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A B S T R A C T

This work presents the evaluation of a wind turbine blade with bend-twist coupling
induced by composite material anisotropy. Different sources in literature have been
surveyed to identify the most relevant aspects concerning the use of this concept as a
mechanism for passive control and its appeal to small wind technology. A theoretical
approach is taken, based on the use of numerical analysis for the study of the wind
turbine blade in different cases. A blade element momentum model is used to describe
the aerodynamic loads of the rotor blade in a quick way, without disregarding impor-
tant phenomena such as three-dimensional flow and dynamic stall. A finite-volume
commercial solver is used to study the blade behavior in a more complete scenario,
involving the modeling of turbulence and enabling the set-up of an FSI analysis, cou-
pled to a finite-element simulation of the blade composite structure. The numerical
results for validation and operation cases are compared with published experimental
data, including the results from the unsteady aerodynamics experiment Phase VI. An
insight into the validity of the use of bend-twist coupling shows positive results re-
garding the technical validity of the concept from the point of view of annual energy
output and ultimate loads on the rotor blades.
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1
I N T R O D U C T I O N

As one of the current goals of the modern society, the transition towards cleaner and
more sustainable sources of energy has permeated every aspect of the consumption
chain, from large scale utility companies down to the small private consumers. Wind
energy has a central role on this higher purpose as a complementary element to other
forms of generation and storage. The Energética 2030 program has been the driver
behind this work through the project “Distributed generation from wind and photo-
voltaic energy”, in which several of the aspects treated here theoretically have been
put to practice with the construction of a real scale prototype. The premise remains
simple: exploring advanced technologies to improve the energy output of small wind
turbines without increasing mechanical complexity.

From all the possible approaches to improve the energy ouput, the present work
focuses on increasing the rotor power coefficient, by harnessing the potential for blade
pitch actuation that is found in the behavior of composite materials under certain
conditions, concerning both the composition of the laminates and the aerodynamic
loads that the blades experience during their operation.

The main mechanism is known as bend-twist coupling and occurs when the tor-
sional response of a wind turbine blade is coupled to the transverse deflection due to
the aerodynamic loads. Such behavior is not exclusive to wind turbine blades since it
is caused by the fiber orientation in the composite lay-up sequence. The high degree of
customization, the mechanical simplicity and the instantaneous response between the
coupled modes of displacement make this technology worth exploring as a suitable
mean for the power output improvement of a wind turbine.

The analysis of the concept and the integration into a wind turbine blade is assessed
with the aid of numerical analysis involving different models for describing the aero-
dynamic and structural response, and setting up a framework for the Fluid-Structure
Interaction (FSI) analysis of the improved blade structure. The aerodynamic analysis is
initially performed with a BEM solver, with an improved correction of 2-D airfoil coef-
ficients and the implementation of a routine for the prediction of dynamic loads in the
rotor blades. A more robust study is carried out with Computational Fluid Dynam-
ics (CFD) by means of a commercial Finite-Volume Method (FVM) solver. The structural
analysis is carried out with a commercial Finite-Element Method (FEM) solver capable
of analyzing composite thin-walled structures in 3-D using shell elements. Because
the scope of this thesis encompasses theoretical work only, the use of publicly avail-
able experimental data is presented along with the numerical results of the various
analyses presented throughout this thesis. For this reason, the present work adopts
the external blade geometry of the 10 m-diameter wind turbine used in the Unsteady
Aerodynamics Experiment Phase VI (UAE Phase VI) and shown in Figure 1.1.

1
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5.029 m

Figure 1.1: Baseline blade geometry (adapted from [1]).

1.1 outline

This thesis begins with a literature review in Chapter 2 of relevant works that have
been published in the recent years and addressing the use of novel techniques for bend-
twist coupling based control for wind turbine blades. Chapter 3 includes a description
of the governing equations for the flow and structural physics, the basic aspects for the
solution methods used in the solutions of the individual and coupled simulations and
the theory behind a typical FSI coupling. Chapter 4 addresses the modeling of special
effects pertaining to wind turbine operation along with the respective results; addi-
tionally, validation tasks for the simulation frameworks are carried out and presented
along the error analysis. The definition of a blade structure in composite materials
with negligible structural coupling is presented in Chapter 5 and a similar procedure
is carried out for a blade with bend-twist coupling in Section 5.3. The Results for the
simulation of the reference and coupled blade structures are presented and discussed
in Chapter 6.

