, or Fluor (F) in the cladding respectively, which imply an increase in the fiber’s loss.

Alternatively, thinner rings lead to very confined fields and field gradients, which result

in high scattering losses. Recent work has theoretically proposed such waveguide [73],

and experimental work has claimed OAM propagation over a few centimeters length

[60], likely due to high losses. On the other hand, high index contrast and a very

thin ring lead to differences in electromagnetic continuity conditions between s and p

polarized electromagnetic fields promoting the spin-orbit coupling, a fundamental effect

that prevents km-scale OAM state propagation [13].

4.3.3. OAM Spectra

We compute by using an own code in Matlab R© the OAM spectra for the air-core fiber

simulated here. We consider fiber bend radii of 1 and 5 cm to obtain perturbed electric

fields. As was shown for the solid vortex fiber, we also compute equation (3.24) for

two unperturbed fields combining possible several cases and notice that in most of the

cases it yields a value of above 120 dB, indicating again perfect orthogonality among

the modes, or equivalently a mode of high purity.

The values of the Table 4.3 (in dB units) show that the coupling strength (OAM charge

weight) increase as bending radii decrease. We stress that: (a) there are lower coupling

strengths (less than -67 dB at a bend radius of 1cm) between anti-aligned (W+
l,m) and

aligned (W+
l,m) OAM modes (modes with opposite orbital charges +` and −`), which are

highlighted by the color. (b): Otherwise, there are higher coupling strengths between

pairs of anti-aligned (W+
l,m) or aligned (W+

l,m) OAM modes (modes with the same sign

between their orbital charges +` or −`) reaching values of up to -19 dB at a bend radius

of 1cm. (c): In addition, a coupling strength around -0.01 dB at a bend radius of 5

cm (highlighted in gray), between OAM modes with the same orbital charge +` or −`
shows that the propagation of the OAM modes is not affected by the bends. These

results are in agreement with the already described in the subsection 3.2.2.
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Table 4.3: Spectra of the air-core vortex fiber between OAM modes. Fiber was bent

radii of (a) 5 cm and (b) 1 cm. Perturbed modes are in the first column

(a)Fiber bent with 5 cm

`6 `7 `−6 `−7

`−6 -76 -83 -0.012 -32

`−7 -73 -91 -32 -0.010

`6 -0.012 -32 -78 -74

`7 -32 -0.010 -82 -93

(b)Fiber bent with 1 cm

`6 `7 `−6 `−7

`−6 -83 -71 -0.29 -19

`−7 -60 -67 -19 -0.26

`6 -0.32 -19 -83 -59

`7 -19 -0.26 -67 -78

4.3.4. Spin-orbit coupling in air-core vortex fibers

High electric fields at the air-silica boundary cause spin angular momentum (SAM

with left or right circular polarization, σ̂±) to couple with OAM, a form of spin-orbit

interaction [13, 75]. An example of spin-orbit interaction can be observed in Figure

4.14 that compares the polarization structures of the HE1,1 modes of “low-contrast”

and “high-contrast” fibers. Both structures are ring fibers with a core radius of 16 µm

and ring width of 4 µm; the low-contrast structure has a silica core and cladding, while

the high contrast structure has an air-core. The black arrows show the polarization,

which is by construction linear at each point in the space in a “low-contrast” fiber, and

azimuthal in a “high-contrast” fiber. The red ellipses depict the polarization states of

the superposition of HEodd
l+1,m + HEeven

l−1,m, which give rise to spatially uniform circular

polarization in the low-contrast case, but spatially varying elliptical polarization in the

high contrast case [13].

The low-contrast example illustrates that when spin-orbit coupling is weak an external

circularly polarized sources can be used to efficiently excite the OAM modes. Otherwise,
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Figure 4.14: Comparison between HE1,1 fields of (a) low-contrast and (b)

high-contrast fibers. c©2014 IEEE. With permission [13]

when spin-orbit coupling is strong this effect prevents an efficient excitation of OAM

modes with external circularly polarized sources.

This effect comes from the fact that the modes in an air-core fiber are not weakly guided,

and have no direct counterpart in paraxial optics [13], therefore, orbital part eiφ` and

spin part σ̂± are not decoupled anymore (see equations (3.10) and (3.11)). With high

field amplitudes and index contrast, a full vectorial solution should be addressed. Then,

for |`| > 2 OAM states can be written:

−→
et; l =

 e±(`+1)φ ·
[
er;`,AA(r)r̂ ∓ ieφ;`,AA(r)φ̂

]
· eiβL,AA · z

e±(`+1)φ ·
[
er;`,A(r)r̂ ∓ ieφ;`,A(r)φ̂

]
· eiβL,A · z

 (4.6)

where r and φ are the radial and azimuthal unit vectors, and er and eφ are the field

amplitudes in the corresponding directions. AA is spin-orbit anti-aligned states (sign

of SAM and OAM opposite), and A is spin-orbit aligned states (sign of SAM and OAM

being the same). Under paraxial and weakly guided approximation, OAM fields were

described with an uniform (circular) polarization (see equations (3.10) and (3.11)), but

using a full-vectorial solution the fields are spatially non-uniform, with an ellipticity

| eφ/er|, as shown in Figure 4.15, where in the paraxial case this ratio approaches unity,

exhibiting again uniformly polarized fields [14]. Figure 4.15 shows the field distribution
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for an |`| = 2 spin-orbit (SO) aligned (A) as well as spin-orbit (SO) anti-aligned (AA)

modes.

Figure 4.15: 1D and 2D plots of the electric field of the |`| = 2 states for the SO

aligned and SO anti-aligned fields of a simulated air-core fiber with an air-core radius

of 6.5 µm, ring width of 3.25 µm and index contrast nring − ncladding = 0.04. Unequal

radial and azimuthal field component yield a spatially varying elliptical polarization

state. With permission of [14]. Copyright 2015 Optical Society of America

Lower ` -state are more likely to experience spin-orbit coupling, due to the larger

nair−nring, and consequently tend to be more TE orTM like, exhibiting azimuthal (TE

case) and radial (TM case) polarizations (see Figure 4.16) [14,75].

Note that the SO aligned modes are almost azimuthally polarized, while the anti-aligned

modes are almost radially polarized. Then the equation (4.7) may also be rewritten as:

−→
et; l =



e±(`−2)φ · er;`,AA(r)·
1
2

[
σ̂+eiφ

(
1∓

∣∣∣ eφ;`,AA(r)

er;`,AA(r)

∣∣∣)+ σ̂−eiφ
(

1±
∣∣∣ eφ;`,AA(r)

er;`,AA(r)

∣∣∣)] · eiβL,AA · z
e±(`+2)φ · er;`,A(r)·
1
2

[
σ̂+eiφ

(
1±

∣∣∣ eφ;`,A(r)

er;`,A(r)

∣∣∣)+ σ̂−eiφ
(

1∓
∣∣∣ eφ;`,A(r)

er;`,A(r)

∣∣∣)] · eiβL,A · z


(4.7)
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(a)`=+2. Azim shape (b)`=-2. Radial shape

Figure 4.16: 2D plots of the electric field of |`| = 2 states for the (a) SO aligned that

yields a TE-like (azimuthal) electric field, and (b) SO anti-aligned that yields a

TM-like (radial) fields of a simulated air-core fiber with an air-core radius of 25 µm,

ring width of 2.5 µm and index contrast nring − ncladding = 0.02.

in terms of the separable component of the polarization σ̂±, where we can observe that

OAM modes have an extra component with ` = ±2, which means that for OAM modes

with the same J, and in non-paraxial regime a spin-orbit coupled pair with |`|= 2 can

exist. This fact could lead to an increase in the OAM basis by joining the conventional

OAM eigenmodes with their spin states AA and A, and spin-orbit coupled eigenmodes

(i.e., with |`|= 2) showed in equation 4.7. This effect was already used as an alternative

increasing the number of available OAM state in air-core fibers [75]. However, this

implies an external decoupling between OAM states by using external processing like

MIMO-DSP. This is another reason why high index contrasts in this kind of fibers,

and thinner rings are not feasible alternatives to increase the number of available OAM

states in vortex fibers. For this, we propose in this doctoral work to use metamaterials

as a new alternative to achieve more uncoupled OAM states and increasing of OAM

states as well.
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5. DESIGN OF A METAMATERIAL-BASED VORTEX FIBER

The results of the last section are our starting point. We use the geometry and the

index profiles of both all solid and air-core vortex fibers, and we will demonstrate that

by replacing the silica-cladding with a metamaterial but preserving ring width, it is

possible to reach a better performance. The goal is to try to increase the number

of stable OAM modes with m = 1, as well as the effective index differences between

modes in a near-degenerate group, and also reduce the number of OAM modes with

m > 1 by preserving the ring width to avoid the phenomena of spin-orbit coupling. In

addition, high index contrast between the ring and cladding that leads to high losses

in this class of fiber should be avoided too. This trade-off seems to be still one of

the open problems to be tackled in the scientific community, and our proposal consists

in using metamaterials to achieve this goal. In the following subsections, we describe

its advantages in the change of the modal behavior in photonic structures, and in the

reduction of modal bending loss compared to other options like increasing the index

contrast, bandgap effect, and nanoscaled slots. Finally, we show the results of our

designs of vortex fibers using an anisotropy-engineered dielectric metamaterial.

5.1. ANISOTROPY-ENGINEERED DIELECTRIC METAMATERIAL

Metamaterials seek to extend conventional materials by using artificially designed and

fabricated structural units with the required effective properties and functionalities.

The central guiding principle in all metamaterials consists of fabricating a medium com-

posed of unit cells far below the size of the wavelength. The unique resonances of the

unit cell based on its structure and material composition as well as coupling between

the cells lead to a specific macroscopic electromagnetic response [15]. These nanos-

tructures have been optimized to achieve a range of exotic electromagnetic responses,

including negative magnetic permeability (magnetic metal, µ < 0) [76], negative refrac-
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tive index (n < 0) [77], zero refractive index (n ∼0) [78], optical chirallity [79, 80], and

hyperbolicity [81].

Recently, however, metamaterials composed of dielectric structures, completely trans-

parent building blocks in which light does not couple to plasmons or optical phonons,

have been demonstrated to achieve all four quadrants of electromagnetic responses:

ε > 0, µ > 0; ε < 0, µ > 0; ε > 0, µ < 0; ε < 0, µ < 0, where ε is electric permittivity

showed in Figure 5.1.

Figure 5.1: Electric permittivity ε and magnetic permeability µ form four quadrants

that represent the entire range of the isotropic electromagnetic response. All four

quadrants can be covered by designing specific all-dielectric metamaterials. ZIM is

zero-index material. With permission from Macmillan Publishers Ltd. [15]. Copyright

2016

Dielectric photonic waveguides can be classified according to two fundamental principles

governing them, one that utilizes the large index contrast between media to confine light

within nanoscale slots [82, 83], and another that uses Bragg reflection of waves int the

bandgap photonic crystal [84,85]. The waveguide modes in the latter are not scattered

at sharp bends and they can be confined within low index core.
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A new approach that consists of dielectric metamaterials used as cladding or sub-

strate fabricated in transparent building blocks of SiO2, TiO2, Si, Ge, Te (see the

first quadrant showed in Figure 5.1) have recently been proposed as an alternative to

light confinement at the nanoscale [17], and selective confinement of modes in optical

waveguides (it was demonstrated by us in [86]).

Another unique aspect of all-dielectric metamaterials lies in the large amount of pos-

sibilities for engineering the anisotropy of the media. Unlike natural materials, where

the difference between principal refractive indices for the two possible polarizations

(extraordinary and ordinary) rarely exceeds 10%, all-dielectric metamaterials can be

engineered to have much higher index contrast [17].

The use of dielectric metamaterials as cladding or substrate rely on controlling the op-

tical momentum of evanescent waves to manipulate propagating waves. The control of

evanescent waves is explained in [87] by means of the relaxed total internal reflection

(TIR). This phenomenon is governed by Snell’s law and occurs when an optical ray

traverses a flat interface between two different isotropic dielectrics, light is partly re-

flected back to the first medium and refracted in the second medium. If n1 > n2 (n1,2

the refractive index of the two dielectrics) and the incident angle is greater than the

critical angle (θc = sin−1(n2/n1)), light is totally reflected back to the first medium and

evanescently decays in the second medium (See Figure 5.2a)

Figure 5.2: a TIR in an isotropic medium. b Relaxed TIR in an anisotropic medium.

With permission from Macmillan Publishers Ltd. [15]. Copyright 2016

However, if the second medium is anisotropic and the incident light is p-polarized like

in the case of the the transverse magnetic (TM) mode in a planar waveguide, the TIR

condition is reduced to n1 > n2x, a condition called relaxed TIR because it leaves a
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degree of freedom to choose the refractive index in the other direction [17, 87]. By

increasing the refractive index in the parallel direction (n2z � 1), it is possible to

control the momentum and skin depth of the evanescent waves in the second medium

[16]:

k⊥2x =
n2z

n2x

√
(k0n2x)2 − (k

‖
z) (5.1)

where k
‖
z = n1k0sinθ is the tangential momentum of light and θ is the incident angle.

Increasing n2z/n2x gives rise to reduced skin-depth in the second medium (See Figure

(5.2)b), where n2x < n1 to satisfy TIR condition. Note that n2z can be even greater

than n1, achieving strong confinement for n2z � 1. Thus, by increasing the anisotropy

of the cladding, it is possible to change the modal behavior in any waveguide (circular or

square) by controlling evanescent waves through transforming the momentum of light

[16]. Claddings with strong anisotropy can be engineered using lossless all-dielectric

blocks using the materials showed in Figure 5.1.

A detailed explanation using full analytical mode calculations of 1D, 2D waveguides is

provided in the supplementary material in [17]. We stress in two points: (a) in a 1D

planar waveguide the TM mode is affected by the presence of the anisotropy-engineered

dielectric metamaterial, while TE modes are not, and for the TM mode the electric field

component Ez decreases while Ex increases in the core, indicating high confinement; (b)

in a 2D circular waveguide the first HE11 or fundamental mode can propagate without

cut-off if εz > ε, and becomes a quasi-transverse electromagnetic mode (TEM), also Ez

and Hz components of hybrid modes HEl+1,m and EHl−1,m decrease by increasing εz, so

high confinement is expected. These points imply that the enhanced confinement and

the changes in the modal behavior (i.e. slow light, reduction of bending loss, reduction

of mode coupling, increase of the number of modes, etc) do not require a high effective

mode index, in contrast to the conventional approach. Therefore, substrate or cladding

fabricated in anisotropy-engineered dielectric metamaterials provide a novel strategy

by means of an additional degree of freedom: controlling evanescent field momentum,

that would enable mode matching in photonic devices and fibers.

