EVALUACIÓN DE LA COORDINACIÓN DE AISLAMIENTO Y DISTANCIAS ELÉCTRICAS EN SUBESTACIONES DE 220 KV Y 500 KV EN ALTITUDES ENTRE 2.500 M.S.N.M Y 5.500 M.S.N.M

HERVÍS RAMÓN DIAZ SIERRA
ROBINSON OCTAVIO NARVÁEZ GÓMEZ

UNIVERSIDAD PONTIFICIA BOLIVARIANA
ESCUELA DE INGENIERÍAS
ESPECIALIZACIÓN EN TRANSMISIÓN Y DISTRIBUCIÓN DE ENERGÍA
MEDELLÍN
2015
EVALUACIÓN PARA LA COORDINACIÓN DE AISLAMIENTO Y DISTANCIAS ELÉCTRICAS EN SUBESTACIONES DE 220 KV Y 500 KV EN ALTITUDES ENTRE 2.500 M.S.N.M Y 5.500 M.S.N.M

HERVÍS RAMÓN DIAZ SIERRA
ROBINSON OCTAVIO NARVÁEZ GÓMEZ

Trabajo de grado para optar al título de Especialista en Transmisión y Distribución de Energía Eléctrica

Director
JAIME ALBERTO BLANDÓN DÍAZ
Especialista en Transmisión y Distribución de Energía Eléctrica

UNIVERSIDAD PONTIFICIA BOLIVARIANA
ESCUELA DE INGENIERÍAS
ESPECIALIZACIÓN EN TRANSMISIÓN Y DISTRIBUCIÓN DE ENERGÍA
MEDELLÍN
2015
NOTA DE ACEPTACIÓN

Firma
Nombre: Presidente del Jurado

Firma
Nombre: Jurado

Firma
Nombre: Jurado

Medellín, 19 de Agosto de 2.015
AGRADECIMIENTOS

A Ingeniería Especializada S.A., por su apoyo y confianza para el desarrollo de este trabajo de grado.
TABLA DE CONTENIDO

1 CONSULTA BIBLIOGRÁFICA .. 17

1.1 CORRECCIÓN POR ALTITUD DE LA NORMA IEC 60071-2, DE 1996 17

1.2 CORRECCIÓN POR ALTITUD SEGÚN LA NORMA IEC 60060-1, DE 2010 19

1.3 CIGRE BROCHURE N° 158-2000 - POLLUTED INSULATORS: A REVIEW OF CURRENT KNOWLEDGE ... 25

1.4 IEC 60071-1 -2006 – COORDINACIÓN DE AISLAMIENTO – PARTE 1: DEFINICIONES, PRINCIPIOS Y REGLAS ... 26

1.6 IEC 60071-4-2004 – COORDINACIÓN DE AISLAMIENTO – PARTE 4: GUÍA DE CÁLCULO PARA LA COORDINACIÓN DE AISLAMIENTO Y MODELAMIENTO DE REDES ELÉCTRICAS .. 28

1.8 IEEE STD 1313.2 1999 - IEEE GUÍA PARA LA APLICACIÓN DE LA COORDINACIÓN DE AISLAMIENTO .. 28

1.9 IEEE STD 4 2013 - IEEE ESTÁNDAR PARA LAS TÉCNICAS DE ALTA TENSIÓN DE PRUEBA .. 29

1.10 FACTOR DE CORRECCIÓN ATMOSFÉRICA PARA LA TENSIÓN DE RUPTURA DE IMPULSO [2] ... 29

1.13 CONCLUSIONES DE LA REVISIÓN BIBLIOGRÁFICA SOBRE COORDINACIÓN DE AISLAMIENTO .. 33

2 PARÁMETROS PARA LA EVALUACIÓN DE COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES DE ALTA TENSIÓN .. 35

2.1 TOPOLOGÍA DE LA INSTALACIÓN ... 35

2.2 CARACTERÍSTICAS DEL SISTEMA ELÉCTRICO .. 35

2.3 CRITERIOS DE DISEÑO APLICABLES ... 35

3 COORDINACIÓN DE AISLAMIENTO PARA SUBESTACIONES DE ALTA TENSIÓN 38

3.1 COORDINACIÓN DE AISLAMIENTO BASADA EN IEC .. 38

4 APLICACIÓN DE LA NORMA PARA COORDINACIÓN DE AISLAMIENTO PARA RANGO I ... 44
4.1 SUBESTACIÓN A 2500 M.S.N.M. ... 44
 4.1.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES 44
 4.1.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES 47
4.2 SUBESTACIÓN A 4000 M.S.N.M. ... 51
 4.2.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES 51
 4.2.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES 54
4.3 SUBESTACIÓN A 5500 M.S.N.M. ... 58
 4.3.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES 58
 4.3.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES 61
4.4 RESUMEN DE LOS RESULTADOS OBTENIDOS PARA EL RANGO I 64

5 APLICACIÓN DE LA NORMA PARA COORDINACION DE AISLAMIENTO PARA RANGO II .. 66
 5.1 SUBESTACIÓN A 2500M.S.N.M. ... 66
 5.1.1 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES 66
 5.2 SUBESTACIÓN A 4000 M.S.N.M. CON DESCARGADORES DE SOBRETENSIONES .. 72
 5.3 SUBESTACIÓN A 5500 M.S.N.M. CON DESCARGADORES DE SOBRETENSIONES .. 78
 5.4 RESUMEN DE LOS RESULTADOS OBTENIDOS PARA EL RANGO II 84

6 DISTANCIAS ELÉCTRICAS .. 85
 6.1 DISTANCIAS MÍNIMAS EN AIRE .. 85
 6.2 DISTANCIAS ELÉCTRICAS MÍNIMAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN ... 88
 6.2.1 SEPARACIÓN DE FASES ... 88
 6.2.2 ANCHO DE BARRAS ... 89
 6.2.3 ANCHO DE CAMPO ... 89
 6.2.4 TEMPLAS SUPERIORES A LO LARGO DEL CAMPO 89
 6.2.5 ESTRUCTURA ADYACENTE A LOS EQUIPOS DE PATIO 90
 6.2.6 ALTURA DE CONEXIONES ... 91
 6.3 DISTANCIAS ADOPTADAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN EN 220 KV .. 93
 6.4 DISTANCIAS ADOPTADAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN EN 550 KV .. 95

7 SELECCIÓN DE PARARRAYOS (DESCARGADORES DE SOBRETENSIÓN) 98
 7.1 DESCARGADORES DE SOBRETENSIÓN 220 KV .. 98
7.1.1 TENSIÓN DE OPERACIÓN CONTINUA (COV) ... 98
7.1.2 TENSIÓN ASIGNADA .. 98
7.1.3 CORRIENTE NOMINAL DE DESCARGA ... 99
7.1.4 CLASE DE DESCARGA DE LÍNEA – ENERGÍA POR MANIOBRA 100
7.1.5 REQUERIMIENTO ENERGÉTICO POR DESCARGAS ATMOSFÉRICAS 100
7.1.6 NIVEL DE PROTECCIÓN AL IMPULSO TIPO MANIOBRA Y RAYO 100
7.2 DESCARGADORES DE SOBRETENSIÓN 500 KV .. 101
7.2.1 TENSIÓN DE OPERACIÓN CONTINUA (COV) 101
7.2.2 TENSIÓN ASIGNADA .. 101
7.2.3 CORRIENTE NOMINAL DE DESCARGA ... 102
7.2.4 CLASE DE DESCARGA DE LÍNEA – ENERGÍA POR MANIOBRA 102
7.2.5 REQUERIMIENTO ENERGÉTICO POR DESCARGAS ATMOSFÉRICAS 103
7.2.6 NIVEL DE PROTECCIÓN AL IMPULSO TIPO MANIOBRA Y RAYO 103
8 CONCLUSIONES Y RECOMENDACIONES .. 104
8.1.1 ALTITUDES HASTA 5500 M.S.N.M. ... 104
8.1.2 ALTITUDES MAYORES A 6000 M.S.N.M. .. 105
8.1.3 CORRECCIÓN PARA LÍNEA DE FUGA POR ALTITUD 107
9 BIBLIOGRAFÍA .. 108

LISTA DE TABLAS

Tabla 1 – Valor de “k” para evaluación de parámetro “g” ... 21
Tabla 2 – Valores de los exponentes “m” para la corrección por densidad del aire y “w” para la corrección por humedad, como función del parámetro “g” ... 22
Tabla 3 – Parámetros Subestación .. 35
Tabla 4 – Criterios recomendados para el cálculo de la coordinación de aislamiento a 220 kV y 500 kV ... 36
Tabla 5 – Resumen de las tensiones soportadas requeridas 2500 m.s.n.m., sin descargadores ... 46
Tabla 6 – Resumen de las tensiones soportadas requeridas 2500 m.s.n.m. con descargadores ... 49
Tabla 7 – Resumen de las tensiones soportadas requeridas 4000 m.s.n.m., sin descargadores ... 53
Tabla 8. Resumen de las tensiones soportadas requeridas 4000 m.s.n.m., con descargadores ... 56
Tabla 9 – Resumen de las tensiones soportadas requeridas 5500 m.s.n.m., sin descargadores
Tabla 10 – Resumen de las tensiones soportadas requeridas 5500 m.s.n.m., con descargadores
Tabla 11 – Resumen de las tensiones soportadas sin descargadores
Tabla 12 – Resumen de las tensiones soportadas con descargadores
Tabla 13 – Resumen de las tensiones soportadas requeridas para el aislamiento externo
Tabla 14 – Resumen de las tensiones soportadas requeridas para el aislamiento interno
Tabla 15 – Resumen de las tensiones soportadas requeridas para el aislamiento externo
Tabla 16 – Resumen de las tensiones soportadas requeridas para el aislamiento interno
Tabla 17 – Resumen de las tensiones soportadas requeridas para el aislamiento externo
Tabla 18 – Resumen de las tensiones soportadas requeridas para el aislamiento interno
Tabla 19 – Resumen de las tensiones soportadas con descargadores
Tabla 20 – Correlación entre el nivel soportado al impulso tipo rayo y las distancias mínimas en el aire
Tabla 21 – Correlación entre el nivel soportado al impulso tipo maniobra y las distancias mínimas fase–tierra en el aire
Tabla 22 – Correlación entre el nivel soportado al impulso tipo maniobra y las distancias mínimas fase-fase en el aire
Tabla 23 – Distancias mínimas 550kV
Tabla 24 – Distancias mínimas 245kV
Tabla 25 – Distancias para el dimensionamiento de la subestación 220 kV 2500 m.s.n.m.
Tabla 26 – Distancias para el dimensionamiento de la subestación 220 kV 4000 m.s.n.m.
Tabla 27 – Distancias para el dimensionamiento de la subestación 220 kV 5500 m.s.n.m.
Tabla 28 – Distancias para el dimensionamiento de la subestación 550 kV 2500 m.s.n.m.
Tabla 29 – Distancias para el dimensionamiento de la subestación 550 kV 4000 m.s.n.m.
Tabla 30 – Corriente nominal de descarga según IEC 60099-4
Tabla 31 – Selección de clase de descarga de línea por nivel de tensión IEC 60099-5
Tabla 32 – Corriente nominal de descarga según IEC 60099-4
Tabla 33 – Selección de clase de descarga de línea por nivel de tensión IEC 60099-5. 103

LISTA DE FIGURAS

Figura 1 – Relación entre el exponente “m” y la tensión soportada a impulsos tipo maniobra, para coordinación de aislamientos .. 18
Figura 2 – Valor del parámetro “k” en función de la relación entre la humedad absoluta h y la densidad relativa del aire δ ... 22
Figura 3 – Valores del exponente “m” para la corrección por densidad del aire como función del parámetro “g” .. 23
Figura 4 – Valores del exponente “w” para la corrección por humedad en función del parámetro “g” .. 23
Figura 5 – Factores de corrección por altitud, según las normas IEC 60071-2 e IEC 60060-1 ... 24
Figura 6 – Corrección de la línea de fuga vs. Altitud, para diferentes grados de contaminación ambiental, de acuerdo con la recomendación CIGRE del Boletín Técnico N° 158 del 2000 ... 26
Figura 7 – Paso 1, determinación de las sobretensiones representativas (Urp) 39
Figura 8 – Paso 2, determinación de las tensiones de soportabilidad para coordinación (Ucw) ... 40
Figura 9 – Paso 3, determinación de las tensiones de soportabilidad requeridas (Urw) ... 42
Figura 10 – Paso 4, determinación de las tensiones de soportabilidad normalizadas a rango I ... 43
Figura 11 – Paso 4, determinación de las tensiones de soportabilidad normalizadas a rango II ... 43
Figura 12 – Rango del movimiento de conductores flexibles durante cortocircuitos 89
Figura 13 – Ancho de campo determinado por las templas superiores 90
Figura 14 – Ancho de campo determinado por la estructura adyacente a los equipos 91
Figura 15 – Niveles de conexión de equipos y barrajes ... 92
Figura 16 – Curvas de soportabilidad a frecuencia industrial para descargadores de sobretensiones ... 99
Figura 17 – Curvas de soportabilidad a frecuencia industrial para descargadores de sobretensiones ... 101
Figura 18 – Ley de Pashen para el aire, el nitrógeno y el SF$_6$ [6] 106
Figura 19 – Ángulo de contacto en función de la presión atmosférica, después de 600 minutos de exposición a la corona en condiciones de baja presión [7]. 107
ALTURA SOBRE EL NIVEL DEL MAR (H.S.N.M): Distancia vertical a un origen determinado, la cual considera como nivel cero el nivel del mar y es utilizada en geografía para referenciar un punto cualquiera de la Tierra.

COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES ELÉCTRICAS: Consiste en definir la soportabilidad que debe tener el aislamiento de los equipos de patio de una subestación, con el fin de que ésta tenga un desempeño adecuado frente a las sobretensiones que se pueden presentar (frecuencia industrial, sobretensiones por maniobra y descargas atmosféricas).

CORRIENTE DE DESCARGA DE UN PARARRAYOS: La corriente de impulso que fluye a través del pararrayos después de presentarse la sobretensión.

CORRIENTE NOMINAL DE DESCARGA DE UN PARARRAYOS: El valor pico de corriente de descarga, que tiene una forma 8 x 20 µs, el cual es usado para clasificar un pararrayos.

FACTOR DE CORRECCIÓN POR ALTITU (K_a): Factor a ser aplicado a la tensión no disruptiva de coordinación para dar cuenta de la diferencia en rigidez dieléctrica entre la presión media que corresponde a la altitud en el servicio y la presión de referencia estándar.

FACTOR DE PROTECCIÓN DE UN PARARRAYOS: Es la relación entre el nivel de aislamiento del equipo y el nivel de protección del pararrayos.

FACTORES DE SEGURIDAD: Son la relación entre las tensiones soportadas con impulsos tipo maniobra o atmosféricas y las tensiones máximas encontradas.

IMPULSO: Una onda unidireccional de tensión o corriente que sin una oscilación apreciable se eleva rápidamente a un valor máximo y cae, usualmente menos rápido, a cero.

IMPULSO TIPO ATMOSFÉRICO: Un impulso de tensión que tiene una forma designada de 1,2 x 50 µs.
IMPULSO TIPO MANIOBRA: Un impulso de tensión que tiene un frente de 30 µs.

NIVEL DE AISLAMIENTO NOMINAL: Para equipo con tensión máxima de diseño no mayor a 245 kV el nivel de aislamiento nominal es la tensión soportada con impulso tipo atmosférico y la tensión soportada a frecuencia industrial. Para sistemas con tensiones de 254 kV y mayores el nivel de aislamiento es dado por la tensión soportada al impulso de maniobra y por la tensión soportada al impulso atmosférico.

NIVEL DE PROTECCIÓN DE LOS PARARRAYOS: Es el valor máximo de tensión pico que no se puede exceder en los terminales de un pararrayos cuando sobretensiones o impulsos tipo maniobra o atmosféricos, de forma y valores nominales, son aplicados bajo condiciones específicas.

DISPOSITIVO LIMITADOR DE SOBRETENSIÓN: Dispositivo que limita los valores pico de las sobretensiones, su duración o ambos. Se clasifican como dispositivos preventivos (por ejemplo, una resistencia de pre-inserción), o como dispositivos de protección (por ejemplo, un descargador de sobretensiones)

SOBRETENSIÓN: Cualquier tensión dependiente del tiempo, entre fase y tierra o entre fases cuyo valor pico o valores excedan la soportabilidad máxima de aislamiento del equipo.

SOBRETENSIÓN DE MANIOBRA: Sobretensión fase-tierra o fase-fase en un lugar dado del sistema eléctrico que resulte de una operación de maniobra causada por operación de interruptores, cierre o apertura de equipos de compensación, entre otros.

SOBRETENSIÓN DEBIDA A DESCARGA ATMOSFÉRICA: Una sobretensión fase-tierra o fase-fase en un lugar dado del sistema que resulte de una descarga atmosférica.

SOBRETENSIÓN TEMPORAL: Una tensión oscilatoria fase-tierra o fase-fase en un lugar dado del sistema eléctrico que resulta generalmente de una falla, rechazos de carga, entre otros.

TENSIÓN MÁXIMA DE DISEÑO (Um): Es la tensión eficaz más alta para la cual el equipo está diseñado con respecto a su aislamiento.
TENSIÓN MÁXIMA DEL SISTEMA: Es la máxima tensión eficaz fase – fase que se puede presentar durante operación normal en cualquier momento y en cualquier punto del sistema.