From a global perspective, the main tasks in this work involve the use of FSI sim-
ulations for the analysis of operation and proposal of a passive control mechanism
based on the baseline blade geometry presented earlier. The FSI analysis involves the
simulation of the fluid flow around the blade using a finite-volume solution of the
Navier-Stokes equations and, the simulation of the structural response of the blade
body using a finite-element solution of the first-order shear deformation model for
laminated composite shell elements. The full coupling environment is defined using a
commercial software for both solutions and for their mutual interfacing. Throughout
the document several auxiliary simulation tasks are included, these have been devised
to provide a validation for the numerical models. The tasks involve the aerodynamic
modeling of the blade using both a fast BEM model implementation and a commer-
cial finite-volume solver for the RANS equations. The structural model is validated
entirely with a finite-volume analysis of a hollow beam with bend twist coupling and.
The coupled simulation considering finite-volume and finite-element solutions for the
flow and structure respectively is validates with the simulation of an industrial air
conditioning fan blade with harmonic excitation at the base. The results presented in
Chapter 6 are obtained from the full coupled simulations of the baseline blade, and
are complemented with auxiliary computations of the aerodynamic loads using the
BEM model, providing an additional reference for the turbulent flow solution.
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1.2 objectives

General objective

To develop a passive pitch control methodology for the power regulation of small
horizontal axis wind turbines based on the bend-twist coupling of anisotropic layered
composites using fluid-solid interaction numerical analysis.

Specific Objectives

1. To simulate the interaction between aerodynamic loads and blade deformations
by means of an integrated FSI framework that includes the dynamic behavior of
the drive train.

2. To determine the ideal twist distribution along the rotor blades, considering the
expected torsional response by bend-twist coupling and the expected change in
power output with respect to the baseline wind turbine.

3. To evaluate the structural response of the bend-twist coupled blade structure as
an actuation mechanism on the local blade pitch angle, using a full FSI framework
with the dynamic modeling of the drive train.

4. To assess the feasibility of a rotor with the bend-twist coupled blades by means
of a numerical analysis of the structural integrity for the main components of the
blade.



2
L I T E R AT U R E R E V I E W

2.1 bend-twist coupling applications in wind energy

Some of the earlier works on wind energy applications for bend-twist coupling have a
strong theoretical foundation on the quantification of the coupling phenomenon and
the implications of potential aeroelastic instabilities. For example, to study the aeroe-
lastic stability of a blade with bend-twist coupling, a FEM formulation was proposed
by Lobitz and Veers [9] using beam elements. This approach is relatively simple; how-
ever, the authors have considered the key aspects of wind turbine blade oberation,
including bent-twist coupling and extension-twist to name two of the most relevant.
Since the aerodynamic model that has been employed in this study relies on linear
aerodynamics, stall flutter has not been studied, in this sense, only divergence and
classical flutter are analyzed.

The work presented by Ong et al. [7], in which an experimental and numerical anal-
ysis is performed on a D-spar with bend-twist coupling, focuses on the application of
this kind of materials for load mitigation and highlights the potential for overall aero-
dynamic improvement. The main hurdles before a successful application on wind tur-
bines are identified in the fields of aeroelastic stability and feasibility of manufacture.
Bend-twist coupling is found to depend strongly on material properties (i.e. torsional
and bending stiffnesses), ply angle and relative proportion of anisotropic layers. Nu-
merical predictions match experiments better when the model includes out-of-plane
warping due to torsion.

By the end of the nineties, an interest on practical approaches to bend-twist coupling
of wind turbine blades was evident from works subsequent to [7]. Not only the cou-
pling is evaluated in terms of effectiveness but also in terms of feasibility. Such is the
work of Ashwill et al. [10], in which bend-twist coupling capabilities are explored in
wind turbine blade applications from three different perspectives. The results include
a parametric analysis on a conventional wind turbine blade, exploring the effects of
material anisotropy on the composition of main elements such as skins, spar caps and
shear webs and including cost estimates for bend-twist enhanced blades. Addition-
ally this study shows the effectiveness of braided preforms for manufacturing coupled
blades and the use of swept blade geometries for the implementation of purely geo-
metrical bend-twist coupling.