As an example, let us consider an optical waveguide in silicon, which at optical com-

munication wavelength around 1550 nm has the highest refractive index among lossless

dielectrics. Thus, it is widely accepted that the silicon core surrounded by vacuum

(highest index contrast) is the best waveguide to confine light better than silicon sur-

rounded by any other lossless material (Figure 5.1a). However, if we surround the
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silicon core with an anisotropy-engineered dielectric metamaterial as demonstrated in

Figure 5.3b, the waveguide can confine the fundamental mode HE11 better than silicon-

vacuum waveguide. To satisfy relaxed TIR condition, we should have εx = εy < εSi for

strong confinement, and εz should be as large as possible, therefore it is demonstrated

that claddings of high anisotropy are better in terms of confinement than vacuum [16].

(a) (b)

Figure 5.3: (a) The x-component of the electric field of HE11 mode for silicon-air

waveguide. The core radius is r = 0.07λ. Less than 2% of the power is confined inside

the silicon core. (b) The x-component of the electric field of HE11 mode for the same

waveguide surrounded by an anisotropic cladding εx = εy < εSi = 1.2 and εz = 12.

The cladding helps to confine up to 30% of the total power inside the core, and also

HE11 mode becomes in TEM. With permission from [16]. Copyright 2015 Optical

Society of America

5.1.1. Practical realization of all-dielectric metamaterials of anisotropy-engineered

We can realize anisotropic metamaterials by artificially structured media using available

lossless dielectrics. One practical way is embedding periodic thin high index nanorods

of a subwavelength size in a low index host dielectric, or visceversa, thin nanorods of

air embedded into a high index dielectric [18], as Figure 5.3 shows.

The periodicity is much lower than the operating wavelength to ensure that the structure

behaves as a homogeneous material and it is far away form its band-gap. Metamaterial

cladding in Figure 5.4 can be accurately described by an effective refractive index,
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(a) (b)

Figure 5.4: An example of a metamaterial cladding consisting of (a) high index

nanorods embedded in low index dielectric. With permission from [17]. Copyright

2014 Optical Society of America. (b) low index nanorods, may be air holes,

embedded in high index dielectric. With permission from [18] USPTO c©

which is independent of the periodicity and is calculated using the Maxwell-Garnett

approximation. Effective relative permittivity normal ε⊥ and parallel ε‖ to the nanorods

axes for sub-wavelength conditions in an uniaxial configuration is [17]:

ε‖ = ρεd + (1− ρ)εh (5.2)

ε⊥ =
(1 + ρ)εdεh + (1− ρ)εdεh

(1− ρ)εd + (1 + ρ)εh
(5.3)

where εd and εh are permittivity of the dielectric nanorods and host, respectively, and

ρ is the fill-fraction of a nanorods in its unit-cell of the proposed cylindrical waveguide.

We adopt the telecom wavelength 1550 nm in the design of our metamaterial cladding.

We decide to use air holes (εair = 1) inside silica (εsilica ∼ 2.07) in order to simplify

the fabrication process [18], as well as achieve low propagation loss in long lengths.

However, any couple of materials could be used to design a cladding of metamaterial as

was shown in the first quadrant in Figure 5.1 to the case of using transparent material

blocks, or other materials as is shown in the proposal of [88–90].
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5.1.2. Fabrication Techniques

A method of manufacturing the optical fiber with a cladding of metamaterial is de-

scribed in [18]. This is based on the construction of successive performs to split and

join smaller segments to finally built the metamaterial. In some preforms, the rods used

within the preforms may be hollow, and the preform may be fabricated using bonded

glass capillaries. In this case, the hollow regions are subwavelength in diameter. The

fabrication steps are sketched in Figure 5.5). In order to fabricate our cladding, we can

use bonded glass capillaries of silica to shape our metamaterial.

(a) (b) (c)

Figure 5.5: (a)The first fiber preform that consists of bonded glass capillaries of silica

into a glass (also silica) substrate to produce a first optical fiber. (b) The second fiber

preform comes from the first optical fiber that was divided into segments and then are

assembled to shape the metamaterial. (c) Fiber with a cladding in metamaterial

using the fabrication process of (a) and (b). (c) is used with permission from [18]

USPTO c©

This fabrication technique could be used to produce an OAM fiber with either a solid

core (section 4.2) or an air-core (section 4.3), and a cladding with metamaterial. In

this particular, the metamaterial cladding can be performed in a multistep process

that involves the creation of two sets of optical fiber configurations [18] (see Figure

5.5b). Metamaterial cladding with a desired size can be assembled enclosing the OAM

core (solid or air). In some claddings, the lattice may be a regular hexagonal array,

a rectangular array, or other regularly shaped array. We adopt a spatial pattern of

a multilayer order to conserve circular symmetry following the pixelated configuration
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described in [91], however, any configuration adopted does not affect the homogenization

provided by effective refractive index approximation.

Based on this fabrication process, we report a numerical study on OAM optical fibers

with fine inclusions of air holes inside the cladding. We refer to such fibers as a meta-

material optical fiber, which can conceptually be considered as an extension from the

previously published microstructured optical fibers [85], and pixelated fibers [91].

Cladding metamaterials can have optical properties not obtainable in naturally existing

bulk materials, including artificial anisotropy as well as graded material properties.

Therefore, incorporation of metamaterials in optical fiber designs can produce a new

range of fiber properties [92,93]. Particularly here, we will show how certain propagation

modes can be achieved in an OAM fiber, and also how they can change the fiber’s modal

behavior with the help of a cladding of metamaterial. We emphasize that we decide to

use a cladding of metamaterial instead of a microstructure cladding with large holes,

because our simulations show that in the latter there is a high birefringence between

the even and odd solutions of the highest order modes, inhibiting in this manner the

propagation of OAM modes. Therefore, we will show the results of the full-structure

calculation in order to get more realistic results to propose a producible sample.

5.2. DESIGN OF A SOLID-CORE VORTEX FIBER WITH ANISOTROPY-

ENGINEERED METAMATERIAL CLADDING

In this subsection, we describe the performance of a solid-core vortex fiber with anisotropy-

engineered metamaterial cladding through numerical analysis in Comsol 5.1 R©. Several

simulations were implemented varying the size of the hole into the cladding order to

reach a cladding configuration to split even more the vector modes of the group of the

first order LP11. Figure 5.6 shows an image of one of those possible configurations,

now replacing the conventional cladding in silica by a cladding in a metamaterial that

consists of multilayered arrays of air holes into the silica. This configuration in multi-

layer with small holes parallel to the concentric rings was chosen in order to avoid likely

birrefringence for high order modes, which were observed for other of configurations,

like hexagonal microstructure or and in some cases with larger holes. Following the
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suggestion in [16], we find out that 8 alternated layers are enough to obtain our desired

solution. The core of this fiber have a size rco + D1 + D2, and its index profile follows

the distribution presented in [3, 11] or Figure 4.2.

Figure 5.6: Comsol 5.1 R© image of the transverse section of a solid-vortex fiber with

anisotropy-engineered claddng

Table 5.1 shows the geometric parameters of the chosen configuration. The full-structure

was discretized by triangular elements of a size smaller than the wavelength, and a per-

fect match layer (PML) of 1 µm was used to truncate the computational domain after

52.5 µm.

Table 5.1: Geometric parameters of the full structure shown in Figure 5.1

Parameters Name Value

rcl Cladding radii 15.75 µm

rco Core radii 1.6 µm

D1 Trench width 1.2 µm

D2 Ring width 1.2 µm

N Number of layers 8

d Air-hole diameter 0.31 µm

L Distance between successive holes 0.34 µm

Dl Distance between successive layers 0.68 µm
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We compute the effective index as a function of light wavelength, and the modal field dis-

tribution of the propagated vector and OAM modes. Similarly to the conventional solid

vortex fiber, our proposed fiber also propagates the two polarizations of the fundamen-

tal mode HE11 (denoted LP01 in the scalar approximation), and the modes HEeven,odd
21 ,

TM01, TE01 belonging to the first mode group LP11.

Based on the geometric parameters of the full-structure, we can apply the homogeniza-

tion approach given by equations (5.2) and (5.3) as is shown in Table 5.2. Note that

the air-hole diameter is only one order of magnitude less than the wavelength, in order

to relax the fabrication process.

Table 5.2: Equivalent parameters obtained from homogenization approach of the full-

structure applied for our proposed solid-vortex fiber with metamaterial cladding

Parameters Value

nx,y or n(r) 1.232

nz 1.309

ρ 0.3

We expect that the anisotropy-engineered index profile for the cladding inhibits, even

more, the near-degeneracy between the modes of the first group (OAM±1 group). This

is because εx,y (proportional to the transverse component of the index n(r), or nx,y)

are lower than εsilica, promoting a change in the modal behavior of the structure by

maximizing the index contrast between the cladding and ring, which is a requirement

according to the theory described in the section 4.1. In this case, a modal change

is manifested by increasing the index separation between the modes within the same

group. In addition, we also expect a small reduction of the z-component of electric

or magnetic fields of the hybrid modes HEl+1,m and EHl−1,m due to the confinement

promoted by the anisotropy of the metamaterial, bringing as consequence a reduction

in the bending loss of the modes propagated into the ring of the vortex fiber (see [86]).

5.2.1. Lifting of the OAM±1 degeneracy, and reduction of the HE11 bending loss

In order to check the hypothesis mentioned above, we compared the results already

obtained for the conventional solid vortex fiber with respect to our proposal. We find
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out a separation of 1× 10−2 (at 1550 nm) with respect to the fundamental HE11 mode

for our proposal, which is almost one order of magnitude higher with the value of

3 × 10−3 obtained for a conventional vortex fiber (see again Figure 4.3a), that is now

inserted in Figure 5.7. Also, a separation of 8.5 × 10−4 between nearest neighbor first

order modes is higher than the reported for the conventional solid vortex fiber, which

means a lifting in the degeneracy of the OAM±1 group (see again Figure 4.3b), that is

now inserted in Figure 5.8.

Figure 5.7: Numerically computed effective index as a function of light wavelength for

the modes propagated in the solid-vortex fiber with the cladding of metamaterial (our

proposal). Figure inset shows the results for the conventional solid-vortex fiber

dk110OD105. This figure was made with the help of [12]

Regarding the intensity and phase distribution profiles of the OAM0 and OAM±1, this

is very similar to the profiles shown in Figure 4.4 and 4.5 for the conventional solid

vortex fiber. We also stress that an increase in the effective index difference means a

better performance of the fiber due to a likely reduction of mode coupling for longer

lengths as was explained in subsection 3.2. Mode coupling strength will be quantified

by means of the spectra (see subsection 5.2.2).
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Figure 5.8: Numerically computed effective index difference as a function of light

wavelength for the modes propagated in the solid-vortex fiber with the cladding of

metamaterial (our proposal). Figure inset shows the results for the conventional

solid-vortex fiber dk110OD105. This figure was made with the help of [12]

Besides, we observe a higher modal confinement, which is the relation between the

power into the core divided by the total power into the fiber (Pcore/Ptotal), also know as

the confinement factor (CF)) for the HE11 y-polarized mode in the solid vortex fiber of

metamaterial cladding, and negligible bending loss (approximately 0 dB/90o) at lower

bending radius as is shown in Table 5.3.

Note that in the conventional solid vortex fiber the HE11 y-polarized is not propagated

for bending radius (BR) less than 1 cm (see Table 5.4). This phenomenon is quite

similar to what happens in the strip and channel optical waveguides in SOI platform,

in which the quasi-TE mode (approximately x-polarized) is less sensitive to bending

loss than the quasi-TM mode (approximately y-polarized).

The authors have proposed a novel configuration that uses uniaxial metamaterials to

confine and reduce the bending loss of the quasi-TM mode in the strip and channel

optical waveguides [86]. In our case, the proposed metamaterial cladding (also uniaxial
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Table 5.3: CF for HE11 y-polarized mode as a function of the bending radius (BR) for

the solid vortex fibers. The second column shows the CF for the HE11 y-polarized in

the solid vortex fiber with a cladding of metamaterial of anisotropy-engineered (our pro-

posal), and the third column shows the CF for the HE11 y-polarized in the conventional

solid vortex fiber.

BR CF HE11 y-pol (our proposal) CF HE11 y-pol (conventional)

0.1 cm 99.32% It’s not propagated

0.5 cm 99.70% It’s not propagated

1 cm 99.71% 61.57%

5 cm 99.71% 62.87%

type) yields a similar effect by confining the HE1,1 y-polarized mode (analogous to

quasi-TM mode y-polarized) in this vortex fiber.

As was shown for the conventional solid-core vortex fiber, we also obtain the radial

electric field E(r) for the HE21 mode, for the solid-core vortex fiber with metamaterial

(our proposal), (see Figure 5.9b). We compare both, finding out that there are a high

mode intensities close to the waveguide transition regions (boundaries), maximizing
∂E(r)
∂r

, as well as, maximizing E(r) over the high index ring. These conditions are

satisfied in our proposal too, which are necessary produce a split between the vector

modes of the first group LP11 as was described in section 4.1.

5.2.2. OAM Spectra

We compare the mode coupling strength of this fiber with the anisotropy-engineered

cladding with respect to the values obtained for the conventional OAM solid vortex

fiber through the OAM spectra. We consider a bend radius of 2 and 5 cm to obtain the

perturbed electric fields.

As was shown for the conventional fibers of solid and air-core, we compute equation

(3.24) for two unperturbed fields combining possible several cases, and notice that in

most of the cases it yields a value of -120 dB, indicating a perfect orthogonality between

the modes, or equivalently a mode of high purity.
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Table 5.4: Evolution of the HE11 y-polarized mode (modulus of Poynting vector) as

a function of the bending radius (BR). The second column shows the evolution of the

HE11 y-polarized in the solid vortex fiber with a cladding of metamaterial of anisotropy-

engineered (our proposal), and the third column shows the evolution of the HE11 y-

polarized in the conventional solid vortex fiber.