TENSIÓN NOMINAL DEL SISTEMA (Un): Es la tensión eficaz fase-fase para la cual el sistema es diseñado.

TENSIÓN NOMINAL DEL PARARRAYOS: El valor máximo de tensión a frecuencia industrial entre los terminales del pararrayos para el cual está diseñado para operar correctamente.

TENSIÓN SOPORTABILIDAD AL IMPULSO TIPO ATMOSFÉRICO (BIL O LIWL): Es el valor pico de tensión soportada al impulso atmosférico el cual caracteriza el aislamiento del equipo en lo que se refiere a pruebas. Esta tensión se especifica solamente en seco, ya que la soportabilidad de los equipos a estos impulsos, de manera muy general, es poco afectada por la lluvia.

TENSIÓN SOPORTADA A FRECUENCIA INDUSTRIAL: Es el valor de tensión eficaz a frecuencia industrial (60 Hz) que el equipo debe soportar durante pruebas efectuadas bajo condiciones específicas y por un tiempo que usualmente no sobrepasa 1 min. Esta tensión deberá ser especificada entre las partes energizadas y tierra y entre terminales del equipo.

TENSIÓN RESIDUAL DE UN PARARRAYOS: La tensión que aparece entre los terminales de un pararrayos cuando circula la corriente de descarga.

TENSIÓN SOPORTADA AL IMPULSO TIPO MANIOBRA (BSL, SIWL): Es el valor pico de tensión soportada al impulso tipo maniobra el cual caracteriza el aislamiento del equipo en lo que se refiere a pruebas. Esta tensión debe ser especificada en seco y o bajo lluvia, ya que la soportabilidad de los equipos al impulso de maniobra tiende a reducirse bajo una lluvia de elevada precipitación. Normalmente la condición en seco se prueba para impulsos de polaridad positiva y la condición bajo lluvia para impulsos de polaridad negativa.
SIGLAS

ATP: (Alternative Transients Program). Programa de análisis de fenómenos transitorios.

BIL: (Basic Impulse Insulation Level). Nivel básico de aislamiento al impulso.

BSL: (Basic Switching Level). Nivel básico de aislamiento al impulso de maniobra.

CFO: (Critical Flashover Overvoltage). Voltaje crítico de flameo.

EPRI: (Electric Power Research Institute). Instituto de Investigación de Potencia Eléctrica.

GFD, Ng: (Ground Flash Density). Densidad de descargas a tierra.

IEEE: (Institute of Electrical and Electronics Engineers). Instituto de Ingenieros Eléctricos y Electrónicos.

T: Nivel ceráunico.
RESUMEN

En el presente documento se presenta una evaluación de la coordinación de aislamiento de subestación de 220 kV y 500 kV que operan a altitudes entre 2.500 m.s.n.m y 5500 m.s.n.m teniendo en cuenta las normativas IEC. Como referencia para el desarrollo de este trabajo, se considerará la geografía peruana, en donde actualmente se están desarrollando proyectos de infraestructura eléctrica en alturas superiores a los 2.500 m.s.n.m. y por lo cual se ha venido observando la influencia de la altura en los diseños de subestaciones eléctricas.

Inicialmente se realizó la recolección y estudios de varios artículos técnicos que permitieran establecer una panorámica general de la metodología empleada actualmente para la corrección por altura en la coordinación de aislamiento para subestaciones aisladas en aire.

Utilizando la metodología para la coordinación de aislamiento basada en la norma IEC, se aplicó para un tipo de subestación eléctrica y a varios niveles de altura sobre el nivel del mar entre 2.500 y 5.500 m.s.n.m. para observar la influencia de la altura en el comportamiento del aislamiento en el aire y las dimensiones de esta subestación.

Palabras clave: Aislamiento; Sobretensión; Distancias Eléctricas; Tensión Máxima de Operación; Factor de Corrección por Altura.
INTRODUCCIÓN

Cuando se realizan estudios de coordinación de aislamiento para subestaciones eléctricas de alta y extra alta tensión en sitios con alturas superiores a 2500 m.s.n.m, se presentan varios fenómenos entre los cuales se destacan el acortamiento de la vida útil y sobrecostos en el dimensionamiento de equipos.

La Norma IEC 60060-1 Técnicas de ensayo de alta tensión, en su versión del año 2010, establece las condiciones atmosféricas de ensayo de referencia y los factores de corrección por densidad el aire y humedad para los resultados de ensayos realizados a condiciones atmosféricas diferentes a las condiciones atmosféricas de referencia, teniendo en cuenta los últimos hallazgos en cuanto cambios en los voltajes soportados por los aislamientos en condiciones de altitudes extremas. La norma de coordinación de aislamiento (IEC 60071) y la norma de selección de aisladores en condiciones de polución (IEC 60815), así como las demás normas de equipos (IEC 60076, IEC 62271, etc.) aún no han incorporado las correcciones por altitud y humedad como las prescribe la norma IEC 60060 de 2010, aunque las versiones anteriores de esta última norma fueron el fundamento de las correcciones ambientales de las demás normas.

En este documento se describe el procedimiento recomendado para la coordinación de aislamientos para instalaciones de 220 kV y 500 kV, para instalaciones ubicadas entre 2500 m.s.n.m. y 5500 m.s.n.m. Los cálculos fueron realizados siguiendo el procedimiento de la norma IEC 60071-2.

Las normas IEEE Std 1313.1, IEEE Std 1313.2 e IEEE Std 4 son las normas de coordinación de aislamiento y pruebas de alta tensión utilizadas en los Estados Unidos de Norteamérica. Aunque en el pasado han existido diferencias menores entre la práctica norteamericana y la práctica internacional, el proceso de armonización en la década pasada ha unificado los criterios entre las prácticas norteamericanas y las prácticas IEC. Las normas IEEE vigentes contienen algunos detalles diferentes en los procedimientos de coordinación de aislamiento, pero para los voltajes soportados y las correcciones ambientales se han unificado con las prácticas IEC.
CONSIDERACIONES GENERALES

✓ DIAGRAMA CONCEPTUAL

Para el desarrollo de este trabajo de grado, se realizó un análisis riguroso de los diferentes aspectos más relevantes que se deben tener en cuenta para presentar una nueva propuesta de evaluación de coordinación de aislamiento de subestaciones de alta tensión en altitudes elevadas (mayores a 1000 m.s.n.m).

En la Figura 1 se presenta un diagrama conceptual para el desarrollo de este trabajo de grado, el cual se fundamenta en tres aspectos fundamentales:
1. Consulta bibliográfica.
2. Desempeño de aislamiento.
3. Criterios para la coordinación de aislamiento.
1 CONSULTA BIBLIOGRÁFICA

Se realizó la recolección y estudios de varios artículos técnicos que permitieran establecer una panorámica general de la metodología empleada actualmente para la corrección por altura en la coordinación de aislamiento para subestaciones aisladas en aire.

En esta sección se hace una breve sinopsis y análisis de las referencias bibliográficas consultadas más importantes y relevantes para el desarrollo de este trabajo de grado.

1.1 CORRECCIÓN POR ALTITUD DE LA NORMA IEC 60071-2, DE 1996

La norma IEC 60071-2 establece que las condiciones para la corrección por altitud, establecidas en la norma IEC 60060-1, están basadas en medidas realizadas hasta altitudes de 2000 m.s.n.m. En esta misma norma se establecen las siguientes recomendaciones adicionales:

a) Para distancias en aire y aisladores limpios, la corrección debe realizarse para los voltajes soportados ante sobretensiones originadas por maniobras y por impulsos atmosféricos. Para los aisladores que requieren una prueba de polución, también es necesaria una corrección para el voltaje de larga duración soportado a la frecuencia industrial.

b) Para la aplicación del factor de corrección atmosférico, se puede asumir que los efectos de la temperatura ambiente y la humedad tienden a cancelarse entre sí. Por lo tanto, para los propósitos de la coordinación de aislamiento, solo se debe tener en cuenta la presión atmosférica correspondiente a la altitud del sitio tanto para aisladores secos como húmedos. La norma anota que esta suposición puede considerarse correcta para formas de aisladores para los cuales la lluvia no reduce de manera sustancial el voltaje soportado.

La norma IEC 60071-1 recomienda realizar la siguiente corrección:

\[K_a = e^{m\left(\frac{H}{815}\right)} \]

(1)

Dónde:
Kₐ: Factor de corrección pro altitud
H: Altitud sobre el nivel del mar del sitio, en metros
m: Coeficiente exponencial de corrección

El valor de m depende del tipo y duración del voltaje considerado siendo:

\[
m = \begin{cases}
1.0, & \text{impulsos tipo \textit{rayo}} \\
1.0, & \text{para impulsos de \textit{maniobra}} \\
1.0, & \text{para voltajes de corta duración a \textit{frecuencia industrial}}
\end{cases}
\]

El valor recomendado por la norma en el caso de aisladores contaminados es tentativo. Para pruebas de larga duración, y, si se requiere, para voltajes soportados de corta duración a la frecuencia industrial, m puede ser tan bajo como 0,5 para aisladores con perfil normal y tan alto como 0,8 para aisladores con perfil antiniebla.

Figura 1 – Relación entre el exponente “m” y la tensión soportada a impulsos tipo \textit{maniobra}, para coordinación de aislamientos

Dónde:
a: Aislamiento fase – tierra
b: Aislamiento longitudinal
c: Aislamiento fase – fase
d: Espaciamiento varilla – plano (espaciamiento de referencia)
m: Exponente para corrección por altitud
Uₜ: Tensión soportable para coordinación
1.2 CORRECCIÓN POR ALTITUD SEGÚN LA NORMA IEC 60060-1, DE 2010

Esta norma define los términos utilizados en los procesos de ensayos de alta tensión, y los requisitos que deben cumplir dichos ensayos.

La norma IEC 60060-1 se aplica a ensayos dielécticos de tensión en corriente continua, ensayos dielécticos de tensión en corriente alterna, ensayos dielécticos de tensión a impulso y ensayos dielécticos combinación de los anteriores, cuya tensión máxima de material \(U_m \) sea superior a 1 kV.

La principal modificación que introduce la edición del 2010 de la norma, en relación con la corrección por diferencias en las condiciones atmosféricas es un cambio sustancial en el procedimiento para determinar el factor de corrección por altitud a los resultados de los ensayos realizados.

Las condiciones normalizadas de prueba, definidas por la norma son:

- **Temperatura** \((t_o) \) 20 °C
- **Presión absoluta** \((p_o) \) 101,3 kPa
- **Humedad absoluta** \((h_o) \): 11 g/m3

La tensión corregida para las condiciones normalizadas de prueba está dada por la ecuación

\[
U_o = \frac{U_p}{K_t}
\]

(3)

En dónde:

- \(U_o \): Tensión de descarga disruptiva a condiciones normalizadas de prueba
- \(U_p \): Tensión de descarga disruptiva a las condiciones reales de prueba
- \(K_t \): Factor de corrección atmosférico

\[
K_t = k_1 \cdot k_2
\]

(4)
En dónde:

\(k_1 \): Factor de corrección por densidad del aire

\(k_2 \): Factor de corrección por humedad

\[k_1 = \delta^m \] (5)

En dónde:

\(\delta \): Densidad relativa del aire

\(m \): Exponente variable, dependiendo de condiciones

\[\delta = \frac{p_p}{p_o} \cdot \frac{273 + t_o}{273 + t_p} \] (6)

En dónde:

\(p_p \): Presión a las condiciones reales de prueba (kPa)

\(p_o \): Presión a condiciones normalizadas de prueba (101,3 kPa)

\(t_o \): Temperatura a condiciones normalizadas de prueba (20 °C)

\(t_p \): Temperatura a las condiciones reales de prueba (°C)

El valor \(k_2 \) está definido por la ecuación

\[k_2 = k^w \] (7)

En dónde:

\(k \): Parámetro adimensional, dependiente del tipo de ensayo

\(w \): Exponente de corrección por humedad

Al contrario de la norma IEC 60071-2, la norma IEC 60060-1 establece un procedimiento para definir los valores aplicables de “m” y “w”.

En la Figura 3 se indican los coeficientes de “m” para distintos valores del parámetro “g”, el cual está definido por:
\[g = \frac{U_{50}}{500 \cdot L \cdot \delta \cdot k} \]

(8)

En dónde:

- \(U_{50} \): Valor de cresta en kV de la tensión disruptiva con 50% de probabilidad de ocurrencia a las condiciones atmosféricas reales (1,1 \(U_o \), si no se dispone de \(U_{50} \))

- \(L \): Longitud del camino de descarga, en metros

- \(\delta \): Densidad relativa del aire

- \(k \): parámetro adimensional definido de la siguiente forma, en función del parámetro \(g \):

<table>
<thead>
<tr>
<th>TIPO DE ONDA</th>
<th>FÓRMULA</th>
<th>RANGO APLICABLE DE “g”</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>[k = 1 + 0,014 \times \left(\frac{h}{\delta} - 11 \right) - 0,00022 \times \left(\frac{h}{\delta} - 11 \right)^2]</td>
<td>para 1 g/m³ < (h/\delta) < 15 g/m³</td>
</tr>
<tr>
<td>AC</td>
<td>[k = 1 + 0,012 \times \left(\frac{h}{\delta} - 11 \right)]</td>
<td>para 1 g/m³ < (h/\delta) < 15 g/m³</td>
</tr>
<tr>
<td>IMPULSO</td>
<td>[k = 1 + 0,010 \times \left(\frac{h}{\delta} - 11 \right)]</td>
<td>para 1 g/m³ < (h/\delta) < 20 g/m³</td>
</tr>
</tbody>
</table>

Se debe tener en cuenta, y así lo anota la norma, que se trata de una ecuación con incógnitas implícitas, por lo cual hay que aplicar un método de aproximaciones sucesivas para hallar el valor de “g” aplicable.
Figura 2 – Valor del parámetro “k” en función de la relación entre la humedad absoluta h y la densidad relativa del aire δ

Tabla 2 – Valores de los exponentes “m” para la corrección por densidad del aire y “w” para la corrección por humedad, como función del parámetro “g”

<table>
<thead>
<tr>
<th>g</th>
<th>m</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0,2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,2 a 1,0</td>
<td>$g(g-0,2)/0,8$</td>
<td>$g(g-0,2)/0,8$</td>
</tr>
<tr>
<td>1,0 a 1,2</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>1,2 a 2,0</td>
<td>1,0</td>
<td>$(2,2-g)(2,0-g)/0,8$</td>
</tr>
<tr>
<td>>2,0</td>
<td>1,0</td>
<td>0</td>
</tr>
</tbody>
</table>

La corrección por humedad no aplica a voltajes U_m inferiores a 72,5 kV ni a distancias de aislamiento inferiores a 0,5, m.
Figura 3 – Valores del exponente “m” para la corrección por densidad del aire como función del parámetro “g”

En la Figura 4 se muestran los valores del exponente “w” en función de parámetro “g”.

Figura 4 – Valores del exponente “w” para la corrección por humedad en función del parámetro “g”

La humedad absoluta, se calcula a partir de la humedad relativa, con la siguiente ecuación
En dónde:

- **h**: Humedad absoluta, en g/m3
- **R**: Humedad relativa, en porcentaje
- **t**: Temperatura ambiente, en ºC

En la Figura 5 se comparan los factores de corrección según la norma IEC 60071-2 e IEC 60060-1 vigentes.

![Figura 5 – Factores de corrección por altitud, según las normas IEC 60071-2 e IEC 60060-1](image_url)

En esta gráfica se puede observar que los factores de corrección propuestos por la norma IEC 60060-1 son menos exigentes que los utilizados hasta ahora en la norma IEC 60071-2, para coordinación de aislamientos. Esto significa que, por lo menos hasta los 5500 m.s.n.m. la corrección por altitud realizada para los voltajes de coordinación no solo son suficientes sino que tal vez son muy conservadores, y se pueden disminuir las especificaciones aplicando los factores de corrección que propone la norma IEC 60060-1.
Los factores de corrección propuestos por la norma IEC 60060-1 están más en concordancia con los resultados obtenidos en numerosos experimentos e investigaciones realizadas en la década pasada, especialmente en relación con la construcción de instalaciones en altitud que han adelantado las empresas chinas en el Tibet.

1.3 CIGRE BROCHURE N° 158-2000 - POLLUTED INSULATORS: A REVIEW OF CURRENT KNOWLEDGE

Los resultados de los experimentos llevados a cabo para examinar los efectos de la contaminación en condiciones de baja presión apuntan a que la línea de fuga puede corregirse por efecto de la altitud de forma análoga a las distancias de arco.

La referencia [1] propone la siguiente corrección:

\[L = L_0 \delta^m \] \hspace{1cm} (10)

Dónde:

L: Línea de fuga requerida a la altitud de instalación

Lo: Línea de fuga aplicable hasta 1000 m.s.n.m., para la condición de polución en el sitio

\(\delta \): Densidad del aire a la altitud de instalación, calculado de igual forma que en IEC 60060-1

m: Coeficiente exponencial

\[m = \begin{cases}
0,5, & AC \\
0,35, & DC
\end{cases} \] \hspace{1cm} (11)

En la práctica, significa que se deben calcular las distancias de arco y la línea de fuga mínima para unas determinadas condiciones de sobre voltaje que debe soportar un aislador, y luego seleccionar el aislador que cumple ambos valores. En algunos casos la selección será realizada por distancia de arco y en otros por línea de fuga.