On a similar direction, the work of Veers et al. [11] discusses the use of bend-twist
coupled blade structures, including the favorable behavior of coupled blades in terms
of fatigue reduction. Besides being the first to explicitly establish the similitude be-
tween bend-twist and conventional pitch actuation mechanisms, the authors discuss
the advantages of having a bend-twist coupling that pitches the blade into feather

4
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Figure 2.1: Pitching motions of a wind turbine blade.

instead of stall, as the former is better to avoid fatigue damage and stall flutter. A
representation of both directions of inducing twist is shown in Figure 2.1, which also
illustrates the associated change in the local angle of attack.

Griffin et al. [12] introduce the development of different blade prototypes, including
a 9 m long model that incorporates bend-twist coupling; this very model is the subject
of subsequent experiments on structural performance as presented by Ashwill [13].
The 9 m prototype, denominated “TX-100”, has a 20° ply-angle for the carbon fibers
on the blade skins, while the spar caps are designed with conventional glass fiber lam-
inates. According to the preliminary analyses in [12] the blade performs well under a
turbulent wind inflow, resulting in up to 4° of twist and an acceptable tracking of flap-
wise bending moment as shown by aeroelastic analyses. On the other hand, it is noted
that the skins play a more important role in bearing the loads as compared to conven-
tional blades, where an internal box structure is usually the single structurally relevant
component, for these reasons the authors point the uncertainty on these changes from
conventional blade configurations as they can have a significant impact on the overall
blade performance.

Concerning aeroelastic stability, Lobitz [14] presents an analysis centered on flutter
instabilities for a large wind turbine blade using Theodorsen’s theory for unsteady
aerodynamics. A 12% reduction in flutter speed is predicted for a bend-twist blade
with respect to its conventional counterpart. In this case, the flutter speed is deter-
mined in terms of angular speed. Furthermore, the author points, based on existing
analyses that smaller stiffer blades tend to have higher flutter speeds when compared
to larger blades, which tend to be less stiff.

Maheri et al. [15] present an algorithm for implementing bend-twist coupling into
a baseline conventional rotor, seeking to increase the AEP. For a tip twist of 3° into
feather, the authors report a 6% increase in AEP and 50% increase in maximum power
output. The work includes subsequent modifications to the rotor chord distribution
and radius, mainly as a mean to bound the root flap-wise moment and to maintain
the maximum power at the rated value. These modifications yield an increase of AEP

of 13% is observed, however, for this case the improvement is seen for a tip twist of
5.3° into stall.

To some extent, the work of Maheri et al. [15] shows the impact of controlling blade
loads on the root bending moment when increasing power output. In addition, many
works on bend-twist coupling are implemented on utility-scale wind turbines, with
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blade lengths above 50 m for the 5 MW machines and even larger for the more recent
10 MW reference wind turbines. The tendency towards larger rotors implies higher
demands on structural performance; therefore, the use of bend-twist coupling has been
established as a plausible alternative for load alleviation as discussed by Thresher and
Laxson [16] in a review of key technologies for wind turbines of increasing sizes. At
this point the use of bend twist coupling can be associated with two design paradigms:
increased power output and, load alleviation. It is also evident that the latter paradigm
is particularly important for large scale rotors.

The work on tidal turbines by Nicholls-Lee and Turnock [17] considered bend-twist
coupled blades on a numerical analysis, with the aim of mitigating loads and improv-
ing AEP. For this purpose, an artificial recreation of the structural coupling is adopted
to effectively modify the aerodynamic performance. The approach taken in this work
corresponds to an artificial prescription of the blade deformation as a function of wind
speed, as opposed to the direct numerical modeling of the blade deformation response;
since this treatment does not constitute an interaction problem from a strict perspec-
tive, the capability of predicting the time-response of the system, its instabilities or
both, remains unclear.