BR HE11 y-pol (our proposal) HE11 y-pol (conventional)

0.1 cm It’s not propagated

0.5 cm It’s not propagated

1 cm

5 cm

Table 5.5 shows the values in dB units indicating the coupling strength between per-

turbed OAM1, HE11x and HE11y modes, and unperturbed TE01, TM01 and OAM−1

modes, where perturbed modes corresponds to the first columns, and unperturbed
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(a)

(b)

Figure 5.9: Radial electric field (EF) and its radial derived (DEF) in the ring area for

(a) conventional solid core vortex fiber and (b) solid-core vortex fiber with the

cladding of metamaterial (our proposal)

modes corresponds to the first rows. We observe high coupling strengths of values

around 0 dB between the modes with the same orbital charge `, which means that

the propagation is not affected by the bend. Otherwise, a lower coupling strength for

the OAM modes of opposite orbital charge (`=1 and `=-1 highlighted by green) in the

conventional solid-core vortex fiber is observed. In this case, there is a reduction of 15
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dB in the coupling strength compared with the conventional vortex fiber bent with 2

cm.

Values highlighted by the colors indicate the coupling strength of the OAM1 mode with

the modes corresponding to the first group TE0,1, and TM0,1, and with the anti-aligned

mode OAM−1. A lower coupling strength for all modes is showed in the case of solid-

vortex fiber with the metamaterial cladding, in special between the OAM modes with

opposite orbital charge (`=1 and `=-1), or the pair aligned (OAM1) and anti-aligned

(OAM1) (see the explanation in section 3.2.2 pag. 56.)

5.2.3. Lifting of the OAM±1 and OAM±2 degeneracies in vortex solid-core fiber with

metamaterial cladding with larger ring

Let us compare the modal behavior in both conventional solid already described in

the subsection 4.2.2. (fiber named as dk110OD160), and vortex fibers with anisotropy-

engineered cladding (our proposal), and with a larger ring, in which highest order modes

are now guided (see Figure 4.7a).

Regarding the vortex fiber with the metamaterial cladding, nx,y is lower than the silica

(SiO2) refractive index, therefore there is an increase in the transverse index contrast

(∆n(r) = nring − nx,y) that produces an increase in the number of propagated modes,

some of them quite unstable (∆neff < 10−4) as shown in Figure 5.11b. The last four

modes (TM0,2, HE2,2, TE0,2, EH2,1) possess a second radial order m = 2 and, in

addition, the HE2,2, and EH2,1 modes are still almost degenerated, therefore they can

not be used in the vortex fiber (see subsection 4.3.2).

Figure 4.7b shows that OAM modes with ` > 1 also remain almost degenerate in the

conventional solid vortex fiber, and therefore they are not considered in the OAM basis.

However, we observe that OAM2 is not longer almost degenerated, reaching a ∆neff

of approximately 3.5×10−4 at 1550 nm, caused by the presence of the metamaterial

cladding (see Figure 5.11a). This fact leads us to conclude about of using metama-

terials as cladding in this kind of fibers. We have demonstrated that OAM modes

lift the degeneracy in vortex fibers with rings of larger width by using a cladding of

metamaterial.

97



Table 5.5: OAM Spectra of the all-solid vortex fiber dk100OD105 for OAM1, HE11x ,

HE11y modes. The fiber was bent radii of (a) 5 cm and (b) 2 cm. OAM Spectra

of the all-solid vortex fiber with anisotropy-engineered cladding (AEC) (our proposal)

for OAM1, HE1,1x , HE1,1y modes. The fibers are bent with (c) 5 cm and (d) 2 cm.

Perturbed modes are indicated in the first column

(a)Vortex fiber bent with 5 cm

TE01 TM01 OAM−1 OAM1

OAM−1 -45 -39 -0.005 -58

OAM1 -47 -39 -58 -0.005

HE11y -30 -103 -33 -33

HE11x -111 -73 -78 -78

(b)Vortex fiber bent with 2 cm

TE0,1 TM0,1 OAM−1 OAM1

OAM−1 -29 -23 -0.05 -48

OAM1 -31 -24 -48 -0.05

HE1,1y -22 -96 -25 -25

HE1,1x -120 -65 -70 -70

(c)Vortex fiber with AEC bent with 5 cm

TE0,1 TM0,1 OAM−1 OAM1

OAM−1 -53 -55 -0.002 -64

OAM1 -53 -56 -64 -0.002

HE1,1y -37 -129 -41 -41

HE1,1x -111 -72 -77 -77

(d)Vortex fiber with AEC bent with 2 cm

TE0,1 TM0,1 OAM−1 OAM1

OAM−1 -53 -55 -0.002 -63

OAM1 -53 -55 -63 -0.002

HE1,1y -37 -129 -41 -41

HE1,1x -111 -73 -77 -77
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(a)Solid vortex fiber of metamaterial cladding. SiO2 is the green-line

(b)Conventional solid vortex fiber. Cladding is SiO2 (yellow-line)

Figure 5.10: Effective index as a function of light wavelength for guided modes in (a)

the solid vortex fibers with the metamaterial cladding. (b) conventional solid vortex

fiber dk110OD160. This figure was made with the help of [12]
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(a)Solid vortex fiber of metamaterial cladding

(b)Conventional solid vortex fiber

Figure 5.11: Effective index difference as a function of light wavelength for guided

modes in (a) the solid vortex fibers with the metamaterial cladding, (b) conventional

solid vortex fiber dk110OD160. This figure was made with the help of [12]

100



5.2.4. Comparison between conventional and metamaterial-based vortex solid-core fiber

Based on the results of the conventional solid, and our proposal, a design of cladding

in anisotropic metamaterials with two possible refractive indexes in transverse and

longitudinal direction can be considered as a new degree of freedom to design vortex

fibers. We believe that the reduction of the coupling strength is a consequence of both

the increase in the effective index among the vector modes within the group, as well

as the anisotropy of the metamaterial that increases the effective index in longitudinal

direction improves the mode confinement [86] preserving its modal profile when OAM

modes are propagated in the bends. By using this design, it is possible to preserve the

width and the refractive index contrast between the ring and cladding, in order to avoid

both higher loss caused by the addition of dopants in the cladding or ring structure,

and the generation of spin-orbit coupled modes, in special for OAM modes of low order.

The mains advantage of this design can be thus summarized:

− The HE11 y-polarized mode can be propagated with bending radii less than 1 cm in

our proposed OAM fiber with cladding of anisotropy-engineered metamaterial, which

means a better robustness to fiber bends.

− A reduction in the coupling strength of 22 dB, and 31 dB between the TE0,1 and

the OAM±1 modes, and TM0,1 and the OAM±1 modes, respectively, are achieved in

our proposal which likely means a better performance of these fibers to transmit un-

coupled channels over long lengths. The reduction in the mode coupling strengths is a

consequence of lifting the degeneracy amongst the modes of the OAM±1 group.

− Our proposal of a metamaterial cladding with engineered anisotropy could be used

as an alternative lifting the degeneracy of highest order modes propagated in rings of

larger width.

5.3. DESIGN OF AN AIR-CORE VORTEX FIBER WITH ANISOTROPY-

ENGINEERED METAMATERIAL CLADDING

In this subsection, we describe the performance of an air-core vortex fiber with anisotropy-

engineered metamaterial cladding through numerical analysis. Several simulations were
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performed in Comsol 5.1 R© varying the hole size into the cladding in order to reach a

cladding configuration to split even more the vector modes of the last mode groups. The

Figure 5.6 shows one of those possible configurations, now replacing the conventional

cladding in silica with a metamaterial.

Figure 5.12: Comsol 5.1 R© image of the transverse section of an air-core vortex fiber

with anisotropy-engineered cladding

Table 5.5 shows the geometric parameters of the chosen configuration. The full-structure

was discretized by triangular elements of sizes smaller than the wavelength, and a per-

fect match layer (PML) of 1 µm was used to truncate the computational domain after

42.5 µm. We compute through the effective index as a function of light wavelength, and

the modal field distribution of the propagated vector and OAM modes. Similarly to

the conventional air-vortex fiber, our proposal inhibits, even more, the near-degeneracy

between the modes of the last groups of propagated modes.

Based on the geometric parameters of the full-structure, we can apply the homoge-

nization approached given by equations (5.2) and (5.3) (see Table 5.6). Note that the

air-hole diameter is only almost two orders of magnitude smaller than the light wave-

length, satisfying in this way the homogenization criterion. However, we simulate the
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Table 5.6: Geometric parameters of the full-structure (our proposal) shown in Figure

(5.12)

Parameters Name Value

t Ring thickness 6.5 µm

rc Air-core radius 3 µm

l Air hole diameter 0.31 µm

l Distance between successive holes 0.34 µm

Dl Distance between layers 0.34 µm

N Number of layers 8

full-structure to get more realistic results.

Table 5.7: Equivalent parameters obtained from homogenization approach of the full-

structure applied for the anisotropy-engineered cladding of the air-core vortex fiber (our

proposal).

Parameters Value

nx,y or n(r) 1.086

nz 1.148

ρ 0.65

5.3.1. The increase the modal volume, and lifting in the degeneracy of the highest

OAM modes

Let us compare the modal behavior of both conventional air-core (already described in

the subsection 4.2.3), and air-core vortex fibers with anisotropy-engineered cladding.

We show that higher order modes are also guided as is shown in Figure 5.13.

We show a comparison between the modal content in the air-core fiber in Figure 5.13a

and the fiber with metamaterial cladding (our proposal). Figure 5.13b shows the effec-

tive index for the propagated modes at a telecom wavelength 1550 nm. We find up to

32 propagates mode for the conventional air-core vortex fiber, and up to 36 propagated

modes for our proposed vortex fiber of metamaterial cladding.

103



(a)Conventional air-core vortex fiber

(b)Air core vortex fiber of metamaterial cladding

Figure 5.13: Modal content of the air-core vortex fibers (a) Conventional air-core

vortex fiber (b) Air-core vortex fiber of metamaterial cladding with

anisotropy-enginerred (our proposal). This figure was made with the help of [12]

In the vortex fiber of metamaterial cladding, we find one additional mode HE10,1 that

could be used to propagate an additional OAM mode in a broad range of wavelengths

from 1450 nm to 1570 nm (see Figure 5.14b), as long as the criterion of low-mode

coupling is satisfied. We find up to 9 HE`+1,m modes including HE11 mode, and 8

EH`−1,m modes that can produce up to 16 aligned and anti-aligned OAM modes in

a window wavelengths as shown in Figure (5.14)c. However, for our proposal, the
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(a)Conventional air-core vortex fiber (b)Air-core vortex fiber of AEC

(c)Conventional air-core vortex fiber (d)Air-core vortex fiber of AEC

Figure 5.14: Effective index as a function of light wavelength: (a) Modes HE`+1,1,

TE0,1/TM0,1 in the conventional air-core vortex fiber. (b) modes HE`+1,1,

TE01/TM01 in the air-core vortex fiber of engineered-anisotropy cladding (AEC). (our

proposal). Effective index difference as a function of light wavelength: (c)

conventional air-core vortex fiber. (d) air-core vortex fiber of engineered-anisotropy

cladding (AEC). This figure was made with the help of [12]

additional HE10,1 can generate the OAM9 mode, which can also be propagated in this

fiber because it satisfies the criterion of low-mode coupling (∆neff > 10−4) as is shown

in Figure 5.14d.

According to the phenomenological reasons described in section 3.2, the OAM modes
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with ` = ±6,±7,±8 are stable in conventional air-core fiber. Note that now for our

proposal the ±9 mode is also stable, since ∆neff are large enough as is shown in Figure

5.15 and Table 5.7. There is also increase in the ∆neff amongst mode groups for our

proposal as is shown by the red circles of the Figure 5.15. Below ` = 6, for which

OAM states are also supported, the neff splitting is too small and LP-like behavior is

obtained.

Figure 5.15: Effective index difference Vs. ` at a telecom wavelength 1550 nm for the

air-core vortex fiber of metamaterial cladding (our proposal).

We also compute the modal dispersions obtained by a numerical implementation of the

second derivative: ∂2β/∂ω2, in Matlab R©. Figure 5.17a shows the modal dispersion

for an OAM+6 (` = 6), which is, in order of magnitude, similar to the conventional

air-core vortex fiber (maximum value of around +60 ps/nm·km as is shown in Figure

4.12) and the standard SMF in the same wavelengths (+18 ps/nm·km). Thus, this

fiber can operate in optical communication systems similar to the conventional air-core

vortex fiber.

Additionally, we show that “accidental degeneracies” can occur between modes with

radial order m = 1 and m = 2 (see Figure 5.17b) for the simulated air-core vortex fiber

with anisotropy-engineered cladding. The operation in regions in which the modes with

m = 2 are closely spaced in neff to desired OAM modes with m = 1 should be avoided.
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Figure 5.16: Modal dispersion for the ` = 6, and 7 across C-band for the air-core fiber

of metamaterial cladding (our proposal).

Figure 5.17: Accidental degeneracy between the (l,m)=(10,1) and (3,2) modes near to

1510 nm in the air-core vortex fiber with metamaterial approach (our proposal)
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5.3.2. OAM Spectra

We compare the mode coupling strength of this fiber with the anisotropy-engineered

cladding with respect to the values obtained for the conventional OAM air-core vortex

fiber through the OAM spectra.

We also consider radii of 1 and 5 cm to obtain the perturbed electric fields. As was

shown for the conventional vortex fibers of solid and air-core, we also compute equation

(3.24) for two unperturbed fields combining possible cases. Notice that in the most of

the cases it yields a value of around -120 dB, indicating a perfect orthogonality among

the modes, or equivalently a mode of high purity.

Table 5.7 shows the values in dB units indicating the coupling strength between aligned

(+`) and anti-aligned (−`) modes, where the first columns are corresponding to per-

turbed fields, and the first rows are corresponding to unperturbed fields. We observe

that mode coupling is more intense for the conventional vortex fiber at a bending radius

of 1 cm.

We stress that: (a) there are lowest coupling strengths in our proposed fiber (values are

highlighted by the colors) than in the conventional vortex fiber. They are less intense

reaching lowest values of up to -107 dB at a bend radius of 1cm, between anti-aligned

(W+
l,m) and aligned (W+

l,m) OAM modes, which indicates high orthogonality. (b): In

addition, we observe higher coupling strengths (values in gray) between OAM modes

with the same orbital charge +` or −`, showing that the propagation of the OAM

modes is less affected by the bends in our proposed fiber.