Este procedimiento mantiene la misma incertidumbre en cuanto a la selección correcta del valor del parámetro “m”, el cual es definitivo en el grado de corrección que se aplica. Los estudios realizados proponen valores diferentes y bastantes disimiles y por lo tanto, discutibles. En ausencia de acuerdo es aconsejable utilizar los valores recomendados por
el informe N° 158 del CIGRE, que de una u otra forma representan el consenso más aceptado.

En la Figura 6 se grafica las líneas de fuga corregida por altitud de acuerdo con el Boletín Técnico CIGRE N° 158 de 2000, para cada uno de los grados de polución tipificados en la Norma IEC 60815-2 contra la altitud.

Figura 6 – Corrección de la línea de fuga vs. Altitud, para diferentes grados de contaminación ambiental, de acuerdo con la recomendación CIGRE del Boletín Técnico N° 158 del 2000

1.4 IEC 60071-1 -2006 – COORDINACIÓN DE AISLAMIENTO – PARTE 1: DEFINICIONES, PRINCIPIOS Y REGLAS

Esta parte de la norma IEC 60071 aplica a sistemas trifásicos de corriente alterna, con voltajes superiores a 1 kV. Especifica el procedimiento para la selección de los voltajes soportados, entre fase y tierra, entre fases y entre las fases correspondientes de dos partes del sistema que deben estar aisladas entre sí. La norma enumera los voltajes soportados normalizados entre los cuales se debe soportar la tensión.
Aunque los principios de la norma aplican al aislamiento de líneas de transmisión, los valores de voltajes soportados pueden ser diferentes de los voltajes soportados normalizados.

Las condiciones ambientales normalizadas son las mismas de la norma IEC 60060. La norma IEC 60071-1 define el factor de corrección K_a, para la variación de altitud entre el sitio de instalación y los parámetros de referencia listados para el equipo, pero no indica su procedimiento de cálculo, el cual está incluido en la norma IEC 60071-2.

1.5 IEC 60071-2 -1996 – COORDINACIÓN DE AISLAMIENTO – PARTE 2: GUÍA DE APLICACIÓN

En esta norma se indica que el valor de corrección por altitud para los voltajes que deben soportar los equipos está dado por la ecuación

$$K_a = e^{m\left(\frac{H}{8150}\right)} \quad (12)$$

Donde

- K_a: Factor de corrección por altitud para voltajes soportados por el aislamiento
- m: Coeficiente,
- H: Altitud de la instalación, en metros sobre el nivel del mar

El valor de “m” depende del tipo de forma de onda considerada: $m=1$, para voltajes soportados a impulsos tipo rayo y voltajes soportados a frecuencia industrial de corta duración para distancias en aire y aisladores limpios, y el valor de “m” debe ser tomado de la Figura 1 para voltajes soportados a impulsos tipo maniobra.

La norma indica que en el caso de las sobretensiones, los efectos de la temperatura ambiente y de la humedad se tienden a cancelar entre sí, por lo cual solo se considera el cambio en la presión. La norma también indica que para las distancias en aire y para aisladores limpios, se debe realizar corrección a los voltajes utilizados para la coordinación de los voltajes soportados al impulso y a la maniobra. Para los aisladores que requieran una prueba de polución, es necesario también corregir el voltaje soportado a la frecuencia industrial de larga duración.
Así mismo, la norma establece que la corrección al voltaje soportado de corta duración a la frecuencia industrial para aisladores con polución es tentativa y puede ser tan baja como 0,5 para aisladores de perfil normal o tan alta como 0,8 para aisladores tipo antiniebla.

1.6 IEC 60071-4-2004 – COORDINACIÓN DE AISLAMIENTO – PARTE 4: GUÍA DE CÁLCULO PARA LA COORDINACIÓN DE AISLAMIENTO Y MODELAMIENTO DE REDES ELÉCTRICAS

Este informe técnico brinda una guía para realizar estudios de coordinación de aislamiento para el modelado numérico de sistemas eléctricos y la realización de métodos determinísticos y probabilísticos adaptados para el uso de programas numéricos.

El informe no es relevante para la corrección por altitud, pero es importante pues plantea ejemplos de referencia para evaluar procedimientos de cálculo utilizando programas numéricos.

1.7 IEEE STD 1313.1 1996(R2002) - IEEE ESTÁNDAR PARA LA COORDINACIÓN DE AISLAMIENTO –DEFINICIONES, PRINCIPIOS Y REGLAS

Esta norma es la versión norteamericana de la norma IEC 60071-1.

La norma IEEE 1313.1, para las correcciones por altitud, refiere a la Norma IEEE Std 4. Además, para la coordinación de aislamiento, se asumen condiciones húmedas y solamente se realiza corrección por cambio de la densidad relativa del aire por el cambio de altura, al igual que la norma IEC 60071.

1.8 IEEE STD 1313.2 1999 - IEEE GUÍA PARA LA APLICACIÓN DE LA COORDINACIÓN DE AISLAMIENTO

Esta norma es una guía técnica, con ejemplos, para la aplicación de la coordinación de aislamiento de acuerdo al procedimiento establecido en la norma IEEE 1313.1.

No hace referencia específica a correcciones por altitud.
1.9 IEEE STD 4 2013 - IEEE ESTÁNDAR PARA LAS TÉCNICAS DE ALTA TENSIÓN DE PRUEBA

La Sección 13 de esta norma está dedicada a explicar los factores de corrección por altitud que se deben aplicar a los voltajes soportados por los equipos y sistemas durante pruebas de disrupción eléctrica para convertir los resultados obtenidos a condiciones reales, a los resultados equivalentes a las condiciones normalizadas. Como condiciones normalizadas establece las mismas condiciones de la norma IEC 60060-1.

La norma contempla dos métodos de corrección:

- El Método 1, idéntico al de la norma IEC 60060-1, del año 2010, recomendado para equipo nuevo, y reconocido como de aceptación internacional.

- El Método 2, conservado en la norma por razones históricas, para referirse a medidas de equipos viejos.

El Método 1 está descrito en el resumen de la norma IEC 60060-1, incluido más arriba.

El Método 2 no se describe, por ser un método no aplicable a futuro.

1.10 FACTOR DE CORRECCIÓN ATMOSFÉRICA PARA LA TENSIÓN DE RUPTURA DE IMPULSO [2]

Resumen:

Para el diseño de sistemas de transmisión de alto voltaje es importante tener datos confiables concernientes al efecto de la densidad del aire y la humedad. Esto también es útil para el modelado de descargas y rayos en regiones montañosas. Este artículo describe una investigación sistemática de laboratorio de los efectos combinados de la humedad y la densidad del gas en la rigidez dieléctrica de un espacio varilla-plano de 0,2 m que es sometido a impulsos de polaridad positiva, utilizando una cámara de pruebas para reproducir las condiciones encontradas comúnmente en tales regiones. Los resultados muestran que hay desviaciones apreciables entre los factores de corrección medidos para la humedad y la densidad del aire, frente a aquellos indicados en las normas IEC de 1973 y 1989 cuando se extrapolan a una densidad de aire baja. El artículo propone la adopción de un procedimiento de
corrección radicalmente diferente, fundamentado en la influencia de la densidad y la humedad en la propagación del líder, e incluyendo el efecto de los gradientes altos en la región anódica.

Los autores del artículo proponen una ecuación para hacer las correcciones al voltaje disruptivo de 50% de probabilidad de ocurrencia, teniendo en cuenta como variables independientes, la densidad relativa del aire δ y la humedad absoluta el aire H. Los diferentes componentes de la ecuación son justificados físicamente. La ecuación propuesta es

$$U_{50}(\delta, H) = U_0 - E \left[(\delta - 1) + \frac{\kappa}{100} \cdot (H - 11) \right] \cdot D$$

(13)

Dónde:

- U_{50}: Voltaje disruptivo con 50% de probabilidad de ocurrencia
- U_0: Voltaje disruptivo a condiciones atmosféricas normalizadas
- E: Coeficiente, 500 kV/m
- κ: Coeficiente, 1
- D: Distancia de arco
- δ: Densidad relativa del aire
- H: Humedad absoluta del aire

a, b, c: Coeficientes calculados empíricamente a partir de resultados de pruebas

Esta ecuación sería aplicable a distancias de arco tipo varilla-plano (D) inferiores a 0,5 m.

1.11 LAS INCERTIDUMBRES EN LA APLICACIÓN DE CORRECCIONES ATMOSFÉRICAS Y ALTITUD RECOMENDADAS EN LOS ESTÁNDARES IEC [3]

Resumen:

La rigidez dieléctrica del aire es influenciada por la densidad del aire.
(temperatura y presión) y la humedad. Se deben tener en cuenta estos efectos cuando se diseña o prueban aislamientos externos. Como las condiciones de instalación y las condiciones de pruebas en laboratorio pueden ser diferentes, usualmente es necesario hacer correcciones para las condiciones atmosféricas diferentes. Los ingenieros en las fábricas, laboratorios de prueba de alta tensión y en las empresas de energía siguen los estándares IEC relevantes. Sin embargo, las condiciones atmosféricas influencian la rigidez dieléctrica de una forma compleja. Las soluciones simplificadas y generalizadas pueden causar vacilaciones, sobre todo cuando diferentes normas brindan recomendaciones diferentes sin suficiente aclaración. La intención del artículo es presentar un bosquejo de estos temas que pueden conducir a incertidumbres en la aplicación correcta de varias normas IEC, en relación con las correcciones atmosféricas. Además, se someten a discusión varias proposiciones.

El artículo plantea que si se examinan diferentes normas, se encontrarán procedimientos diferentes para hacer la corrección atmosférica a los parámetros de desempeño de los aislamientos. El artículo explica el porqué de estas diferencias y plantea recomendaciones para aplicarlas correctamente.

Los estándares revisados son:

- IEC 60060-1, de 1998 – Ensayos de alta tensión
- IEC 60071-2, de 1996 – Coordinación de aislamiento- Definiciones, principios y reglas
- IEC 62271-1, de 2007 – Coordinación de aislamiento- Guía de aplicación
- IEC 60076-1, de 2000 – Transformadores de potencia - General
- IEC 60076-3, de 2000 – Transformadores de potencia – Niveles de aislamiento y distancias eléctricas externas
- IEC 60137, de 2008 – Bujes para equipos de alta tensión
- IEC 60168, de 2001- Aisladores poste

En la discusión final, el aspecto más interesante es la recomendación para adoptar el valor de “m” en las ecuaciones de corrección por altura. A juicio de los autores, el valor de m =1 es conservador, en el caso de voltajes de corriente alterna. Para distancias de arco de menos de 2 metros, se justifica el uso de m=1. Para distancias mayores, recomiendan
utilizar el mismo valor de “m” para impulsos tipo rayo que para impulsos de maniobra. El uso de m=0,75 para todas las sobretensiones de maniobra es conservador; se puede utilizar para EHV, pero para UHV es preferible utilizar los valores recomendados por la norma.

Los autores recomiendan utilizar el factor kc, calculado como

\[k_c = \delta^{-m} \] \hspace{2cm} (14)

Donde
kc: Corrección de la distancia de fuga
δ: Densidad relativa del aire
m: Exponente, m=0,5 para CA y m=0,35 para CD.

De esta forma, la distancia de fuga corregida por altitud es

\[L = \delta^{-m} \cdot L_o \] \hspace{2cm} (15)

Donde
L: Distancia de fuga, corregida por altitud
Lo: Distancia de fuga, a nivel del mar

1.12 OPTIMIZACIÓN DE AISLAMIENTO EN UN PROYECTO E.T. 220 KV A ELEVADAS ALTITUDES [4]

Este trabajo presenta un criterio de localización de descargadores adicionales en lugares adecuados de la subestación, lo que conduciría a valores más bajos de BIL y en consecuencia a adoptar un equipamiento con niveles menores de aislamiento dentro de los valores indicados en norma.

De esa forma, con esta optimización de diseño se incrementaría la confiabilidad de la subestación en lo que concierne a su comportamiento frente a las sobretensiones ocasionadas por descargas atmosféricas.

Los autores parten de la norma IEC-60071-2, y desarrollan la siguiente ecuación con el objeto de despejar el parámetro L.
\[U_{cw} = U_{pl} + \left[\frac{A}{n} \right] \times \left(\frac{L}{L_{sp} + L_a} \right) \] \hspace{1cm} (16)

Aplicando los factores de seguridad \(K_s \) y \(K_a \) a \(U_{cw} \) y despejando \(L \), se obtiene

\[L = \left[\frac{U_{cw}}{K_s K_a} - U_{pl} \right] \times \left[\frac{n}{A} \right] \times \left(L_{sp} + L_a \right) \] \hspace{1cm} (17)

Convenciones,

\begin{align*}
U_{cw} & \quad \text{Tensión soportable de coordinación al impulso atmosférico, kV.} \\
U_{pl} & \quad \text{Nivel de protección de la onda tipo rayo del pararrayos (kV).} \\
A & \quad \text{Factor dado en la Tabla F.2 de la norma IEC 60071-2, describe el comportamiento de la línea ante las descargas eléctricas atmosféricas, kV} \\
n & \quad \text{Mínimo número de líneas conectadas a la subestación.} \\
L & \quad \text{Separación equivalente entre el descargador de sobretensiones más cercano y el equipo en consideración, m.} \\
L_{sp} & \quad \text{Longitud del vano de las líneas, m.} \\
L_a & \quad \text{Sección de línea aérea calculada a partir de una tasa de salida igual a una tasa de falla aceptable, } R_a.
\end{align*}

Con este desarrollo para condiciones de una elevada altitud (por encima de los 1000 m.s.n.m), se intenta a través de un adecuado posicionamiento de los pararrayos, lograr un nivel de aislamiento externo a sobretensiones atmosféricas que se encuentre normalizado, logrando reducir el sobredimensionamiento de los equipos.

1.13 CONCLUSIONES DE LA REVISIÓN BIBLIOGRÁFICA SOBRE COORDINACIÓN DE AISLAMIENTO

Los métodos recomendados actualmente por las normas IEC 60071 o IEEE 1313 para realizar la coordinación de aislamiento son aplicables a las instalaciones en altitud, aunque producen resultados muy conservadores.
Si se desean diseños menos exigentes, se puede recurrir al procedimiento recomendado en la norma IEC 60060-1 del 2010 para la corrección por altitud, aunque este método no ha sido incorporado aún en la normatividad de coordinación de aislamiento.

La principal diferencia del método de corrección por altitud de la norma IEC 60060-1 frente a los métodos de las normas de coordinación de aislamiento es el método de cálculo de las variables “m” y “w”, los cuales son más refinados y en consonancia con los hallazgos de experimentos en altitudes cercanas a los valores que sobrepasen los 1000 m.s.n.m.

Como alternativa se presenta el trabajo de optimización del nivel de aislamiento [4], en donde instalando de forma adecuada los pararrayos se podría reducir los niveles de aislamiento, con el objeto de minimizar los efectos de la altura en los equipos de una subestación, este enfoque requiere un mayor consenso y verificación por parte de todos los agentes involucrados en el tema de la coordinación de aislamiento.
2 PARÁMETROS PARA LA EVALUACIÓN DE COORDINACIÓN DE AISLAMIENTO EN SUBESTACIONES DE ALTA TENSIÓN

2.1 TOPOLOGÍA DE LA INSTALACIÓN

Para los cálculos de coordinación de aislamiento se tomó como topología típica una configuración interruptor y medio, para una subestación con dos diámetros completos.

2.2 CARACTERÍSTICAS DEL SISTEMA ELÉCTRICO

En la Tabla 3 se presentan los parámetros generales considerados para la subestación objeto de este análisis.

<table>
<thead>
<tr>
<th>Tabla 3 – Parámetros Subestación</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARÁMETRO</td>
</tr>
<tr>
<td>Frecuencia asignada</td>
</tr>
<tr>
<td>Puesta a tierra</td>
</tr>
<tr>
<td>Número de fases</td>
</tr>
<tr>
<td>Tensión asignada del equipo</td>
</tr>
<tr>
<td>Tensión de operación del sistema</td>
</tr>
<tr>
<td>Corriente de cortocircuito prevista</td>
</tr>
<tr>
<td>Máxima duración admisible del cortocircuito</td>
</tr>
<tr>
<td>Zona con contaminación (IEC 60815)</td>
</tr>
<tr>
<td>Tiempo normal de aclaración de la falla</td>
</tr>
<tr>
<td>Tiempo de aclaración de la falla en respaldo</td>
</tr>
<tr>
<td>Tiempo muerto del reenganche automático</td>
</tr>
</tbody>
</table>

Para la subestación se evaluarán los niveles de aislamiento requerido para la condición de altura de 2500 m.s.n.m., 4000 m.s.n.m. y 5500 m.s.n.m.

2.3 CRITERIOS DE DISEÑO APLICABLES

El Comité de Operación Económica del Sistema Interconectado Nacional (COES) del Perú, país que por su geografía se utilizará como base para aplicar la metodología sugerida por la normativa IEC, emitió en el año 2013 el Procedimiento 20, en el cual, en el Capítulo 1 del Anexo 1, se establecen los criterios mínimos de diseño de las instalaciones.
eléctricas que están conectadas al Sistema Eléctrico Interconectado Nacional (SEIN), a nivel de Sistema de Transmisión Troncal Nacional (STTN), troncal regional (STTR) y local (STL).