The earlier works addressing effectiveness and feasibility of bend-twist coupled
blades for different design applications tend to focus on what could be called a “clas-
sical” bend-twist coupling mechanism which depends on the anisotropy of composite
materials and is usually known as material-based coupling or material-based morph-
ing. When it comes to modern wind turbine design, the use of composite materials
is still the main option for blades of different sizes. Likewise, the main mechanism
for implementing bend-twist coupling still relies on composite material anisotropy for
most of the reviewed works, with some innovations that allow a higher level of control
over the induced twist; nevertheless, new concepts for bend-twist coupling which do
not depend on material anisotropy have been proposed as evidenced by several works
published within the last decade.

In the first half of a two-part study, Capuzzi et al. [18] carry out an exhaustive search
optimization procedure based on BEM theory, for finding the optimal blade twist as a
function of the radial location and the wind speed. Considering the classical pitch
control of the analyzed wind turbine and the non-monotonic variation of ideal twist
along the blade, the authors extend the analysis to define target twist distributions
based on considerations of feasibility. Under these constraints the target twist curves
are determined to induce twist towards feather over a partial length of the blade.

The continuation on the structural design and overall evaluation of the blade is
presented by Capuzzi et al. [19] which analyses a blade modeled as the central box
of the structure, with tow steered laminates in the spar caps. It must be mentioned
that the aerodynamic analysis neglects blade deformations and considers the blade
geometry as straight. This is important not only because of the flap-wise deformations
but because the blade includes geometric sweep as a mechanism for bend-twist cou-
pling. The adaptive blade combining anisotropy and geometric sweep is compared
with baseline models optimized for maximum AEP and maximum production at rated
conditions. The concept presented by the authors is proven as a viable alternative to
conventional pitch actuation and is expected to see decreased loads due to the twist
towards feather approach.
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Figure 2.2: Blade planform with swept-back geometry towards the tip.

The structural design by Capuzzi et al. [20] for example, demonstrates the feasibil-
ity of a blade concept that incorporates bend-twist coupling by combining material
anisotropy in the form of tow steered laminates with a curved blade planform swept
towards the blade trailing edge as shown in Figure 2.2. Tow steering is used to induce
a non-monotonic twist variation along the blade following the needs of an existing
aerodynamic design. As part of the design procedure, the authors compare both lin-
ear and non-linear structural analysis, revealing that the latter exhibits an increased
stiffness in out-of-plane deflections and in consequence, a slight reduction in induced
twist.

A novel concept known as Differential Stiffness Bend-Twist Coupling (DSBT) is pro-
posed by Herath et al. [21] as a mechanism to introduce bend-twist coupling on a
blade structure; however, unlike conventional approaches relying on composite mate-
rial anisotropy, the coupling is induced on the macro-scale level with structural stiff-
eners which are always subjected to pure bending but vary in stiffness in such a way
that the overall structure exhibits the bend-twist coupling behavior.

Hayat and Ha [2] present a parametric analysis of a 5 MW wind turbine consider-
ing a bend-twist coupled blade in which the reduction of fatigue loads is proven. In
this work, a classical coupling is considered, but the authors explore in detail the ef-
fects in which the lay-up parameters affect the overall coupling; these parameters are
ply-angle, ply-thickness, and ply-material and determine the different categories of
material-based coupling as shown in Figure 2.3. According to the authors the highest
level of coupling is observed on a composite blade that includes a combination of all
three parameters in the skin, for a ply orientation of 25° in a combination of carbon
and glass reinforced epoxy.