5.3.3. Are the hybrid modes (HEl+1,m and EHl−1,m) more stable than OAM modes?

Regarding the stability of OAM modes and the reason why these are preferably used in

vortex fiber than the vector modes, we compare the mode coupling strength between

OAM and vector modes through the OAM spectra. We consider a small bend radius of

1 cm to obtain the perturbed electric fields. Let us consider the mode OAM7 formed

by the HEeven
81 and HEodd

81 modes, and the mode OAM−7 formed by the EHeven
61 and

EHodd
61 modes. This way, there are 8 possible accounts of equation (3.24). First, the
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Table 5.8: Spectra of the air-core vortex fiber between an aligned and anti-aligned OAM

modes. Conventional air-core vortex fiber was bent a radii of (a) 5 cm and (b)1 cm,

and the air-core vortex fiber with anisotropic-engineered cladding (AEC) was bent radii

of (a) 5 cm and (b)1 cm

(a)Vortex fiber bent 5 cm

`6 `7 `−6 `−7

`−6 -76 -83 -0.012 -32

`−7 -73 -91 -32 -0.010

`6 -0.012 -32 -78 -74

`7 -32 -0.010 -82 -93

(b)Vortex fiber bent 1 cm

`6 `7 `−6 `−7

`−6 -83 -71 -0.29 -19

`−7 -60 -67 -19 -0.26

`6 -0.32 -19 -83 -59

`7 -19 -0.26 -67 -78

(c)Vortex fiber with AEC bent 5 cm

`6 `7 `−6 `−7

`−6 -94 -90 -0.07 -34

`−7 -60 -100 -34 -0.08

`6 -0.019 -34 -67 -81

`7 -34 -0.007 -76 -70

(d)Vortex fiber with AEC bent 1 cm

`6 `7 `−6 `−7

`−6 -76 -75 -0.25 -21

`−7 -46 -107 -21 0.23

`6 0.23 -21 -48 -68

`7 -21 0.18 -62 -79

overlap integral given by equation (3.24), considering the pair of unperturbed OAM

modes with ` = ±7, gives a coupling strength value of -116 dB, indicating that the
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modes are highly orthogonal or remain highly pure.

In our example, the spectra was computed for both: between OAM7 and OAM−7

states (see Table 5.8), and between their almost non-degenerates pair: HEeven,odd
`+1,1 and

EHeven,odd
`−1,1 , with kz,HEeven,odd`+1,1

6= kz,EHeven,odd
`−1,1

(see Table 5.8)

Table 5.9: Spectra between an aligned and anti-aligned OAM+7 and OAM−7 modes.

The fiber was bent 1cm to produce

`7 `−7

`−7 -79 -0.26

`7 0.26 -67

Table 5.10: Spectra between an aligned and anti-aligned OAM+7 and OAM−7 modes.

The fiber was bent 1 cm

HEeven
8,1 HEodd

8,1 EHeven
6,1 EHodd

6,1

HEeven
8,1 -0.3 -22 -28 -30

HEodd
8,1 -22 -0.3 -30 -28

EHeven
6,1 -43 -48 -0.3 -17

EHodd
6,1 -48 -42 -17 -0.3

Considering that modes in the columns are unperturbed modes, we observe that the

mode coupling is more intense between hybrid modes than OAM modes. A reduction of

approximately 30 dB was found between the aligned and anti-aligned OAMs modes with

the same state ±`, with respect to the computed value between their non-degenerated

pairs (see highlighted values by the colors). We can conclude that OAM modes are

more stable to external perturbations like fiber bending than the vector modes, which

is an additional reason why the OAM modes are preferred instead vector or LP modes.

5.3.4. Comparison between conventional and metamaterial-based vortex air-core fiber

The mains advantage of this design can be summarized thus:
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− An increase of up to an additional OAM mode is achieved in our proposal of air-core

vortex fiber with metamaterial cladding. In this design, the HE10,1 is now propagated

in a broad wavelength range from 1450 to 1530 nm. This optical mode is not propagated

in conventional air-core vortex fiber with the same ring size.

− An increase in the effective index difference is observed in our design with respect to

the conventional one, which means a lifting in the degeneracy of hybrid modes with the

same radial order (m), which leads to a reduction in the mode coupling strength as was

shown in the OAM spectra (see Table 5.7) that would allow the use of OAM modes as

independent uncoupled channels over quite long lengths.

− Non-degenerate modes HEl+1,m and EHl−1,m are more strongly coupled by external

perturbations than OAM modes. A significative reduction of approximately 30 dB was

computed in air-core fibers, which leads us to conclude that OAM modes have more

stable propagation in vortex fiber than conventional hybrid modes.

111



CONCLUSIONES

In this doctoral work, we have numerically modeled a new design of vortex fiber with

a cladding made of dielectric metamaterial that could potentially increase the capacity

and the length of future optical communication links. Our design of an anisotropic

cladding with two possible refractive indexes in transverse (x, y) and longitudinal (z)

directions can be considered as a new degree of freedom to improve the performance of

the vortex fiber. Based on our results, we conclude that a reduction in the transverse

indexes (nx, ny) enabled by the configuration of the metamaterial cladding leads to an

increase the modal content. Moreover, an increase in the longitudinal index (nz) leads

to a higher modal confinement (see our contribution in [86] attached here from pg. 129-

132), preserving the modal profile of OAM modes after the propagation in the bending,

resulting in a lower coupling strength under this perturbation. This phenomenon had

not been reported to achieve better performance in vortex fibers, and it is part of the

claims of a patent still pending by the authors (see [94] attached here from pag. 133-

171). This is our main contribution to the state of the art, so we have proposed by the

first time the use of metamaterials with intuitive designs (arrangements of multilayers

and nanorods) to modify the modal behavior in photonic structures (planar and circular

waveguides) under perturbations like the bends.

In this dissertation, we first theoretically studied the modes of a multimode fiber with

a step index profile using a weakly guiding approximation. We prove that a linear

combination of hybrid vector modes HEeven
`+1,m, HEodd

`+1,m and EHeven
`−1,m, EHodd

`−1,m with

π/2 a nonuniform way. For this new design, we drew inspiration from the proposal

of metamaterial cladding introduced by Jahani in 2015 [16] that modify the modal

behavior of photonic structures. We numerically studied the mode properties in the

vortex fiber with silica cladding introduced by the first time for Ramachandran and its

group [8], and then in vortex fiber with a cladding made of a metamaterial with air holes

into the silica. We show that by replacing the silica cladding with the metamaterial

there is an increase in separation of the effective index in the almost degenerated vector

112



modes of the mode groups, as well as an increase in the number of propagated modes.

The improvement of our design can be explained and summarized:

− Reduction of the coupling strength: We believe that the reduction of the coupling

strength between OAM modes is a consequence of both the increase in the effective

index among the vector modes within the group as well as due to the anisotropy of

the metamaterial that promotes an increase in the confinement of the OAM modes

propagated into the bends. This effect is not possible just through the increase of the

index contrast [86, 94].

− Stability of the OAM modes to external perturbations: We have investigated the bend

sensitivity effects, and demonstrated that the OAM modes exhibit a more reduced

coupling strength under external perturbation like bending than the vector modes (see

subsection 5.24). This fact results in three very important remarks:

a) Vortex fibers are one of the most promising candidates for a stable propagation of

modes in long fiber lengths.

b) Vortex fibers would be interesting to be implemented in possible applications of OAM-

MDM on a short range (less than 100 m) where low bending loss sensitivity and coupling

is mandatory. The potential applications could be data centers, where fiber optics cable

are becoming dominant due to higher bandwidth, and smaller lightweight compared

with twisted pair copper cables [95].

c) Regarding to the claims defended by Zhao and his group in [96] in which they affirm

that “OAM is not a new degree of freedom”, because OAM are a subset of the LG

modes in free-space, or a subset of vector modes HE/EH in fiber, which is equivalent

to having a linear combination among them, we agree with them. In addition, they also

state that “Any advantage that may exist for OAM modes can also be exploited using

these other sets of modes”, which in principle is true in the sense that having N vector

modes is equal than having N linearly polarized (LP) or OAM modes. However, they

also affirm that OAM modes in fiber haven’t any advantage because “When choosing

a basis set for communications, one should consider first whether the set is complete,

and second how convenient the set is for implementation in the application at hand,

regardless of whether the basis set includes OAM modes”. In this affirmation, they do

not take into account the convenience of using OAM modes in fibers instead of vector

or LP modes. We show that the OAM modes exhibit uniform polarizations (linear or

circular) allowing easier generation and external excitation when compared to vector
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modes, and the external perturbations like bending easily destroy the orthogonality of

the vector and LP basis set, but not of the OAM basis set. Although in a guided medium

as optical fiber the OAM could not be considered as a new degree of freedom, the OAM

basis is the most convenient set to send independent channels in fiber communication

system multiplexed by modes.

− Preservation of the ring width: In our proposal, we have demonstrated that it is

possible to preserve the ring width and the refractive index contrast, in order to avoid

either higher loss caused by addition of dopants in the cladding/ring structure, or the

generation of spin-orbit coupled modes, in special for OAM modes of low order.

− MIMO-DSP vs OAM modes with low crosstalk: In our proposed vortex fiber there is

an increase in the number of supported modes with a reduced coupling strength (see

OAM Spectra), which means lower cross-talk among mode groups avoiding MIMO-DSP

processing. This is in agreement with the goal of having all-photonic communication

networks enabling low power consumption. In communication networks that require

MIMO-DSP the complexity and power consumption increase in a nonlinear manner

with the number of modes [97,98], and also there is an increase of the nonlinear effects

due to cross-phase modulation coming from a very low differential group delay required

by MIMO [1].

Thesis content and Main contributions

The main contributions of this doctoral work are summarized:

− The reduction of bending loss for the TM mode in planar waveguides (see our published

work in [86].

− The increase in the confinement and reduction of bending loss for the HE1,1 y-polarized

mode in the proposed solid-vortex fiber (see our patent pending in [94], and pag. 92 in

chapter 5).

− The reduction of the coupling strengths, and the increase in the number of modes in

our proposed vortex fibers (see our patent pending in [94], and pag. 96, 99, 103, 104

and 107 in chapter 5).

− The design of vortex polymer optical fibers with low coupling strengths between OAM

modes under perturbations like bends. This new design is a proposal to increase the
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capacity of optical communications systems of short range (see the manuscript to be

submitted to the list of publications).

− The performing of our own code to numerically compute the OAM spectra, taking into

account the high-index contrast cases by means of the introduction of the z-components

of the electric and magnetic fields. This code allows obtaining the coupling strengths

between any pair of modes. To the best of our knowledge, we have numerically shown

by the first time the robustness of the OAM modes with respect to the hybrid modes

(see pag. 108). These results show the advantages of this technology in multiplexing of

signals in MDM systems, and the implications of the increase of the capacity of these

multiplexing systems using OAM instead others modal basis like based on LP-modes,

or vector modes.

− The performing of our own code to numerically compute the total dispersion in fibers

and waveguides by means of numerical derivates. This code was implemented and

validated for bent waveguides (see our published work in [99]).

Future works

− Fabrication and experimental tests: As a nearest future work, we propose the fabrica-

tion of our vortex fiber in order to experimentally demonstrate the performance of our

design using the techniques described in the appendix: “Modal Content Measurement”.

− Optimization tools to design vortex fibers with other class of metamaterials: We have

presented the metamaterials as a new degree of freedom to design vortex fiber. As a

future work, we propose the construction of an optimizing tool that allows the intro-

duction of other materials (e.g. nanorods or layer of Silicon and Germanium as in [16])

in the metamaterial design (that may be non-intuitive) to obtain vortex fiber designs

targeted to other functions, such as modified reduced slope dispersion, with a specific

crosstalk value, or other specific designs.

− Reduce slope dispersion: Total dispersion (material+waveguide) should be lower across

the C-band, however, we have found that in our proposal this values is relatively large.

A modified version of vortex fiber will try to reduce the dispersion to allow better

performance for WDM-OAM systems. The authors have had experience in engineered-

dispersion for bent planar waveguides made of glass (see pag. 172-187 [99]). Thus, this

concept could extend to design our vortex fibers.
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− Fibers in plastic and polymer: As mentioned above, the vortex fibers are potential

candidates to be implemented in optical communication systems of short range (less

than 100 m). The authors have been working in this kind of vortex fibers by using

polymers in an air-core design, and expect to publish the results as soon as possible

(see in the appendix the publications). Fibers for short range applications are fabricated

in plastic and polymers [95]. We propose the extension of this concept to design fibers

in plastic or polymer, which can be easily fabricated with microstructured cladding, to

operate in other wavelengths

− Integrated optic: As a still open problem we propose the design of integrated optical

devices to coupled this vortex fibers to a chip. Currently, OAM mode excitation is

made using spatial light modulators (SLM), which hinders its scalability.

Thus far, from our point of view, the design of fibers to support many modes with low

crosstalk is perhaps one of the most critical barriers to unlock the all-photonic systems

multiplexed by modes, and our proposal stands as an alternative to advance in this

pathway. Every solution described in this thesis (MCF, Vortex Fibers, MIMO-DSP in

MMF, OAM-MDM) has its pros and cons, nevertheless none of them can be considered

as a definitive solution beyond conventional multiplexing techniques to overcome the

capacity crunch predicted by the scientific community.
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Novel Bending Loss Reduction Technique for
the TM Mode in SOI-Based Waveguides

Claudia M. Serpa-Imbett, Student Member, IEEE, and Hugo E. Hernandez-Figueroa, Senior Member, IEEE

Abstract— A new approach to reduce the bending loss of
the fundamental quasi-transverse magnetic mode in optical
waveguides is presented. A much lower bending loss is achieved
by designing waveguides that use as substrate or cladding an
anisotropic metamaterial made of multilayers of thin films of
germanium and porous silica instead of a conventional silica
substrate or cladding. We numerically demonstrate a reduction
in the bending loss of up to ∼3 dB/90° for a silicon-on-
insulator (SOI) waveguide of the standard core size
(500×220 nm), as well as, up to ∼10 dB/90° for a sub-wavelength
SOI waveguide of core size (372 × 186 nm), even considering the
high absorption of the germanium layers in the cladding, both
designed to operate at 1550 nm.

Index Terms— Anisotropic media, integrated optics, silicon on
insulator (SOI), optical bent waveguides, metamaterial.

I. INTRODUCTION

M INIATURIZATION and dense photonic integration of
optical devices on small chips using elements, such

as, ring resonators, and complex waveguide interconnections,
can be enabled by using small bends [1], however, it is
mandatory that bending losses must be drastically reduced.
These losses depend on polarization in planar waveguides
with high index contrast, such as the ones fabricated using
Silicon-on-Insulator (SOI) platforms. In SOI bent waveguides,
operating at 1550 nm, the fundamental quasi-Transverse
Electric (TE) mode is more confined and exhibits lower losses
than the fundamental quasi-Transverse Magnetic (TM) mode.
This behavior is not compensated just increasing the index
contrast in the waveguide, and becomes much more evident
for small bend radii, in the order of few micrometers, when
the latter leaks much more power into the substrate/cladding
than the former [2], [3]. This prevents the realization of dual-
polarized highly integrated photonics circuits.
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Several schemes have been proposed to confine the
fundamental quasi-TM mode in 90 deg bent waveguides,
e.g., in [4], multilayer in air trenches and silicon-strip mirrors
were adopted for bent waveguides with low index contrast; and
in [5], almost lossless bends were designed using waveguide
with anisotropic epsilon near-zero metamaterials; therefore it
is evident that non-conventional strategies – i. e., other than
just increasing the index contrast – are required to be explored.