Este procedimiento en cuanto a la coordinación de aislamiento y distancias eléctricas específica que se debe considerar lo señalado en la norma IEC 60071 y se deben tener en cuenta las experiencias para las condiciones en el Perú. El procedimiento 20 especifica que la línea de fuga debe ser determinada de acuerdo a la norma IEC 60815.

Para los niveles de contaminación este mismo procedimiento hace referencia para alturas por encima de 2500 m, a una zona II, con un nivel de contaminación “Medio”.

Se establecen varios criterios de las condiciones de servicio, los cuales se muestran en las siguientes tablas.

Tabla 4 – Criterios recomendados para el cálculo de la coordinación de aislamiento a 220 kV y 500 kV

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norma para el procedimiento</td>
<td>IEC 60071</td>
</tr>
<tr>
<td>Factor de falla a tierra</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>< 1,3 sólidamente aterrizados</td>
</tr>
<tr>
<td></td>
<td>< 1,73 sistemas aislados</td>
</tr>
<tr>
<td>Factor por rechazo de carga</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>< 1,2 Moderately extended systems</td>
</tr>
<tr>
<td></td>
<td>< 1,5 Extended systems</td>
</tr>
<tr>
<td>Factor por resonancia o ferroresonancia</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>< 3,0</td>
</tr>
<tr>
<td>Factor por energización de transformadores</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>Entre 1,5 y 2,0</td>
</tr>
<tr>
<td>Sobretensiones fase-tierra</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>$U_{e_2} = 1,2$ a 3,6</td>
</tr>
<tr>
<td>Sobretensiones fase-fase</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>$U_{p_2} = 0,64* U_{e_2}$</td>
</tr>
<tr>
<td>Sobretensiones por rechazo de carga</td>
<td>p.u.</td>
</tr>
<tr>
<td></td>
<td>< 2,0</td>
</tr>
<tr>
<td>Sobretensiones por corrientes de suicheo capacitivas e inductivas</td>
<td>p.u.</td>
</tr>
<tr>
<td>CRITERIO</td>
<td>UNIDAD</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Sobretensiones por rayo</td>
<td>Fase-Fase < 3.0</td>
</tr>
<tr>
<td>Ra: Tasa de falla aceptable para el equipo</td>
<td>0,7 el voltaje de operación</td>
</tr>
<tr>
<td>Rkm: Tasa de fallas por año del primer kilómetro de línea desde la subestación</td>
<td>Se toma un valor de 0,017, que corresponde a un fallo del equipo en 60 años de servicio.</td>
</tr>
<tr>
<td></td>
<td>Típicamente se utiliza 0.03</td>
</tr>
</tbody>
</table>
3 COORDINACIÓN DE AISLAMIENTO PARA SUBESTACIONES DE ALTA TENSIÓN

Este capítulo contiene un resumen para el cálculo de la coordinación de aislamiento al igual que los cálculos referentes a distancias eléctricas, todos estos basados en la norma internacional IEC (Comisión Electrotécnica Internacional). Lo anterior enfocados a subestaciones aisladas en aire que operan entre 2.500 y 5.500 msnm, tomando como base el área geográfica del Perú, en donde se presentan este tipo de situaciones.

3.1 COORDINACIÓN DE AISLAMIENTO BASADA EN IEC

El procedimiento de coordinación de aislamiento es la determinación de las resistencias dielécticas de los equipos con relación a los esfuerzos de tensión que se pueden presentar teniendo en cuenta las características de los elementos de protección.

Para la determinación del nivel de aislamiento de los equipos de la subestación se siguió un método determinístico para seleccionar los aislamientos internos (no-autorestaurables) y un método probabilístico simplificado de la norma IEC 60071-2 para establecer los aislamientos externos (autoestaurables).

Los principales pasos para la coordinación de aislamiento son:

1. Determinación de las sobretensiones representativas (U_{rp})
2. Determinación de las tensiones soportables para coordinación (U_{cw})
3. Determinación de las tensiones soportables requeridas (U_{rw})
4. Determinación de las tensiones soportables normalizadas (U_w)

Es importante aclarar que la norma IEC 60071-2 define los siguientes tipos de rangos para realizar la coordinación de aislamiento:

Rango I: Asociado a tensiones menores o iguales a 245 kV.

Rango II: Asociado a tensiones mayores a 500 kV.

A continuación se presenta el procedimiento, a modo de resumen de la coordinación de aislamiento para subestaciones eléctricas:
Figura 7 – Paso 1, determinación de las sobretensiones representativas (Ur)
Upt
Valor de sesgamiento de la distribución acumulada de las sobretensiones fase a fase, kV.

U_{ps}
Nivel de protección al impulso tipo maniobra (NPM) es igual a la máxima tensión residual para impulsos de corrientes de maniobra, kV.

U_{pl}
Nivel de protección para el impulso tipo rayo (NPR) es la tensión máxima residual para un impulso atmosférico a la corriente nominal de descarga, 10 KA, kV.

Figura 8 – Paso 2, determinación de las tensiones de soportabilidad para coordinación (U_{cw})
Convenciones,

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{cw}</td>
<td>Tensión soportable de coordinación al impulso atmosférico, kV.</td>
</tr>
<tr>
<td>K_c</td>
<td>Factor de coordinación</td>
</tr>
<tr>
<td>K_d</td>
<td>Factor máximo de sobretensión</td>
</tr>
<tr>
<td>A</td>
<td>Factor dado en la Tabla F.2 de la norma IEC 60071-2, describe el comportamiento de la línea ante las descargas eléctricas atmosféricas, kV</td>
</tr>
<tr>
<td>n</td>
<td>Mínimo número de líneas conectadas a la subestación.</td>
</tr>
<tr>
<td>L</td>
<td>Separación equivalente entre el descargador de sobretensiones más cercano y el equipo en consideración, m.</td>
</tr>
<tr>
<td>a_1</td>
<td>Longitud de la conexión del descargador de sobretensiones a la línea, m.</td>
</tr>
<tr>
<td>a_2</td>
<td>Longitud de la conexión a tierra del descargador de sobretensiones, m.</td>
</tr>
<tr>
<td>a_3</td>
<td>Longitud del conductor de fase entre el descargador de sobretensiones y el equipo a proteger para el aislamiento interno y para el aislamiento externo, m.</td>
</tr>
<tr>
<td>a_4</td>
<td>Longitud de la parte activa del descargador de sobretensiones, m.</td>
</tr>
<tr>
<td>L_{sp}</td>
<td>Longitud del vano de las líneas, m.</td>
</tr>
<tr>
<td>L_a</td>
<td>Sección de línea aérea calculada a partir de una tasa de salida igual a una tasa de falla aceptable, R_a.</td>
</tr>
<tr>
<td>R_a</td>
<td>Tasa de falla aceptable para el equipo, 0.0125 fallas/año (1 falla/80 años).</td>
</tr>
<tr>
<td>R_{km}</td>
<td>Tasa de fallas por año del primer kilómetro de línea desde la subestación, fallas/año-km</td>
</tr>
</tbody>
</table>
Figura 9 – Paso 3, determinación de las tensiones de soportabilidad requeridas (Urw)

Convenciones,

\(K_a \)
Factor de corrección que tiene en cuenta la altitud de la instalación.

\(K_s \)
Factor de seguridad

\(H \)
Altura sobre el nivel del mar, m.

1.0 para la coordinación de las tensiones soportadas al impulso tipo rayo.

De acuerdo a la figura 9 de la norma IEC 60071-2 para la coordinación de las tensiones soportadas al impulso de maniobra.

\(m \)
1.0 voltajes de corta duración soportados a frecuencia industrial por distancias en el aire y por aisladores
Figura 10 – Paso 4, determinación de las tensiones de soportabilidad normalizadas a rango I

Figura 11 – Paso 4, determinación de las tensiones de soportabilidad normalizadas a rango II
4 APLICACIÓN DE LA NORMA PARA COORDINACIÓN DE AISLAMIENTO PARA RANGO I

En los numerales siguientes para diferentes altitudes, se presenta el desarrollo de coordinación de aislamiento para las subestaciones a 220 kV.

4.1 SUBESTACIÓN A 2500 M.S.N.M.

4.1.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES

Inicialmente se hallan las sobretensiones que se presentan en los equipos sin los descargadores de sobretensiones que normalmente se instalan en la entrada de las líneas, esto nos suministrara información de los niveles de aislamiento que se requieren para los equipos internos sin este elemento de protección.
En la Tabla 5 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 5 – Resumen de las tensiones soportadas requeridas 2500 m.s.n.m., sin descargadores

<table>
<thead>
<tr>
<th>kW r.m.s para frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>Aislamiento interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase-tierra</td>
<td>303</td>
<td>423</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>524</td>
<td>666</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td>1019</td>
<td>1604</td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1324</td>
<td>816</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1970</td>
<td>595</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notas:

(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los
valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

(2) Se puede apreciar que los niveles de sobretensiones superan ampliamente los niveles normales de aislamiento máximos para el nivel de tensión de 245 kV tanto en fase-fase como en fase-tierra.

(3) De la tabla anterior se tiene que el nivel mínimo de aislamiento correspondería a 1425 kV lo cual correspondería a equipos de 420kV.

Por lo anterior se instalan los descargadores de sobretensión y con lo cual se obtienen los resultados que se presentan a continuación.

4.1.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES

Ahora instalando los descargadores de sobretensión obtenemos los siguientes datos:

<table>
<thead>
<tr>
<th>Step 1: Determination of the representative overvoltages (U_{rp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-freqency voltage</td>
</tr>
<tr>
<td>U_{ph-ph} en kV</td>
</tr>
<tr>
<td>U_{0 p.u. en kV}</td>
</tr>
<tr>
<td>Temporally overvoltages</td>
</tr>
<tr>
<td>Earth faults</td>
</tr>
<tr>
<td>Earth-fault factor k = 1.40</td>
</tr>
<tr>
<td>U_{rp-e} en kV</td>
</tr>
<tr>
<td>Load rejection</td>
</tr>
<tr>
<td>Max. overvoltage p.u. = 1.50</td>
</tr>
<tr>
<td>U_{rp (p-e) en kV}</td>
</tr>
<tr>
<td>U_{rp (p-p) en kV}</td>
</tr>
<tr>
<td>Resulting representative overvoltages</td>
</tr>
<tr>
<td>Phase-to-earth: U_{rp (p-e) en kV}</td>
</tr>
<tr>
<td>Phase-to-phase: U_{rp (p-p) en kV}</td>
</tr>
<tr>
<td>Slow-front overvoltages</td>
</tr>
<tr>
<td>Ovenvoltages originating from station 2</td>
</tr>
<tr>
<td>Re-energization</td>
</tr>
<tr>
<td>U_{0 en p.u.}</td>
</tr>
<tr>
<td>U_{rp en p.u.}</td>
</tr>
<tr>
<td>U_{et en p.u.}</td>
</tr>
<tr>
<td>U_{et en kV}</td>
</tr>
<tr>
<td>U_{et en kV}</td>
</tr>
<tr>
<td>U_{et en kV}</td>
</tr>
<tr>
<td>Aresters at line entrance and rear transformers:</td>
</tr>
<tr>
<td>U_{kr en kV}</td>
</tr>
<tr>
<td>U_{kr en kV}</td>
</tr>
<tr>
<td>For line entrance equipment</td>
</tr>
<tr>
<td>For other equipment</td>
</tr>
</tbody>
</table>

With or without capacitor switching:

| Phase-to-ground in kV, U_{rp} = 351 |
| Phase-to-phase in kV, U_{rp} = 2 Up s = 762 |

Fast front overvoltages:

| U_{rp (p-e) en kV} | 351 |
| U_{rp (p-p) en kV} | 389 |
En la Tabla 6 se muestra el resumen de las tensiones soportadas requeridas \(U_{rw}(s)\) y su correspondiente valor a las tensiones de conversión \(U_{rw}(c)\).

Tabla 6 – Resumen de las tensiones soportadas requeridas 2500 m.s.n.m. con descargadores

<table>
<thead>
<tr>
<th></th>
<th>Fase-tierra</th>
<th>Fase-fase</th>
<th>Fase-tierra</th>
<th>Fase-fase</th>
<th>Fase-tierra</th>
<th>Fase-fase</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV r.m.s para frecuencia industrial</td>
<td>kV pico para impulsos de maniobra y rayo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aislamiento externo</td>
<td>Equipos entrada de línea</td>
<td>Otros equipos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urw(s)</td>
<td>Urw(c)</td>
<td>Urw(s)</td>
<td>Urw(c)</td>
<td>Urw(s)</td>
<td>Urw(c)</td>
<td></td>
</tr>
<tr>
<td>Frecuencia industrial</td>
<td>303</td>
<td>361</td>
<td>303</td>
<td>351</td>
<td>244</td>
<td>217</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td>524</td>
<td>713</td>
<td>524</td>
<td>666</td>
<td>423</td>
<td>396</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td>544</td>
<td>(1)</td>
<td>530</td>
<td>(1)</td>
<td>433</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>1046</td>
<td>983</td>
<td>(1)</td>
<td>792</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>939</td>
<td>707</td>
<td>939</td>
<td>689</td>
<td>729</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>939</td>
<td>1219</td>
<td>939</td>
<td>1139</td>
<td>729</td>
<td>871</td>
</tr>
</tbody>
</table>
Notas:

(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

(2) Es importante aclarar que aunque algunos valores de tensión fase-fase son superados la tensión soportada de corta duración a frecuencia industrial adoptada garantizará la soportabilidad a frecuencia industrial fase-fase, ya que la relación entre la sobretensión tipo rayo fase-fase y el voltaje estándar de corta duración a frecuencia industrial es mayor a 1,7 (numeral A.1 del anexo A de la norma IEC 60071-2).

(3) Igualmente aunque el aislamiento externo fase-fase al impulso atmosférico se supere en el equipo instalado, para el cual se requiere una soportabilidad de 1.219 kV máximo, este valor puede ser aceptado siempre que se garantice que tanto los equipos monofásicos como trifásicos instalados en la Subestación tengan una separación entre fases mayor a 2.600 mm (correspondiente a un nivel de aislamiento al impulso tipo rayo de 1.300 kV), valor que se cumple con la separación entre fases adoptadas en las disposiciones físicas.

(4) Se puede apreciar que los niveles de sobretensiones ya se encuentran controlados y los niveles de aislamiento máximos para el nivel de tensión de 245kV pueden ser seleccionados de 1050kV para la tensión soportada al impulso tipo rayo y 460KV para la tensión soportada de corta duración a frecuencia industrial.
4.2 SUBESTACIÓN A 4000 M.S.N.M.

4.2.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES

Inicialmente se hallan las sobretensiones que se presentan en los equipos sin los descargadores de sobretensiones que normalmente se instalan en la entrada de las líneas, esto nos suministrará información de los niveles de aislamiento que se requieren para los equipos internos sin este elemento de protección.
En la Tabla 7 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

| Tabla 7 – Resumen de las tensiones soportadas requeridas 4000 m.s.n.m., sin descargadores |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| * kV r.m.s para frecuencia industrial | Aislamiento externo | Equpos entrada de línea | Otros equipos | Aislamiento interno |
| * kV pico para impulsos de maniobra y rayo | $U_{rw}(s)$ | $U_{rw}(c)$ | $U_{rw}(s)$ | $U_{rw}(c)$ | $U_{rw}(s)$ | $U_{rw}(c)$ |
| Frecuencia industrial |
| Fase-tierra | 364 | 869 | 364 | 497 | 244 | 270 |
| Fase-fase | 630 | 1450 | 630 | 818 | 423 | 396 |
| Impulso de maniobra |
| Fase-tierra | 1177 | (1) | 726 | (1) | 541 | (1) |
| Fase-fase | 1928 | 1181 | 1530 | 943 | NA | 595 |
| Impulso atmosférico |
| Fase-tierra | NA | 1530 | NA | 1395 | NA | 871 |
| Fase-fase | NA | 2438 | NA | | |

Notas:
(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los
valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

2. Se puede apreciar que los niveles de sobretensiones superan ampliamente los niveles normales de aislamiento máximos para el nivel de tensión de 245 kV tanto en fase-fase como en fase-tierra.

3. De la tabla anterior se tiene que el nivel mínimo de aislamiento correspondería a una tensión soportada al impulso tipo rayo >2100kV lo cual está por fuera de los valores recomendados por las normas.

Por lo anterior se instalan los descargadores de sobretensión y con lo cual se obtienen los resultados que se presentan a continuación.