Zahle et al. [22] present an optimization work with the DTU 10 MW reference wind
turbine as the baseline, and the respective design loads as a constraint for the optimiza-
tion procedure. The blade geometry, except for the radius, makes part of the design
variables, along with the internal structure parameters and operating conditions. The
resulting rotor has bend-twist coupling that acts to pitch the blade towards feather
despite no material anisotropy being considered. This behavior is derived from a rel-
ative displacement of the spar caps dictated by the optimization procedure itself. The
authors point that such coupling effectively alleviates the loads on the blade, resulting
in a longer blade under the specified set of constrains. This increase in blade length
allows an 8.7% increase in AEP with respect to the reference model, which reveals how
bend-twist coupled blades can indirectly increase the performance of the wind turbine
by allowing an increased rotor area for the same structural demand. Another work on
the DTU 10 MW reference wind turbine is performed by Stäblein et al. [23], aiming to
implement a pre-twist distribution on a blade with bend-twist coupling, modeled by
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Figure 2.3: Concepts for mechanical unbalance in a typical biaxial laminate, adapted from [2].

means of coupling terms in the stiffness matrices of the blade elements. One of the key
aspects of this work is to address the problematic that arises when the bend-twist cou-
pling, initially conceived as a load alleviating mechanism, drives the efficiency of the
rotor away from the optimal value by changing the angle of attack distribution in the
below rated wind speed range. As a solution, the authors opt for a pre-twisted blade
such that the coupling-induced twist is compensated for at a certain reference wind
speed. This procedure demonstrates that the loss in AEP due to bend-twist coupling
towards feather, can be reduced by pre-twisting the blade, in the most extreme case
bringing the AEP relative difference from about -0.30% to less than -0.05% with respect
to the uncoupled blade.

The work of Saverin et al. [24] is based on aeroelastic simulations built on the
framework of the software FAST, making emphasis on aerodynamic modeling with
a Lifting Line Free Wake Vortex model and presenting the respective benchmarking
against a BEM solver and a Reynolds-Averaged Navier-Stokes (RANS) solver with turbu-
lence modeling. Regarding the structural modeling, the authors consider a formulation
based on geometrically exact beam theory (BeamDyn) and a modal-based solver (Elas-
toDyn). Both approaches are implemented in the aeroelastic framework, though the
former is proven for the prediction of the blade behavior when bend-twist coupling is
included, this is done by simulating different scenarios such as increasing wind speeds
and a sudden turbine stop.

Scott et al. [25] present an analysis on the performance of bend-twist coupled blades
for the National Renewable Energy Laboratory (NREL) 5 MW and DNV GL 7 MW refer-
ence wind turbines, evaluating the AEP, load alleviation and pitch system performance.
Wind turbine modal frequencies are decreased in general by bend-twist coupling. The
only frequency showing an increase is the first torsional mode for the NREL 5 MW
model with purely material coupling. In determining the adequate twist distribution
for maximized AEP, the authors aim for a rated-optimal twist, which is, attaining the
optimal twist after induced torsional deformations at the rated operating conditions.
The simulation case of Extreme Operating Gust (EOG) extends the results from Scott
et al. [25] and shows that the DNV GL 7 MW blade with anisotropic coupling, ex-
periences a reduction in blade root bending moment of 1.95% for the peak load and
12.03% for the amplitude. For the same wind turbine, the optimized bend twist cou-



acronyms 9

pling results in an increased AEP with respect to the baseline model, by 1.91% for the
anisotropic coupling and 2.41% for the combined anisotropic-geometric coupling. For
turbulent wind simulations the annual energy yield in the 7 MW model is slightly re-
duced with respect to the baseline model, with the interaction between blade dynamics
and active pitch controller being one of the probable causes. The implementation of
bend-twist coupling on large rotors with variable pitch control has proven effective for
load alleviation, but several works point to a reduction in power in the below-rated
range. In a similar approach to that of Scott et al. [25], the work of Atalay and Kayran
[26] presents a modified design of the NREL 5 MW rotor, implementing anisotropy-
based bend-twist coupling in the spar caps. After aeroelastic simulations that include
turbulent wind and a classical PD pitch control, a reduction in fatigue loads is found
along with a reduction of power in the below rated range. Under the premise of reduc-
ing damage equivalent loads in metallic components at the blade root and drive train,
the authors determine the laminate layups in such a way that the loads are mitigated
in the below-rated wind speed regime without losses in power production.

Bagherpour et al. [27] present the analysis of the DTU 10 MW rotor including off
axis laminates in the spar caps of the blade to implement bend-twist coupling. Aeroe-
lastic simulations are carried out in hGAST and compared to other similar codes. The
effectiveness of the coupling for load alleviation is demonstrated, obtaining a 10% re-
duction in fatigue flap-wise bending moment and 8% reduction in extreme flap-wise
bending moment without reductions in power. This is achieved by implementing a
laminate with 12.5° offset, which leads to a 4° torsional deformation at the tip towards
feather.