In this letter, we extend the new strategy for light
confinement introduced by S. Jahani and Z. Jacob in
[6], to reduce the bending loss in optical waveguides.
This consists of controlling the momentum of evanes-
cent waves in waveguides using as cladding an anisotropic
metamaterial (AMM). They recently showed that if a dielectric
1D-cross-section waveguide is embedded into a transparent
anisotropic metamaterial cladding, the fundamental TM mode
can be tightly confined inside the core irrespective of core size;
similarly, in 2D-cross-section waveguides, the HE11 mode in
an optical fiber can also be confined using that kind of cladding
[6], [7]. Here, we will demonstrate that such AMM can also
reduce the bending loss of the fundamental quasi-TM mode
of SOI waveguides.

II. BENDING LOSS AND CONFINEMENT

FACTOR IN BENT WAVEGUIDES

We used the recently proposed transformation optics (TO)
technique [8], [9] to compute the waveguide bending loss and
modal confinement of light propagating through a 90 deg bend
shown in Fig. 1. TO considers that the light propagation along
a bent waveguide is equivalent to the light propagation along
a straight waveguide, through a coordinate transformation that
leads to rewrite the permittivity and permeability as tensors in
the new coordinate system. So, one can solve the eigenmodes
supported by the straight waveguide in the new coordinate
system by taking into account the anisotropic material para-
meters, and to use the effective index of the eigenmodes to
calculate the bending loss, BL for a 360° turn with a length
of 2π R, of each mode given by the equation:

B L = 1 − exp(−n2k02π R) (1)

where, n2 is the imaginary part of the computed mode effective
index, k0 is the light propagation constant in vacuum, and R is
the bend radius.

We are also interested in the mode distribution of the bent
waveguides to see how much the quasi-TE and quasi-TM
modes are leaking to the surrounding medium. This leaky
behavior is quantified through the confinement factor, CF,
which is the net power of the mode in the core, Pcore, respect to
the total power in the waveguide, Ptotal, (C F = Pcore/Ptotal).

1041-1135 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Top view of a waveguide’s core forming a 90 deg bend with radius R.

III. SIMULATION OF BENT WAVEGUIDES

Adopting a wavelength of 1550 nm, we consider the light
propagating along a waveguide forming a 90 deg bend. The top
view of the bend waveguide is schematically shown in Fig. 1.
The bend plane is parallel to the xz plane with R being the
bending radius defined from the origin to the center of the
waveguide.

We will investigate two cases: a conventional
strip-type waveguide and a sub-wavelength (SW) channel-type
waveguide illustrated in Figs. 2(a) and 5(a), respectively.
Following the confinement scheme here proposed, the
substrate of the former and the cladding of the latter will be
replaced by an AMM, which consists of a periodic multilayer
combination, with piled layers parallel to the xz plane, made
of high-index and low-index dielectrics with layer thicknesses
and periodicities well below the wavelength of the light to
ensure that the structure behaves as a homogeneous material,
far away from its band-gap.

Effective medium theory for this super-lattice predicts a
homogenized medium independent to the periodicity [10].
The anisotropic material has the dielectric tensor components
given by:

ε‖ = εhighρ + εlow(1 − ρ) (2)

1/ε⊥ = ρ/εhigh + (1 − ρ)/εlow (3)

where ε‖ and ε⊥ are the dielectric constant parallel and
perpendicular, respectively, and ρ is the fill fraction of
the high-index material [6], [11]. In our simulation, we
use an AMM alternating high-index thin films of Ge
(nGe ≈ 4.3, kGe ≈ 0.01) [12], and ultra low-index porous
silica (nSi O2_Pou ≈ 1.05, kSi O2_Pou ≈ 0). Layers of porous
silica have been deposited on Si substrate as antireflection
coatings eliminating Fresnel reflection from an air interface
over a broad range of optical wavelengths [13]. We emphasize
that the band-edge loss at 1550 nm of germanium is not
a fundamental impediment in the performance of our struc-
ture [6]. For an optimal fill fraction of ρ = 0.7 is achieved a
maximum anisotropy (εz/εx ) at 1550 nm. Multilayer effective
medium theory predicts a uniaxial anisotropic medium with
dielectric permittivity of εz ≈ 10.2 and extinction coefficient
kz ≈ 0.008, and εy ≈ 3.8, kx ≈0, where εy=εx , kx = ky . This
AMM is depicted in Figs. 2(b) and 5(b).

The bend radius varies from 2 μm up to 10 μm, therefore,
we use uniaxial PMLs (Perfectly Matched Layers) with

Fig. 2. Cross-section of the strip-type waveguide with (a) silica-substrate
(conventional), and (b) AMM-substrate (our proposal).

Fig. 3. MPV for the fundamental quasi-TM mode in Log-scale. For
a bend strip-type waveguide with (a) silica-substrate (conventional) and
(b) AMM-substrate (our proposal). Bend radius of 2 μm.

thickness of 1 μm to truncate the right and bottom edges of
the computational window since the radiated mode field will
leak into these two directions [2], [9].

IV. NUMERICAL RESULTS

A. Strip-Type Waveguides

We consider a SOI strip-type waveguide with a standard
core size (W × H) of 500 × 220 nm in silicon (nSi ≈ 3.48)
lying on top of a silica (nSi O2 ≈ 1.46) substrate, and air as
the top cladding. We have chosen this waveguide because is
widely adopted in the fabrication of SOI photonic circuits [2].
To improve the mode confinement of this SOI waveguide
we propose a new geometry, which consists of replacing the
substrate’s material, silica, by the AMM previously described.
The cross sections of the two waveguides are schematically
shown in Fig. 2.

Fig. 3 shows the computed cross-section distribution of the
modulus of the Poynting Vector (MPV) in the propagation
direction z for the fundamental quasi-TM mode in Log-scale,
for a bend radius of 2 μm. The strong leaky behavior for the
silica-substrate waveguide, Fig. 3(a), is in agreement with the
results reported in [2], however, much less leakage is observed
for the AMM-substrate waveguide, Fig. 3(b).



874 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 28, NO. 8, APRIL 15, 2016

Fig. 4. BL curves as a function of the bend radius for the strip-type
waveguides.

We find that the fundamental quasi-TM mode has a CF
of 38% in the straight silica-substrate waveguide, in contrast to
57% for the straight AMM-substrate waveguide, i.e., 1.5 times
more confined. However, this CF value decreases to 23% when
the silica-substrate waveguide is bent with a radius of 2 μm,
but in contrast, the AMM-substrate waveguide’s CF for that
radius goes down to 43%, which is even superior to the straight
silica-substrate waveguide’s CF.

A reduction in bending loss is expected as a consequence
of the increase in the confinement. This loss is assessed
through Eq. 1. Fig. 4 shows the BL for 90° turns as a
function of the radius for both the fundamental quasi-TE, and
fundamental quasi-TM modes. We observe that for either the
silica-substrate or the AMM-substrate, the former exhibits a
negligible bending loss for all computed bend radii. The latter,
as expected, exhibits a much higher bending loss, however,
we observe a loss reduction of about 2.5 dB/90° at a bend
radius of 2 μm for the AMM-substrate when compared to
the silica-substrate. As it is shown in Fig. 4 (green line),
the germanium absorption of the AMM cladding does not
significantly affect the performance of the structure. This is
due to the high confinement of TM mode on the core, which
is a consequence of the presence of the metamaterial.

Besides that, for both substrates BL decreases when the
bend radius increases. Almost negligible BL is attained for
the AMM-substrate when the bend radius is about 10 μm,
in contrast considering the silica-substrate for that bend
radius, the fundamental quasi-TM mode’s BL is still high,
approximately 0.7 dB/90°.

B. Channel-Type Waveguide

We also consider a sub-wavelength (SW) SOI channel-
type waveguide inspired on the approach described in [7],
with a core size (W×H) of 372 × 186 nm made of silicon
(nSi ≈ 3.48) and embedded into silica (nSiO2 ≈ 1.46).
To improve the mode confinement of this SOI waveguide a
new geometry is proposed here, which consists of replac-
ing the cladding’s material, silica, by the AMM described

Fig. 5. Cross-sections of the SW channel-type waveguide with (a) silica-
cladding, and (b) AMM-cladding (our proposal).

Fig. 6. MPV for the fundamental quasi-TM mode in Log-scale. For a
bend channel-type waveguide with (a) silica-substrate (conventional) and
(b) AMM-substrate (our proposal). Bend radius of 2 μm.

in Section III. The cross sections of the two waveguides are
schematically shown in Fig. 5.

Fig. 6 shows the computed MPV’s cross-section distribution
for the fundamental quasi-TM mode in Log-scale, for a bend
radius of 2 μm. As before, leaky behavior is more noticeable
for the silica-cladding waveguide, see Fig. 6(a), than for the
AMM-cladding waveguide, see Fig. 6(b).

We find that the fundamental quasi-TM mode has a CF
of 7% in the straight silica-cladding waveguide, in con-
trast to 93% for the straight AMM-cladding waveguide, i.e.,
13.3 times more confined. However, this CF value decreases
to 6% when the silica-cladding waveguide is bent with a radius
of 2 μm, but in contrast, the AMM-cladding waveguide’s CF
for that radius goes down to 28%, which is 4 times superior
to the straight silica-substrate waveguide’s CF.

Fig. 7(a) shows the BL for 90° turns as a function of
the radius for both the fundamental quasi-TE and quasi-TM
modes.

As in the strip-type waveguides we also observe a negligible
BL for the fundamental quasi-TE polarized mode for either
silica-cladding or AMM-cladding waveguides. The fundamen-
tal quasi-TM polarized mode exhibits a high BL, even higher
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Fig. 7. BL curves as a function of the bend radius for the channel-type
waveguides.

compared with the strip-type waveguides analyzed previously,
however, we observe a significant loss reduction of about
8 dB/90° at a bend radius of 2 μm using our proposed
AMM-cladding waveguide. As it is shown in Fig. 7
(green line), the germanium absorption of the AMM cladding
does not significantly affect the performance of the structure.
In this case, the TM mode is almost 13.3 times more confined
as consequence of the presence of the metamaterial, therefore
is much more negligible the effect of the germanium absorp-
tion in this SW structure than in the standard structure.

One can see an increase of the bending loss for greater
bending radii for the silica-cladding waveguide. This is a
typical situation for SW SOI waveguides, which feature a
trade-off between the mode confinement and the propagation
loss [9]. We can conclude that our proposed AMM-cladding
waveguide drastically reduces BL: more than 5 dB/90° for all
analyzed bending radii. This effect comes from the fact that
the evanescent field is more influenced by the presence of the
AMM in waveguides at SW core scale, than the waveguides
of larger core size [6].

V. CONCLUSION

In summary, we have shown that it is possible to confine
the fundamental quasi-TM mode in bent waveguides using

bend radii of few micrometers, by using the AMM strategy
presented here. We have compared the CF and the BL as a
function of the bend radius for waveguides with a 90 deg
bend. We have shown that there is a dramatic reduction of
bending loss in the two types of SOI waveguides analyzed
with a negligible effect of the germanium absorption in both
structures. This scheme would allow us to use both TE and
TM polarizations, improving in this way the performance of
a wide variety of optical integrated devices.
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Abstract: The capacity of communication networks may be significantly improved by simply 
enhancing the optical amplifier bandwidth. This paper presents a numerical investigation of 
an ultra-broadband, low-ripple, two-pump-optical parametric amplifier (2P-OPA) that 
employs a tellurite glass buried-channel type nano-waveguide as nonlinear medium. The 
nano-waveguide was designed as a 25-cm-long Archimedean spiral that occupies a footprint 
of only ~2.5 mm2, with a ~0.7 μm2 effective cross section. Its zero-dispersion wavelength is 
~1550 nm, the nonlinear coefficient is ~3000 W−1 km−1

, and the attenuation coefficient is ~0.5 
dB/m (1100 to 1900 nm). Simulations suggest a 2P-OPA based on such waveguide will be 
able to amplify 243 QPSK input channels modulated at 56 Gbps over 102 nm bandwidth, 
over metropolitan area network scales. 
© 2017 Optical Society of America 
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optics; (130.3120) Integrated optics devices; (130.4310) Nonlinear. 

References and links 

1. P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado, and R. I. Killey, “Maximizing 
the optical network capacity,” Phil. Trans. R. Soc. A 374(2062), 20140440 (2016). 

2. A. D. Ellis, N. M. Suibhne, D. Saad, and D. N. Payne, “Communication networks beyond the capacity crunch,” 
Phil. Trans. R. Soc. A 374(2062), 20150191 (2016). 

3. J. X. Cai, Y. Sun, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. G. Foursa, and A. Pilipetskii, 
“49.3 Tb/s transmission over 9100 km using C+L EDFA and 54 Tb/s transmission over 9150 km using hybrid-
Raman EDFA,” J. Lightwave Technol. 33(15), 2724–2734 (2015). 

4. R. J. Essiambre and R. W. Tkach, “Capacity trend and limits of optical communication networks,” Proc. IEEE 
100(5), 1035–1055 (2012). 

5. R. J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transmission in 
optically-routed fiber networks,” Bell Labs Tech. J. 14(4), 149–162 (2010). 

6. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber 
networks,” J. Lightwave Technol. 28(4), 662–701 (2010). 

7. J. Berthold, A. A. M. Saleh, L. Blair, and J. M. Simmons, “Optical networking: past, present, and future,” J. 
Lightwave Technol. 26(9), 1104–1118 (2008). 

8. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. 
Lightwave Technol. 24(12), 4697–4710 (2006). 

9. D. C. Kilper and H. Rastegarfar, “Energy challenges in optical access and aggregation networks,” Phil. Trans. R. 
Soc. A 374(2062), 20140435 (2016). 

10. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical 
transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015). 

11. J. Sakaguchi, W. Klaus, J. M. D. Mendinueta, B. J. Puttnam, R. S. Luís, Y. Awaji, N. Wada, T. Hayashi, T. 
Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3 
mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016). 

12. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and 
applications,” Nanophotonics 2(5–6), 315–340 (2013). 

