ANÁLISIS COMPARATIVO DE METODOLOGÍAS PARA LA EVALUACIÓN DEL ÍNDICE DE SERVICIO DE PAVIMENTOS Y SU APLICACIÓN EN UN TRAMO VIAL DE MONTERÍA

ANA LUISA DE JESÚS JIMÉNEZ HERNÁNDEZ BRYAN BRIEVA GARCÍA

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS Y ARQUITECTURA ESPECIALIZACIÓN EN VÍAS TERRESTRES MONTERÍA 2022

ANÁLISIS COMPARATIVO DE METODOLOGÍAS PARA LA EVALUACIÓN DEL ÍNDICE DE SERVICIO DE PAVIMENTOS Y SU APLICACIÓN EN UN TRAMO VIAL DE MONTERÍA

BRYAN BRIEVA GARCÍA ANA LUISA DE JESÚS JIMÉNEZ HERNÁNDEZ

Trabajo de grado para optar al título de especialista en vías terrestres

Asesor

RODRIGO HERNÁNDEZ CARRILLO Ingeniero civil, Msc, PhD

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS Y ARQUITECTURA ESPECIALIZACIÓN EN VÍAS TERRESTRES MONTERÍA 2022

09 abril del 2022

Ana Luisa De Jesús Jiménez Hernández Bryan Brieva García

"Declaro que este trabajo de grado no ha sido presentado con anterioridad para optar a un título, ya sea en igual forma o con variaciones, en ésta o en cualquiera otra universidad". Art. 92, parágrafo, Régimen Estudiantil de Formación Avanzada.

Ana Luisa Jimenez

Ana Luisa de Jesús Jiménez Hernández

CC. 1.003.717.889

Bryon B

Bryan Brieva García CC. 1.010.077.841

VICERRECTORIA ACADÉMICA FO-IP-008

ANÁLISIS COMPARATIVO DE METODOLOGÍAS PARA LA EVALUACIÓN DEL ÍNDICE DE SERVICIO DE PAVIMENTOS Y SU APLICACIÓN EN UN TRAMO VIAL DE MONTERÍA

Ana Jiménez Hernández UPB Montería ana.jimenezh@upb.edu.co Bryan Brieva García UPB Montería byan.brievag@upb.edu.co

OBJETO DE ESTUDIO: Realizar un análisis comparativo de las metodologías para la evaluación del índice de servicio de un pavimento y aplicar el más apropiado en un tramo vial localizado en la Calle 64a barrio la Castellana, Montería.

Ana Jiménez Hernández¹, Bryan Brieva Garcia²

¹ ingeniera civil; Universidad Pontificia Bolivariana; Montería – Córdoba, Colombia; ana.jiemenzh@upb.edu.co

² ingeniero civil; Universidad Pontificia Bolivariana; Montería – Córdoba, Colombia; bryan.brievag@upb.edu.co

Resumen: El pavimento durante su vida útil se va deteriorando por causas como el agua, el clima, entre otros; por esta razón existen metodologías que evalúan su estado. Este artículo realizó un análisis comparativo entre los métodos (PCI, IRI y VIZIR) mediante una revisión de literatura, buscando definir el más recomendable para implementarlo en un tramo vial de Montería. Se estableció al PCI como la mejor alternativa evaluando la calle 64a, barrio la Castellana. El pavimento se calificó con un estado "Muy bueno" al obtener un PCI =73.21, de acuerdo con la escala de clasificación de la norma ASTM D-6433 20.

Palabras clave: fallas, PCI, metodologías, evaluación pavimentos.

Abstract: Pavement deteriorates during its useful life due to causes such as water, climate, among others; for this reason there are methodologies that evaluate its condition. This article made a comparative analysis between the methods (PCI, IRI and VIZIR) through a literature review, seeking to define the most advisable to implement it in a road section of Monteria. The PCI was established as the best alternative, evaluating 64a th Street, La Castellana neighborhood. The pavement was rated as "Satisfactory" by obtaining a PCI =73.21, according to the classification scale of ASTM D-6433 20.

Keywords: Distress, PCI, methodologies, pavement evaluation.

VICERRECTORIA ACADÉMICA FO-IP-008

1. INTRODUCCIÓN

El pavimento es una estructura constituida por capas de diferentes materiales que se apoyan sobre el terreno, para resistir cargas del tránsito durante un periodo de vida útil y los efectos degradantes de los agentes climáticos.

Hay diversos tipos de pavimentos, pero los más comunes son el rígido, compuesto por losas de concreto hidráulico; el flexible, conformado por una carpeta asfáltica en la superficie de rodamiento; y el articulado, formado elementos prefabricados por (bloques adoquines). En Córdoba se utilizan principalmente los pavimentos rígidos por tener una vida de servicio más larga que otros, un menor costo en cuanto al mantenimiento, que se realiza comúnmente para subsanar detalles de sellado en las juntas de las losas, al igual que se repara fácilmente en cualquier condición climática y debido a que el concreto no es afectado por el calor, no se vuelve viscoso y se mantiene fresco en zonas calurosas reduciendo la temperatura del entorno (IBCH, n.d.).

Ahora bien, existen varias causas que pueden afectar la condición de la superficie de rodamiento de los pavimentos durante su vida útil como el agua, el tráfico, el climamateriales o las prácticas constructivas deficientes (Irigoyen & Simo, 2016). Debido a esto, hay muchas metodologías para evaluar el estado en el que se encuentran, como el Índice de Condición del Pavimento (PCI) (ASTM D6433 - 20, 2020), el Índice de Regularidad Internacional (IRI) (NLT-330/98, 1998) y Visión e Inspección de Zonas e Itinerarios en Riesgo (VIZIR) (Armas Gil, 2018), entre otros.

En este sentido, es primordial conocer ¿cuáles son las principales metodologías evaluar funcionalmente para pavimentos?, ¿Cuál alternativa es la más viable?, por consiguiente, el objetivo de este artículo es realizar un análisis comparativo entre los diferentes métodos para evaluación del índice de servicio de un pavimento y aplicar el más apropiado en un tramo vial localizado en la Calle 64a barrio la Castellana, Montería. Para lograr esto, se buscará la información requerida mediante una revisión bibliográfica en bases de datos y otras fuentes. Luego, se analizará dicha literatura comparando las metodologías más usadas, y escoger la conveniente para implementarla en un caso de estudio en Montería. Por último, se calculará el nivel de servicio provisto por la infraestructura a partir de las patologías observadas.

Esto es importante porque serviría para determinar cuál de estos métodos es el más

recomendable de acuerdo a las condiciones colombianas, enfocándose en un tramo específico del departamento y así poder conocer su estado de integridad, lo que el permite designar tratamiento intervención adecuado para su rehabilitación, obteniendo costos menores y soluciones duraderas y eficientes. Además, constituve un referente para futuros busquen mitigar proyectos que la accidentalidad y la congestión vial presente en la zona beneficiando a los habitantes. disminuvendo la contaminación ambiental v auditiva, y reduciendo los tiempos de viaje para los conductores que transiten por dicha vía.

Este artículo consta de tres capítulos: en el capítulo 1 se presenta el marco teórico y el estado del arte, especificándose el concepto, los puntos importantes de la evaluación de pavimentos y los métodos principales. En el capítulo 2 se desarrolla el análisis metodologías. comparativo de las Finalmente, en el capítulo 3 se selecciona la mejor alternativa, para aplicarla en un tramo vial en Montería.

2. CONTENIDO

CAPÍTULO I

Evaluación de pavimentos

Durante la vida de servicio un pavimento se ve afectado por agentes como el agua, el tráfico y el clima, estos, deterioran la condición de la superficie de rodamiento y la estructura del mismo. Debido a esto, se hace necesario evaluar el estado en que se encuentra; de modo que se puedan tomar las medidas adecuadas de reparación y mantenimiento, con las cuales se pretende prolongar su vida útil.

Los pavimentos comprenden una evaluación técnica, tanto desde el punto de vista del nivel de servicio que proporciona al usuario, como de la capacidad de resistir cargas durante un tiempo de vida útil; siendo esto lo esencial para asignar las acciones de conservación más adecuadas que deben ser empleadas en el pavimento a evaluar (Thenoux & Gaete, 1995). Es por esto que el diagnostico de las condiciones del pavimento implica una evaluación del estado funcional de sus condiciones estructurales (Pucha Aguinsaca & Zárate Torres, 2020).

En la funcional se encuentra la evaluación superficial, que identifica las deficiencias relacionadas con la calidad de la superficie y el estado general de las condiciones del

pavimento. El rendimiento funcional se puede determinar de dos formas, objetiva y subjetivamente (Psalmen Hasibuan & Sejahtera Surbakti, 2019).

Una medición objetiva del desempeño del pavimento requiere la utilización de un instrumento. Mientras que una valoración subjetiva se hace mediante observación directa en campo (Suwardo & Sugiharto, 2004). Por ejemplo la rugosidad, irregularidades presentes en la superficie del pavimento, es un parámetro que se puede encontrar obietivamente también subjetivamente al colocarle un valor a la condición del pavimento. La evaluación funcional tiene en cuenta todas las variables que afectan la serviciabilidad, seguridad y costos del usuario; considerando el tipo de deficiencias como la rugosidad, fallas superficiales, perdida de fricción, entre otros (Thenoux & Gaete, 1995).

Por otro lado, evaluación estructural determina la capacidad de pavimento para soportar las cargas establecidas en el diseño; ya que la falta de esta capacidad estructural

ocasiona un deterioro que se ve reflejado en niveles excesivos de agrietamientos y deformaciones. Para determinar dicha capacidad se utilizan ensayos de tipo destructivo, requieren tomar una muestra del pavimento en algún punto, y ensayos no destructivos, no necesitan intervenir en ningún punto (Thenoux & Gaete, 1995).

Metodologías para evaluar pavimentos

La evaluación del pavimento se realiza mediante diversas metodologías que buscan establecer una clasificación según el estado en el que se encuentra, involucrando tanto las patologías más relevantes (ahuellamientos, agrietamientos, baches, entre otras). como, la rugosidad parámetros como estos. De este modo, se han desarrollado diferentes alternativas o métodos, los más relevantes se muestran en la Tabla 1.

Métodos Siglas		Rango de clasificaci ón	Descripción del rango	Puntos importantes	Autor / País
Método PCI	PCI	0 - 100	Fallado a excelente	Tiene en cuenta 19 tipos de deterioro del pavimento. Determina el tipo de falla, su magnitud, su severidad y la densidad del área evaluada.	Centro de Ingeniería de la Fuerza Aérea de los E.E.U.U.
Método IRI	IRI	0-10 (m/Km)	Perfil plano a intransitables	Funciona por medio de un modelo matemático denominado "cuarto de carro" que interpreta el comportamiento de un vehículo según el perfil longitudinal del pavimento.	Banco Mundial - Brasil
Inspección visual de daños en carreteras	VIZIR	1-7	Bueno a deficiente	* Clasifica el deterioro del pavimento asfaltico en dos categorías: A (condición estructural) y B (mayormente funcional).	Laboratoire Central des Ponts et Chaussés - Francia
Evaluación superficial y rango de pavimento	PASER	1 - 10	Fallado a excelente	* Tiene un catálogo de fallas basado en una escala gráfica con categorías que varían del 1 a - 10.	Donald Walker, T.I.C. Director
Metodología Correvial	CONREVIAL	2,4,6,8,10	Escaso, moderado, severo	Las fallas asocian un número (tipo de falla) con una letra (magnitud). Deficiencias: se deja una gran área sin evaluar y no logra definirse el metrado.	Consorcio de Rehabilitación Vial
Departamento Nacional de Infraestructura de Transportes	DNIT	0 -mas de 160	Óptimo a pésimo	* Evaluación objetiva mediante un conteo y clasificación de ocurrencias aparentes y de su medida de las deformaciones permanentes sobre la huella de rodamiento.	Brasil
Programa de asistencia técnica en transporte urbano-México	-	0-100	Pésimo a muy bueno	* Caracterización del pavimento mediante la severidad y extensión de las fallas.	México
Condition rating survey	CRS	1-9	Pobre a excelente	* Se basa en el tipo, la cantidad y la severidad de las fallas; así como la rugosidad general de la superficie del pavimento, el nivel de surcos de la trayectoria de las ruedas y la magnitud de las fallas de juntas transversales.	Departamento de Transporte de Illinois (IDOT) - EEUU
Pavement Condition Rating	FHWA/OH- 99/004 (PCR)	0-100	Fallado a excelente	* El método de clasificación de este sistema se describe de manera uniforme, en términos de severidad, extensión de los daños del pavimento.	Ohio Department of Transportation EEUU

Tabla 1. Principales metodologías para evaluar pavimentos.

Índice de condición del pavimento (PCI)

El PCI es un indicador numérico que califica el estado de la superficie del pavimento mediante la inspección visual de la misma, permitiendo conocer la integridad estructural y la condición operacional de la superficie. Este método mide no directamente la capacidad estructural ni da una medición exacta del coeficiente de resistencia a la fricción o la rugosidad; pero si proporciona una base objetiva para determinar las prioridades y necesidades de mantenimiento reparación. La clasificación numérica de la condición del pavimento varía de 0 a 100 como se muestra en la figura 1, siendo 0 la peor condición posible, representando una sección completamente fallada y 100 la mejor condición asumiendo que el pavimento está en perfectas condiciones (ASTM D6433 - 20, 2020).