The work of Riva et al. [28] explores the effects of bend-twist coupling on the aeroe-
lastic stability of a modified version of the DTU 10 MW wind turbine by using both an
aeroelastic multi body simulation and modal analysis tools. The analysis is performed
over an isolated blade and over the fully assembled wind turbine. The results show a
mild influence of coupling on the wind turbine modes, except for the tower forward-
after and edge-wise collective modes which experience a reduction in damping.

Şener and Kayran [29]take the NREL 5MW rotor as the baseline for an analysis of
bend-twist coupling as a mechanism for load mitigation, particularly for reducing
damage equivalent loads in key wind turbine components at the drive train and blade
root using a fatigue exponent of four, corresponding to metallic components. The cou-
pling is achieved by aligning spar cap fibers at 15° towards the leading edge from the
blade root, which results in an induced twist towards feather. For wind speeds around
10 m/s the damage equivalent root flap-wise moment is reduced by 15% with respect
to the baseline blade.

Zhou et al. [30] implement bend-twist coupling on a 5 MW rotor with offset angle
laminates at 25° and unbalanced ply thicknesses for the blade skins, in a series of de-
sign cases. Significant reductions in blade torsional stiffness are observed, with values
of 6.6% and 7.5% for ply-angle unbalanced laminates and ply-thickness unbalanced
laminates, respectively. Little change is seen in bending flap-wise and edgewise stiff-
nesses. These results are opposed to the ones in Riva et al. [28] for which bend-twist
coupling is implemented in the spar caps alone; however, the work of Zhou et al. [30]
does not provide information on the mirroring of the skin laminates with respect to
the chord-wise plane which might be a key factor for this discrepancy. The results
show that the limit angular velocity for flutter is above the rated angular velocity of
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the wind turbine. The flutter limit found with non-linear flutter analysis is observed
to be 23% below the same limit found with linear flutter analysis.

Ferede et al. [31] implemented bend-twist coupling on a 5 MW wind turbine as part
of the demonstration of an optimization approach that uses aeroelastic simulations
with a low fidelity approach for aerodynamics and preliminary structural analysis.
Localized analysis of stresses and buckling is considered by extending the structural
analysis to a 3D model based on a shell element formulation in the software NAS-
TRAN. An interesting result is the optimization outcome for a blade with balanced
laminates, for which the optimization procedure generates a displacement of the shear
center towards the trailing edge aiming to replicate the bend-twist coupling exhibited
by a similar blade with unbalanced laminates, this is similar to the results reported in
Zahle et al. [22].

Further results from [31] indicate a 2% reduction on the cost of electricity for a blade
with unbalanced laminates when compared to the balanced counterpart; nevertheless,
such a reduction seems to be dominated by a reduction of initial capital costs due to a
reduction in blade mass, as the AEP is also reduced for the unbalanced blade. In fact,
the power for wind speeds below the rated point sees a slight reduction with respect
to the baseline machine. In the light of the actual context, this work reveals that the
presented optimization makes better use of bend-twist coupling at high wind speeds,
for which the power is regulated at or near the rated value.

An optimization procedure presented by Barr and Jaworski [32] uses a robust FSI

analysis under a partitioned approach with a RANS solver for the fluid and a shell-
element based FEM solver. The most prominent aspect of their research is perhaps the
use of variable angle tow for the constitution of the composite material, achieving
specific values of induced twist at different sections of the blade span similar to the
approach of Capuzzi et al. [20]. Furthermore, the authors opt for passive pitch actu-
ation towards stall to maximize power at different wind speeds. Unlike most of the
recent works, dealing with large turbines, the analysis presented by Masoudi and Pope
[33] takes as a subject an NREL Phase VI turbine, modified to have a swept geometry
towards the tip; in this sense, a purely geometric bend-twist coupling is implemented
and studied at different conditions with a one way robust FSI analysis on commercial
software. The magnitude of attained induced twist is modest, i.e. around 0.67°, how-
ever the power at specific wind speeds is increased to about 1.8%; this is a promising
sign for the improvement in AEP. The effects of swept geometry on the distribution of
relative velocity along the blade are left unexplored.