4.2.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES

Ahora instalando los descargadores de sobretensión obtenemos los siguientes datos:

<table>
<thead>
<tr>
<th>Power frequency voltage</th>
<th>Up</th>
<th>245.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 p.u. en kV (pico)</td>
<td>210.04</td>
<td></td>
</tr>
<tr>
<td>Temporal overvoltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth faults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth-fault factor: k</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>Load rejection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. overvoltage p.u.</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Resulting representative overvoltages</td>
<td>Up (p-e) en kV</td>
<td>212.18</td>
</tr>
<tr>
<td></td>
<td>Up (p-o) en kV</td>
<td>367.50</td>
</tr>
<tr>
<td>Slow front overvoltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overvoltages originating from station 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-energization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ue2 en p.u.</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>Up2 en p.u.</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>Uet en p.u.</td>
<td>3.81</td>
<td></td>
</tr>
<tr>
<td>Upt en p.u.</td>
<td>5.62</td>
<td></td>
</tr>
<tr>
<td>Uet en kV</td>
<td>762.66</td>
<td></td>
</tr>
<tr>
<td>Upt en kV</td>
<td>1174.23</td>
<td></td>
</tr>
<tr>
<td>Aesters at line entrance and near transformers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uep en kV</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Uep en kV</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>For line entrance equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With or without capacitor switching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uet > Ups y Upt > 2 Ups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase-to-earth en kV, Up = Ups =</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Phase-to-phase en kV, Up = 2 Ups =</td>
<td>762</td>
<td></td>
</tr>
<tr>
<td>Fast front overvoltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate Step 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram image]
Step 2: Determination of the coordination withstand voltages (Ucw)

Temporary overvoltages

<table>
<thead>
<tr>
<th>Ksc factor</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth, en kV:</td>
<td>Ucw = Ksc x Up =</td>
</tr>
<tr>
<td>Phase-to-phase, en kV:</td>
<td>Ucw = Ksc x Up =</td>
</tr>
</tbody>
</table>

Slow front overvoltages

Deterministic method used = Ksc factor

<table>
<thead>
<tr>
<th>Line entrance equipment (50 mm) insulation only</th>
<th>Other equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth</td>
<td>Phase-to-phase</td>
</tr>
<tr>
<td>Ups x k2 = 0.54</td>
<td>2 x Ups / k2 = 0.73</td>
</tr>
<tr>
<td>Ksc = 1.10</td>
<td>Ksc = 1.10</td>
</tr>
<tr>
<td>Retained value</td>
<td></td>
</tr>
<tr>
<td>Ksc = 1.10</td>
<td></td>
</tr>
<tr>
<td>Ucw = Ksc x Up</td>
<td>Ucw =</td>
</tr>
<tr>
<td>Ucw = 386</td>
<td>733</td>
</tr>
</tbody>
</table>

Fast-front overvoltages

Simplified statistical method used

Data from experience
<table>
<thead>
<tr>
<th>Parameter A</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span length Lsp</td>
<td>400.00 m</td>
</tr>
<tr>
<td>Outage rate</td>
<td>0.03</td>
</tr>
<tr>
<td>Acceptable failure rate</td>
<td>0.0167 years</td>
</tr>
</tbody>
</table>

Aremter lighting protection level: Upl = 410.00 kV
Max. Separation from internal insulation, L = 129.20 m
Max. Separation from external insulation, L = 146.20 m

Internal insulation Ucw en kV: 714
External insulation Ucw en kV: 754

Step 3: Determination of the required withstand voltages (Uwr)

Safety factor

<table>
<thead>
<tr>
<th>Safety factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal insulation Ks = 1.16</td>
</tr>
<tr>
<td>External insulation Ks = 1.05</td>
</tr>
</tbody>
</table>

Atmospheric correction factor

| Altitude H, en m | 4000 |

Power frequency withstand

<table>
<thead>
<tr>
<th>Phase-to-earth</th>
<th>Phase-to-phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor m = 1.000</td>
<td>0.959</td>
</tr>
<tr>
<td>Valor Ka = 1.534</td>
<td>1.590</td>
</tr>
</tbody>
</table>

Switching impulse withstand

<table>
<thead>
<tr>
<th>Phase-to-earth</th>
<th>Phase-to-phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.634</td>
</tr>
</tbody>
</table>

Lightning impulse withstand

<table>
<thead>
<tr>
<th>Phase-to-earth</th>
<th>Phase-to-phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Required withstand voltages

Internal insulation = Uwr = Ucw x Ks
External insulation = Uwr = Ucw x Ks x Ka

Power frequency withstand

<table>
<thead>
<tr>
<th>Internal insulation kV</th>
<th>244</th>
</tr>
</thead>
<tbody>
<tr>
<td>External insulation kV</td>
<td>634</td>
</tr>
</tbody>
</table>

Switching impulse withstand

<table>
<thead>
<tr>
<th>Internal insulation kV</th>
<th>821</th>
</tr>
</thead>
<tbody>
<tr>
<td>External insulation kV</td>
<td>124</td>
</tr>
</tbody>
</table>

Lightning impulse withstand

<table>
<thead>
<tr>
<th>Internal insulation kV</th>
<th>821</th>
</tr>
</thead>
<tbody>
<tr>
<td>External insulation kV</td>
<td>124</td>
</tr>
</tbody>
</table>
En la Tabla 8 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 8. Resumen de las tensiones soportadas requeridas 4000 m.s.n.m., con descargadores

<table>
<thead>
<tr>
<th>* kV r.m.s para frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>Otros equipos</th>
<th>Aislamiento interno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipos entrada de línea</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aislamiento externo</td>
<td>Otros equipos</td>
<td>Aislamiento interno</td>
</tr>
<tr>
<td></td>
<td>$U_{rw}(s)$</td>
<td>$U_{rw}(c)$</td>
<td>$U_{rw}(s)$</td>
</tr>
<tr>
<td>Frecuencia industrial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>364</td>
<td>438</td>
<td>364</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>630</td>
<td>878</td>
<td>630</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>648</td>
<td>(1)</td>
<td>632</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1257</td>
<td>1181</td>
<td></td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1294</td>
<td>843</td>
<td>1294</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1294</td>
<td>1495</td>
<td>1294</td>
</tr>
</tbody>
</table>
Notas:

(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

(2) Aunque el aislamiento externo fase-fase al impulso atmosférico se supere en el equipo instalado, para el cual se requiere una soportabilidad de 1.495 kV máximo, este valor puede ser aceptado siempre que se garantice que tanto los equipos monofásicos como trifásicos instalados en la Subestación tengan una separación entre fases mayor a 5.000 mm (correspondiente a un nivel de aislamiento al impulso tipo rayo de 1550 kV e impulso tipo maniobra de 1175 kV), valor que se cumple con la separación entre fases adoptadas en las disposiciones físicas.

(3) Se puede apreciar que los niveles de sobretensiones ya se encuentran controlados y los niveles de aislamiento máximos pueden ser seleccionados de 1300 kV para la tensión soportada al impulso tipo rayo y 950 kV para la tensión soportada de corta duración a frecuencia industrial los cuales corresponden a equipos de 420 kV.
4.3 SUBESTACIÓN A 5500 M.S.N.M.

4.3.1 SUBESTACIÓN SIN DESCARGADORES DE SOBRETENSIONES
Inicialmente se hallan las sobretensiones que se presentan en los equipos sin los descargadores de sobretensiones que normalmente se instalan en la entrada de las líneas, esto nos suministrara información de los niveles de aislamiento que se requieren para los equipos internos sin este elemento de protección.
En la Tabla 9 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 9 – Resumen de las tensiones soportadas requeridas 5500 m.s.n.m., sin descargadores

<table>
<thead>
<tr>
<th>kV r.m.s para frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>Aislamiento interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV pico para impulsos de maniobra y rayo</td>
<td>Equipos entrada de línea</td>
<td>Otros equipos</td>
</tr>
<tr>
<td>Urw(s)</td>
<td>Urw(c)</td>
<td>Urw(s)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fase-tierra Fase-fase</td>
<td>437</td>
<td>1034</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra Fase-fase</td>
<td>758</td>
<td>1814</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra Fase-fase</td>
<td>1360</td>
<td>(1)</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td>NA</td>
<td>2318</td>
</tr>
<tr>
<td>NA</td>
<td>1768</td>
<td>NA</td>
</tr>
<tr>
<td>NA</td>
<td>3031</td>
<td>NA</td>
</tr>
</tbody>
</table>
Notas:

(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

(2) Se puede apreciar que los niveles de sobretensiones superan ampliamente los niveles normales de aislamiento máximos para el nivel de tensión de 245kV tanto en fase-fase como en fase-tierra.

(3) De la tabla anterior se tiene que el nivel mínimo de aislamiento correspondería a una tensión soportada al impulso tipo rayo >2100 kV lo cual está por fuera de los valores recomendados por las normas.

Por lo anterior se instalan los descargadores de sobretensión y con lo cual se obtienen los resultados que se presentan a continuación.

4.3.2 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES

Ahora instalando los descargadores de sobretensión obtenemos los siguientes datos:
En la Tabla 5 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 10 – Resumen de las tensiones soportadas requeridas 5500 m.s.n.m., con descargadores

<table>
<thead>
<tr>
<th>Frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>Aislamiento interno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equipos entrada de línea</td>
<td>Otros equipos</td>
</tr>
<tr>
<td></td>
<td>$U_{rw}(s)$</td>
<td>$U_{rw}(c)$</td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>437</td>
<td>534</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>758</td>
<td>1086</td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>773</td>
<td>1086</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1511</td>
<td>1420</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td>1555</td>
<td>1005</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td>1555</td>
<td>1840</td>
</tr>
</tbody>
</table>

* kV r.m.s para frecuencia industrial

* kV pico para impulsos de maniobra y rayo
Notas:

(1) En rango I, los valores requeridos de soportabilidad al impulso de maniobra fase a tierra son cubiertos por la prueba de corta duración a frecuencia industrial. Los valores de soportabilidad al impulso de maniobra fase a fase son cubiertos por la prueba de corta duración a frecuencia industrial o por la prueba de soportabilidad al impulso tipo rayo.

(2) Aunque el aislamiento externo fase-fase al impulso atmosférico se supere en el equipo instalado, para el cual se requiere una soportabilidad de 1.840 kV máximo, este valor puede ser aceptado siempre que se garantice que tanto los equipos monofásicos como trifásicos instalados en la Subestación tengan una separación entre fases mayor a 9.000 mm (correspondiente a un nivel de aislamiento al impulso tipo maniobra de 1950 kV e impulso tipo maniobra de 1.425 kV), valor que se cumple con la separación entre fases adoptadas en las disposiciones.

(3) Se puede apreciar que los niveles de sobretensiones ya se encuentran controlados y los niveles de aislamiento máximos pueden ser seleccionados de 1550 kV para la tensión soportadas al impulso tipo rayo y 1175 kV para la tensión de soportadas de corta duración a frecuencia industrial los cuales corresponden a equipos de 550 kV.

4.4 RESUMEN DE LOS RESULTADOS OBTENIDOS PARA EL RANGO I

En la Tabla 11 y Tabla 12 se condensa toda la información obtenida de los cálculos de coordinación de aislamiento Rango I.

Tabla 11 – Resumen de las tensiones soportadas sin descargadores

<table>
<thead>
<tr>
<th>TENSIONES SOPORTADAS REQUERIDAS (KV)</th>
<th>SUBESTACIÓN A 2500 M.S.N.M.</th>
<th>SUBESTACIÓN A 4000 M.S.N.M.</th>
<th>SUBESTACIÓN A 5500 M.S.N.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión soportada al impulso tipo rayo</td>
<td>1420</td>
<td>> 2100</td>
<td>> 2100</td>
</tr>
<tr>
<td>Nivel de tensión normalizado</td>
<td>420</td>
<td>FUERA DE RANGO</td>
<td>FUERA DE RANGO</td>
</tr>
</tbody>
</table>
Tabla 12 – Resumen de las tensiones soportadas con descargadores

<table>
<thead>
<tr>
<th>TENSIONES SOPORTADAS REQUERIDAS (KV)</th>
<th>SUBESTACIÓN A 2500 M.S.N.M.</th>
<th>SUBESTACIÓN A 4000 M.S.N.M.</th>
<th>SUBESTACIÓN A 5500 M.S.N.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión soportada al impulso tipo rayo</td>
<td>1050</td>
<td>1300</td>
<td>1550</td>
</tr>
<tr>
<td>Tensión soportada de corta duración a frecuencia industrial</td>
<td>460</td>
<td>950</td>
<td>1175</td>
</tr>
<tr>
<td>Nivel de tensión normalizado</td>
<td>245</td>
<td>420</td>
<td>550</td>
</tr>
</tbody>
</table>
5 APLICACIÓN DE LA NORMA PARA COORDINACION DE AISLAMIENTO PARA RANGO II

5.1 SUBESTACIÓN A 2500M.S.N.M.

5.1.1 SUBESTACIÓN CON DESCARGADORES DE SOBRETENSIONES

Step 1: Determination of the representative overvoltages (Up)

<table>
<thead>
<tr>
<th>Power frequency voltage</th>
<th>Us phase-to-phase kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6 p.u. en kV (psec)</td>
</tr>
<tr>
<td>Temporarily overvoltages</td>
<td></td>
</tr>
<tr>
<td>Earth faults</td>
<td>Earth-fault factor, k = 1.40</td>
</tr>
<tr>
<td>Load rejection</td>
<td>Max. overvoltage p.u. = 1.40</td>
</tr>
<tr>
<td></td>
<td>Up (p-e) en kV</td>
</tr>
<tr>
<td></td>
<td>Up (p - i) en kV</td>
</tr>
</tbody>
</table>

Resulting representative overvoltages

| Phase-to-earth: Up (p-e) en kV | 444.56 |
| Phase-to-phase: Up (p-p) en kV | 770.00 |

Slow-front overvoltages

- Overvoltages originating from station 2
 - Re-energization
 - Up2 en p.u. = 2.23
 - Uup en p.u. = 3.61
 - Uet en p.u. = 2.54
 - Upt en p.u. = 4.09
 - Uet en kV = 1139.52
 - Upt en kV = 1934.00

- Arresters at line entrance and near transformers:
 - Uup en kV = 819
 - Uet en kV = 966

Fast-front overvoltages

- For line entrance equipment
- With or without capacitor switching
 - Uet > Ups
 - Up2 en kV = 819
 - Phase-to-earth en kV, Up = Ups =
 - 1638
- Phase-to-phase en kV, Up = 2 Ups =
 - 1638

For other equipment

- Evaluate Step 2
En la Tabla 13 y en la Tabla 14 se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 13 – Resumen de las tensiones soportadas requeridas para el aislamiento externo

<table>
<thead>
<tr>
<th>* kV r.m.s. para frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>* kV pico para impulsos de maniobra y rayo</th>
<th>$U_{rw}(s)$</th>
<th>$U_{rw}(c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase-tierra</td>
<td>634</td>
<td>Fase-tierra</td>
<td>1161</td>
<td>1078</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1099</td>
<td>Fase-fase</td>
<td>2164</td>
<td>1868</td>
</tr>
<tr>
<td>Long con Sinc</td>
<td>1014 (1)</td>
<td>Long con Sinc</td>
<td>1773</td>
<td>1724</td>
</tr>
<tr>
<td>Long sin Sinc</td>
<td>623</td>
<td>Long sin Sinc</td>
<td>1237</td>
<td>1059</td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1161</td>
<td>Longitudinal</td>
<td>1811</td>
<td>-</td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1811</td>
<td>Fase-fase</td>
<td>1811</td>
<td>-</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>2107 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14 – Resumen de las tensiones soportadas requeridas para el aislamiento interno

<table>
<thead>
<tr>
<th>* kV r.m.s para frecuencia industrial</th>
<th>Aislamiento interno</th>
<th>* kV pico para impulsos de maniobra y rayo</th>
<th>$U_{rw}(s)$</th>
<th>$U_{rw}(c)$ Líquido</th>
<th>$U_{rw}(c)$ Sólido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase-tierra</td>
<td>511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>886</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Long con Sinc</td>
<td>876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long sin Sinc</td>
<td>511</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1015</td>
<td></td>
<td>1176</td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1884</td>
<td></td>
<td>2037</td>
<td>1771 (4)</td>
<td></td>
</tr>
<tr>
<td>Long con Sinc</td>
<td>1532</td>
<td></td>
<td>2016</td>
<td>1753</td>
<td></td>
</tr>
<tr>
<td>Long sin Sinc</td>
<td>1015</td>
<td></td>
<td>1176</td>
<td>1022</td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1583</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1583</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>1946</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Notas:

(1) En rango II, los valores requeridos de soportabilidad de corta duración a frecuencia industrial, son cubiertos por la prueba de soportabilidad al impulso tipo maniobra.

(2) Las distancias fase-fase en el aire, aplicables al aislamiento externo, consideradas en las disposiciones físicas deberán cubrir el requerimiento de aislamiento al impulso tipo maniobra fase-fase.

(3) El requerimiento de aislamiento al impulso tipo rayo para el aislamiento longitudinal considera interruptores que están expuestos a tensión permanente por ambos extremos, en los interruptores donde esto no sea requerido el valor deberá ser el fase – tierra.

(4) Se han calculado los aislamientos longitudinales a baja frecuencia y maniobra requeridos para los casos en los cuales se requiere sincronización.