                                                                                                     Vol. 25, No. 4 | 20 Feb 2017 | OPTICS EXPRESS 4268 

#279786 https://doi.org/10.1364/OE.25.004268 
Journal © 2017 Received 31 Oct 2016; revised 31 Jan 2017; accepted 1 Feb 2017; published 16 Feb 2017 



13. J. M. Chavez Boggio, A. Guimarães, F. A. Callegari, J. D. Marconi, and H. L. Fragnito, “Q penalties due to 
pump phase modulation and pump RIN in fiber optic parametric amplifiers with non-uniform dispersion,” Opt. 
Commun. 249(4–6), 451–472 (2005). 

14. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double-
pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007). 

15. L. Zhang, T.-H. Tuan, H. Kawamura, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Broadband optical parametric 
amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical 
fibre,” J. Opt. 18(5), 055502 (2016). 

16. P. S. Maji and P. R. Chaudhuri, “Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for 
optical parametric amplification around the communication wavelength,” Appl. Opt. 54(11), 3263–3272 (2015). 

17. D. Bigourd, P. B. d’Augerès, J. Dubertrand, E. Hugonnot, and A. Mussot, “Ultra-broadband fiber optical 
parametric amplifier pumped by chirped pulses,” Opt. Lett. 39(13), 3782–3785 (2014). 

18. S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Two-octave spanning single pump parametric amplification 
at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: influence of multi-order dispersion 
engineering,” Opt. Commun. 332, 244–256 (2014). 

19. M. W. Lee, T. Sylvestre, M. Delqué, A. Kudlinski, A. Mussot, J.-F. Gleyze, A. Jolly, and H. Maillotte, 
“Demonstration of an all-fiber broadband optical parametric amplifier at 1 μm,” J. Lightwave Technol. 28(15), 
2173–2178 (2010). 

20. J. M. Chavez Boggio, S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, and S. Radic, “155-nm continuous-wave 
two-pump parametric amplification,” IEEE Photonics Technol. Lett. 21(10), 612–614 (2009). 

21. T. Toroundinis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE 
Photonics Technol. Lett. 19(9), 650–652 (2007). 

22. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, C. Xie, and S. Randel, “Parametric 
amplification, wavelength conversion, and phase conjugation of a 2048-Tbit/;s WDM PDM 16-QAM signal,” J. 
Lightwave Technol. 33(7), 1286–1291 (2015). 

23. N. El Dahdah, D. S. Govan, M. Jamshidifar, N. J. Doran, and M. E. Marhic, “Fiber optical parametric amplifier 
performance in a 1-Tb/s DWDM communication system,” IEEE J. Sel. Top. Quantum Electron. 18(2), 950–957 
(2012). 

24. X. Liu, R. M. Osgood Jr., Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using 
silicon nanophotonic waveguides,” Nat. Photonics 4, 557–560 (2010). 

25. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical 
parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). 

26. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient 
wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” 
Opt. Express 18(8), 7634–7641 (2010). 

27. J. J. Leal, R. Narro-Garcia, H. Desirena, J. D. Marconi, E. Rodrigues, K. Linganna, and E. De la Rosa, 
“Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+,” J. Lumin. 162(13195), 72–80 
(2015). 

28. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of 
chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001). 

29. S. Shen, A. Jha, X. Liu, M. Nafataly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband 
amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002). 

30. A. Jha, Inorganic Glasses for Photonics (John Wiley & Sons, 2016), Chap. 7. 
31. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge University, 

2007), Ch. 3. 
32. X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a 

silicon waveguide for multimode photonics,” Opt. Lett. 40(16), 3893–3896 (2015). 
33. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid-and near- infrared integrated 

photonics,” Appl. Phys. Lett. 102(12), 121104 (2013). 
34. C. Schulze, D. Flamm, S. Unger, S. Schröter, and M. Duparré, “Measurement of higher-order mode propagation 

losses in effectively single mode fibers,” Opt. Lett. 38(23), 4958–4961 (2013). 
35. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of 

the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009). 
36. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode 

selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011). 
37. N. Bhatia, K. C. Rustagi, and J. John, “Single LP(0,n) mode excitation in multimode fibers,” Opt. Express 

22(14), 16847–16862 (2014). 
38. F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-

generated optical mask,” Opt. Lett. 19(7), 433–435 (1994). 
39. J. Wilde, C. Schulze, R. Brüning, M. Duparré, and S. Schröter, “Selective higher order fiber mode excitation 

using a monolithic setup of a phase plate at fiber facet,” Proc. SPIE 9343, 2078993 (2015). 
40. L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible 

mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014). 
41. M. Baas, G. Li, and E. Van Stryland, Handbook of Optics Vol. IV (Mc Graw Hill, 2010), Ch. 3. 

                                                                                                     Vol. 25, No. 4 | 20 Feb 2017 | OPTICS EXPRESS 4269 



42. I. Savelli, F. Desevedavy, J. C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. 
Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” 
Opt. Mater. 35(8), 1595–1599 (2013). 

43. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at 
near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007). 

44. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical 
coordinate system for loss analysis of photonic wire bends,” Opt. Express 14(23), 11128–11141 (2006). 

45. K.-Y. Yang, Y.-F. Chau, Y.-W. Huang, H.-Y. Yeh, and D. Ping Tsai, “Design of high birefringence and low 
confinement loss photonics crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber 
cladding,” J. Appl. Phys. 109(9), 093103 (2011). 

46. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement 
loss trade-offs,” J. Opt. Soc. Am. B 20(7), 1427 (2003). 

47. G. P. Agrawal, Fiber Optic Communication Systems (John Wiley & Sons, 2002), Ch. 2. 
48. K. Okamoto, Fundamental of Optical Waveguides (Academic, 2006), Ch. 4. 
49. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007), Ch. 8. 
50. S. F. Mansour, E. Sayed Yousef, M. Y. Hassaan, and A. M. Emara, “The influence of oxides on the optical 

properties of tellurite glass,” Phys. Scr. 89(11), 115812 (2014). 
51. V. Mishra, S. Pratap, R. haldar, and S. K. Varshney, “Sub-wavelength dual capillaries-assisted chalcogenide 

optical fibers: unusual modal properties in mid-IR (2-5 mm) spectral range,” IEEE J. Sel. Top. Quantum 
Electron. 22(2), 4401906 (2016). 

52. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with 
subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). 

53. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007), Ch. 2. 
54. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and 

applications,” Opt. Express 15(25), 16604–16644 (2007). 
55. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-

optical signal processing,” Opt. Express 15(10), 5976–5990 (2007). 
56. S. Lin and D. J. Costello, Jr., Error Control Coding (Pearson Prentice Hall, 2004). 
57. J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Crosstalk in double-pumped fiber optics parametric 

amplifiers for wavelength division multiplexing systems,” Opt. Commun. 259(1), 94–103 (2006). 
58. J. D. Marconi, M. L. F. Abbade, C. M. Serpa-Imbett, J. Cordoba-Ramirez, and E. A. M. Fagotto, “Broadband 

two-pump parametric amplifier in engineered dispersion tellurite waveguides,” in Latin America Optics and 
Photonics Conference, 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper LTu4A.11. 

1. Introduction 

Historically, there has been a growing demand for network bandwidth [1–8]. The dramatic 
increase in capacity (~1000 times in 10 years) provided by wavelength division multiplexing 
(WDM) technology and Erbium doped fiber amplifiers (EDFA) paved the road for 
telecommunication systems to overcome bandwidth need during the 1990s and part of the 
2000s. After this period, advanced modulation formats and coherent detection associated with 
emerging digital signal processing (DSP) techniques allowed the aforementioned systems to 
support new bandwidth requirements. 

However, present-day Internet services, which include high definition video streaming 
and games, besides potential new applications, as online medical services (for instance, 
personalized genetic medicine for diseases that require transmission of DNA information) [1], 
and the Internet of Things (IoT), with ~50 billion devices up to 2020 [1], will generate data 
traffic growth that will certainly exceed the current technology capacity in the next decade 
[4]. Considering a conservative estimation of bandwidth increase of 26% per year (~1 
dB/year = 10 log 1.26), optical networks information traffic will grow more than 100 times 
throughout the two next decades. Furthermore, energy consumption and device footprint are 
also important issues that need to be addressed in the design of broadband-enabling 
equipment [9]. 

For these reasons, several efforts have been made to improve the optical communication 
systems capacity, which include: channel spectral efficiency (SE) increase [10], fibers for 
spatial division multiplexing (SDM) [11], fibers with very low nonlinear coefficients [12], 
hybrid Raman-EDFAs amplification [3] to extend the EDFA bandwidth, and improvement of 
reconfigurable add/drop multiplexers among others. By a rough estimation of the capacity 
enhancement due to such developments, the SE improvement leads to up to 5 dB (~3 times) 
[1, 10], the mitigation of fiber nonlinearities to 2 dB (1.6 times) [4], and the most significant 
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contribution comes from SDM, 15 dB (~30 times) [11]. Hybrid Raman-EDFA amplification 
has led to a 3 dB (2 times) bandwidth extension. However, if the total spectral region of high 
transparency of standard single mode fibers could be used (1300 to 1700 nm) there would be 
an 11 dB (12 times) capacity improvement as compared to the EDFAs’ 4 THz (~32 nm) C-
band. Such an enhancement clearly depends upon the development of new broadband optical 
amplifiers, but it has the interesting advantage of not requiring the replacement of fiber 
infrastructure. 

EDFAs and Raman amplifiers provide a fixed bandwidth amplification region and the 
latter present the benefit of being spectrally tunable. New broadband optical amplifiers 
should, however, simultaneously offer frequency tunability and variable bandwidth for 
deployment in different communication systems. Optical parametric amplifiers (OPAs) 
constitute an interesting class of devices with both of these features. They are based on the 
four-wave mixing (FWM) effect, which depends on the third-order susceptibility of the 
waveguide medium material. Actually, parametric amplifiers can be realized in one-pump 
(1P-OPA) or two-pump (2P-OPA) configurations [13, 14]. In both cases, several numerical 
and/or experimental analysis indicate that such amplifiers perform broadband amplification 
[15–21]. However, the spectra presented in these works are obtained by tuning and 
amplifying one single channel over the considered frequency range. Thus, they do not take 
into account the influence of channel crosstalk that is very important for practical 
communication systems. Other reports present systemic studies of fiber based OPAs [22,23] 
and, interestingly, consider the degradation caused by transmitting signals over multiple 
OPAs [23]. Nevertheless, in these situations the observed amplification bandwidths are 
restricted to 3 THz. It should also be noted that OPAs based on fibers, pumped with 
continuous lasers, need additional circuitry to suppress stimulated Brillouin backscattering 
[13, 20]. A possibility to overcome this problem is to use short-length waveguides as 
nonlinear medium. In this approach, silicon waveguides become attractive also because their 
nonlinearity is orders of magnitude higher than those of optical fibers [24, 25]. However, 
nonlinear two-photon absorption (TPA) and free-carrier absorption (FCA) limit silicon 
parametric gain in the 1550 nm window and the quality of modulated signals. The 
performance of glass OPA waveguides, has been also investigated for single channels in [26]. 

In this work, an ultra-broadband 2P-OPA based on tellurite glass nano-waveguide, which 
could be used in integrated photonics, is proposed. The device is intended to be tunable and to 
present variable bandwidth, reduced footprint and good energy efficiency. It was designed 
using a buried-channel type waveguide with a tellurite glass core and a SiO2 cladding, 
following an Archimedean spiral structure to minimize the 2P-OPA area. The dispersive 
parameters of the nano-waveguide were conceived to offer low ripple and ultra-broad 
amplification bandwidth in the optical communications window. The choice for tellurite glass 
relies on its good thermomechanical properties [27], high nonlinearity, and negligible 
undesirable effects of TPA at telecommunication wavelengths [28–30] and FCA (tellurite 
glass is a dielectric material). A systemic analysis, with 243 channels (56 Gbps QPSK 
modulation format) being amplified, in a configuration where the 2P-OPA acts as an in-line 
optical amplifier, is also presented. The analysis includes bit error rate (BER) results, 
assuming that WDM signals are repeatedly attenuated and re-amplified. All these 
considerations are intended to provide a first systemic evaluation performance of tellurite 
OPAs. In fact, to the best of our knowledge, this is the first systematic literature report on the 
application of tellurite glass planar waveguides for parametric amplification. 

The remaining of this paper is organized as follows. In Section 2, we present a brief 
theoretical review of OPA fundamentals. A detailed step-by-step description of the tellurite 
waveguide design is approached in Section 3. Section 4 shows simulation results that allow to 
assess the 2P-OPA performance for the transmission of WDM signals. Scenarios where the 
bandwidth of WDM channels are one, two or three times the bandwidth provided by EDFAs 
are considered. Finally, our conclusions are described in Section 5. 
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2. Brief theoretical description of OPAs 

One and two-pump OPA configurations need to satisfy a nonlinear phase-matching condition 
in order that the parametric process efficiently builds up along the waveguide. In the case of 
the 1P-OPA, the pump frequency is close to the waveguide zero-dispersion wavelength, λ0. 
For 2P-OPA, pumps are disposed near symmetrically over λ0. Because of their higher 
amplification bandwidth and lower ripple, in this paper, we deal only with 2P-OPAs. In this 
case, the nonlinear interaction between pumps and signals also generate slave signals called 
idlers, which are located symmetrically to the average value of the pumps wavelength. 

Considering the case of a lossless waveguide, it is possible to derive, from the propagation 
equations of the optical signals [31], the following expression for the parametric gain: 
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From Eqs. (1) and (2), it is clear that the parametric gain is maximum when the phase 

matching condition (κ ~0) is satisfied. This condition depends on the waveguide dispersion 
through the β2, β4, β6, … parameters, which implies there are no fundamental physical 
constraints to the 2P-OPA gain bandwidth, such as the ones imposed by quantum transitions 
to EDFAs. 

3. Waveguide design 

The proposed waveguide is a buried-channel type, with a tellurite core and SiO2 cladding. It 
follows an Archimedean spiral to minimize the device footprint. Figure 1 shows a schematic 
view of the waveguide. Its rectangular core cross section, 698 nm high (h) and 990 nm wide 
(w), was designed to maximize the parametric gain and to minimize the ripple by engineering 
the waveguide dispersion. This waveguide presents only two modes. We inform in advance 
that the higher order mode is weakly coupled to the waveguide and leaks to the cladding, 
because of curvature bends [32, 33] in our spiral structure. In addition to this, in the spectral 
range analyzed (from 1400 to 1700 nm), the higher order mode presents λ0, at 1176 nm, for 
one polarization state and no λ0 for the other. Thus, its phase matching condition is not 
satisfied and, therefore, the corresponding nonlinear interaction is negligible. Anyway, to 
prevent any influence from this higher order mode, we assume that light launched into the 
proposed waveguide passes through some device [32–40] that ensures only the waveguide 
fundamental mode is excited. For this reason, hereafter, we will treat the proposed waveguide 
as single mode. Since the spiral radius, R, changes along the waveguide length, it is necessary 
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to find a minimum radius that concomitantly allows for low losses and for the required 
waveguide dispersion. 