Figura 1. Escala de calificación del PCI, tomado de (Abdel-Wahed & Hashim, 2017).

El método PCI tienen encuentra 3 factores principales para determinar el grado de daño en el pavimento, que son:

• El tipo de falla

Según Shahin (2005) el PCI tiene 19 tipos de fallas para pavimentos flexibles, en las que se encuentran: la piel de cocodrilo, agrietamiento exudación. en bloque, abultamientos y hundimientos, corrugación, depresión, grieta de borde, grieta de reflexión de junta, desnivel carril/berma, grietas longitudinales V transversales, parcheo, pulimiento de agregados, baches, de vía férrea, cruce ahuellamiento, desplazamiento, grieta parabólica (slippage), hinchamiento, desprendimientos de agregados.

El nivel de severidad

La severidad en este método se divide en tres niveles: bajo (L), medio (M) y alto (H). La determinación de la severidad del tipo de daño ha sido definida por el PCI de acuerdo con ASTM D6433 (Psalmen Hasibuan & Sejahtera Surbakti, 2019).

• La cantidad de fallas

La cantidad de fallas presentes se relaciona con la medida, la unidad de medida y las cantidades totales encontradas en el formulario de encuesta de aplicación del método. En la Tabla 2 se muestran 19 tipos de fallas que incluye la metodología PCI para la evaluación de un pavimento rígido.

No	Tipo de falla
1	Levantamiento/Pandeo
2	Fisura de esquina
3	Losa dividida
4	Fisura de durabilidad "D"
5	Escalonamiento
6	Daño en el sello de la junta
7	Desnivel carril-berma
8	Fisuras lineales
9	Parches grandes
10	Parches pequeños
11	Agregado pulido
12	Popouts/Desprendimientos
13	Bombeo
14	Punzonamiento
15	Cruce de vía ferrea
16	Descascaramiento
17	Fisuras de contracción
18	Descascaramiento de esquina
19	Descascaramiento de junta

Tabla 2. Tipos de falla del PCI para evaluar un pavimento rígido, tomado de (ASTM D6433 - 20, 2020)

El PCI se puede determinar mediante las especificaciones y procedimientos que se encuentran en ASTM D 6433 y ASTM D 5340. Este es uno de los métodos más utilizados en todo el mundo para medir el estado de los pavimentos considerando los parámetros funcionales con la importancia del desempeño estructural; es por esto que es muchos autores lo usan en sus investigaciones, como (Shah et al., 2013),

(Trombetta et al., 2010), (Lopes et al., 2015), (Soncim & Fernandes Júnior, 2015), (Arhin et al., 2015), (Kirbas, & Karas, ahin, 2017) y (Boyapati & Prasanna Kumar, 2015).

Vieira et al., (2016) realizaron un análisis comparativo con otros índices, demostrando a pesar que el diagnóstico es cercano entre ellos, estos procedimientos están sujetos a fallar cuando evalúan defectos mayores; pero se verifica que el PCI es el más completo y más apropiado en las condiciones evaluadas.

Abdullateef Al-Neami et al. (2017) inspeccionaron 10 carreteras divididas en 243 secciones en la ciudad de Al-Kut, centro de Irak, con el método de PCI, obteniendo como resultado que 117 tramos de carreteras (48% del área de estudio) se encuentran en buen estado; mientras que 61 de los tramos (25%) están en condiciones regulares y 65 secciones (27%) están en mal estado.

Soncim & Fernandes Júnior, (2015) crearon un modelo estadístico para predecir el índice de condición de un pavimento flexible de la red vial del Estado de la Bahía, tomando los datos y la característica de la misma. Este modelo se puede emplear en otras redes viales de Brasil, si se calibra en las condiciones del tipo de estructura,

trafico, clima y edad de los pavimentos. Al comparar los valores de PCI objetivo y subjetivo, los resultados más altos se encontraban en los subestimados y los más bajos en los sobreestimados.

Corazza et al., (2016) se modificó el PCI estandarizado por la ASTM para las condiciones de las aceras como parte de una configuración eficiente de un Sistema de Gestión de Aceras, con el fin de mejorar los parámetros para evaluar el estado de los pavimentos.

Shah et al., (2013) evaluaron 10 tramos de carreteras urbanas de la ciudad de Noida, mediante indicadores de condición del pavimento como el deterioro, la rugosidad, la capacidad estructural y la resistencia al deslizamiento, dando como resultado un rango mínimo y máximo de desempeño del pavimento observados en las secciones de estudio de fisuración longitudinal: 8.3% y 11.86%; fisuración transversal: 2,23% y 6,61%; piel de cocodrilo: 11,44% y 16,16%; parcheo: 4378% y 12,0%, desprendimiento de agregados: 9,58% y 29,24%; baches: 1 y 6; IRI: 2,08 m / km y 5,41 m / km; deflexión: 1 mm a 1,82 mm y SRV: 48 y 75 respectivamente. Teniendo en cuenta estos resultados, desarrollaron un índice de condición general de pavimento (OPCI) para secciones las de carreteras urbanas

VICERRECTORIA ACADÉMICA FO-IP-008

seleccionadas, encontrándose en un rango de 69 - 77 (buen a muy buen estado del pavimento), 51 - 63 (regular a bueno), 37 - 57 (deficiente a bueno) y 33 - 51 (estado del pavimento deficiente a bueno) respectivamente.

Índice de rugosidad Internacional (IRI)

El IRI es un valor numérico que representa la influencia que tiene el perfil longitudinal de una vía sobre las condiciones de operación, basada en la vibración de un vehículo a causa de las deficiencias de la regularidad de dicha vía.

Este método tiene una medida adimensional con unidades (m/km), (mm/m) o (in/mi) o de pendiente multiplicada por mil (Múčka, 2017) que se calcula por medio de un modelo matemático que crearon expertos del Banco Mundial en los años 80, denominado cuarto de carro o "Quater-car", que representa el movimiento vertical de suspensión acumulado y las masas de la cuarta parte de un vehículo tipificado que circula a una velocidad de 80 Km/h en el tramo vial recorrido durante la prueba (NLT-330/98, 1998).

Respecto al tipo de equipo utilizado para medir el IRI se encuentran según el Manual de campo del sistema de monitoreo del desempeño en carreteras (HPMS) los siguientes: (1) sonar, (2) mezcla de sonar y dispositivos láser, (3) láser, (4) escaneo láser y (5) otros (HPMS, 2012).

Por otro lado, existen varios métodos de medida para este índice que especifica la ASTM E950 -98, mediante cuatro clases (Sayers et al., 1986), tales como:

Clase I. perfilómetros de precisión: Tienen una exactitud alta. En esta clase pertenecen los métodos de mira y nivel, viga y niel, y Viga TRRL.

Clase II. Otros métodos Perfilométricos: Todos equipos que no cumplen con la precisión de la clase 1, como, por ejemplo, los perfilómetros de alta velocidad y con métodos estáticos. Perfilómetros de tipo APL, el inercial GMR, perfilómetros dinámicos, entre otros.

Clase III. Estimaciones del IRI mediante correlaciones: El IRI se obtiene también por medio de ecuaciones de correlaciones; por lo general se obtiene el perfil longitudinal por equipos tipo respuestas (RTRRM), que han sido previamente calibrados con equipos utilizados en la clase 1.

Clase IV. Métodos subjetivos: No requiere mucha precisión, se realiza por evaluaciones subjetivas, evaluación visual y experiencia, o mediciones no calibradas.

Múčka, (2017) comparó especificaciones basadas del IRI para diferentes tipos de

carreteras y para irregularidades localidades en todo el mundo, concluyendo que estas están principalmente en función del tipo de superficie de la carretera, la categoría funcional de la carretera, el límite de velocidad de la carretera, el tipo de construcción de la carretera y el AADT. Así mismo, estableció las especificaciones del perfil dividas en tres grupos: perfil longitudinal, dos perfiles longitudinales y más de dos perfiles longitudinales. En la Tabla 3 se muestran algunos de los ejemplos de especificación de perfil para algunos países.

No de perfiles	País/Estado	Tipo de vía/clase fincional vial	Especificaciones del perfil
1	República Checa	AC/PCC	El IRI es medido en el carril derecho; el perfilador tiene la rueda derecha a una distancia de 0.8 a 1.2m del lado derecho de la carretera; es posible realizar la medición en más pistas paralelas.
	Canadá - Columbia Británica	AC	Los perfiles son medidos y el IRI se calcula en el centro del carril para cada sublote.
	Polonia	Vías Nacionales	El IRI es medido en la rueda de la vía derecha en el carril exterior de tráfico.
2	Idaho, Carolina del Norte, Ohio	AC	Los perfiles estan a 1m (3ft) del borde interior de cada carril de conducción y son paralelos a este.
	Iowa, Oregon	AC/PCC	La trayectoria de las llantas está a 0.9m (3ft) y 2.7m (9ft) de la línea central de la vía.
	Dakota del Norte, Dakota del Sur	PCC	El paso de la llanta para cada carril esta aproximadamente a 0.79m (31 in.) de la línea central de la vía y el paso de la otra llanta aproximadamente a 2.46m (97 in.) del eje de la vía.
	Canadá - Ontario	AC	La trayectoria de las llantas derecha e izquierda están a 0.9m de cada lado del eje del tráfico del carril.
	HPMS Manual de Campo	AC/PCC	El IRI del carril está determinado por el promedio de los IRI de las trayectorias de las llantas a 0.75m a cada lado de la línea central del carril.
>2	Eslovaquia	AC/PCC - un carril	El valor máximo del IRI de los perfiles número 2-14 registrados por Profilograph GE.
		AC/PCC - dos o más carriles	El valor máximo del IRI de todos los carriles de los perfiles número 2-14 registrados por Profilograph GE.
		AC/PCC - autopista	El valor máximo de los perfiles número 2-14 registrados por Profilograph GE; cada carril de la autopista se caracteriza por separado.
		AC/PCC - vía - evaluación estadística de la condición de la vía	e El promedio de los valores máximos de IRI estimados en cada carril de los perfiles no. 2-14 registrados por Profilograph GE.

Tabla 3. Especificación del perfil para el cálculo del IRI en algunos países, tomado de (Múčka, 2017).

Según el Banco mundial, el IRI presenta un intervalo de 0 a 10 m/km, donde 0 es para carreteras pavimentadas una superficie teórica perfectamente uniforme y >10 una carretera intransitable. Para vías no

pavimentadas se puede extender hasta el valor 20. En este sentido, Múčka, (2017) también propuso unos valores límites para carreteras en servicio en varios países, tal como se muestra en la Tabla 4.

País	Tipo de vía	Largo de evaulación (m)	IRI (mm/m)
Australia	AC/PCC - autopista	500	4.2*, 3.5**
	AC/PCC -carreteras y vías principales (100 km/h)	5.3*, 3.5**
	AC/PCC - carreteras y vías principales (<80 km/h	ነ)	6.1*, 5.3**
			Nota: Basado en MRI; *áreas aisladas, **longitud > 500m
Bielorrusia	AC/PCC	100	4.5 (Categoría I), 5.5 (II), 6.2 (III), 6.7 (IV), 6.9 (V-VI)
	AC frio y grava		4.5 (I), 5.5 (II), 6.2 (III), 6.7 (IV), 6.9 (V-VI)
Canadá - Ontario	AC/PCC - autopista	161	1.9 (AC) / 2.4(PCC)
	AC/PCC - arteria		2.3 (AC) / 2.7(PCC)
	colector		2.7
	Local		3.3
Chile	AC/PCC	200	2*, 2.8**
	AC/PCC - reconstrucción		3*, 4**
			Nota: *promedio de cinco tramos cada 200m, **200m de tramo
Costa Rica	AC/PCC - carretera	200	2*, 3**
			Nota: *promedio de cinco tramos cada 200m, **200m de tramo
República Checa	AC/PCC	20	3.1*, 4.3** (v > 50km/h)
			4.3*, 6.3** (v < 50km/h)
			Nota: *reconstrucción planificada, **reconstrucción
Estonia	AC	100	10 (Categoría 1), 8 (Categoría 2), 5 (Categoría 3), 3 (Categoría 4)
			Nota: La categoría de la vía esta en función de la categoría funcional
			de la vía y su TPDa
Irlanda	Autopista	100	2.5
	Pavimentos de ingeniería		3
	Pavimentos patrimoniales TPDa > 3500		4
	Pavimentos patrimoniales TPDa = 2000 - 3500		4
	Pavimentos patrimoniales TPDa < 2000		5
			Nota: El IRI se estima para el carril izquierdo de la vía

Tabla 4. Valores límite del IRI para carreteras en servicio en algunos países, tomado de (Múčka, 2017).