Se puede apreciar que los niveles de sobretensiones se encuentran controlados y los niveles de aislamiento máximos pueden ser seleccionados de 1950kV para la tensión soportada al impulso tipo rayo y 1425 kV para la tensión soportada al impulso tipo maniobra fase tierra, los cuales corresponden a equipos de 800 kV.
5.2 SUBESTACIÓN A 4000 M.S.N.M. CON DESCARGADORES DE SOBRETENSIONES

<table>
<thead>
<tr>
<th>Step 1: Determination of the representative overvoltages (Urp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-frequency voltage: U_{p} phase-to-phase kV</td>
</tr>
<tr>
<td>1.0 p.u. en kV (pcc)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporal overvoltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth faults: Earth-fault factor: k = 1.40</td>
</tr>
<tr>
<td>Load rejection: Max. overvoltage p u = 1.40</td>
</tr>
</tbody>
</table>

| Earth faults: Urp (p-e) en kV | 444.56 |
| Load rejection: Urp (p - q) en kV | 444.56 |

<table>
<thead>
<tr>
<th>Resulting representative overvoltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth: Urp (p-e) en kV</td>
</tr>
<tr>
<td>Phase-to-phase: Urp (p-p) en kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slow front overvoltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overvoltages originating from station 2:</td>
</tr>
<tr>
<td>Re-energization</td>
</tr>
<tr>
<td>U_{e1} en p.u. 2.23</td>
</tr>
<tr>
<td>U_{p1} en p.u. 3.61</td>
</tr>
<tr>
<td>U_{e2} en p.u. 2.23</td>
</tr>
<tr>
<td>U_{p2} en p.u. 3.61</td>
</tr>
<tr>
<td>U_{e'} en p.u. 2.54</td>
</tr>
<tr>
<td>U_{p'} en p.u. 4.09</td>
</tr>
<tr>
<td>U_{e2} en kV 1139.52</td>
</tr>
<tr>
<td>U_{p2} en kV 1834.80</td>
</tr>
</tbody>
</table>

| Amorces at line entrance and near transformers: |
| U_{op} en kV 819 |
| U_{uy} en kV 956 |

<table>
<thead>
<tr>
<th>For line entrance equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>With or without capacitor switching</td>
</tr>
<tr>
<td>\text{U}{e1} > \text{U}{p1} \quad \text{y} \quad \text{U}{p'} > 2 \text{U}{p1}</td>
</tr>
</tbody>
</table>

| Phase-to-earth en kV. Urp = | 819 |
| Phase-to-phase en kV. Urp = 2 U_{p1} | 1638 |

<table>
<thead>
<tr>
<th>Fast front overvoltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate Step 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energization and re-energization</th>
</tr>
</thead>
</table>

| U_{e1} en kV 1139.52 |
| U_{p2} en kV 1834.80 |

<table>
<thead>
<tr>
<th>For other equipment</th>
</tr>
</thead>
</table>

| Urp (p-e) en kV 819 |
| Urp (p-p) en kV 1638 |
Step 2: Determination of the coordination withstand voltages (Ucw)

Temporary overvoltages

<table>
<thead>
<tr>
<th>Phase-to-earth, en kV</th>
<th>Kc x Urp =</th>
<th>Ucw = Kc x Urp =</th>
</tr>
</thead>
<tbody>
<tr>
<td>445</td>
<td>1.0</td>
<td>770</td>
</tr>
</tbody>
</table>

Slow front overvoltages

<table>
<thead>
<tr>
<th>Line entrance equipment (external insulation only)</th>
<th>Other equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase-to-earth</td>
<td>Phase-to-phase</td>
</tr>
<tr>
<td>Ups(1a2) = 0.82</td>
<td>2 x Ups(Ug2) = 1.01</td>
</tr>
<tr>
<td>Kd = 1.06</td>
<td>Kcd = 1.00</td>
</tr>
<tr>
<td>Retained value</td>
<td>Kd = 1.08</td>
</tr>
<tr>
<td>Ucw = Kcd x Urp</td>
<td>Ucw = Kcd x Urp</td>
</tr>
<tr>
<td>883</td>
<td>1638</td>
</tr>
</tbody>
</table>

Fast front overvoltages

<table>
<thead>
<tr>
<th>Data from experience</th>
<th>Performance required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammeter lightning protection level, Ups = 956.00 kV</td>
<td></td>
</tr>
<tr>
<td>Max. Separation from internal insulation, L = 113.60 m</td>
<td></td>
</tr>
<tr>
<td>Max. Separation from external insulation, L = 93.50 m</td>
<td></td>
</tr>
</tbody>
</table>

Simplified statistical method used

- Parameter A = 11000
- Span length Lsp = 400.00 m
- Outage rate = 0.02 km/y
- Acceptable failure rate = 0.01 years

- La, en m = 0.1667
Step 3: Determination of the required withstand voltages (Urw)

Safety factor

Internal insulation Ks = 1.15
External insulation Ks = 1.05

Atmospheric correction factor

Altitude H, m = 4000

Power frequency withstand

Phase-to-ground

Value m = 1.000

Value Ka = 1.634

Switching impulse withstand

Phase-to-phase

Value m = 0.7328

Value Ka = 1.433

Lightning impulse withstand

Phase-to-ground

Value m = 0.7492

Value Ka = 1.444

Required withstand voltages

Internal insulation = Urw = Uc x Ka
External insulation = Urw = Uc x Ks x Ka

Power frequency withstand

Phase-to-ground

Internal insulation kV 5/1

External insulation kV 7/3

Switching impulse withstand

Phase-to-phase

Internal insulation kV 866

External insulation kV 1321

Lightning impulse withstand

Phase-to-ground

Internal insulation kV 1543

External insulation kV 2177

Internal insulation kV 2484

External insulation kV 2484

Other equipment

Internal insulation kV 1015

External insulation kV 1329
En las tablas siguientes se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 15 – Resumen de las tensiones soportadas requeridas para el aislamiento externo

<table>
<thead>
<tr>
<th>* kV r.m.s para frecuencia industrial</th>
<th>Aislamiento externo</th>
<th>Equipos entrada de línea y otros equipos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fase-tierra</td>
<td>U_{rw}(s)</td>
</tr>
<tr>
<td>Frecuencia industrial</td>
<td></td>
<td>763</td>
</tr>
<tr>
<td>* kV pico para impulsos de maniobra y rayo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fase-tierra</td>
<td>1321</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>1169</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
<td>1328</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>2484</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>2044</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
<td>1470</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
<td>2177</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>2177</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>2430 (3)</td>
</tr>
<tr>
<td>Frecuencia industrial</td>
<td>* kV r.m.s para frecuencia industrial</td>
<td>Aislamiento interno</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>* kV pico para impulsos de maniobra y rayo</td>
<td>U_{rw}(s)</td>
</tr>
<tr>
<td></td>
<td>Fase-tierra</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>886</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
<td>876</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
<td>511</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td>Fase-tierra</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>1884</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
<td>1532</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td>Fase-tierra</td>
<td>1583</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
<td>1583</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
<td>1945</td>
</tr>
</tbody>
</table>

Notas:

(1) En rango II, los valores requeridos soportados de corta duración a frecuencia industrial, son cubiertos por la prueba de soportabilidad al impulso tipo maniobra.

(2) Las distancias fase-fase en el aire, aplicables al aislamiento externo, consideradas en las disposiciones físicas deberán cubrir el requerimiento de aislamiento al impulso tipo maniobra fase-fase.

(3) El requerimiento de aislamiento al impulso tipo rayo para el aislamiento longitudinal considera interruptores que están expuestos a tensión permanente por ambos extremos, en los interruptores donde esto no sea requerido el valor deberá ser el fase – tierra.

(4) Se han calculado los aislamientos longitudinales a baja frecuencia y maniobra requeridos para los casos en los cuales se requiere sincronización.

Se puede apreciar que los niveles de sobretensiones se encuentran controlados y los niveles de aislamiento máximos pueden ser seleccionados de 2100 kV para la tensión.
soportada al impulso tipo rayo y 1550 kV para la tensión soportada al impulso tipo maniobra fase tierra los cuales corresponden a equipos de 800 kV.

5.3 SUBESTACIÓN A 5500 M.S.N.M. CON DESCARGADORES DE SOBRETENSIONES
Step 2: Determination of the coordination withstand voltages (Ucw)

Temporary overvoltages

- Kc factor = 1.0
- Phase-to-earth, \(U_{cw} = K_c \times U_p = 445 \)
- Phase-to-phase, \(U_{cw} = K_c \times U_p = 770 \)

Slow front overvoltages

- Deterministic method used = Kcd factor
- Line entrance equipment (external insulation only)
 - Phase-to-earth
 - \(U_{ps}/U_{p2} = 0.82 \)
 - \(K_{cd} = 1.08 \)
 - Retained value \(K_{cd} = 1.08 \)
 - \(U_{cw} = K_{cd} \times U_p = 893 \)
 - Other equipment
 - Phase-to-earth
 - \(U_{ps}/U_{p2} = 0.82 \)
 - \(K_{cd} = 1.08 \)
 - Retained value \(K_{cd} = 1.08 \)
 - \(U_{cw} = K_{cd} \times U_p = 893 \)

Fast front overvoltages

- Simplified statistical method used
- Data from experience
 - Performance required
- Parameter \(A = 11000 \)
 - Span length \(L_p = 140.00 \) m
 - Outage rate = 0.02 km/yr
 - Acceptable failure rate = 0.01 years
- Arrester lightning protection level, \(U_{pl} = 956.00 \) kV
 - Max. Separation from internal insulation, \(L = 113.60 \) m
 - Max. Separation from external insulation, \(L = 93.60 \) m
- \(L_a, \text{ en } m = 416.67 \)
- Internal insulation \(U_{cw} \text{ en kV} = 1377 \)
- External insulation \(U_{cw} \text{ en kV} = 1269 \)
Step 3: Determination of the required withstand voltages (Urw)

Safety factor
- Internal insulation Ks = 1.15
- External insulation Ks = 1.05

Atmospheric correction factor
- Altitude H, m = 5600

Power frequency withstand
- Phase-to-earth Value m = 1.0000
 Value Ka = 1.964
- Phase-to-phase

Switching impulse withstand
- Phase-to-earth Value m = 0.7328
 Value Ka = 1.640
- Phase-to-phase

Lightning impulse withstand
- Phase-to-earth Value m = 1.0000
- Phase-to-phase

Required withstand voltages
- Internal insulation = Urw = Ucw x Ks
- External insulation = Urw = Ucw x Ks x Ka

Power frequency withstand
- Phase-to-earth Internal insulation kV 511
 External insulation kV 917
- Phase-to-phase Internal insulation kV 886
 External insulation kV 1588

Switching impulse withstand
- Phase-to-earth Line entrance equipment Internal insulation kV 1520
 External insulation kV 1015
 Other equipment Internal insulation kV 1584
 External insulation kV 1520
- Phase-to-phase Line entrance equipment Internal insulation kV 2852
 External insulation kV 2852

Lightning impulse withstand
- Phase-to-earth Internal insulation kV 1583
- Phase-to-phase Internal insulation kV 2617
 External insulation kV 2617
En las tablas siguientes se muestra el resumen de las tensiones soportadas requeridas $U_{rw}(s)$ y su correspondiente valor a las tensiones de conversión $U_{rw}(c)$.

Tabla 17 – Resumen de las tensiones soportadas requeridas para el aislamiento externo

<table>
<thead>
<tr>
<th></th>
<th>Aislamiento externo</th>
<th>Equipos entrada de línea y otros equipos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$U_{rw}(s)$</td>
<td>$U_{rw}(c)$</td>
</tr>
<tr>
<td>kV r.m.s para frecuencia industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>917</td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>1588</td>
<td></td>
</tr>
<tr>
<td>Long con Sinc</td>
<td>1348</td>
<td>1558 (1)</td>
</tr>
<tr>
<td>Long sin Sinc</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>1520</td>
<td>1558</td>
</tr>
<tr>
<td>Impulso de manipiobra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>2852 (4)</td>
<td>2699</td>
</tr>
<tr>
<td>Long con Sinc</td>
<td>2356</td>
<td>2292</td>
</tr>
<tr>
<td>Long sin Sinc</td>
<td>1748</td>
<td>1496</td>
</tr>
<tr>
<td>Fase-tierra</td>
<td>2617</td>
<td></td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase-fase</td>
<td>2617 (4)</td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td>2801</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 18 – Resumen de las tensiones soportadas requeridas para el aislamiento interno

<table>
<thead>
<tr>
<th>* kV r.m.s para frecuencia industrial</th>
<th>Aislamiento interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>* kV pico para impulsos de maniobra y rayo</td>
<td>$U_{rw(s)}$</td>
</tr>
<tr>
<td>Frecuencia industrial</td>
<td>Fase-tierra</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
</tr>
<tr>
<td></td>
<td>Fase-tierra</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
</tr>
<tr>
<td></td>
<td>Long con Sinc</td>
</tr>
<tr>
<td></td>
<td>Long sin Sinc</td>
</tr>
<tr>
<td>Impulso de maniobra</td>
<td>Fase-tierra</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
</tr>
<tr>
<td>Impulso atmosférico</td>
<td>Fase-tierra</td>
</tr>
<tr>
<td></td>
<td>Fase-fase</td>
</tr>
<tr>
<td></td>
<td>Longitudinal</td>
</tr>
</tbody>
</table>

Notas:

1. En rango II, los valores requeridos soportados de corta duración a frecuencia industrial, son cubiertos por la prueba de soportabilidad al impulso tipo maniobra.
2. Las distancias fase-fase en el aire, aplicables al aislamiento externo, consideradas en las disposiciones físicas deberán cubrir el requerimiento de aislamiento al impulso tipo maniobra fase-fase.
3. El requerimiento de aislamiento al impulso tipo rayo para el aislamiento longitudinal considera interruptores que están expuestos a tensión permanente por ambos extremos, en los interruptores donde esto no sea requerido el valor deberá ser el fase – tierra.
4. Se han calculado los aislamientos longitudinales a baja frecuencia y maniobra requeridos para los casos en los cuales se requiere sincronización.

Se puede apreciar que los niveles de sobretensiones en esta altura no se encuentran controlados y los niveles de aislamiento máximos pueden deben ser seleccionados por encima de 2619 kV para la tensión soportada al impulso tipo rayo y mayor a 1550 kV para
la tensión soportada al impulso tipo maniobra fase tierra los cuales corresponden a equipos de 1050 kV.

5.4 RESUMEN DE LOS RESULTADOS OBTENIDOS PARA EL RANGO II

En la Tabla 19 se condensa toda la información obtenida de los cálculos de coordinación de aislamiento Rango II.

Tabla 19 – Resumen de las tensiones soportadas con descargadores

<table>
<thead>
<tr>
<th>TENSIONES SOPORTADAS REQUERIDAS (KV)</th>
<th>SUBESTACIÓN A 2500 M.S.N.M.</th>
<th>SUBESTACIÓN A 4000 M.S.N.M.</th>
<th>SUBESTACIÓN A 5500 M.S.N.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENSIÓN SOPORTADA AL IMPULSO TIPO RAYO</td>
<td>1950</td>
<td>2100</td>
<td>2619</td>
</tr>
<tr>
<td>TENSIÓN SOPORTADA DE CORTA DURACIÓN A FRECUENCIA INDUSTRIAL</td>
<td>1425</td>
<td>1550</td>
<td>1550</td>
</tr>
<tr>
<td>NIVEL DE TENSIÓN NORMALIZADO</td>
<td>800</td>
<td>800</td>
<td>1050</td>
</tr>
</tbody>
</table>
6 DISTANCIAS ELÉCTRICAS

La metodología comprende el cálculo de las distancias eléctricas mínimas y distancias de seguridad que deben tenerse en cuenta en el diseño de las subestaciones, con el objetivo de garantizar su adecuado dimensionamiento. La metodología cumple con los lineamientos recomendados en la norma IEC 60071-2.

Las distancias eléctricas corresponden a las separaciones mínimas que deben mantenerse en el aire entre partes energizadas de equipos y tierra, o en equipos sobre los cuales es necesario realizar un trabajo.

6.1 DISTANCIAS MÍNIMAS EN AIRE

Para los equipos en rango I (Um < 245 kV), las distancias en el aire fase a fase y fase a tierra son determinadas de acuerdo al nivel de aislamiento al impulso tipo rayo. En la Tabla 20 (Tabla A1 de la norma IEC 60071-2) se indica la correlación entre el nivel soportado al impulso tipo rayo y las distancias mínimas en el aire.

Tabla 20 – Correlación entre el nivel soportado al impulso tipo rayo y las distancias mínimas en el aire

<table>
<thead>
<tr>
<th>Tensión soportada al impulso tipo rayo [kV]</th>
<th>Distancia mínima en el aire [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varilla-estructura</td>
</tr>
<tr>
<td>325</td>
<td>630</td>
</tr>
<tr>
<td>450</td>
<td>900</td>
</tr>
<tr>
<td>550</td>
<td>1.100</td>
</tr>
<tr>
<td>650</td>
<td>1.300</td>
</tr>
<tr>
<td>750</td>
<td>1.500</td>
</tr>
<tr>
<td>850</td>
<td>1.700</td>
</tr>
<tr>
<td>950</td>
<td>1.900</td>
</tr>
<tr>
<td>1.050</td>
<td>2.100</td>
</tr>
</tbody>
</table>

NOTA:

- Para la distancia mínima fase a tierra es aplicable la configuración conductor-estructura y varilla-estructura.
• Para la distancia mínima fase a fase, es aplicable la configuración varilla-estructura.