 

Fig. 1. a) Schematic design (not in scale) of the Archimedean spiral with their principal 
geometrical dimensions. b) Detail of the transversal cross sections with the high and the width 
of the waveguide that allow to obtain a λ0 around 1550 nm. 

The loss and the dispersion for the core and cladding materials were estimated through the 
following procedure. Firstly, for the core material, the refractive index was measured from a 
tellurite sample with composition (in mol%) 71%TeO2– 22.5%WO3 – 5%Na2O – 1.5%Nb2O5 
by using a Metricom model 2010/M prism coupling system. The experimental data were, 
then, fitted with a Sellmeier equation using the least square method, leading to a 0.9999 
correlation coefficient. The obtained equation, which stands for the real part of the refractive 
index, is given by: 

 ( ) ( ) ( )
2 2

2 2
2.0016 2.2951 0.47334 ,

0.046242 34.479
n

λ λλ
λ λ

= + +
− −
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and it is is plotted in Fig. 2. 

 

Fig. 2. Real part of tellurite refractive index as a function of wavelength. Dots are the 
experimental values. 

The real part of the refractive index of the silica cladding was taken from [41]. The 
imaginary parts of the core and cladding refractive indexes were obtained from [42] and [43], 
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respectively. All these data, along with the approach given in [44] and COMSOL 
Multiphysics® software, were used to calculate the waveguide effective refractive index, neff. 
Our calculations to estimate the waveguide losses showed that the light is no longer confined 
for R < 70 μm, for a wavelength range from 1100 up to 1900 nm. For R > 70 μm, the 
confinement loss [45, 46], by considering the material losses of the core (tellurite) and the 
cladding (SiO2), was calculated as a function of the wavelength and plotted in Fig. 3. From 
this analysis, it is evident that the minimum radius imposed by losses is RL = 70 μm. 

 

Fig. 3. Waveguide confinement losses. 

Dispersion curves for the transverse electric (TE) (fundamental) and transverse magnetic 

(TM) modes, were calculated through the relations 0 effk nβ = , 0
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 [47]. Figure 4(a) shows the dependence between dispersion and wavelength 

for R ranging from 30 to 800 μm, for TE mode. As R increases, the dispersion curves get 
closer to one another and there is no detectable variation for a minimum R imposed by 
dispersion of RD = 500 μm. A very important feature for dispersion engineering is λ0, whose 
spectral region in the considered waveguide is embraced by the two dotted vertical lines in 
Fig. 4(a). In Fig. 4(b), data from Fig. 4(a) are rearranged to show λ0 as a function of R. It is 
seen that λ0 increases rapidly for R < 200 μm. However, for R > Rλ0, with Rλ0 ~500 μm, λ0 
tends to a constant value of ~1550 nm that is very interesting for telecommunication 
applications. From Fig. 4(c) it is possible to observe a similar behavior for the TM mode, but 
in this case λ0 is located at ~1400 nm. 
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Fig. 4. a) Waveguide dispersion curves of the TE (fundamental) mode for 30 μm ≤ R ≤ 800 
μm. b) ZDW as a function of the R. c) Dispersion curves of the TM mode for 30 μm ≤ R ≤ 800 
μm. 

The minimum radius, Rmin, for the inner “S” of the waveguide Archimedean spiral (Fig. 1) 
must satisfy: 

 
0

max( , , ),min L DR R R Rλ≥  (4) 

where max(a1,…, ak) is a function that returns the largest value among a1,…, ak and k is an 
integer number. Consequently, from our previous discussion, we have Rmin = 500 μm and, as 
indicated in Fig. 1, we adopted R = 600 μm with a safety margin of 100 μm. 

Another fundamental feature to be assessed is the coupling loss between adjacent rounds 
of the spiral. It is necessary to calculate the minimum gap between successive rounds in order 
to minimize such loss. The situation to be considered is schematized in Fig. 5. Two parallel 
adjacent waveguides have their edges separated by a gap Γ. Assuming that initially light is 
only in waveguide I (mode TE1), there will be a propagation distance, named coupling length, 
Lc, after which the energy is completely transferred from waveguide I to waveguide II (mode 
TE2). 
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Fig. 5. a) Initially, the energy of the mode TE1 is fully located in waveguide I. b) After a 
propagation distance equal to Lc, the energy is completely transferred to waveguide II (mode 
TE2). The coefficients n1 and n2 are de refractive index of the core and the cladding, 
respectively. 

It is possible to calculate the value of Γ that leads to Lc >>Ls, where Ls is the spiral length. 
Following the coupled-mode theory developed in [48], which considers adjacent single-mode 
waveguides, the coupling coefficient 1 2κ , obtained through an overlap integral between the 

waveguides field modes, is given by: 
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 (5) 

where 1 2κ  is related to Lc as Lc = π/(2 1 2κ ), ω is the angular frequency, ε0 is the vacuum 

electric permittivity, n1 and n2 are, respectively, the core and the cladding refractive indices, 

and 1E


 and 1H


 are the uncoupled waveguide electric and magnetic fields related to mode 

TE1 of waveguide I. Similarly, 2E


and 2H


 are the uncoupled waveguide electric and 

magnetic fields related to mode TE2 of waveguide II. The waveguide dimension parameters, h 
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and w, on the integral limits and the core center, C, are shown in Fig. 5. Equation (5) 
quantifies the coupling between TE1 of waveguide I to TE2 of waveguide II. The derivation of 

Eq. (5) assumes that the evanescent field of 1E


 in the region of waveguide II is considerably 

small. This condition is known as weak coupling and it is satisfied when the two waveguides 
are sufficiently separated. Under weak coupling, the spatial distributions of the modes, and 
their propagation constants, remain unchanged and only the field amplitudes vary [49]. 

Following the approach of [34] for a rectangular waveguide, the electric and magnetic 

fields involved in (5) are given by ( )1 1 1, ,0E Ex Ey=


, ( )2 2 2, ,0E Ex Ey=


, and 

( )1 1 10, ,H Hy Hz=


. Furthermore, for a rectangular waveguide, we can also assume 

1 1Ex Ey>>  and 2 2Ex Ey>> , leading to a coupling coefficient: 
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Numerical results obtained for Lc as a function of Γ, for the TE mode, are presented in Fig. 
6 for λ = 1750 nm. The minimum gap considered was Γ = 1.5 μm. 

 

Fig. 6. Coupling length as a function of the gap width between adjacent waveguides. 

In this case, as shown in Fig. 7, the magnitude of 1


E  is ~35 dB weaker in the region of 

waveguide II, which guarantees the weak coupling condition and assures the validity of Eq. 
(5). Longer wavelengths imply higher evanescent field magnitudes. Moreover, all of our 
systemic simulation results presented in Section 4 apply to wavelengths shorter than 1750 nm. 
Therefore, calculations for λ = 1750 nm in Fig. 7 ensure that the critical hypothesis of weak 
coupling holds for all of our simulations results. 
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Fig. 7. a) Magnitude of the TE mode for a gap of 1.8 μm. b) 3 μm. 

In order to define a limit for the minimum gap between adjacent spiral rounds, we note 
that for Γ ~3.1 μm, Lc ~100 m. This means that in the case of a hypothetical very long spiral, 
after 100 m of optical path, the optical power would be completely transferred from 
waveguide I to waveguide II, after 50 m only half of power would be transferred, and so on. 
Now, extrapolating the simulated points, it is found that, for Γ ~3.7 μm, Lc ~1 km. 
Considering that Ls is ~25 cm, the fraction of the optical power that will be transferred from 
waveguide I to waveguide II, after 25 cm of optical path, would be (Ls/Lc). 100 = 0.025% = 
−36 dB, which is considerably low. Then, Γ ~3.7 μm was taken as a reasonable value of the 
minimum gap between adjacent rounds of the spiral to allow for negligible coupling losses. 
This value implies the spiral should have 55 rounds to obtain Ls = 25 cm and that the 
outermost spiral round radius is 0.85 mm. As a consequence, the waveguide covers an area of 
~2.5 mm2. 

This Γ ~3.7 μm value is a consequence of the high confinement of the fundamental TE 
mode as shown in Fig. 7. The color scale in dB indicates the modulus of the electric field for 
waveguide I. For a gap of 1.8 μm, the electric field from waveguide I drops ~45 dB in the 
region of waveguide II (Fig. 7(a)). The difference increases to ~60 dB or more for a gap of 3 
μm (Fig. 7(b)). 

Finally, considering an effective cross section area of ~0.7 μm2 and a nonlinear refractive 
index n2 ~5 ⋅ 10−19m2/W [50], the waveguide nonlinear parameter, as defined in [47], can be 
estimated as γ ~3000 W−1 km−1. A more sophisticated approach would include the influence 
of the longitudinal component of the guided modes to compute γ [51, 52]. However, for the 
contrast index, waveguide dimensions, and spectral range considered in the simulations of the 
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next section, the correction introduced by such approach should be relatively small as can be 
estimated from Fig. 5 of [52]. Under these conditions, it would only slightly increase our 
estimation of γ, which would lead to marginally lower pump powers to operate the OPA, with 
no significant change on the discussed waveguide properties. 

4. 2P-OPA performance 

The mathematical dependence between parametric gain and phase matching condition was 
pointed out in Section 2. In the present section, the use of the designed waveguide as a gain 
medium for a two-pump parametric amplifier (2P-OPA) is assessed. The nonlinear 
Schrödinger Equation (NLSE) properly describes the propagation of optical fields through the 
longitudinal direction of waveguides [53–55]. In order to simulate the performance of the 
proposed 2P-OPA we used VPItransmissionMaker software. In particular, a 
VPItransmissionMaker module, set with our engineered dispersion, was used to solve the 
NLSE through the split-step Fourier method. A constant waveguide attenuation of 0.5 dB/m 
was utilized. This value corresponds to the largest loss observed in the spectral range of 
interest for our simulations (Fig. 3). In accordance with our previous discussion, the nonlinear 
parameter was set to 3000 (W⋅km)−1. All signal channels were simulated with a pseudo-
random bit sequence (PRBS) of length 212-1. A typical spectrum gain is shown in Fig. 8. The 
pumps were tuned at λP1 = 1411.65 nm and λP2 = 1687.7 nm (separation of 276 nm) with 
powers PP1 = PP2 = 33 dBm, where PPi stands for the power of the pump placed at λPi (i = 1, 
2). A set of 243 input single polarization 56 Gbps quadrature phase shift keying (QPSK) 
modulated signal channels was placed from 1544.917 nm up to 1647.204 nm within the 50 
GHz grid. The gain was ~16 dB with a ripple of ~4.5 dB, over a bandwidth of ~102 nm (12 
THz), which is 3 times larger than the one obtained with C band EDFAs. The 2P-OPA optical 
signal-to-noise ratio (OSNR) was estimated by using the following procedure: (i) A given 
signal channel power was measured; (ii) Afterwards, the signal was suppressed and, then, at 
its frequency, the noise background power was measured; (iii) The 2P-OPA OSNR is just the 
ratio between these measurements, that is, 13.4 dB. 

 

Fig. 8. 2P-OPA gain spectrum obtained for the designed waveguide. The dotted red line is the 
OPA gain obtained with the analytic model. The continuous red line is the OPA input set of 
channels. 
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Figure 8 also shows the gain spectra obtained with the analytic model presented in Section 
2, with the same pump parameters used to solve the NLSE. The agreement between them is 
rather good. This fact is important because it clearly shows that some of the characteristics 
that determine the performance of the parametric amplifier, as gain, ripple and bandwidth, 
depend essentially on the phase matching condition, which relies on the dispersive properties 
of the waveguide. For instance, to calculate the analytic gain spectra, β2(ωc) can be written as 
β2(ωc) = β3(ωc) (ωc – ω0) + β4(ωc) (ωc – ω0)

2/2, where ω0 = (2π c)/λ0 and ωc = ((ω1 + ω2) /2) 
(ω1 and ω2 are the pumps frequencies). This shows certain high-order dispersion parameters 
have a fundamental role for engineering the dispersion. The curves for β2(ω), β3(ω) and β4(ω), 
the two last obtained through the derivatives of the β2(ω), are shown in Fig. 9 (these curves 
were presented as a function of λ for sake of clarity). The values at λc = (2π c)/ωc = 1537.34 
nm are β3(λc) = −0.67 ps3/km and β4(λc) = 0.007 ps4/km. The sixth order dispersion parameter 
is β6(λc) = 3.26 10−7 ps6/km. Such a value is small enough to neglect the β6 term in the 

expansion of Δβ (
6 6 4 4 2

6 4[( ( ) [ ]/( ( ) [ ] 10/ 360) /12) ~ −Δ − Δ Δ − Δβ ω ω ω β ω ω ωc s P c s P ), and, furthermore, 

it has no significant effect on the parametric gain. The analytic curve, which takes into 
account only the contributions of β2(ω), β3(ω) and β4(ω), matches quite well the spectral gain 
obtained by solving the NLSE. This allowed us to verify that the small spectral ripple 
obtained is a consequence of the positive values of β4(ω) [14]. 

 

Fig. 9. Curves for: a) β2(λ). The red arrows show the pumps positions, and the black points the 
position of λc and λ0. b) β3(λ). c) β4(λ). Dots indicate the values of β3(λc) = −0.67 ps3/km and 
β4(λc) = 0.007 ps4/km for λc = 1537.34 nm. 

Figure 10 exhibits the bit error rates (BER) for 13, from 243 channels, spaced by ~1 THz. 
Firstly, the modulated channels with a power of ~-18 dBm were passed a single time by the 
2P-OPA under consideration. At the amplifier output, the BERs were below 10−8 (Fig. 10(a)) 
and the signal power was around −1.5 dBm. Afterwards, we simulated a scenario where all 
signals were equalized and transmitted through consecutive 80-km-long spans of standard 
fiber, with an attenuation of ~0.18 dB/km, followed by a 2P-OPA. Since we are concerned 
with the amplifier performance, we assumed that the dispersion induced by the fiber spans 
was exactly compensated before the 2P-OPA. The curves in Fig. 10(a) show that after the 
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sixth pass through the 2P-OPA, the BER is about ~10−2, which can be turned into 10−15 by 
using forward error correction (FEC) mechanisms [56]. This propagation distance is 
compatible with the scale length of metropolitan area networks (MANs). For illustrative 
purposes, Fig. 10(b) shows the constellation diagrams for the best and the worst BER cases, 
after the first and the sixth passes. Under the considered simulation conditions, BER 
degradation is related to optical signal to noise ratio (OSNR) reduction and to the crosstalk 
that is inherent to parametric amplification [57]. The output spectrum at the sixth span output 
is shown in Fig. 11. After the sixth-pass, the OSNR is degraded by ~2.7 dB if compared to the 
first-pass. 