Lin et al., (2003) realizaron un análisis de la relación entre la metodología de evaluación IRI y las fallas del pavimento con base en una red neuronal de retropropagación para evaluar la aplicabilidad del IRI como un método fiable que arrojara de manera representativa el estado de una vía, se concluyó que la medición rápida del IRI usando un Analizador Automático carreteras (ARAN) simplifica los trabajos de inspección visual tradicional de acuerdo con las imágenes del pavimento adquiridas por el sistema de recuperación de imágenes. También, con base a la red neuronal, la aproximación del IRI se puede obtener con mediante utilización éxito la de

clasificaciones obtenidas de las imágenes de deterioro del pavimento y el nivel de la carretera.

Sachún, (2016) encontró que el índice de Rugosidad Internacional en 29.60 Km de pavimento en la Panamericana Norte – Zona Trujillo utilizando el rugosímetro de Merlín, donde se obtuvo un IRI en promedio de 1.7 m/Km, una desviación estándar igual a 0.19, un IRI característico de 2.08 m/Km, esto indicó que la carretera en términos generales se encontraba en buenas condiciones para el tránsito vehicular y de acuerdo con la escala de estimación de rugosidad dada por la Norma ASTM E-1926-98, ésta tiene un

VICERRECTORIA ACADÉMICA FO-IP-008

manejo confortable que va entre los 100 Km/h - 120 Km/h.

Inspección visual de daños en carreteras (VIZIR)

La metodología de auscultación VIZIR es un sistema de evaluación con el que se clasifica la condición superficial de los pavimentos. Este método categoriza las patologías de los pavimentos en dos tipos: A y B. Siendo A

los deterioros provenientes de una condición estructural, están ligados a condiciones de las capas del pavimento y la subrasante, producto de insuficiencias estructurales, representadas en el pavimento como deformación y fisuramientos. Mientras que los B son de tipo funcional y su origen se encuentra en deficiencias constructivas y en condiciones particulares de la zona (Invias, 2008).

TIPO	GRUPO	DETERIORO
	AHUELLAMIENTOS Y OTRAS	Ahuellamiento
	DEFORMACIONES	Depresiones o hundimientos transversales
Α	DEI ONIVIACIONES	Depresiones o hundimientos longitudinales
^	FISURAS	Fisura longitudinal por fatiga
	HOUNAS	Fisuras piel de cocodrilo
	BACHEOS Y PARCHEOS	Bacheos y parcheos
		Fisura longitudinal de junta de construcción
		Fisura transversal de junta de construcción
	FISURAS	Fisura de contracción térmica
		Fisura parabolica
		Fisura de borde
	DEFORMACION	Deformación
		Ojos de pescado
	DESPRENDIMIENTOS	Pérdida de pelicula ligante
В	DESF RENDIMIENTOS	Pérdida de agregado
В		Descascaramiento
		Pulimiento de agregado
	AFLORAMIENTOS	Exudación
	AI LONAIVILINTOS	Afloramiento de mortero
		Afloramiento de agua
		Desintegracion de los bordes del pavimento
	OTROS DETERIOROS	Escalonamiento entre calzada y berma
	O INOS DETENIOROS	Erosión de las bermas
		Segregación

Figura 2. Categoría y clasificación de daños Metodología VIZIR, tomada de (Invias, 2008).

Los deterioros poseen un esquema de itinerario por colores, los cuales indican su nivel de gravedad, dividiendo el proyecto en secciones de 100 metros de largo, para las carreteras de doble calzada cada calzada

tendrá su propio inventario de patologías. Al interior de la sección se digita el valor de la extensión ocupada por el deterioro dentro de dicha sección (Invias, 2008).

FO-IP-008

Esta metodología establece 3 niveles de gravedad para cada tipo de patología como: ahuellamientos, fisuras, pieles de cocodrilo, parcheos, entre otros. Este nivel depende de

que tan severo sea el deterioro, medido según la profundidad, cantidad de fisuras, largo, entre otros. Siendo el nivel 1 el más leve y el 3 el más grave.

	NIVEL DE GRAVEDAD										
DETERIORO	1	2	3								
Ahuellamiento y otras deformaciones estructurales	Sensible al usuario, pero poco importante Prof < 20 mm	Deformaciones importantes. Hundimientos localizados o ahuellamientos. 20 mm ≤ Prof ≤ 40 ≤ mm	Deformaciones que afectan de manera importante la comodidad y la seguridad de los usuarios. Prof > 40 mm								
Fisuras longitudinales por fatiga	Fisuras finas en la huella de rodamiento. <6 mm	Fisuras abiertas y a menudo ramificadas.	Fisuras muy ramificadas, y/o muy abiertas. Bordes de fisuras ocasionalmente degradados.								
Piel de cocodrilo	Piel de cocodrilo formada por mallas (> 500 mm) con fisuración fina, sin pérdida de materiales.	Mallas más densas (<500mm), con pérdidas ocasionales de materiales, desprendimientos y ojos de pescado en formación.	Mallas con grietas muy abiertas y con fragmentos separados. Las mallas son muy densas (<200 mm), con pérdida ocasional o generalizada de materiales.								
Bacheos y parcheos	Intervención de superficie ligada a deterioros del tipo B.	Intervenciones ligadas a deteri Comportamiento satisfactorio de la reparación.	oros tipo A Ocurrencia de fallas en las zonas reparadas.								

Figura 3. Niveles de gravedad de los deterioros del Tipo A, tomado de (Invias, 2008).

		NIVEL DE GRAVEDAD							
DETERIOR	0	1		2		3			
Fisura longitudinal de construcción	e junta de	Fina y única < 6 mm	desprend	 Ancha (≤ 6 mm) sin desprendimiento o Fina ramificada 		i mm) con mientos o			
Fisuras de contracció	in térmica.	Fisuras finas < 6 mm	desprendin finas con desprendin	Anchas (≤ 6 mm) sin desprendimiento, o finas con desprendimientos o fisuras ramificadas		6 mm) con mientos			
Fisuras parabólicas.		Fisuras finas < 6 mm	Anchas (≤ 6 desprendin	nientos	desprendi				
Fisuras de borde		Fisuras finas < 6 mm	Anchas (≤ 6 desprendin	nientos	desprendi				
Abultamientos		h< 20 mm	20 mm ≤ h:		h > 40 mm				
Ojos de	Cantidad.	<5	5 a 10	< 5	> 10	5 a 10			
pescado*(por cada 100m)	Diámetro (mm)	≤ 300	≤ 300	≤ 1000	≤ 300	≤ 1000			
Desprendimientos: Pérdida de pligante. Pérdida de a		Pérdidas aisladas	Pérdidas continuas		Pérdidas generalizadas y muy marcadas				
Descascaramiento	Prof.(mm)	≤ 25	≤ 25 > 25		> 25				
Descascaramiento	Área(m²)	≤ 0.8	> 0.8 ≤ 0.8		> 0.8				
Pulimento agregados	5	Long. Comprometida < 10% de la sección (100m).	Long. Comprometida ≥ 10% a < 50% de la sección (100m)		Long. Comprometida > 50% de la sección (100m)				
Exudación		Puntual, área específica	continúa sobre las trayectorias por donde circulan las ruedas del vehículo		Continua y muy marcada, en diversas aéreas				
Afloramientos:		Localizados y apenas perceptibles.	Intensos		Muy inten	SOS			
Desintegración de los pavimento	s bordes del	Inicio de la desintegración, sectores localizados.	afectada er	La calzada ha sido afectada en un ancho de 500 mm o más		Erosión extrema que conduce a la desintegración del revestimiento			
Escalonamiento entre berma.	e calzada y	Desnivel entre 10 mm y 50 mm.	Desnivel er 100mm	ntre 50 y	Desnivel s 100mm.				
Erosión de las berma	s	Erosión incipiente	Erosión pro	Erosión pronunciada		La erosión pone en peligro la estabilidad de la calzada y la seguridad de los usuarios			
Segregación		Long. comprometida < 10% de la sección (100m)	Long. comp ≥ 10% a < 5 sección (10	0% de la	Long. com > 50% de l (100m)	prometida a sección			

Figura 4. Niveles de gravedad de los deterioros del Tipo B, tomado de (Invias, 2008).

Como resultado de la evaluación (desarrollada en campo o en oficina), se determina el índice de deterioro superficial representado como Is que varía entre 1 y 7, siendo 1 representativo de un pavimento con pocos fisuramientos y deformaciones, y el 7 indicativo de una estructura en muy mal estado que requiere muchos trabajos de rehabilitación (Invias, 2008).

Silva & Gracía, (2018) realizaron un análisis comparativo de metodologías para la evaluación de pavimentos en donde incluyeron los métodos Vizir y PCI, sobre un tramo de la red urbana de la localidad de Chapinero, obteniendo una diferencia sustancial en los resultados arrojados por cada uno alternativas de solución muy distintas producto de estas inconsistencias.

Papageorgiou, (2019) comparó algunos de los métodos de evaluación de nivel de servicio de pavimentos más usados, entre ellos: Vizir, Paser, PCI, y concluyó que el método australiano se desempeñaba de mejor manera en cuanto no se tuviesen limitaciones presupuestales, o en caso de haberlas, optar por las el método Paser. Sin embargo, cada método presentó ventajas y desventajas teniendo en cuenta condiciones inherentes a cada proyecto.

Reyna, (2021) propuso estrategias de intervención para un tramo de la Avenida

Perú de 2394 metros en la ciudad de Trujillo haciendo uso de la metodología Vizir, siendo esta avenida una de las más importantes de la ciudad al conectar 3 avenidas principales con alto tránsito, donde predominan tanto vehículos livianos como pesados, determinando que el estado de dicha avenida para ambos carriles "Marginal" debido al mal estado presentaba la vía por falta de mantenimiento por partes de la entidad encargada, por lo "Mantenimiento se propuso un que Rutinario y Periódico" para así mejorar la condición y el nivel de servicio de la estructura.

CAPÍTULO II

Análisis comparativo de las metodologías

En la tabla 5 se presentan algunos trabajos de investigación reportados en la literatura técnica que han efectuado una comparación tanto descriptiva como experimental entre los métodos para evaluar un pavimento.

VICERRECTORIA ACADÉMICA FO-IP-008

N°	PAÍS	DOI	TÍTULO	RESUMEN	REFERENCIA
1	Indonesia	10.19184/jrsl.v3i2.1 0904	The Comparison of Road Damage Values Based on PCI (Pavement Condition Index) Method Observation and IRI (International Roughness Index) Method on Road Class II in Lumajang District	En este artículo se evaluaron 4 tramos de carreteras clase II en Indonesia utilizando el método PCI realizado visualmente y el método IRI obtenido de Bina Marga Lumajang PU. Los resultados promedio de los cuatro tramos por el PCI fue de 76.54 con buenas condiciones, mientras que por el método IRI fue de 3.94 con buenas condiciones; por lo que ambos métodos arrojaron las mismas conclusiones.	(Sari et al., 2019)
2	EEUU	10.5923/j.jce.20150 501.02	Predicting Pavement Condition Index Using International Roughness Index in a Dense Urban Area	Para este estudio se utilizó un conjunto de datos de 2 años de IRI-PCI para crear modelos estadísticos que permitan predecir el valor del PCI a partir IRI por clasificación funcional y por tipo de pavimento en el Distrito de Columbia. Se determinó que los modelos de regresión entre el IRI y el PCI fueron estadísticamente significativos dentro del margen de error del 5%, con valores de R2 entre 0.56 y 0.82.	(Arhin et al., 2015)
3	Irán	10.1155/2021/66358 20	Development of a Relationship between Pavement Condition Index and International Roughness Index in Rural Road Network	Este artículo se realizó para desarrollar una relación entre el IRI y el PCI, utilizando tres modelos de regresión exponencial en tres intervalos IRI diferentes, tomando información de la base de datos de campo recopilada de 6000 secciones de pavimento de 600 km de red de carreteras rurales en la provincia de Fars. En estos modelos se encontró que el R2 dio valores aceptables, de (0,75, 0,76 y 0,59) para carreteras con cualidades buenas, justas y muy pobres, lo que indicó una buena relación entre IRI y PCI. También se concluyó que cuando aumenta el nivel de rugosidad de la superficie de la carretera, la relación entre IRI y PCI se debilita, lo que puede ser causado por el aumento en el número y la gravedad de las fallas.	(Adeli et al., 2021)
4	EEUU	10.1177/036119812 11004965	Use of Time-Temperature Superposition Principle to Create Pavement Performance Master Curves and Relate Pavement Condition Index and International Roughness Index	Se desarrolló una relación entre el IRI y PCI utilizando modelos de deterioro del pavimento para ambos métodos, basados en el concepto de superposición tiempo-deterioro similar al principio de superposición tiempo-temperatura. Se tomaron datos históricos de 40 secciones de pavimento flexible LTPP de Arizona, 32 secciones de California y 37 secciones de Wisconsin para crear curvas maestras PCI empleando el modelo sigmoidal y la metodología propuesta por Sotil y Kaloush, y modificado por Beckley para crear curvas maestras IRI. Se concluyó que la metodología aplicada para combinar las curvas maestras de los dos métodos fue exitosa; ya que los resultados arrojaron buenas estadísticas comparativas del R2 con un valor de 0.85 y un error estándar sobre la desviación estándar muestral (Se / Sy) de 0,38 para Arizona, R 2 de 0,75 y Se / Sy de 0,50 para California, y R 2 de 0,71 y Se / Sy de 0,53 para Wisconsin.	(Medina et al., 2021)