Para los de rango II (Um>245 kV), las distancias en el aire fase a fase y fase a tierra son determinadas de acuerdo al nivel de aislamiento al impulso tipo rayo y al impulso tipo maniobra (tomando la mayor distancia correspondiente). En la Tabla 21 y Tabla 22 se indica la correlación entre el nivel soportado al impulso tipo maniobra y las distancias mínimas en el aire

Tabla 21 – Correlación entre el nivel soportado al impulso tipo maniobra y las distancias mínimas fase – tierra en el aire

<table>
<thead>
<tr>
<th>Tensión soportada al impulso tipo maniobra [kV]</th>
<th>Distancia mínima fase-tierra [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varilla-estructura</td>
</tr>
<tr>
<td>750</td>
<td>1900</td>
</tr>
<tr>
<td>850</td>
<td>2400</td>
</tr>
<tr>
<td>950</td>
<td>2900</td>
</tr>
<tr>
<td>1050</td>
<td>3400</td>
</tr>
<tr>
<td>1175</td>
<td>4100</td>
</tr>
<tr>
<td>1300</td>
<td>4800</td>
</tr>
<tr>
<td>1425</td>
<td>5600</td>
</tr>
<tr>
<td>1550</td>
<td>6400</td>
</tr>
</tbody>
</table>

Tabla 22 – Correlación entre el nivel soportado al impulso tipo maniobra y las distancias mínimas fase-fase en el aire

<table>
<thead>
<tr>
<th>Fase – Tierra [kV]</th>
<th>Fase-Fase / Fase-Tierra</th>
<th>Fase-Fase [kV]</th>
<th>Distancia mínima fase-fase [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conductor-Condutor paralelo</td>
</tr>
<tr>
<td>750</td>
<td>1,5</td>
<td>1125</td>
<td>2300</td>
</tr>
<tr>
<td>850</td>
<td>1,5</td>
<td>1275</td>
<td>2600</td>
</tr>
<tr>
<td>850</td>
<td>1,6</td>
<td>1360</td>
<td>2900</td>
</tr>
<tr>
<td>950</td>
<td>1,5</td>
<td>1425</td>
<td>3100</td>
</tr>
<tr>
<td>950</td>
<td>1,7</td>
<td>1615</td>
<td>3700</td>
</tr>
<tr>
<td>1050</td>
<td>1,5</td>
<td>1575</td>
<td>3600</td>
</tr>
<tr>
<td>1050</td>
<td>1,6</td>
<td>1680</td>
<td>3900</td>
</tr>
<tr>
<td>1175</td>
<td>1,5</td>
<td>1763</td>
<td>4200</td>
</tr>
</tbody>
</table>
De acuerdo con el nivel de aislamiento seleccionado en la coordinación de aislamiento para la subestación, se seleccionan las distancias mínimas fase a fase y fase a tierra, indicadas en las tablas siguientes.

Tabla 23 – Distancias mínimas 550kV

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>UNIDAD</th>
<th>2500 m.s.n.m.</th>
<th>4000 m.s.n.m.</th>
<th>5500 m.s.n.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia fase-fase</td>
<td>Conductor - Varilla</td>
<td>mm</td>
<td>9000</td>
<td>9400</td>
</tr>
<tr>
<td></td>
<td>Conductor -Conductor paralelo</td>
<td>mm</td>
<td>7200</td>
<td>7600</td>
</tr>
<tr>
<td>Distancia fase-tierra</td>
<td>Varilla - estructura</td>
<td>mm</td>
<td>5600</td>
<td>6400</td>
</tr>
<tr>
<td></td>
<td>Conductor - estructura</td>
<td>mm</td>
<td>4200</td>
<td>4900</td>
</tr>
</tbody>
</table>

Tabla 24 – Distancias mínimas 245kV

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>UNIDAD</th>
<th>2500m.s.n.m.</th>
<th>4000m.s.n.m.</th>
<th>5500m.s.n.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia fase-fase</td>
<td>Conductor - Varilla</td>
<td>mm</td>
<td>4300</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Conductor -Conductor paralelo</td>
<td>mm</td>
<td>2100</td>
<td>3700</td>
</tr>
<tr>
<td>Distancia fase-tierra</td>
<td>Varilla - estructura</td>
<td>mm</td>
<td>1900</td>
<td>2900</td>
</tr>
<tr>
<td></td>
<td>Conductor - estructura</td>
<td>mm</td>
<td>1900</td>
<td>2200</td>
</tr>
</tbody>
</table>
6.2 DISTANCIAS ELÉCTRICAS MÍNIMAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN

El dimensionamiento de la subestación está condicionado a los criterios antes mencionados y puede describirse básicamente por las siguientes distancias:

- Ancho de barras
- Ancho de campo
- Altura de campo

Estos aspectos son una aplicación directa de las distancias mínimas.

6.2.1 SEPARACIÓN DE FASES

Esta se determina por la separación mínima entre las fases y la trayectoria de un conductor sometido a un cortocircuito (ver Figura 12), de donde se tiene:

\[Y_k = 1,2Y_o \times \text{sen}40^\circ \quad \rightarrow \quad Y_k = 0,7713Y_o \quad (18) \]

\[a = 0,5 \times d_{\text{min}} + 2Y_k \quad \rightarrow \quad a = 0,5 \times d_{\text{min}} + 1,543Y_o \quad (19) \]

Dónde:

- \(Y_k \): Rango del movimiento del conductor [mm]
- \(Y_o \): Flecha estática máxima [mm]
- \(a \): Separación mínima entre fases [mm].
- \(d_{\text{min}} \): Distancia mínima fase-fase, cable-cable [mm]
Figura 12 – Rango del movimiento de conductores flexibles durante cortocircuitos

En la práctica, $\text{Yo} \approx 0,03^\circ S$, siendo S el vano del conductor flexible.

De acuerdo con “The Mechanical Effects of Short-Circuit Currents in Open Substations” del Comité No. 23 del CIGRE, el valor de d_{min} durante un cortocircuito se puede reducir hasta el 50 % del valor inicial.

6.2.2 ANCHO DE BARRAS

La configuración de la subestación dispone de dos barras, con los valores de separación entre fases del numeral anterior se calcula el ancho de barra el cual sería para este caso particular tres veces la separación entre fases, más la distancia mínima fase – tierra más el ancho de la estructura.

6.2.3 ANCHO DE CAMPO

Es la distancia de separación entre los ejes de las columnas que forman el pórtico de entrada. El ancho de campo de una subestación está determinado por la configuración, las dimensiones de los equipos y de los barrajes utilizados.

6.2.4 TEMPLAS SUPERIORES A LO LARGO DEL CAMPO

El ancho del campo en este caso se determina por la separación entre las fases y el movimiento que tendrían los conductores debido a cortocircuitos en las templas superiores a lo largo del campo, ver Figura 13.
Figura 13 – Ancho de campo determinado por las templas superiores

En consecuencia el ancho del campo sería dos veces la separación entre fases, más dos veces la distancia mínima fase-tierra para considerar la templa adyacente, más el ancho de columna a nivel de conexión.

\[AC = 2a + 2d_{ft} + h \]

(20)

Dónde:

\(a \): Separación de fases [mm]

\(d_{ft} \): Distancia mínima fase-tierra [mm]

\(h \): Ancho de columna a nivel de conexión de aisladores [mm]

6.2.5 ESTRUCTURA ADYACENTE A LOS EQUIPOS DE PATIO

Cuando se tiene la estructura del pórtico adyacente a un equipo de patio, el ancho de campo se determina de acuerdo a la Figura 14, considerando el valor básico, la mínima separación entre fases del equipo (determinada en este caso por el seccionador) y el ancho de la estructura.
Figura 14 – Ancho de campo determinado por la estructura adyacente a los equipos

\[AC = 2*a + 2*dft + h \]

Dónde:

- **a**: Separación entre fases para equipos (seccionador), [mm]
- **dft**: Distancia mínima fase tierra, [mm]
- **L**: Longitud del brazo del seccionador, [mm]
- **h**: Ancho de la estructura, a nivel de conexión de equipos [mm]

6.2.6 ALTURA DE CONEXIONES

Las alturas de conexión estarán determinadas por la altura de los equipos nuevos y existentes y las alturas de los pórticos existentes. En la Figura 15 se indican referencialmente los niveles de conexión que serán calculados.
6.2.6.1 PRIMER NIVEL (P.N.)

Corresponde a la altura de conexión de los equipos y está determinada por la distancia de seguridad para circulación de personas, es decir, el valor básico (VB) más la altura de una persona con los brazos levantados verticalmente:

\[
P.N = VB + 2250 \text{ mm}
\]

Dónde:

VB: Valor básico [mm]

6.2.6.2 SEGUNDO NIVEL (S.N.)

Está determinado por el punto de conexión de las barras, su altura debe ser superior a la del primer nivel que existe debajo del barraje por lo menos la distancia vertical para trabajos de mantenimiento más la flecha máxima del barraje.

\[
S.N. = P.N. + D_{vertical} + YB
\]

(23)
6.2.6.3 **TERCER NIVEL (T.N.)**

Conformado por la altura de las templas superiores de la subestación su altura debe ser superior a la del segundo nivel en por lo menos la distancia vertical para trabajos de mantenimiento, más la flecha máxima de la templpa superior.

\[
T.N. = S.N. + D_{vertical} + Y_T
\]

(24)

Dónde:

\(Y_T \): Flecha máxima de la templpa

\(D_{vertical} \): Distancia vertical para labores de mantenimiento [mm]

En la práctica, \(Y_T \approx 0,03*S \), siendo \(S \) el vano de la templpa.

6.3 **DISTANCIAS ADOPTADAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN EN 220 KV**

En la Tabla 25 se presenta un resumen con las distancias adoptadas para el dimensionado de la subestación.

Tabla 25 – Distancias para el dimensionamiento de la subestación 220 kV 2500 m.s.n.m.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Distancia [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Distancia mínima fase a fase</td>
<td>2100</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra</td>
<td>1900</td>
</tr>
<tr>
<td>Valor básico</td>
<td>2310</td>
</tr>
<tr>
<td>Zona de circulación</td>
<td>2250</td>
</tr>
<tr>
<td>Zona de seguridad</td>
<td>4560</td>
</tr>
<tr>
<td>Distancia horizontal para trabajos de mantenimiento</td>
<td>4060</td>
</tr>
</tbody>
</table>
Tabla 26 – Distancias para el dimensionamiento de la subestación 220 kV 4000 m.s.n.m.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Distancia [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor – Varilla)</td>
<td>4300</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor -Conductor paralelo)</td>
<td>3700</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Varilla – estructura)</td>
<td>2200</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Conductor - estructura)</td>
<td>3190</td>
</tr>
<tr>
<td>Valor básico</td>
<td>2250</td>
</tr>
<tr>
<td>Zona de circulación</td>
<td>5440</td>
</tr>
<tr>
<td>Zona de seguridad</td>
<td>2900</td>
</tr>
<tr>
<td>Distancia horizontal para trabajos de mantenimiento</td>
<td>4940</td>
</tr>
<tr>
<td>Distancia vertical para trabajos de mantenimiento</td>
<td>4440</td>
</tr>
<tr>
<td>Longitud de la templa</td>
<td>62000</td>
</tr>
<tr>
<td>Longitud de la barra</td>
<td>53000</td>
</tr>
<tr>
<td>Flecha máxima de la templa (3%)</td>
<td>1860</td>
</tr>
<tr>
<td>Flecha máxima barra (3%)</td>
<td>1590</td>
</tr>
<tr>
<td>Separación entre fases para templas</td>
<td>5081</td>
</tr>
<tr>
<td>Separación entre fases para barras</td>
<td>4618</td>
</tr>
<tr>
<td>Separación entre fases para Equipos</td>
<td>-</td>
</tr>
<tr>
<td>Ancho de barras</td>
<td>23400</td>
</tr>
<tr>
<td>Ancho de campo</td>
<td>20800</td>
</tr>
<tr>
<td>Tempas superiores</td>
<td>22310</td>
</tr>
<tr>
<td>Equipo adyacente a estructura</td>
<td>22310</td>
</tr>
<tr>
<td>Primer nivel de conexión</td>
<td>≥5440</td>
</tr>
<tr>
<td>Segundo nivel de conexión</td>
<td>≥8450</td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>Distancia [mm]</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Tercer nivel</td>
<td>≥13650</td>
</tr>
</tbody>
</table>

Tabla 27 – Distancias para el dimensionamiento de la subestación 220 kV 5500 m.s.n.m.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Distancia [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor – Varilla)</td>
<td>5000</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor -Conductor paralelo)</td>
<td>4200</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Varilla – estructura)</td>
<td>4100</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Conductor - estructura)</td>
<td>3100</td>
</tr>
<tr>
<td>Valor básico</td>
<td>4510</td>
</tr>
<tr>
<td>Zona de circulación</td>
<td>2250</td>
</tr>
<tr>
<td>Zona de seguridad</td>
<td>6800</td>
</tr>
<tr>
<td>Distancia horizontal para trabajos de mantenimiento</td>
<td>6300</td>
</tr>
<tr>
<td>Distancia vertical para trabajos de mantenimiento</td>
<td>5800</td>
</tr>
<tr>
<td>Longitud de la templá</td>
<td></td>
</tr>
<tr>
<td>Longitud de la barra</td>
<td></td>
</tr>
<tr>
<td>Flecha máxima de la templá (3%)</td>
<td>1665</td>
</tr>
<tr>
<td>Flecha máxima barra (3%)</td>
<td>2727</td>
</tr>
<tr>
<td>Separación entre fases para templas</td>
<td>5123</td>
</tr>
<tr>
<td>Separación entre fases para barras</td>
<td>7129</td>
</tr>
<tr>
<td>Separación entre fases para Equipos</td>
<td>-</td>
</tr>
<tr>
<td>Ancho de barras</td>
<td>30100</td>
</tr>
<tr>
<td>Ancho de campo</td>
<td></td>
</tr>
<tr>
<td>Ancho de campo Templas superiores</td>
<td>26200</td>
</tr>
<tr>
<td>Ancho de campo Primer nivel de conexión</td>
<td>≥6760</td>
</tr>
<tr>
<td>Alturas de campo</td>
<td></td>
</tr>
<tr>
<td>Alturas de campo Segundo nivel de conexión</td>
<td>≥14250</td>
</tr>
<tr>
<td>Alturas de campo Tercer nivel</td>
<td>≥19050</td>
</tr>
</tbody>
</table>

6.4 DISTANCIAS ADOPTADAS PARA EL DIMENSIONAMIENTO DE LA SUBESTACIÓN EN 550 KV

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Distancia [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor – Varilla)</td>
<td>9000</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor -Conductor paralelo)</td>
<td>7200</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Varilla – estructura)</td>
<td>5600</td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Conductor - estructura)</td>
<td>4200</td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>Distancia [mm]</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Calculada</td>
</tr>
<tr>
<td>Valor básico</td>
<td>6160</td>
</tr>
<tr>
<td>Zona de circulación</td>
<td>2250</td>
</tr>
<tr>
<td>Zona de seguridad</td>
<td>8410</td>
</tr>
<tr>
<td>Distancia horizontal para trabajos de mantenimiento</td>
<td>7950</td>
</tr>
<tr>
<td>Distancia vertical para trabajos de mantenimiento</td>
<td>7450</td>
</tr>
<tr>
<td>Longitud de la templap</td>
<td></td>
</tr>
<tr>
<td>Longitud de la barra</td>
<td></td>
</tr>
<tr>
<td>Flecha máxima de la templap (3%)</td>
<td>3000</td>
</tr>
<tr>
<td>Flecha máxima barra (3%)</td>
<td>2700</td>
</tr>
<tr>
<td>Separación entre fases para templas</td>
<td>9129</td>
</tr>
<tr>
<td>Separación entre fases para barras</td>
<td>8666</td>
</tr>
<tr>
<td>Separación entre fases para Equipos</td>
<td>-</td>
</tr>
<tr>
<td>Ancho de barras</td>
<td>35100</td>
</tr>
<tr>
<td>Ancho de campo</td>
<td></td>
</tr>
<tr>
<td>Templas superiores</td>
<td></td>
</tr>
<tr>
<td>Primer nivel de conexión</td>
<td>≥8410</td>
</tr>
<tr>
<td>Segundo nivel de conexión</td>
<td>≥12450</td>
</tr>
<tr>
<td>Tercer nivel</td>
<td>≥18250</td>
</tr>
<tr>
<td>Alturas de campo</td>
<td></td>
</tr>
<tr>
<td>Templas superiores</td>
<td></td>
</tr>
<tr>
<td>Primer nivel de conexión</td>
<td></td>
</tr>
<tr>
<td>Segundo nivel de conexión</td>
<td></td>
</tr>
<tr>
<td>Tercer nivel</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 29 – Distancias para el dimensionamiento de la subestación 550 kV 4000 m.s.n.m.