 

Fig. 10. a) BER performance for a 2P-OPA based on the designed tellurite waveguide. b) 
Constellation diagrams in the best and the worst BERs cases, for the 1st and the 6th passes. 
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Fig. 11. Gain spectrum at the output of the sixth span of standard fiber followed by the sixth 
2P-OPA. The continuous red line is the OPA input set of channels. 

We also evaluated the 2P-OPA performance for 180 (9 THz or ~77.3 nm, as pointed out 
in our preliminary results [58])) and 100 (5 THz or ~43.9 nm) channels. In both cases, BERs 
were very low (below 10−16) after the first pass and, thus, they can be considered error-free. 
Figure 12 shows a BER comparison for the case when signals underwent a second pass. Even 
in this situation, the BER values for 100 channels remain below 10−16. 

 

Fig. 12. 2P-OPA BER performance for different number of amplified 56 Gbps QPSK signals, 
spaced by 50 GHz. 

These results are in agreement with previous findings that show how the crosstalk in 2P-
OPAs increases with the number of amplified channels [57]. Such a crosstalk could be 
reduced by shortening the waveguide length and by increasing the pumps power or by 
manipulating the dispersive properties to minimize the spurious four-wave mixing products 
and other crosstalk mechanisms. 
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Therefore, our results suggest that the designed parametric amplifier may be used in 
networks with diameters larger than those of MANs, where the number of amplified channels 
is up to two times the one covered by conventional EDFAs. Alternatively, the device could be 
used for network with larger diameters if the number of channels could be reduced. 

Currently, deployed commercial 100 Gbps WDM systems transmit 56 Gbps QPSK signals 
in two orthogonal polarizations. The analysis presented in this work is valid for one of such 
polarizations. A second amplifier or some polarization diversity scheme would be necessary 
to take the second polarization into account. 

5. Conclusions 

An ultra-broadband (~102 nm), low-ripple (~4.5 dB), small footprint (~2.5 mm2), two-pump-
optical parametric amplifier (2P-OPA) that employs a tellurite glass buried-channel type 
waveguide as nonlinear medium was numerically designed and investigated. This device is 
tunable and it can also be adjusted to exchange bandwidth by reach. The proposed waveguide 
was designed in an Archimedean spiral geometry to minimize the device footprint. For the 
dispersion calculations, the tellurite refractive index was obtained by fitting experimental data 
with a Sellmeier equation. The waveguide losses were of 0.5 dB/m and a 3.7 μm minimum 
gap between adjacent rounds of the spiral was adopted to keep coupling losses lower than 
0.025%. Its nonlinear parameter was estimated as γ ~3000 W−1 km−1, for a nonlinear 
refractive index n2 ~5 x 10−19m2/W and an effective area of ~0.7 μm2. 

From an application point of view, our results suggest that the designed waveguide could 
amplify 243 QPSK 56 Gbps signals, spaced by 50 GHz, with an average gain of ~16 dB. The 
resulting amplification bandwidth is ~3 times larger than the one provided by C-band EDFAs, 
whereas a ripple of 4.5 dB is approximately the same. Results also suggest that signals could 
be propagated by around 6 ⋅ 80 km = 480 km, which correspond to a relatively large optical 
MAN. Longer reaches could be achieved by using DSP techniques to mitigate the influence 
of nonlinear crosstalk or by reducing the number of amplified channels. 

In conclusion, the designed tellurite waveguide seems to be a very attractive medium for 
the realization of 2P-OPAs, which may become key devices for the development of the next 
generation of core networks. In fact, thanks to the OPAs tunability, four unities of the 
investigated device could be used in parallel to cover all the spectral region of SMF high 
transparency (1300 to 1700 nm) and to provide the 11 dB capacity improvement mentioned in 
Section 1, for MAN applications. A lower number of parallel 2P-OPAs could be used, if the 
waveguide dispersion is further engineered to reduce channel crosstalk or if DSP techniques 
are deployed to mitigate such effects. Furthermore, because of the tellurite glass high 
transparency and nonlinearity, thermal stability, and non-susceptibility to FCA and TPA, they 
have very strong potential for the development of photonic integrated circuits to be used in 
future optical communication systems. 
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B. MODAL CONTENT MEASUREMENTS

As most of the conventional light sources, coherent or incoherent, emit light in a funda-

mental mode LG00, conversion to higher order modes to create OAM is needed. OAM

modes can be created directly in fibers by using a grating [100], or externally by means

of spatial-light modulators (SLM) [19], which then are used to excite the OAM modes

in a vortex fiber. In order to confirm experimentally the propagation of OAM states

in fibers it is very useful to use the interference with an expanded Gaussian beam

producing spiral images thus as show in Figure B.1:

(a)`=±1 (b)`=5, 6 and 7

Figure B.1: (a) Interference of conventional solid vortex fiber output `=±1 OAM

states with a reference gaussian beam. (b) Interference of conventional air-core vortex

fiber output `= 5, 6 and 7 OAM states with a reference gaussian beam. With

permission from [14]. Copyright 2015 Optical Society of America

These images indicate the existence of OAM modes, however, they are a poor metric to

quantify the OAM mode purity. Even a mode that is up to 45% impure (almost 3 dB

of coupling) could lead to visually “clean” spirals if the “impurities” are predominantly
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nearest-neighbors in |`| [14]. There are several quantitative characterization tools that

can be use to measure the mode purity such as: ring method [100], regression analysis

[101], interferometric techniques [102], method based on correlation filters [19].

In previous chapters, we studied the performance of the conventional and metamaterial

vortex fibers through their OAM spectra considering the most common perturbation

in fiber: the bends. However, in a real fiber the mode coupling is also caused by

possible fabrication defects, like core ellipticity and roughness, which would increase

the coupling strength reported in the OAM spectra. In order to quantify the mode

coupling strength we assemble two measurement techniques: spatially and spectrally

modal interferometric method (S2) to characterize modal content in optical fibers [102],

and modal decomposition technique [19] to measure the coupling strength among OAM

modes in free-space. We expect that these technique can be used to characterize the

fabrication of our designs in a near future.

B.1. S2 METHOD

Two or more modes propagating in an optical fiber form a spatial and spectral inter-

ference pattern if the modes have different group velocities. The S2 imaging method

analyzes this interference pattern and can detect weak high order modes (HOMs) inter-

fering with the fundamental mode. A previous knowledge of the fiber properties is not

necessary to fully quantify the modal shape of the different modes and their relative

intensities and phases [102] (see Figure B.2).

Two electrical fields (the fundamental and a higher order mode) E1(x, y, ω) and E2(x, y, ω)

propagating in an optical fiber are related in the following way:

E2(x, y, ω) = α(x, y)E1(x, y, ω) (B.1)

where α(x, y) is assumed to be independent of the wavelength at the given position.

We propagate the field assuming that the group delay difference between the modes is

independent of frequency

E2(x, y, ω) = α(x, y)E1(x, y, ω)e−iω∆τb (B.2)
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Figure B.2: Principles of operation of S2 technique

where τb is the relatively group delay between the two modes. The spectral intensity

pattern caused by interference between the two fields is given by:

I(x, y, ω) = I1(x, y, ω)[1 + α2(x, y) + 2αcos(ω∆τb)] (B.3)

The Fourier transform (F) of the spectral intensity pattern F(I(x, y, ω)) is:

F (x, y, τ) = (1 + α2(x, y)F1(x, y, τ) + α(x, y))(F1(x, y, τ − τb) + F1(x, y, τ + τb)) (B.4)

where F1 is the Fourier transform of a single mode. We can then define the ratio f(x, y)

of the two modes with group delay τb and τ0 as:

f(x, y) =
F (x, y, τ = τb)

F (x, y, τ = τ0)
=

α(x, y)

1 + α2(x, y)
(B.5)

Finally we can write α(x, y) as follow:

α(x, y) =
1−

√
1− 4f2(x, y)

2f(x, y)
(B.6)

The total intensity of each mode is the integral over the entire measurement wavelength

range. The relative power of the higher order mode to the fundamental mode MPI

can be written:

MPI = 10log10

[∫ ∫
I2(x, y)dxdy∫ ∫
I1(x, y)dxdy

]
(B.7)

where I1 and I2 represent the intensity distribution of the fundamental and the higher

order mode, respectively. If α(x, y) and τb are frequency dependent, Fourier integrals

should be applied to equation (B.7)
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Several experimental S2 imaging systems have been demonstrated in different configu-

rations, but we adopt the configuration reported in [103]. Our S2 experiment consists

of a tunable laser coupled to the fiber under test (FUT) using a SMF fiber (see Fig-

ure(B.3)). We have tested S2 experiment using a hollow core Photonic-Bandgap Fiber

(PBGF). Micropositioners with piezoelectric crystals are used to perform the coupling

between FUT and the SMF. A power meter and InGaAs CCD camera were used to

measure optical power and record images coming from the FUT.

Figure B.3: S2 experimental setup

We have verified the operation of our mathematical routines using numerical simulations

in order to design our own S2 code for image processing and also to get MPI value. This

technique was assembled in the Fiber-Lab of the Department of Quantum Electronic

Gleb Wataghin, Physic Institute, Campinas University (DEQ-Unicamp). We expect

to use it to characterize the vortex fibers after the fabrication of our designs. We use

a wideband tunable IR-laser operating around 1550 nm, a CCD camera in InGaAs of

high sensitivity (less than 35 dB) to collect the images at the output of the fiber.

Finally, one of the measurement is presented in Figure (B.4). We obtained these im-

ages by means of a own code corresponding to the intensity and phase distributions

of the higher order modes. MPI values (proportional to coupling strength with the

fundamental mode) remain lower than 30 dB.
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(a)Fiber output (b)HOM

(c)HOM

Figure B.4: (a)The image at the output of the fiber which is processed to obtain the

intensity and phase distributions of the modal content, and also the MPI values that

represent the coupling strength between the fundamental and higher order modes

(HOM). (b)-(c) Images of the intensity and phase distributions of the higher order

modes recovered offline using our own processing algorithm
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B.2. MODAL DECOMPOSITION TECHNIQUE

Modal decomposition is a powerful tool for the detailed investigation of laser field [19].

An optical field can be conceived as a composition of individual modes (Chapter 3 of

[61]). Mathematically, any optical field can be expressed in terms of modes, which

constitute orthogonal basis functions:

U(r) =
N∑
l=1

clΨl(r) (B.8)

where r=(x,y) is the spatial coordinates, cl = ρle
i∆φl is the complex expansion coefficient

with complex amplitude ρl and intermodal phase ∆φl with respect to a reference phase,

Ψl(r) is the lth mode field. Beam intensity I(r) and phase φj(r) of each modes are:

I(r) = |U(r)|2 (B.9)

φj(r) = arg[Uj(r)] (B.10)

where Uj is the field component of the jth mode. The modal decomposition of a

field of equation (B.9) can be performed all-optically by correlation filters [19]. Filters

perform a correlation between incident field with modes that are encoded into the

filter, which allws one to measure the power and relative phases of each mode based on

the inner product measurement [19]. Correlation filters require the specific design of

transmission functions in a holographic device. Measurements of the power of a distinct

mode requires the complex conjugates of the modes encoded as transmission functions.

Tl(r) = Ψ∗l (r) (B.11)

Using this transmission function, the intensity on the Fourier plane of the correlation

filters that is proportional to ρ2
l , therefore the power of a mode can be measured by

its intensity. Likewise, the by the superposition of the mode field with a reference field

into the match filter:

T cos
l (r) = [Ψ∗0(r + Ψ∗l (r]/

√
2 (B.12)

T sin
l (r) = [Ψ∗0(r + iΨ∗l (r]/

√
2 (B.13)

yields the intermodal phase ∆φl computed by:

∆φl = −arctan
[

2Isin
l − ρ2

l − ρ2
0

2Icos
l − ρ2

l − ρ2
0

]
, (B.14)
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Figure B.5: S2 experimental setup. Correlation filter technique. With permission

from [19]. c© IOP Publishing. All right reserved

where Isin
l and Icos

l depict the intensity signal T 2 to perform the phase measurement.

The procedure of inner product measurement is shown in Figure(B.5) As was showed in

[19], consider for example a superposition of two equally weighted Laguerre-Gaussian

(LG) modes (LG0,4+LG0,−4)/
√

(2). Then, displaying a transmission function T=LG∗0,3

(e.g. encoded on an SLM) yields a zero intensity at the center of the optical axis in the

Fourier plane. However, if the field of a mode is displayed as a transmission function

of T = LG∗0,4, a non-zero correlation signal is expected, yielding a relative modal power

of ρ2
0,4.

For any field with even a non-uniform polarization state, the correlation filters can be

done by determination of the Stoke parameters S0...S3 of the beam, which requieres

six (assuming completely polarized light) modal decomposition measurements with a

quarter-wave plate and a polarizer oriented in an appropriated manner in front of the

hologram:

S0 = |Ux|2+|Uy|2= I(0o) + I(90o) (B.15)

S1 = |Ux|2−|Uy|2= I(0o)− I(90o) (B.16)

S2 = |Ux||Uy|cosδ = I(45o)− I(135o) (B.17)

S3 = |Ux||Uy|sinδ = I(45o)− I(135o) (B.18)
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where δ is the phase difference between Ux and Uy. Each field transmitted by a quarter-

wave plate and a polarizer is modally decomposed and the beam intensity is recon-

structed following equation (B.11). Accordingly, I(α) with α = 0o, 45o, 90o, 135o are

the reconstructed intensity in each polarization state shown in equation (B.15-B.15).

Performing the six modal decompositions, information of the optical field is complete:

amplitude, phase and polarization distribution.

This technique was assembled in the Photonic-Lab of the FEEC-Unicamp by [12]. We

expect use it to perform the OAM vortex fibers after of the fabrication of our designs.

We use He-Ne laser and two SLMs (reflective, HoloEye, PLUTO-VIS, 1920x1080 pixels

of pitch 8 µm) and a CCD camera operating in the visible to record the images.
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