VICERRECTORIA ACADÉMICA FO-IP-008

5	Perú	Aplicación de los métodos PCI y VIZIR para la conservación del pavimento flexible, carretera pe-24a tramo Libertad - Chicche, Junín	Se evaluó un tramo de 4232 m en el departamento de Junín, Perú mediante el PCI y VIZIR, en donde se determinó que la condición del pavimento mediante la aplicación de la metodología PCI fue del 14.29% (regular), 35.71% (malo), 42.86% (muy malo) y 71.4% (fallado); por otro lado, la metodología VIZIR tuvo un 71.43% (regular) y un 28.57% (deficiente). Además, se pudo constatar que de estos dos métodos el más completo es el PCI, ya que evalúa todas las patologías encontradas a comparación del VIZIR que solo considera fallas del tipo A para su evaluación. También se analizaron los resultados de las dos metodologías, en función al IRI para la conservación del pavimento, así mismo, la condición del tramo en estudio, el 21.43% de las muestras presentan un estado malo de acuerdo al Índice de Rugosidad Internacional y el 78.57% (muy malo).	(Bravo, 2019)
6	Perú	Comparación de los métodos PCI y VIZIR en la evaluación de fallas del pavimento flexible de la avenida Aviación de la ciudad de Juliaca.	En esta investigación comparó el método PCI y VIZIR en un pavimento con una longitud de 1400m, divididas en 45 unidades de muestreo. Se llegó a la conclusión que ambas metodologías obtuvieron resultados similares en cuanto a la totalidad de la vía, según el PCI se encuentra en una condición muy buena con un porcentaje del 76%, y por el VIZIR el pavimento se encuentra en un estado bueno con un porcentaje del 91%. Por otro lado, según la prueba estadística al comparar ambos métodos se obtuvo un 95% de confianza al PCI; sin embargo, el VIZIR no contó con la confianza estadística, puesto que sobrepasaba el margen de error del ±5%.	(Morales Colca, 2019)
7	Perú	Evaluación del Pavimento Flexible Mediante Métodos Del Pci y Vizir en el Tramo de La Carretera de Monsefu - Puerto Etén	La investigación evaluó 8 km de vía con un total de 52800m2 y con 30 unidades de estudio para ambas metodologías, dando como resultado para el PCI un índice de calificación de 33.81%, encontrándose entre 40-25, por lo cual su grado de deterior fue malo; y para la evaluación VIZIR el índice superficial fue de 3.97% indicando que es un pavimento regular. Se concluyó que el método más idóneo era el PCI porque es más fácil y completa, debido a que los rangos de clasificación van del 0 para una superficie de pavimento fallada, hasta 100 que es un pavimento en excelentes condiciones.	(Guevara, 2019)
8	Ecuador	Análisis comparativo de los resultados entre los métodos VIZIR y PCI aplicados a un tramo - de 1.6 Km vía Jipijapa- Chade	Al comparar el Índice de Condición del Pavimento con Visión e Inspección de Zonas e Itinerarios en Riesgo se encontró que los tipos de falla que tienen mayor representatividad en el deterioro de pavimento es la piel de cocodrilo con un porcentaje de 38.93% y el fisuramientos de borde con un 22.50% para VIZIR; y en la metodología PCI fue la piel de cocodrilo con 41.89% y grietas longitudinales con 26.53%. Por otra parte, el índice de deterioro según VIZIR fue deficiente con un valor de 4.35 y el índice de deterioro según PCI fue malo con un valor de 38.07 el cual necesita rehabilitación.	(Bello, 2017)

Se aplicó el método PCI mediante una inspección visual y el método de

VICERRECTORIA ACADÉMICA FO-IP-008

9	Indonesia	https://doi.org/10.10 51/matecconf/20181 9504006	Assessment of the road based on PCI and IRI roadroid measurement	evaluación IRI con la aplicación Roadroid. Se determinó que al evaluar la carretera utilizando el PCI tuvo una condición muy buena con un valor promedio de 70.36 y la evaluación mediante el IRI Roadroid tuvo una condición mediana con un promedio de 4.23. Además, se realizó una correlación entre las dos metodologías valorada en -0.23, lo cual significa que hay un nivel de correlación bajo y con t-test no mostró ninguna comparación de correlación, puesto que hay una diferencia entre las evaluaciones de las condiciones funcionales de una carretera.	(Putra & Suprapto, 2018)
1 0	Indonesia	https://doi.org/10.10 51/matecconf/20192 5803019	Study of Pavement Condition Index (PCI) relationship with International Roughness Index (IRI) on Flexible Pavement	En esta investigación se buscaba determinar la relación entre el PCI e IRI, para lo cual se tomó como caso de estudio un segmento de una vía arteria de la ciudad de Medan, Indonesia. Obteniendo como resultados del análisis una diferencia entre los métodos de evaluación. Mientras que para el método PCI el segmento de carretera se clasificaba como "Aceptable" con un valor promedio de 58.6, para el IRI el estado de la vía de estudio se clasificaba como "Bueno" con un puntaje entre 2 y 4. Sin embargo, los valores obtenidos por el IRI tendían a ser menos fieles a las condiciones de campo, esto debido al método de medición de la rugosidad que usa IRI, al fijarse únicamente la sección por donde transcurre la rueda del vehículo usado para medir este parámetro.	(Psalmen & Sejahtera, 2019)
1 1	Jordania	https://doi.org/10.10 07/s41062-021- 00504-1	Predicting Pavement Condition Index from International Roughness Index using Gene Expression Programming	En este artículo se recolecta información para la determinación del estado del pavimento mediante el método IRI es mucho más sencilla y asequible que si la comparamos con las mediciones necesarias para el método PCI, por lo que se plantea predecir el valor de PCI a partir del puntaje obtenido por el IRI mediante la programación de expresiones de genes o GEP por sus siglas en inglés, y así no tener la necesidad de evaluar mediante la metodología del PCI que puede llegar a requerir más recursos. La programación desarrollada en esta investigación se hizo a partir de datos provenientes de estudios previos y a partir de datos reales obtenidos en una vía arteria de 50 kilómetros. Este método de predicción obtuvo una fiabilidad de más del 80% al estimar el valor del PCI por lo que se convirtió en uno de los métodos más certeros.	(Imam et al., 2021)
1 2	EEUU	10.1061/(ASCE)073 3- 947X(2007)133:12(706)	Applicability of the International Roughness Index as a Predictor of Asphalt Pavement Condition	Se estableció una relación entre el deterioro superficial de un pavimento asfaltico y su rugosidad a partir de la generación de un modelo de regresión lineal que determine el puntaje de PCI dada la rugosidad con el método IRI, como resultado se pudo observar que la metodología IRI no podía ser el único factor a tener en cuenta para la determinación del índice de deterioro, al obtener variaciones de hasta del 41% entre el PCI medido y el obtenido por la regresión lineal.	(Park et al., 2007)

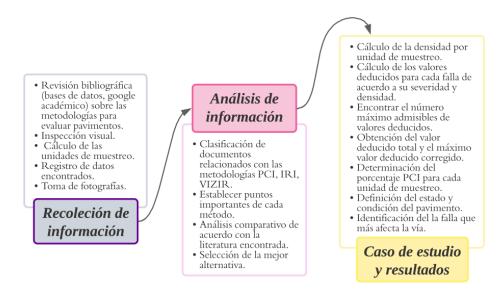
Tabla 5. Resumen de fuentes seleccionadas sobre las metodologías.

La metodología IRI se emplea como una manera rápida de determinar el estado actual de un pavimento, teniendo en cuenta la facilidad y el ahorro de recursos que se obtienen si se comparan con otras metodologías. Sin embargo, en algunas ocasiones este índice no se representa tan correctamente con las condiciones reales del pavimento al no realizar la evaluación o medición en todo el ancho de la estructura, por lo que puede ser un factor desfavorable con respecto a otras metodologías.

Aunque el IRI es aceptado, muy difundido en todo el mundo caracterizando la rugosidad longitudinal de carreteras para la gestión de sistemas viales, es un método que se mide de diversas formas en países distintos, entonces esto puede hacer que los resultados no sean tan representativos, ya que depende mucho del instrumento de medición con el cual se realice; así que, aun cuando su definición sea objetiva, dicho instrumento de medición no lo es, lo que ha generado una incertidumbre y puede que los resultados no sean tan confiables.

Por otro lado, la metodología VIZIR es un sistema de evaluación de pavimentos flexibles, que clasifica las patologías del pavimento en dos tipos: tipo A y tipo B; sin embargo, sólo toma en cuenta las fallas de tipo A, las cuales son producto de la fatiga

estructural del pavimento, dejando por fuera las fallas originadas por aspectos climáticos, ambientales o constructivos, a diferencia de otros métodos como el PCI que contempla todas las fallas que pueda presentar la vía siendo más completo su análisis. Vizir usa un sistema de clasificación de los pavimentos que se divide en 3 niveles de servicio: bueno, regular y deficiente que es menos preciso comparado con sistemas de clasificación un poco más detallados.


El PCI es una metodología ampliamente utilizada, siendo uno de los métodos de mayor aceptación a nivel nacional e internacional que se ha aplicado desde hace muchos años y aún sigue siendo empleada globalmente, sobre todo en países que no cuentan con equipos de medida de parámetros de estado, como: fricción, irregularidad superficial (transversal y longitudinal) y deflexión.

Estas metodologías son bastante estudiadas a escala internacional; puesto que son muy sencillas y prácticas para realizarse y determinar la condición de un pavimento; así mismo, la literatura recomienda que la mayoría de estos índices de servicio del pavimento están relacionados, por lo que existen múltiples investigaciones que han realizado análisis comparativos para

determinar qué tan variable son estos métodos o incluso han desarrollado modelos para predecir o correlacionar un índice a partir de otro, comprobando una alta eficiencia en su evaluación.

Al analizar la información recolectada, evaluando todas estas alternativas y a partir de la experiencia de otros sobre este tema, se concluye que, para las condiciones de Montería, la metodología más apropiada es el PCI; por lo tanto, en el siguiente capítulo se presenta un caso de estudio donde se implementa este método para un tramo vial localizado en la Calle 64a barrio la Castellana, Montería.

CAPÍTULO III

Caso de estudio – tramo vial Montería

Localización

El caso de estudio se llevó a cabo en la calle 64a, entre la Cra. 6 y Cra. 13, localizada en el barrio la Castellana de la ciudad de Montería, departamento de Córdoba, al noroccidente del país. La vía cuenta con dos carriles doble sentido con anchos de 3.5m cada uno. Esta zona es altamente residencial y escolar; ya que es la vía de acceso a dos

instituciones educativas, por lo que se hace necesario garantizar un alto nivel de servicio de esta, con el objetivo de proporcionar una circulación con rapidez, comodidad y economía, además de prevenir posibles accidentes que puedan ser provocados por el mal estado del pavimento.

Figura 5. Localización de la calle 64a barrio la Castellana, tomado de Google Earth. Editado por autores.

Resultados y discusión

Cálculo de las unidades de muestreo

Se evaluó como una sola sección el tramo de la calle 64a, Montería que consta de 560 metros, teniendo en cuenta que el diseño del pavimento, el tráfico y la condición de éste es similar a lo largo de dicho tramo. Al realizar el conteo de las losas en ambos sentidos, dio un total de 280, lo que equivale a 14 unidades de muestreo con un área de 20 losas, cada una de estas tiene en promedio 4 metros de largo y 3.5 metros de ancho tanto el carril izquierdo como el derecho.

Se calculó el número mínimo de unidades de muestreo estudiadas y el intervalo de espaciamiento entre cada unidad, como se muestra a continuación:

$$n = \frac{14*15^2}{\frac{5^2}{4}*(14-1)+15^2} = 10.3 \approx 11$$

Ecuación 1. Número mínimo de unidades de muestreo.

$$i = \frac{14}{11} = 1.27$$

Ecuación 2. Intervalo de espaciamiento entre cada unidad.

Este resultado indicó que se deben evaluar todas las unidades de muestra, y se optó por tomar todas las 14.

En la figura 6 se muestra la localización de las 14 unidades de muestreo evaluadas, ubicadas en la calle 64a del barrio la castellana, Montería.

Figura 6. Localización de las unidades de muestreo, tomado de Google Earth. Editado por autores.

Cálculo del PCI

Se encontró el índice de condición del pavimento (PCI), para las 14 unidades de muestreo evaluadas de la sección, la información recogida fue registrada en las hojas de inspección y analizada de acuerdo al procedimiento para el cálculo del PCI. Ver anexos.

La Tabla 6 muestra para cada unidad el máximo valor deducido de daño, el nombre de la falla, la severidad, el valor del PCI y el estado en el que se encuentra.