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>Distancia [mm]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculada</td>
<td>Adoptada</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor – Varilla)</td>
<td>9400</td>
<td>9400</td>
</tr>
<tr>
<td>Distancia mínima fase a fase (Conductor -Conductor paralelo)</td>
<td>7600</td>
<td></td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Varilla – estructura)</td>
<td>6400</td>
<td></td>
</tr>
<tr>
<td>Distancia mínima fase a tierra (Conductor - estructura)</td>
<td>4900</td>
<td></td>
</tr>
<tr>
<td>Valor básico</td>
<td>7040</td>
<td>7100</td>
</tr>
<tr>
<td>Zona de circulación</td>
<td>2250</td>
<td>2250</td>
</tr>
<tr>
<td>Zona de seguridad</td>
<td>8650</td>
<td>8650</td>
</tr>
<tr>
<td>Distancia horizontal para trabajos de mantenimiento</td>
<td>7650</td>
<td>7650</td>
</tr>
<tr>
<td>Distancia vertical para trabajos de mantenimiento</td>
<td>8150</td>
<td>8150</td>
</tr>
<tr>
<td>Longitud de la templap</td>
<td></td>
<td>10000</td>
</tr>
<tr>
<td>Longitud de la barra</td>
<td></td>
<td>90000</td>
</tr>
<tr>
<td>Flecha máxima de la templap (3%)</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Flecha máxima barra (3%)</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Separación entre fases para templas</td>
<td>8630</td>
<td>10000</td>
</tr>
<tr>
<td>Separación entre fases para barras</td>
<td>8166</td>
<td>9000</td>
</tr>
<tr>
<td>Separación entre fases para Equipos</td>
<td>-</td>
<td>9000</td>
</tr>
<tr>
<td>Ancho de barras</td>
<td>31300</td>
<td>32000</td>
</tr>
<tr>
<td>Ancho de campo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Templas superiores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Templas superiores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer nivel de conexión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segundo nivel de conexión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tercer nivel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alturas de campo</td>
<td>Primer nivel de conexión</td>
<td>Segundo nivel de conexión</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>≥7530</td>
<td>≥11500</td>
</tr>
<tr>
<td></td>
<td>7550</td>
<td>13000</td>
</tr>
</tbody>
</table>
7 SELECCIÓN DE PARARRAYOS (DESCARGADORES DE SOBRETENSIÓN)

7.1 DESCARGADORES DE SOBRETENSIÓN 220 KV

7.1.1 TENSIÓN DE OPERACIÓN CONTINUA (COV)
Teniendo en cuenta que el sistema es sólidamente aterrizado se calcula el COV así:

\[U_{cmin} \geq 1,05 \frac{U_s}{\sqrt{3}} = 1,05 \times \frac{245}{\sqrt{3}} = 148,5 \text{ kV} \quad (25) \]

7.1.2 TENSIÓN ASIGNADA
Para sistemas sólidamente aterrizados se calcula la tensión asignada como el máximo entre \(U_{r1} \) y \(U_{r2} \), valores que tienen en cuenta un factor de diseño y el valor de la sobretensión temporal máxima esperada considerando el factor de soportabilidad a frecuencia industrial.

La Figura 16 muestra las diferentes curvas típicas de soportabilidad a frecuencia industrial, que ofrecen los fabricantes. Para ser conservadores en la selección y aplicación de los descargadores, se selecciona la curva 2.
Teniendo en cuenta las máximas sobretensiones temporales de larga duración se toma el valor de 1,4 p.u. El factor k_{TOV} se toma de la Curva 2 para un tiempo de 1 segundo de acuerdo con el tipo de sistema, arrojando un valor de 1,075.

$$U_{r2} \geq U_{TOV}/k_{TOV} = \frac{1,4 \times 220/\sqrt{3}}{1,075} = 165,4 \text{ kV}$$ (27)

De acuerdo con los resultados de U_{r1} y U_{r2}, se obtiene que $U_{r2}<U_{r1}$ por lo cual el valor a seleccionar es mayor a 185,65 kV y además, dado que $U_{r2}<U_{r1}$ se corrige la tensión continua de operación como:

$$U_{Cmin} \geq U_{r}/1,25 = 185,65/1,25 = 148,5 \text{ kV}$$ (28)

7.1.3 CORRIENTE NOMINAL DE DESCARGA

Teniendo en cuenta el nivel de tensión del sistema (220 kV), se elige una corriente nominal de descarga de acuerdo con la publicación IEC 60099-4, de 10 kA, según lo indicado en la Tabla 30.
7.1.4 CLASE DE DESCARGA DE LÍNEA – ENERGÍA POR MANIOBRA

Para la selección de la clase de descarga de línea se tiene en cuenta la recomendación de la IEC 60099-5, indicada en la Tabla 33. Se recomienda, según [5], tomar mínimo la clase de descarga del rango superior. Para este caso, debido a los eventos en el sistema de 220 kV se recomienda usar como mínimo una clase de descarga 3.

Tabla 31 – Selección de clase de descarga de línea por nivel de tensión IEC 60099-5.

<table>
<thead>
<tr>
<th>Line discharge class</th>
<th>U_r / kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤ 245</td>
</tr>
<tr>
<td>2</td>
<td>≤ 300</td>
</tr>
<tr>
<td>3</td>
<td>≤ 420</td>
</tr>
<tr>
<td>4</td>
<td>≤ 550</td>
</tr>
<tr>
<td>5</td>
<td>≤ 800</td>
</tr>
</tbody>
</table>

7.1.5 REQUERIMIENTO ENERGÉTICO POR DESCARGAS ATMOSFÉRICAS

La máxima energía absorbida por el descargador de sobretensiones es:

$$ W = 508 \text{ kJ} \quad (29) $$

7.1.6 NIVEL DE PROTECCIÓN AL IMPULSO TIPO MANIOBRA Y RAYO

Los cálculos efectuados para determinar las sobretensiones representativas, como información de entrada para la coordinación de aislamiento, se realizaron con un nivel de protección al impulso tipo maniobra (NPM) y tipo rayo (NPR) de 351 kV (30/60 μs 2 kA) y 410 kV (8/20 μs 20 kA), respectivamente, dichos valores se encuentran dentro de los rangos típicos ofrecidos por los fabricantes. Por lo anterior es recomendable que los niveles de protección del descargador sean iguales o menores que los utilizados para los cálculos.
7.2 DESCARGADORES DE SOBRETENSIÓN 500 KV

7.2.1 TENSIÓN DE OPERACIÓN CONTINUA (COV)
Teniendo en cuenta que el sistema es sólidamente aterrizado se calcula el COV así:

\[
U_{C_{\text{min}}} \geq 1,05 \frac{U_s}{\sqrt{3}} = 1,05 \times \frac{550}{\sqrt{3}} = 333,42 \text{ kV} \tag{30}
\]

7.2.2 TENSIÓN ASIGNADA
Para sistemas sólidamente aterrizados se calcula la tensión asignada como el máximo entre Ur1 y Ur2, valores que tienen en cuenta un factor de diseño y el valor de la sobretensión temporal máxima esperada considerando el factor de soportabilidad a frecuencia industrial.

La Figura 17 muestra las diferentes curvas típicas de soportabilidad a frecuencia industrial, que ofrecen los fabricantes. Para ser conservadores en la selección y aplicación de los descargadores, se selecciona la curva 2.

![Curvas de Soportabilidad a frecuencia industrial](image)

Figura 17 – Curvas de soportabilidad a frecuencia industrial para descargadores de sobretensiones

\[
U_{r1} \geq 1,25 \times 1,05 \frac{U_s}{\sqrt{3}} = 1,25 \times 1,05 \times \frac{550}{\sqrt{3}} = 417,77 \text{ kV} \tag{31}
\]
Teniendo en cuenta las máximas sobretensiones temporales de larga duración se toma el valor de 1,5 p.u. El factor k_{TOV} se toma de la Curva 2 para un tiempo de 1 segundo de acuerdo con el tipo de sistema, arrojando un valor de 1,075.

\[
U_{T2} \geq \frac{1,5 \times 500}{\sqrt{3}} \times 1,075 = 402,81 \text{ kV}
\]

(32)

De acuerdo con los resultados de U_{r1} y U_{r2}, se obtiene que $U_{r2} < U_{r1}$ por lo cual el valor a seleccionar es mayor a 417,77 kV y además, dado que $U_{r2} < U_{r1}$ se corrige la tensión continua de operación como:

\[
U_{cmin} \geq U_{r} / 1,25 = 417,77 / 1,25 = 334,22 \text{ kV}
\]

(33)

7.2.3 CORRIENTE NOMINAL DE DESCARGA

Teniendo en cuenta el nivel de tensión del sistema (500 kV), se elige una corriente nominal de descarga de acuerdo con la publicación IEC 60099-4, de 20 kA, según lo indicado en la Tabla 32.

<table>
<thead>
<tr>
<th>Tabla 32 – Corriente nominal de descarga según IEC 60099-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 kA</td>
</tr>
<tr>
<td>$U_r \leq 36 \text{ kV}$</td>
</tr>
</tbody>
</table>

7.2.4 CLASE DE DESCARGA DE LÍNEA – ENERGÍA POR MANIOBRA

Para la selección de la clase de descarga de línea se tiene en cuenta la recomendación de la IEC 60099-5, indicada en la Tabla 33. Se recomienda tomar mínimo la clase de descarga del rango superior. Para este caso, debido a los eventos en el sistema de 500 kV se recomienda usar como mínimo una clase de descarga 5.
Tabla 33 – Selección de clase de descarga de línea por nivel de tensión IEC 60099-5.

<table>
<thead>
<tr>
<th>Line discharge class</th>
<th>(U_i / \text{kV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\leq 245</td>
</tr>
<tr>
<td>2</td>
<td>\leq 300</td>
</tr>
<tr>
<td>3</td>
<td>\leq 420</td>
</tr>
<tr>
<td>4</td>
<td>\leq 550</td>
</tr>
<tr>
<td>5</td>
<td>\leq 800</td>
</tr>
</tbody>
</table>

7.2.5 REQUERIMIENTO ENERGÉTICO POR DESCARGAS ATMOSFÉRICAS

La máxima energía absorbida por el descargador de sobretensiones es:

\[W = 150 \text{ kJ} \quad (34) \]

7.2.6 NIVEL DE PROTECCIÓN AL IMPULSO TIPO MANIOBRA Y RAYO

Los cálculos efectuados para determinar las sobretensiones representativas, como información de entrada para la coordinación de aislamiento, se realizaron con un nivel de protección al impulso tipo maniobra (NPM) y tipo rayo (NPR) de 819 kV (30/60 µs 2 kA) y 956 kV (8/20 µs 20 kA), respectivamente, dichos valores se encuentran dentro de los rangos típicos ofrecidos por los fabricantes. Por lo anterior es recomendable que los niveles de protección del descargador sean iguales o menores que los utilizados para los cálculos.
8 CONCLUSIONES Y RECOMENDACIONES

8.1.1 ALTITUDES HASTA 5500 M.S.N.M.

1. El procedimiento de coordinación de aislamiento vigente de la norma IEC 60071-2 de 1996 contiene un procedimiento de corrección por altitud muy conservador. Los resultados de los ensayos de laboratorio simulando baja presión y las medidas de campo realizados en instalaciones en altitud por encima de los 2000 m.s.n.m. indican que el procedimiento para realizar la corrección por altitud a los voltajes soportados y a las distancias de aislamiento eléctrico es muy conservador y el desempeño de los aislamientos es mejor que el indicado por la corrección de la norma IEC 60071. En particular el exponente $m=1$ que recomienda la norma para la corrección de los voltajes soportados a los impulsos tipo rayo y sobretensiones de frecuencia industrial de corta duración es excesivo. El valor apropiado del exponente “m” es crítico, pues al ser un parámetro de tipo exponencial su influencia en la corrección es significativo.

2. El procedimiento de corrección de las medidas obtenidas en pruebas de alta tensión establecido en la norma IEC 60060-1, de 2010, recomienda métodos más específicos para determinar los valores aplicables de los exponentes “m” y “w” (exponente de corrección por altitud para la densidad del aire y para la humedad respectivamente). Aunque esta norma no aplica directamente a la coordinación de aislamientos, tradicionalmente la norma de coordinación de aislamientos IEC 60071 ha trabajado con los métodos de corrección por efectos ambientales indicados en la norma IEC 60060.

3. El Código Nacional de Seguridad Eléctrica - NESC ha utilizado exitosamente a lo largo de 70 años un procedimiento de corrección relativamente simple (3% de corrección de los valores por cada 300 metros de altitud, para instalaciones ubicadas por encima de los 450 metros de altitud). Esta corrección se aproxima bastante a la corrección propuesta por IEC 60071-2 con exponente $m=0,5$, lo cual hace pensar que la realidad se aproxima a estos valores. De hecho, las dos correcciones son bastante congruentes para $m=0,6$.

4. Como política normativa es recomendable seguir usando los postulados de la norma IEC 60071 como guía aplicable al procedimiento de coordinación de aislamiento, pero estableciendo que en el proceso de diseño pueden, bajo su propia responsabilidad,
aplicar criterios de corrección por altitud menos conservadores. En el momento que esta norma sea modificada para aplicar las modificaciones que reflejen los avances científicos recientes, de manera automática se estarán incorporando esos avances en la normatividad de cada país.

5. Algunos de los agentes de mercados eléctricos en diferentes países, como el peruano donde se tienen subestaciones eléctricas a altitudes elevadas, han logrado economías significativas, sin comprometer el desempeño de las instalaciones, aplicando medidas activas (descargadores de sobretensión en puntos seleccionados dentro de la subestación) que les han permitido diseñar instalaciones con menos exigencias en cuanto a distancias eléctricas y exigencia de aislamiento de los equipos, lo cual representa a la larga una economía para todo el país. Si adicionalmente se utilizan factores de corrección por altitud menos conservadores, se podrán lograr diseños menos exigentes y más económicos. Sin embargo, es conveniente que la aceptación definitiva de estos diseños avanzados esté respaldada por la operación exitosa de alguna instalación piloto, especialmente en el caso de instalaciones a 5000 m.s.n.m.

8.1.2 ALTITUDES MAYORES A 6000 M.S.N.M.

No se recomienda extrapolar los resultados experimentales obtenidos hasta altitudes de 5000 m.s.n.m. a sitios con mayor altitud. Los hallazgos recientes muestran que la influencia de la baja presión atmosférica no ha sido evaluada en su totalidad. La ley de Pashen, como se muestra en la Figura 18, indica que a medida que se reduce la presión, se alcanza un mínimo de rigidez dieléctrica, luego del cual, a mayores reducciones de presión, el voltaje de disrupción eléctrica vuelve a aumentar. La ley de Pashen ha sido verificada para distancias pequeñas, y no se debe extrapolar su cumplimiento a distancias de arco largas, donde intervienen otros fenómenos por la interacción arco/medio. Sin embargo, en algún momento se debe producir la transición de rigidez dieléctrica hacia el desempeño mostrado en el vacío.
No hay informes experimentales que reporten directamente la medida del punto de mínima rigidez dieléctrica atmosférica para distancias de flameo grandes, aunque los informes de investigaciones en baja tensión han identificado que para una distancia de arco de 1 cm, ese mínimo se encuentra a una presión equivalente a 46 km de altitud con un voltaje de disrupción de 300 Vcd. Si se extrapola ese punto a una distancia de por ejemplo 1 metro, con el producto $P \times d$ constante, el mínimo se presentaría a una presión aproximada equivalente a una altitud de 9000 m.s.n.m., por lo cual 6000 m.s.n.m. se está aproximando a ese valor y ya no es factible la extrapolación de ecuaciones exponenciales crecientes, que no predicen ese mínimo.

Por otro lado, en las investigaciones del deterioro de los aisladores poliméricos de caucho siliconado debido al aumento de la descarga corona en condiciones de baja presión, se ha identificado que el fenómeno de pérdida de la hidrofobicidad presenta un mínimo alrededor de 60 kPa, correspondiente a una altitud típica de aproximadamente 4100 m.s.n.m. En la Figura 19 se ilustra este fenómeno. Sujeto a posterior confirmación, se podría plantear que la disminución en el deterioro de la capacidad hidrofóbica del material se debe a una disminución de la descarga corona debido a que el aire está recuperando su rigidez dieléctrica a altitudes superiores a los 4100 m.s.n.m. La anterior hipótesis debe
ser confirmada por investigaciones que extiendan el rango de medida de las características dieléctricas de distancias grandes a presiones por encima de los 4000 m.s.n.m. La práctica recomendada para instalaciones por encima de 5000 metros de altitud, hasta que los resultados experimentales muestren otra cosa, es aplicar las correcciones actuales, utilizando los exponentes m y w menos exigentes (norma IEC 60060-1), pues está demostrado que los tradicionales son demasiado conservadores.

Figura 19 – Ángulo de contacto en función de la presión atmosférica, después de 600 minutos de exposición a la corona en condiciones de baja presión [7].

8.1.3 CORRECCIÓN PARA LÍNEA DE FUGA POR ALTITUD
El grado de contaminación determina la línea de fuga mínima que deben tener las superficies aislantes. La corrección requerida para la línea de fuga, hasta los 2000 m.s.n.m., es muy pequeña (ver la Figura 6 – Corrección de la línea de fuga vs. Altitud, para diferentes grados de contaminación ambiental, de acuerdo con la recomendación CIGRE del Boletín Técnico N° 158 del 2000), y si se está corrigiendo la distancia de arco y los voltajes soportados a los impulsos, seguramente la línea de fuga necesariamente mayor para que un aislador tenga la distancia de arco requerida cubrirá las necesidades de la corrección por altitud debido a la disminución de la rigidez dieléctrica por contaminación. Para sitios por encima de 2000 m.s.n.m. y niveles de contaminación elevados (“Pesado” y “Muy Pesado”) es conveniente verificar si los equipos seleccionados tienen la línea de fuga aumentada de forma adecuada. Para la verificación se puede utilizar la ecuación propuesta en el Boletín CIGRE N° 158 de 2000.
9 BIBLIOGRAFÍA

[10] Institute of Electrical and Electronics Engineers, IEEE Std 1313.2 - Guide For The Application Of Insulation Coordination.: IEEE.

Francis Group, 1999.

[26] IEEE, IEEE Std 1313.2 - IEEE Guide For The Application Of Insulation Coordination.: IEEE.