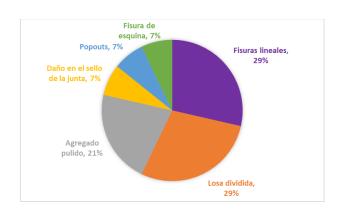

Unidad de muestreo	Mayor valor deducido	Falla	Severidad	Valor PCI	Estado
1	14	Fisuras lineales	L	70	Bueno
2	18	Losa dividida	Н	60	Bueno
3	57	Losa dividida	Н	29	Malo
4	10	Agregado pulido	-	81	Muy bueno
5	4	Daño en el sello de la junta	М	92	Excelente
6	15	Fisuras lineales	М	73	Muy bueno
7	14	Fisuras lineales	L	77	Muy bueno
8	20	Losa dividida	L	61	Bueno
9	10	Popouts/ Desprendimientos	-	82	Muy bueno
10	15	Fisura de esquina	М	74	Muy bueno
11	10	Agregado pulido	-	81	Muy bueno
12	10	Fisuras lineales	L	82	Muy bueno
13	10	Agregado pulido	-	82	Muy bueno
14	12	Losa dividida	М	81	Muy bueno
	PCI de la	sección		73.214	Muy bueno

Tabla 6. Resultados generales por unidad de muestra.

En esta sección del tramo en estudio, las fallas que generan un alto grado de afectación son las fisuras lineales y la losa dividida; debido a que presentan los mayores valores deducidos. Las fisuras lineales en las unidades 1, 6, 7 y 12, mientras que la losa dividida en las unidades 2, 3, 8 y 14. Este valor deducido indica el grado en que cada combinación de deterioro, severidad y cantidad perjudican la condición del pavimento.

En la gráfica 1 se encuentra definido el porcentaje del área que representa cada uno

de los daños mencionados, con respecto al total de unidades de muestreo evaluadas.

Gráfica 1. Porcentaje de área para fallas que más afecta la vía.

Por último, el PCI tuvo un valor de 73.21 en toda la sección, tomando el promedio de todas las unidades evaluadas, ya que no se inspeccionaron unidades adicionales, la calificación correspondiente a este valor da un estado del pavimento "muy bueno".

$$PCIs = \frac{14*73.21}{14} = 73.21$$

Ecuación 3. PCI de la sección evaluada.

Se obtuvo un 64.3% de las unidades de muestreo en estado "muy bueno", un 21.5% "bueno", y un 7.1% tanto en "malo" como "excelente". El PCI más bajo fue de 29, asignado a la unidad 3 como condición mala, y el valor más alto fue de 92 para la unidad 5, calificada como "excelente".

Gráfica 2. Porcentaje del estado del pavimento.

Las fallas encontradas en toda la sección del tramo evaluado se presentan a continuación.

Figura 7. Fisura de esquina en la Unidad 10.

La losa dividida no es tan recurrente en las unidades; sin embargo, es muy relevante, puesto que su valor deducido es bastante alto.

Figura 8. Losa dividida en la Unidad 3.

Con respecto al daño en el sello de junta, la mayoría no cuenta con el sello, lo que ocasiona una acumulación de vegetación, arena, agregados y agua.

Figura 9. Daño en el sello de junta.

En cuanto a las fisuras lineales, al igual que la losa dividida no son tan usuales, pero es una de las fallas que más afecta la vía.

Figura 10. Fisuras lineales en la Unidad 8.

La falla de pulimiento de agregado fue frecuente en todas la unidades inspeccionadas, a pesar de esto no fue tan notable debido a que su máximo valor deducido es bajo, máx. 10, en comparación con otros daños, por lo que no afecta significativamente a la estructura del pavimento.

Figura 11. Pulimiento de agregados.

Figura 12. Popouts en la Unidad 10.

VICERRECTORIA

ACADÉMICA

FO-IP-008

Figura 13. Punzonamiento de alta severidad en la Unidad 3.

Figura 14. Fisura de contracción en la Unidad 6.

Figura 15. Descascaramiento de esquina en la Unidad 3.

El descascaramiento de junta se presenta por la infiltración de materiales incompresibles en la junta que ocasiona la falta del sello la gran parte de las losas.

Figura 16. Descascaramiento de junta en la Unidad 13.

VICERRECTORIA ACADÉMICA FO-IP-008

3. CONCLUSIÓN

- Al comparar las metodologías PCI, VIZIR y IRI, se concluyó que la más representativa para el caso de estudio fue la PCI, que una metodología ampliamente utilizada en todo el mundo, evalúa tanto a los pavimentos flexibles como rígidos, es uno de los métodos de aceptación nacional mayor e internacionalmente, usada en países que no cuentan con equipos de medida de parámetros de estado, como: fricción, superficial irregularidad (transversal longitudinal) y deflexión.
- Con la revisión de literatura técnica se pudo constatar que estas tres metodologías son ampliamente estudiadas en muchos países como son: Indonesia, EEU, Irán, Perú, Ecuador, Jordania, entre otros.
- Gracias al análisis comparativo se concluyó que en muchos casos cuando se evalúan pavimentos mediante el IRI y el PCI se obtienen resultados similares al presentar las mismas condiciones en varios tramos estudiados. Al igual que cuando se evalúa una vía mediante el método VIZIR con el PCI dan condiciones similares en cuanto a todo el trayecto estudiado; sin embargo, cuando se comparan ambos

- métodos el PCI puede llegar a tener un 95 % de confianza, mientras que el VIZIR no cuenta con la confianza estadística por sobrepasar el margen de error de ±5%.
- Aunque se obtengan en ocasiones valores similares entre el PCI con el IRI, este último siempre tienden a ser menos representativo a las condiciones de campo porque este método de medición de rugosidad sólo se fija en la sección por donde transcurre la rueda del vehículo para medir este parámetro.
- Existe una buena relación entre el PCI con el IRI ya que se han encontrado buenas estadísticas comparativas al aplicar modelos de regresión exponencial o modelos sigmoidales entre ellos dando como resultados valores R2 en algunos casos de 0.85, 0.76, 0.75, etc., todos estos cercanos a 1. También se encontró que cuando aumenta el nivel de rugosidad de la superficie de la carretera, la relación entre IRI y PCI se debilita, lo que puede ser causado por el aumento en el número y la gravedad de las fallas.
- ✓ El pavimento del tramo vial ubicado en la calle 64a del barrio la Castellana se calificó con un estado "Muy bueno" al

obtener un valor del PCI =73.21, de acuerdo con la escala de clasificación establecida en la norma ASTM D-6433 20.

Los daños que más afectan el pavimento, de acuerdo al mayor valor deducido de daño en cada unidad evaluada son: losa dividida de alta severidad, fisuras lineales de mediana severidad, agregado pulido, daño en el sello de la junta de mediana severidad, desprendimientos y por último fisura de esquina de mediana severidad, de las cuales las dos primeras tuvieron mayor reiteración.

4. RECOMENDACIONES

- Se recomienda como alternativa de solución para el mejoramiento de la estructura del pavimento el mantenimiento de las juntas, ya que es el daño que más se presenta en las unidades de muestreo.
- Se recomienda realizar una evaluación anual del estado del pavimento del tramo vial calle 64a, la Castellana para conocer el nivel de deterioro del pavimento de la vía ya que es un proceso continuo y efectos de la planificación para presupuestaria estrategias y mejoramiento o rehabilitación oportuna en términos de priorización.

5. REFERENCIAS

- Abdel-Wahed, T. A., & Hashim, I. H. (2017). Effect of speed hump characteristics on pavement condition. *Journal of Traffic and Transportation Engineering (English Edition)*, 4(1), 103–110. https://doi.org/10.1016/j.jtte.2016.09.011
- Abdullateef Al-Neami, M., Hassan Al-Rubaee, R., Al-Neami, M. A., Al-Rubaee, R. H., & Kareem, Z. J. (2017). Evaluation of Pavement Condition Index for Roads of Al-Kut. Article in International Journal of Current Engineering and Technology, 7(4), 15.

 https://www.researchgate.net/profile/Rasha-Al-Rubaee-2/publication/328611822_Evaluation_of_Pavement_Condition_Index_for_Roads_of_Al-Kut_City/links/5bd87e89a6fdcc3a8db14e2f/Evaluation-of-Pavement-Condition-Index-for-Roads-of-Al-Kut-City.pdf
- Adeli, S., Najafi Moghaddam Gilani, V., Kashani Novin, M., Motesharei, E., & Salehfard, R. (2021). Development of a Relationship between Pavement Condition Index and International Roughness Index in Rural Road Network. *Advances in Civil Engineering*, 2021. https://doi.org/10.1155/2021/6635820
- Arhin, S. A., Williams, L. N., Ribbiso, A., & Anderson, M. F. (2015). Predicting Pavement Condition Index Using International Roughness Index in a Dense Urban Area. *Journal of Civil Engineering Research*, *5*(1), 10–17. https://doi.org/10.5923/j.jce.20150501.02
- Armas Gil, I. J. H. (2018). Evaluación del estado de conservación del pavimento flexible de la carretera Cajabamba Río Negro, utilizando el método Vizir. 199. http://repositorio.unc.edu.pe/handle/UNC/2 540.-14TT9
- ASTM D6433 20. (2020). Standard practice for roads and parking lots pavement condition index surveys. 1–48.

VICERRECTORIA ACADÉMICA FO-IP-008

https://doi.org/10.1520/D6433-20.2

- Bello, L. P. (2017). Análisis comparativo de los resultados entre los métodos VIZIR y PCI aplicados a un tramo de 1.6 Km vía Jipijapa- Chade. 1–188. http://repositorio.unesum.edu.ec/handle/53 000/1221
- Boyapati, B., & Prasanna Kumar, R. (2015).

 Prioritisation of pavement maintenance based on pavement condition index. *Indian Journal of Science and Technology*, 8(14).

 https://doi.org/10.17485/ijst/2015/v8i14/6 4320
- Bravo, T. V. (2019). Aplicación de los métodos PCI y Vizir para la conservación del pavimento flexible, carretera PE-24A tramo Libertad-Chicche, Junín. http://www.repositorio.upla.edu.pe/handle/20.500.12848/1408
- Corazza, M. V., Di Mascio, P., & Moretti, L. (2016). Managing sidewalk pavement maintenance: A case study to increase pedestrian safety. *Journal of Traffic and Transportation Engineering (English Edition)*, 3(3), 203–214. https://doi.org/10.1016/j.jtte.2016.04.001
- Guevara, C. (2019). Evaluación del pavimento flexible mediante métodos del Pci y Vizir en el tramo de La Carretera de Monsefu Puerto Etén. In *Repositorio Institucional UCV*. Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.50 0.12692/37808
- HPMS. (2012). Highway Performance
 Monitoring System Field Manual. March,
 52.
 https://deldot.gov/Publications/reports/hp
 ms/pdfs/2012/HPMSFieldManual_032012
 .pdf
- IBCH. (n.d.). *Pavimentos Rígidos Ventajas Comparativas*. Retrieved February 28,
 2022, from
 https://www.ibch.com/index.php?view=art
 icle&catid=8%3Aproducts&id=12%3Av

- Imam, R., Murad, Y., Asi, I., & Shatnawi, A. (2021). Predicting Pavement Condition Index from International Roughness Index using Gene Expression Programming.

 Innovative Infrastructure Solutions, 6(3), 1–12. https://doi.org/10.1007/s41062-021-00504-1
- Invias. (2008). Guía metodológica para el diseño de obras de rehabilitación de pavimentos asfálticos de carreteras. *Aprender a Investigar*, 192.
- Irigoyen, J. L., & Simo, L. F. (2016). Indentificación de fallas en pavimentos y técnicas de reparación. *Mopc*, 212. https://www.mopc.gob.do/media/2335/siste ma-identifición-fallas.pdf
- Kirbas, U., & Karas, ahin, M. (2017).

 Estimating PCI using vibration data for asphalt concrete pavements. World Congress on Civil, Structural, and Environmental Engineering, 114, 2371–5294. https://doi.org/10.11159/icte17.114
- Lin, J., Yau, J.-T., & Hsiao, L.-H. (2003).

 Correlation Analysis Between International Roughness Index (IRI) By.

 Transportation Research Board 82th

 Annual Meeting, January, 1–21.

 https://www.researchgate.net/profile/Jyh-DongLin/publication/228848218_Correlation_an alysis_between_international_roughness_in dex_IRI_and_pavement_distress_by_neura l_network/links/02e7e52f385af7c20500000 0/Correlation-analysis-between-international-roughn
- Lopes, S. B., Pfaffenbichler, P., Emberger, G., Riedl, L., & Jr., J. L. F. (2015). Gerência de Pavimentos Urbanos com Uso de Modelagem Dinâmica de Sistemas Diretamente Conectada com um SIG. Empresa Pública de Transporte e Circulação–EPTC, c(January 2015), 1–11. https://www.researchgate.net/profile/Paul-Pfaffenbichler/publication/267766926_GE RENCIA_DE_PAVIMENTOS_URBANO S_COM_USO_DE_MODELAGEM_DIN

VICERRECTORIA ACADÉMICA FO-IP-008

- AMICA_DE_SISTEMAS_DIRETAMEN TE_CONECTADA_COM_UM_SIG/links /54b799240cf2e68eb2802d74/GERENCI A-DE-PAVIMENTOS-URBANOS-COM-USO-
- Medina, J. R., Zalghout, A., Gundla, A., Castro, S., & Kaloush, K. (2021). Use of Time—Temperature Superposition Principle to Create Pavement Performance Master Curves and Relate Pavement Condition Index and International Roughness Index. *Transportation Research Record: Journal of the Transportation Research Board*, 2675(9), 972–983. https://doi.org/10.1177/03611981211004965
- Morales Colca, M. (2019). Comparación de los métodos PCI y VIZIR en la evaluación de fallas del pavimento flexible de la avenida Aviación de la ciudad de Juliaca. *Universidad Peruana Unión*, 1–198. https://repositorio.upeu.edu.pe/handle/20.5 00.12840/1956
- Múčka, P. (2017). International Roughness Index specifications around the world. *Road Materials and Pavement Design*, 18(4), 929–965. https://doi.org/10.1080/14680629.2016.11 97144
- NLT-330/98. (1998). Cáculo del índice de regularidad internacional (IRI) en pavimentos de carreteras (p. 4).
- Papageorgiou, G. (2019). Appraisal of road pavement evaluation methods. *Journal of Engineering Science and Technology Review*, *12*(6), 158–166. https://doi.org/10.25103/jestr.126.20
- Park, K., Thomas, N. E., & Lee, K. W. (2007). Applicability of the international roughness index as a predictor of asphalt pavement condition. *Journal of Transportation Engineering*, *133*(12), 706–709. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:12(706)

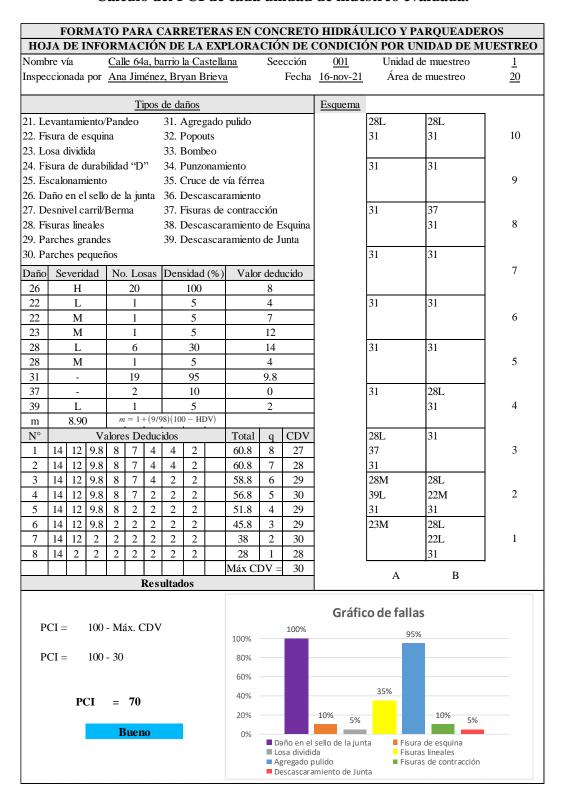
- Psalmen Hasibuan, R., & Sejahtera Surbakti, M. (2019). Study of Pavement Condition Index (PCI) relationship with International Roughness Index (IRI) on Flexible Pavement. *MATEC Web of Conferences*, 258, 03019. https://doi.org/10.1051/matecconf/2019258 03019
- Psalmen, R., & Sejahtera, M. (2019). Study of Pavement Condition Index (PCI) relationship with International Roughness Index (IRI) on Flexible Pavement. *MATEC* Web of Conferences, 258, 03019. https://doi.org/10.1051/matecconf/2019258 03019
- Pucha Aguinsaca, P. A., & Zárate Torres, B. A. (2020). Evaluación superficial de pavimentos rígidos en carreteras mediante ortoimágenes obtenidas mediante un vehículo aéreo no tripulado. In Surface Evaluation of Rigid Pavements on Roads using Orthoimages Obtained through an Unmanned Aerial Vehicle. (Vol. 17, Issue 2). https://doi.org/10.18041/1794-4953/avances.2.6599
- Putra, D. A., & Suprapto, M. (2018).

 Assessment of the road based on PCI and IRI roadroid measurement. *MATEC Web of Conferences*, 195, 04006.

 https://doi.org/10.1051/matecconf/2018195 04006
- Reyna, K. G. (2021). Propuesta estratégica de intervención del pavimento flexible, aplicando la metodología Vizir, en la avenida Perú, tramo avenida América—avenida España, de la. https://repositorio.upn.edu.pe/handle/11537/27200
- Sachún, J. (2016). Estudio del indice de rugosidad internacional de la panamericana norte zona trujillo. Para su mantenimiento. *Universidad Privada Antenor Orrego*, 239. http://repositorio.upao.edu.pe/handle/20.50 0.12759/2548
- Sari, D., Sukmawati, S., & Hasanuddin, A.

VICERRECTORIA ACADÉMICA FO-IP-008

- (2019). THE COMPARISON OF ROAD DAMAGE VALUES BASED ON PCI (PAVEMENT CONDITION INDEX) METHOD OBSERVATION AND IRI (INTERNATIONAL ROUGHNESS INDEX) METHOD ON ROAD CLASS II IN LUMAJANG DISTRICT. Jurnal Rekayasa Sipil Dan Lingkungan, 3(2), 113.
- https://doi.org/10.19184/jrsl.v3i2.10904
- Sayers, M., Gillespie, T., & Paterson, W. (1986). Guidelines for conducting and calibrating road roughness measurements. World Bank technical paper number 46. In *World Bank technical paper*.
- Shah, Y. U., Jain, S. S., Tiwari, D., & Jain, M. K. (2013). Development of Overall Pavement Condition Index for Urban Road Network. *Procedia Social and Behavioral Sciences*, 104, 332–341. https://doi.org/10.1016/j.sbspro.2013.11.1 26
- Shain, M. (2000). Pavement management for airports, roads, and parking lots. Kluwer.
- Silva, D., & Gracía, D. (2018). Análisis comparativo de metodologías de evaluación VIZIR y PCI (Parte B), aplicado a la estructura de pavimento de una vía urbana, en el barrio Chicó Norte (localidad Chapinero). Angewandte Chemie International Edition, 6(11), 951–952.
 - https://repository.unimilitar.edu.co/handle/10654/17734


- Soncim, S. P., & Fernandes Júnior, J. L. (2015). Modelo de previsão do índice de condição dos pavimentos flexíveis. *Journal of Transport Literature*, *9*(3), 25–29. https://doi.org/10.1590/2238-1031.jtl.v9n3a5
- Suwardo, & Sugiharto. (2004). Tingkat Kerataan Jalan Berdasarkan alat Rolling Straight Edge untuk Mengestimasi Pelayanan Jalan. *Prosiding Simposium VII FSTPT*, 1–9. http://www.suwardo.staff.ugm.ac.id/artikel/Tingkat_kerataan.pdf
- Thenoux, G., & Gaete, R. (1995). Evaluación Técnica Del Pavimento Y De Refuerzo Asfáltico. *Revista Ingeniería de Construcción*, 14, 22. http://www.ricuc.cl/index.php/ric/article/vi ew/364/306
- Trombetta, J., Pandolfo, A., Goldoni, A., Gomes, A., & Specht, L. (2010).

 Caracterização das ocorrências de defeitos em pavimentos asfálticos na cidade de Pato Branco PR. *Revista Tecnologia*, 31(2), 239–247.

 https://periodicos.unifor.br/tec/article/view/5350
- Vieira, S. A., Pinho Júnior, A. A. E. de, Oliveira, F. H. L. de, & Aguiar, M. F. P. de. (2016). ANÁLISE COMPARATIVA DE METODOLOGIAS DE AVALIAÇÃO DE PAVIMENTOS ATRAVÉS DO IGG E PCI. Conexões Ciência e Tecnologia, 10(3), 20–30. https://doi.org/10.21439/conexoes.v10i3.79

6. ANEXOS

Cálculo del PCI de cada unidad de muestreo evaluada.

	F	OR	MA	ГО 1	PAR	A (CAR	RET	ERA	S EN C	CONC	CRETO) HIDRÁU	JLICO	Y PA	RQUEAD	DEROS
			NF(MUESTRE
Nomb									stella		See	ección	<u>001</u>	Uı	nidad d	e muestreo	<u>2</u>
Inspeccionada por Ana Jiménez, Bryan Brieva								Brieva	<u>a</u>		Fecha	16-nov-21	Á	rea de	muestreo	<u>20</u>	
					<u>T</u>	pos	de da	<u>nños</u>					Esquema				
21. Levantamiento/Pandeo 31. Agregado p								gado	pulido				23L		23H		
22. Fisura de esquina 32. Popouts										31			10				
23. Lo	sa d	lividi	da				33.]	3oml	eo								
24. Fis	sura	de d	lurab	ilida	d "D	,,	34.]	unze	onam	iento				28L		31	
25. Es	calo	nam	iento)			35. (Cruce	e de v	vía férre	a			31			9
26. Da	año e	en el	sello	de	la ju	nta	36. 1	Desc	ascai	ramiento)						
27. De					-					contrac				31		31	
28. Fis	suras	s line	eales				38. 1	Desc	ascai	ramiento	de F	Sauina					8
29. Pa										ramiento		•					
30. Pa		_							***		0			31		31	\dashv
Daño		veri	_		. Lo	sas	Den	sidad	l (%)	Valor	r dedi	ıcido		51			7
26	50	Н		110	20	Jub	DOI	100		7 4101	8						,
23		L			20			100			10			28L		34M	\dashv
23		H			1			5			18			31		31	6
28		L			8			40			17			31		31	
31		<u>-</u>			19			95			9.8			31		31	
34		L			1			5			8			31		31	5
34		M			1			5			12						
37		-			1			5		0				28L		23L	
m		8.53	<u> </u>	m	_	+(9/9	98)(10	-	DV)		-			31		31	4
N°		0.50			s De	<u> </u>				Total	q	CDV		31		31	
1	18	17	12		9.8	_	8			82.8	7	40		28L		37	
2	18	17	12		9.8		2			76.8	6	39		31		31	3
3	18	17	12	_	9.8	_	2			70.8	5	38					
4	18	17	12	10	2	2	2			63	4	36		28L		28L	
5	18	17	12	2	2	2	2			55	3	35		31		31	2
6	18	17	2	2	2	2	2			45	2	35					
7	18	2	2	2	2	2	2			30	1	30		28L		34L	
	10			Ť	۱Ť	۱Ť				Máx Cl		40		31		28L	1
										IVIUX CI		10				31	
				<u> </u>	1	Res	ultad	ns								<u>I</u>	
								.05							A	В	
PO	CI =		100	- Ma	áx. C	CDV							Gráfi	ico de	e falla	as	
P	PCI = 100 - 40						100%		100%	6		95%					
		_	~-		_ ~					80%							
PCI = 60 Bueno									60%				400/				
									40%				40%				
												15%			100/		
										20%						10% 5	5%
										0%							
													ello de la junta	а		a dividida	
												uras linea nzonamie				egado pulido ıras de contra	cción
																,, ,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	F	ΩRI	MAT	ΓΩ	DAR/	. ('A D1	PFT	FD /	CFN	CON	CDFT	O HIDRÁI	LICO	Y PARQUEADER	208
HO.															UNIDAD DE M	
Nomb					le 64a							ección	001		lad de muestreo	<u>3</u>
Inspec											50		16-nov-21		a de muestreo	<u>2</u> 0
F			F					,		_						==
					Tip	os	de da	años					Esquema			
21. Le	van	tami	ento/	Pan					gado	pulido				37	23H	
22. Fis								Popoi	-	F				31		10
23. Lo			_					Bomb								
24. Fis				ilida	d "D"					iento				28L	23H	
25. Es										vía féri	rea			31	2511	9
					la ium	ล				ramien						
27. De					-					contra				28L	28M	
28. Fis				Deri	114							Esquina		31	31	8
29. Pa				c						ramien		31	31	Ü		
30. Pa		_					<i>ا</i> رد ا	JUSU	uoca	amell		28L	23H			
Daño		verio	_		. Los	a ç	Den	sidad	(%)	Val	lucido	1	31	2311	7	
26	DC	H	.uu	140	20	40	Dell	100		v al	ide Id	1	51		,	
23		L			5			25			8 24		1	38L	23M	
23		M			3			15			29		1	34H	2.3171	6
23		Н			5			25			57		-	31		Ü
28		L			3			15			8		-	23L	28H	
28		M			1			5			4		_	31	31	5
28		Н			1			5			10		1	31	31	3
31		-			12			60			7.5		-	23L	23L	
34		Н			1			5			17			31	31	4
37		-			1			5			0			31	31	
38		L			1			5			0			23H	23M	
m		4.95		n	i = 1 +	9/9	98)(10		DV)				-	2011	25111	3
N°		1.75		alore	s Dec	hic	idos			Total	l q	CDV				
1	57	29	24	17	0	iac	laos			127	4	71		23M	23L	
2	57	29	24	2	0					112	3	69		23141	31	2
3	57	29	2	2	0					90	$\frac{3}{2}$	64	_			_
4	57	2	2	2	0					63	1	63		23L	23Н	
	5,	_		Ť						Máx (31	2311	1
										TVIUA (1	,,	-	31		_
Į.					R	esi	ultad	os								
						2.0							1	A	В	
Po	CI =		100	- M:	áx. Cl	ΟV	,									
												4.0	Gra	áfico de	e fallas	
Po	CI =		100	- 71							100%	10	0%			
_ `											80%					
													65%	60%		
		PO	CI	=	29						60%					
		- `		_							40%		2	5%		
				1	Malo						20%				5% 5% 5%	
					Tui						0%				3/0 3/0 3/0	
													l sello de la jur		Losa dividida	
												Fisuras lin Punzonan			Agregado pulido Fisuras de contracción	
													amiento de Es		. i Saras de conti accion	

) HIDRÁU				
			NFC											MUESTREO
	re vía					la Castella		Seec		<u>001</u>			muestreo	<u>4</u>
Inspe	eciona	da j	por	Ana Jimé	iez, Bi	yan Brieva	<u>ı</u>	I	Fecha	<u>16-nov-21</u>	A	Área de n	nuestreo	<u>20</u>
				Tin	s de d	años				Esquema				
21 I e	vanta	mie	ento/	Pandeo		Agregado	nulido			Esqueina	31	Į,	31	\neg
22. Fi						Popouts	puldo				31	ľ	<i>3</i> 1	10
23. Lo			-	la		Bombeo								10
				ilidad "D"		Bonioeo Punzonam	ianta				31	,	31	
25. Es						Cruce de v					31	1	51	9
														9
				o de la juni Berma		Descascar				31		31	_	
				Беппа		Fisuras de				31	ľ	51	8	
28. Fi						Descascar						8		
29. Pa		_			39.	Descascar		21	,	21	_			
30. Pa		_	_		-	11 1 (0/)	77.1				31	-	31	7
Daño			ad	No. Losa	s Dei	nsidad (%)	Valor	deduc	cido					7
26		H		20	_	100		8			21			
28		L		3		15		8			31		31	
28		M		2	_	10		8						6
31		-		20	2/00)/1/	100 00 - HDV)		10			21			_
m	9	.27				00 – HDV)	m . 1		CDII		31	-	31	_
N°	4.0	. 1		alores Ded	ucidos	1 1	Total		CDV					5
1		8	8	8	-	+ +	34	4	19					_
2	-	8	8	2		-	28	3	17		28M		31	
3		8	2	2			22	2	17		31			4
4	10	2	2	2			16	1	16					
		\perp				<u> </u>	Máx CI)V <u>=</u>	19		28L	[31	
				R	sulta	dos					31			3
	PCI	ſ	=	81		Muy b	บายทด				28L		28L	
	101	L	_	01		Willy N	ucio				31		31	2
											31	ľ	<i>,</i> 1	
				Grá	fico c	le fallas					31		28M	
		\OC'		100%		1009	6						31	1
		00%												
		50%									<u></u>		_	
		10%			25	5%						A	В	
		20%												
	■ Da	ño e		sello de la ju	nta 💻	Fisuras lineal	es							
	■Ag	rega	ado p	ulido										

				LICO Y PARQUEADE	
HOJA DE INFORMA					MUESTREO
	64a, barrio la Castella		<u>001</u>	Unidad de muestreo	<u>5</u>
Inspeccionada por Ana J	iménez, Bryan Brieva	<u>a</u> Fecha	<u>16-nov-21</u>	Área de muestreo	<u>20</u>
	<u>Tipos de daños</u>		Esquema		
21. Levantamiento/Pande	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	pulido			
22. Fisura de esquina	32. Popouts				10
23. Losa dividida	33. Bombeo				
24. Fisura de durabilidad '	'D" 34. Punzonam	iento			
25. Escalonamiento	35. Cruce de v	vía férrea			9
26. Daño en el sello de la	junta 36. Descascar	ramiento			
27. Desnivel carril/Berma	37. Fisuras de	contracción			
28. Fisuras lineales	38. Descascar	ramiento de Esquina			8
29. Parches grandes	39. Descascar	ramiento de Junta			_]
30. Parches pequeños					
Daño Severidad No. I	Losas Densidad (%)	Valor deducido			7
26 M 2	20 100	4			
	3 15	2		31	
m 9.82 $m =$	1 + (9/98)(100 - HDV)				6
N° Valores	Deducidos	Total q CDV			
1 4 2		6 2 8		39M	
2 4 2		6 1 6		31	5
		Máx CDV = 8			
				31	
	Resultados				4
PCI = 92	Excel	ente	_		-
101 72					3
G	ráfico de fallas		<u> </u>		
100%	100%				
80%					2
60%			_		4
40%	15%				
0%					1
■ Daño en el sello de	la junta 📕 Agregado p	oulido			
				A B	

шол															PARQUEADI	
			NFC												NIDAD DE I	
Nomb				_					stella		See	ección	<u>001</u>	,		<u>6</u>
Inspec	con	ada	por	Ana	Jin	nene:	z, Br	yan I	3rieva	<u>1</u>		Fecha	16-nov-21	Area	de muestreo	<u>20</u>
					- T			~					_			
						ipos	de da						<u>Esquema</u>		T	_
21. Le					deo			-	-	pulido				31	31	
22. Fis			•	ıa				Popo								10
23. Lo								Boml								
24. Fis					i "D	"				iento				31	31	
25. Es										vía férre						9
26. Da	año e	en el	sello	de l	la ju	nta				ramiento						
27. De	esniv	el c	arril/l	3ern	na		37. I	Fisur	as de	contrac	ción			28M	37	
28. Fis	suras	s line	ales				38. I	Desc	ascai	ramiento	de E	Esquina		31	31	8
29. Pa	rche	es gr	ande	S			39. I	Desc	ascai	ramiento	de J	unta				
30. Pa	rche	es pe	equeî	ios										28M	28M	
Daño	Se	verio	lad	No	. Lo	sas	Den	sidac	l (%)	Valor	r dedi	ucido		31	31	7
26		Н			20			100			8					
22		L			1			5			4			28L	28M	
28		L			4			20			10			31	31	6
28		M			4			20			15					
31		-			20			100			10			39M	28L	
37		-			2			10			0			31	31	5
39		M			1			5			2					
m		8.81		m		+(9/9	98)(10	-	DV)					31	28L	
N°		0.01				educ				Total	q	CDV		51	31	4
1	15	10	10	8	4	2	luos	<u> </u>		49	6	23			31	'
2	15	10	10	8	4	2				49	5	25		31	22L	
3	15	10	10	8	2	2				47	4	27		31	28L	3
4	15	10	10	2	2	2				41	3	26			31	
5	15	10	2	2	2	2				33	2	26		31	37	
6	15	2	2	2	2	2				25	1	25		31		2
0	15					2									31	
						<u> </u>	1, 1			Máx CI	υv =	27		21	21	
						Kes	ultad	los						31	31	,
					_ ,											1
				(Grá	tico	o de									
100%		-	100%					100%						A	В	
80%																
60%		-1				40	%							PCI =	100 - Máx.	CDV
40%																
20%					%				10)% 59	0/			PCI =	100 - 27	
0%				5	/0					57	/0					
	■ Do	ño er	n el se	llo do	lain	ınta	_ F	isura 4	de esq	uina			PCI	=	73	
	■ Fis	uras	lineal	es			A	grega	do pul	ido						
	■ F is	uras	de coi	ntraco	ción		■ D	escas	caram	iento de J	unta			Μι	ıy bueno	

IIO															PARQUEADE UNIDAD DE N	
Nomb			NFC						stella			N DE C	001		d de muestreo	TUESTRE 7
Inspec			por								500		16-nov-21	,	de muestreo	<u>20</u>
1			1							-						_
					T	ipos	de d	años					<u>Esquema</u>			_
21. Le	evan	tami	ento/	Pan	deo		31.	Agre	gado	pulido				28L	31	
2. Fi	sura	de e	squi	na			32.]	Popo	uts					31		10
3. Lo	osa d	lividi	da				33.	Boml	eo							
24. Fi	sura	de d	lurab	ilida	d"D	"	34.	Punz	onam	iento				28L	31	
25. Es	calo	nam	iento)			35.	Cruc	e de v	ía férre	a			31		9
26. Da	año (en el	l sello	de	la ju	nta	36.	Desc	ascar	amiento)					
27. D	esniv	vel c	arril/	Bern	na		37.]	Fisura	as de	contrac	ción			28L	28L	1
28. Fi	suras	s line	eales				38.	Desc	ascar	amiento	de E	Esquina		31	31	8
29. Pa	irche	es gr	ande	S			39.]	Desc	ascar	amiento	de J	unta				
30. Pa		_												31	28L	
Daño		veri			. Lo	sas	Den	sidad	1(%)	Valor	r ded	ucido			31	7
26		Н			20			100			8					
28		L			6			30			14			31	28M	
28		M			1			5			4				31	6
31		-			20			100			10					
m		8.90)	m	= 1	+(9/9	98)(10	0 – H	DV)					31	28L	
Ν°			Va	alore	s Do	educ	idos		•	Total	q	CDV			31	5
1	14	10	8	4						36	4	20				
2	14	10	8	2						34	3	21		31	31	
3	14	10	2	2						28	2	23				4
4	14	2	2	2						20	1	20				
										Máx Cl	DV =	23		31	31	1
			l			Resi	ultad	los								3
	PO	CI	=	77				Μ	luv h	ueno				31	31	
																2
					G	iráf	ico	de f	allas	6						
					1	.00%			10	0%				31	31	
		100														1
		60						DE 0/								
		40	1% –					35%						Α.	В	_
		20	%											A	В	
		-		en el s	sello	de la i	iunta	Fis	uras lir	neales						
			Agrega			-	,	5								

	F	OR	MAT	Ю	PAR	RA (CAR	RET	ERA	SEN	CON	CRETO) HIDRÁU	LICO	Y PARQUEADEI	ROS
но															R UNIDAD DE M	
Nomb	re v	ía		Call	e 64	a, ba	arrio	la Ca	stella	<u>ana</u>	See	ección	001	Unio	dad de muestreo	<u>8</u>
Insped	ccion	nada	por	Ana	Jim	néne:	z, Br	yan E	Brieva	<u>a</u>		Fecha	<u>16-nov-21</u>	Ár	ea de muestreo	<u>20</u>
						ipos	de da						<u>Esquema</u>			7
21. Le					deo					pulido				32	32 31	
22. Fi				na				Popo						28L	22L	10
23. Lo								Boml						31	37	
24. Fi					d"D	,,,				iento				31	22L	_
25. Es										vía férr					31	9
						nta				ramient						
27. D				Bern	na					contra				28M	23L	
28. Fi										ramient				31	31	8
29. Pa		_					39. I	Desc	ascai	ramient	o de J	unta				
30. Pa			_											31	23L	
Daño	Se	veri	dad	No	. Lo	sas	Den	sidad	` /	Valo	or ded	ucido			31	7
26		Н			20			100			8					
22		L			2			10			8			31	23L	
23		L			4			20			20				31	6
28		L			3			15			8					
28		M			5			25			17			28M	28L	_
31		-			20			100			10			39H	31	5
32		-			2			10			2			31		
37		_			1			5			0			28M	31	,
39		Н			1	1 (0.0	00)/10	5 0 – HI	DIV)		8			31		4
m		8.35						0 – HI	JV)	- ·		an		202.5		
N°	20			lore		_			1	Total	q	CDV		28M	31	2
1	20	17	10	8	8	8	8	2		81	8	37		31		3
2	20	17	10	8	8	8	8	2		81	7	39		201	21	
3	20	17	10	8	8	8	2	2		75	6	38		28L	31	2
4	20	17	10	8	8	2	2	2		69	5	37		31		2
5	20	17	10	8	2	2	2	2		63	4	37		2014	221	-
6	20	17	10	2	2	2	2	2		57	2	37		28M 31	23L	1
7 8	20	17 2	2	2	2	2	2	2		49	1	38		31	31	1
8	20									34 Máx C	_	34				1
					1	Dog	l ultad	log		wax C	= עע	39		A	В	
						Nes	untau	105								
												400			le fallas	
D	CI =		100	- Má	ív (עמי					100%	100)%		100%	
'	C1 –		100	- 1416	i C	۷ کار					80%					
D	CI =		100	- 30												
'	C1 –		100	- 30							60%			40%		
											40%		209			
		D/	CI	_	61						20%		10%	0	10% 5% 59	%
		1 (_1	_	VI.						0%				3/0 3/	
				p	uen	10							el sello de la ju	unta	Fisura de esquina	
				ш	uci	IU						Losa divi Agregado			Fisuras lineales■ Popouts	
													e contracción		Descascaramiento d	le Junta

IIO														PARQUEADE	
HO. Nomb			NFC		1ACIO 1 le 64a, b						N DE (ección	ONDICIO 001		UNIDAD DE M d de muestreo	
			nor		ie 04a, 0a i Jiméne					300		16-nov-21		de muestreo	<u>9</u> 20
nspec	CCIOI	iaua	por	Alla	i Jiiieile	Z, DI	yan L	DI IC V	<u>1</u>		recha	10-110V-21	Alea	de muestreo	<u>20</u>
					<u>Tipos</u>							<u>Esquema</u>		1	7
21. Le					deo			_	pulido					32	
22. Fi			-	na			Popo							37	10
23. Lo							Bomb								
					d "D"				iento				32		
25. Es									vía férre						9
					la junta	36. l	Desc	ascaı	amiento)					
27. De				Berr	na				contrac				32		
28. Fi									amiento				39L		8
29. Pa		_				39. 1	Desc	ascai	amiento	de J	unta				_
30. Pa													32		
Daño	Se	veri	dad	No	. Losas	Den	sidad	(%)	Valor		ucido				7
26		Н			20		100			8					
22		M			1		5			7			32		
32		-			10		50			10					6
37		-			1		5			0					
39		L			1		5			2				32	
m		9.27			= 1 + (9/9)	<u> </u>	0 – HI	OV)							5
Ν°				_	s Deduc	idos			Total	q	CDV				
1	10	8	7	2					27	4	15			32	
2	10	8	7	2					27	3	16				4
3	10	8	2	2					22	2	18				
4	10	2	2	2					16	1	16			32	
									Máx CI	DV =	18				3
					Res	ultad	los								
														32	
	PO	CI	=	82			M	luy b	ueno						2
					Gráfic	o de	ı fəll	lac					201.6	22	
	2007		10	00%	Jiuile	Juc	, iuii						22M	32	1
	00%														1
	30%														_
	50%					50%							A	В	
4	10%														
2	20%				5%		5	5%	5%						
	0%	D-~	0.07	l o - "	o do 1= ::	10	Cierr	a d -	o avvis -						
	- 1	II Рор	outs		o de la jun nto de Jur				squina contracció	'n					
		Desi	Lastdi	anne	nto de Jur	ıd									

															ARQUEADE	
			NFC												NIDAD DE M	
Nomb								la Cas			See	ección	001		de muestreo	<u>10</u>
Inspec	ccior	ada	por	Ana	Jim	éne.	z, Bry	an Br	ieva	<u>l</u>		Fecha	16-nov-21	Area o	le muestreo	<u>20</u>
					T;	noc	de da	ñoc					Essuemes			
21. Le	won	tomi	nto/	Done		pos		Agrega	odo :	nulido			Esquema	39L		٦
21. Ec					ico			opout		ришио				32		10
23. Lo				ıa				3ombe						32		10
24. Fis				ilidad	1 "D	,,		Punzor		iento				32		†
25. Es										ría férre	ea			2		9
					la jui	nta				amiento						
27. De					-					contrac						1
28. Fis	suras	s line	ales				38. I	Descas	scar	amiento	de I	Esquina	1			8
29. Pa	irche	es gr	ande	s						amiento		_	1			
30. Pa	rche	es pe	queî	íos										32		
Daño	Se	verio	lad	No	. Lo	sas	Den	sidad ((%)	Valor	r ded	ucido				7
26		Н			20			100			8]]
22		M			2			10			15			32		
23		L			1			5			5					6
28		M			1			5			4		-			_
32		-			10			50			10		4	32		_
39		L			1	(0.11	00)(10)	5) – HDV	7)		2		4			5
m No		8.81						, – HD\	v)	T-4-1		CDV	-	22		4
N° 1	15	10	8	alore 5	s De	duc 2	idos			Total 44	9 6	CDV 20	4	32 22M		4
2	15	10	8	5	4	2				44	5	20		ZZIVI		4
3	15	10	8	5	2	2				42	4	24		22M	32	1
4	15	10	8	2	2	2				39	3	24		2.2.IVI	32	3
5	15	10	2	2	2	2				33	2	26				
6	15	2	2	2	2	2				25	1	25		32	32	†
										Máx Cl	DV =		1		28M	2
					I	Res	ultad	os								
															32	1
															23L	1
			100%	(Grá	fico	de	fallas	S							_
100%			100%											A	В	
80%																
60%									509	%						
40%														PCI =	100 - Máx. (CDV
20%				10	0%	5%	/_	5%		5%	6			DCI	100 27	
0%						57	0	370		5%	0			PCI =	100 - 27	
	■ Daŕ	io en	el sell	o de	la jun	ta	■ F	isura d	e esc	quina			DCI		74	
	■ Los ■ Por	a divi	dida				<u> </u>	isuras l	ineal		lunto		PCI	=	74	
'	- 201	outs					= 1	Jesuast.	uı di İ	nemo de	Juilld			N#	w buone	
														Mu	y bueno	

					AS EN CONCI					
		NFO			PLORACIÓN					MUESTREO
Nomb				, barrio la Castel			<u>001</u>		de muestreo	<u>11</u>
Inspec	ccionada	por	Ana Jimé	nez, Bryan Brie	<u>va</u> F	echa	<u>16-nov-21</u>	Årea d	le muestreo	<u>20</u>
			Tip	os de daños			Esquema			
21. Le	evantami	ento/	Pandeo	31. Agregado	o pulido			31	31	
22. Fi	sura de e	esquii	na	32. Popouts						10
23. Lo	osa dividi	ida		33. Bombeo						
24. Fi	sura de o	lurab	ilidad "D"	34. Punzonai	miento			31	31	
25. Es	scalonam	iento)	35. Cruce de	vía férrea					9
26. Da	año en e	l sello	de la junt	a 36. Descasca	aramiento					
27. D	esnivel c	arril/	Berma	37. Fisuras d	e contracción			31	28L	
28. Fi	suras line	eales		38. Descasca	aramiento de Esc	quina			31	8
29. Pa	arches gi	ande	es	39. Descasca	aramiento de Jun	ıta				
30. Pa	arches pe	equeî	ĭos					31	31	
Daño	Severi	dad	No. Losa	as Densidad (%) Valor deduc	ido				7
26	Н		20	100	8					
23	L		1	5	5			31	31	
28	L		2	10	6					6
31	-		20	100	10					
39	M		2	10	5			31	28L	
m	9.27	7	m = 1 + (9/98)(100 – HDV)					31	5
N°		Va	alores Dec	lucidos	Total q C	CDV				
1	10 8	6	5 5		34 5	16		31	23L	
2	10 8	6	5 2		31 4	17			31	4
3	10 8	6	2 2		28 3	17				
4	10 8	2	2 2		24 2	19		31	31	
5	10 2	2	2 2		18 1	18				3
					Máx CDV =	19				
			R	esultados				31	31	
										2
	PCI	=	81	Muy	bueno					
								39M	39M	
			100% Gr	áfico de falla				31	31	1
	100% —		100%	1009	/0					
	80% —							A	В	
	60%							11	D	
	40% —									
	20% —		-	10%	10%					
	0% —		5'	/0						
	■ Da			a junta Losa divi						
			lineales caramiento d	■ Agregad e Junta	o pulido					
	= Di	Locasi	ai aimento d	c Julita						

ПО														PARQUEADE	
Nomb					e 64a, ba						ección	001		NIDAD DE M de muestreo	12
		-			Jiméne:					SCC		16-nov-21		de muestreo	20
mspec	CIOIR	lua	рог	<u> 1 111a</u>	JIIICIC	z, D1	yan 1	JI IC V	<u> </u>		1 cena	10-110V-21	Tica	de muestreo	<u>20</u>
					Tipos	de da	años					Esquema			
21. Le	evanta	ımie	ento/	Pand	leo	31	Agre	gado	pulido						
22. Fis	sura d	le e	squir	na		32.]	Popo	uts							10
23. Lo	osa di	vidio	da			33.	Bomb	eo							
24. Fis	sura d	le d	urab	ilidad	l "D"	34.]	Punzo	onam	iento						
25. Es	scalon	am	iento			35.	Cruce	e de v	vía férre	a					9
26. Da	año ei	n el	sello	de 1	a junta	36.	Desc	ascai	amiento)					
27. De	esnive	el ca	arril/l	3ern	na	37.	Fisura	as de	contrac	ción					
28. Fis	suras	line	ales			38.	Desc	ascaı	amiento	de F	Esquina				8
29. Pa	arches	gr	ande	S		39.]	Desc	ascai	amiento	de J	unta				
30. Pa	arches	s pe	queî	ios											
Daño	Sev	erid	lad	No.	Losas	Den	sidad	l (%)	Valo	r ded	ucido				7
26		Н			20		100			8					
28		L			4		20			10			28M	28M	
28		M			2		10			8					6
39		M			2		10			5					
m	9	9.27			= 1 + (9/9)		0 – HI	DV)							
Ν°					s Deduc	idos			Total	q	CDV				5
1	-	8	8	5					31	4	17				
2		8	8	2					28	3	17		28L	28L	
3	-	8	2	2					22	2	18				4
4	10	2	2	2					16	1	16		201	201	
					<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>			Máx C	DV =	18		28L	28L	2
					Res	ultac	los								3
	PC	T	=	82			М	luv h	ueno		l				
		_		_	0 /										2
					Gráfi	CO (ie ta	allas	5						
		100%	/ _a		100%								39M	39M	
		80%													1
		60%				30'	%								
		409 209						10%					A	В	
		09	% —										11	ь	
					de la jun		Fisura	s linea	les						
		Jesc	ascar	amier	nto de Jun	ta									

_													PARQUEADE	
		INF(UNIDAD DE N	
Nomb				64a, ba					See	ección	<u>001</u>		d de muestreo	13 20
Inspec	ecionada	a por	Ana	Jimene	z, Bry	yan E	sneva	<u>1</u>		Fecha	<u>16-nov-21</u>	Area	de muestreo	<u>20</u>
				Tipos	de da	nños					Esquema			
21 I c	evantam	iento	Pande				rado	pulido			Esquema	31	31	7
	sura de			20	32. I			pulido				31	31	10
	osa divid	•	ııa			opoi Bomb								10
	sura de		ilidad	"D"				iento				31	31	-
	sura uc scalonar			D				vía férre				31	31	9
				innta				amiento						
	esnivel (5				contrac				31	28L	-
	suras lin			а				amiento		ican in a		31	37	8
	arches g							amiento		-			31	
	arches p				J). I	JUSU	uscal	annend	, uc J	und		31	31	\dashv
Daño				Losas	Den	eidad	(%)	Valor	r dodi	ıcido		31	31	7
26	Н			20	DCII	100	(/0)	valor	8	icido				,
28	L			1		5			4			31	31	-
31	-			20		100			10			31	31	6
37				1		5			0					
39	M	ſ		2		10			5			31	31	_
m	9.2		m =	= 1+(9/9	98)(100		OV)					31	31	5
N°	7.2		alores	Deduc	idos		<u> </u>	Total	q	CDV				
1	10 8	5	4	Deduc	1005			27	4	15		31	31	+
2	10 8	5	2					25	3	14				4
3	10 8	2	2					22	2	18				
4	10 2	2	2					16	1	16		31	31	
		 						Máx CI	DV =	18				3
				Res	ultad	los	<u> </u>							
												31	31	
	PCI	=	82			Μ	uv h	ueno						2
				Gráfic			las					39M	39M	
10	00% —	1	00%		100%							31	31	1
	30% —					_								
	50%											A	В	_
	40% —											Α	ь	
	20% —			F0/		L.	0/	10%						
	0% —			5%			5%							
		ňo en e	el sello	de la jun	ta 🔳 F	isuras	linea	les						
	_	-	pulido			isuras	de co	ntracción	1					
	■ Des	cascar	amient	to de Jun	rg									

								PARQUEADE	
HO. Nomb			N DE LA EXF arrio la Castella		N DE (ección	001		UNIDAD DE N d de muestreo	
			z, Bryan Brieva			16-nov-21		de muestreo	14 20
mspec	cionada por	1 tha Jimenez	<u>e, Dryan Bræva</u>		1 CCIIa	10-110V-21	Tirca	de maestreo	<u>20</u>
		Tipos	de daños			Esquema			
21. Le	vantamiento/	Pandeo	31. Agregado	pulido			31	31	
22. Fi	sura de esquii	na	32. Popouts						10
23. Lo	osa dividida		33. Bombeo						
24. Fi	sura de durab	ilidad "D"	34. Punzonam	iento			31	37	
25. Es	calonamiento)	35. Cruce de v	ía férrea				31	9
26. Da	año en el sello	o de la junta	36. Descascar	ramiento					
27. D	esnivel carril/	Berma	37. Fisuras de	contracción			23M	31	
	suras lineales		38. Descascar		1				8
I	irches grande		39. Descascar	amiento de J	unta				
30. Pa	rches pequer						31	31	
Daño		No. Losas	Densidad (%)	Valor ded	ucido				7
26	H	20	100	8					
23	M	1	5	12			31	31	
31	-	19	95 ~	9.8					6
37	- 0.00	1 1 + (0/6	5 98)(100 – HDV)	0			21	21	_
m N°	9.08			T 4 1	CDV		31	31	-
		alores Deduc	luos	Total q					5
2	12 9.8 8 12 9.8 2			29.8 3 23.8 2	18 19		31	31	_
3	12 9.8 2			16 1	16		31	31	4
3	12 2 2			Máx CDV =	19				_
		Res	ultados	Max CD V -	1 17		31	31	
		RCS	unuuos				31	31	3
	PCI =	81	Muy b	บายทด					
	101 -						31	31	
		Gráf	ico de fallas						2
	100%	100%	95%						
	80%						31	31	7
	60%								1
							<u></u>		
	20%						A	В	_
			5%	5%			A		
	0% ───── ■ Daño en	el sello de la ju	nta Losa divid	ida					
	■ Agregado	o pulido	Fisura de d	contracción					
1									