Miao et al. [34] present an FSI analysis on a wind turbine based on the NREL 5 MW
model under extreme wind events; modifications to the blade design are added to
account for bend-twist coupling via material anisotropy and geometric sweep. The
authors find that the swept blade offers little advantage compared to the conventional
blade with pure anisotropic coupling, due to the increased torsional moments that
swept blades experience in order to achieve an induced twist.

On a recent design of a 3.4 MW wind turbine, Madsen et al. [35] proposed an
increased rotor diameter with respect to the baseline, aiming for operations between
2 m/s and 13 m/s. The increase in AEP due to operation at lower speeds comes with
increased rotor loads; in response, the authors opt for a design with gradient-based
optimization in which the shear caps of the blade structure are located towards the
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leading edge of the blade. A consequence of this structural design is a bend-twist
coupling pitching the blades towards feather, resulting in an overall load alleviation.

Serafeim et al. [36] presented a re-design of the DTU 10 MW wind turbine con-
sidering a Genetic Algorithm (GA) procedure for optimization of laminate layup in a
new bend-twist coupled blade. This resulted in a 10% reduction in blade mass and 5%
reduction in blade root bending moment.

In terms of aerodynamic analysis, the work of Li et al. [37] explores the effects of
bound vorticity on the aerodynamics of curved blade planform and shows that the
curved bound vortex is essential for accurately predicting the loads on curved blades
when using models based on the lifting-line formulation.

The works of Shakya et al. [38] and Shakya et al. [39] are some of the more recent
studies on flutter stability for wind turbine blades using frequency-domain and time-
domain aerodynamic analyses for each of the respective works. The work in [39] uses
a BEM solver with dynamic inflow for describing the aerodynamics and is based on the
use of bend-twist coupled laminates for increasing the flutter critical speed in several
wind turbine models with rated power above 1.5 MW.

2.2 numerical analysis of wind turbine blades with bend-twist cou-
pling

Important aspects on blade structural modeling are highlighted by Veers et al. [11],
particularly the limitations of section-based models (i.e. beam modeling) in contrast to
full 3-D modeling. Despite its simplicity and popularity at early design stages, the ba-
sic 1-D beam models fail to describe phenomena such as local distortion and buckling,
stress concentration and cross-sectional warping. Different “section-analysis” software
tools are mentioned as they allow to extract equivalent section properties from full 3-D
shell models for use in simpler yet detailed beam section formulations.

The analysis performed by Laird et al. [40] contemplates different element formula-
tions,shown in Figure 2.4, including shell elements both node-centered and node-offset
and compared them to results with full solid elements. Besides a significant error in
torsional response of a wind turbine blade when off-set node shells are used, the au-
thors also find errors in bending response when the wall thickness is large compared
to the section curvature radius, revealing the need for special attention to blade areas
such as the leading edge.

On a subsequent study, Maheri et al. [41] compare FSI analyses considering a so
called “single-step” in one case and, a fully coupled simulation in the other. The au-
thors conclude that bend-twist coupling strictly requires a fully coupled FSI interface
since bending deformation is dependent on aerodynamics; extension-twist coupling is
seen to depend solely on the mechanical modeling.

This and further works such as [42, 43], are carried out with the software developed
by Maheri et al. [44], they explore the feasibility of simplifying structural calculations
by using partly analytic calculations and the implementation of a dedicated aeroelas-
tic wind turbine code for evaluations in optimization problems based on a genetic
algorithm.

The work of Lee et al. [45] consists in the FSI analysis of the NREL Phase VI wind
turbine with a computational set up involving CFD and FEM in a 2-way coupled simu-
lation. The results of this work are used to feed a BEM model with correction of stall



acronyms 12

(a) Centered-node multi-layer
shell elements.

(b) Offset-node multi-layer shell
elements.

(c) Full solid elements.

Figure 2.4: Concepts for modeling of composite hollow structures.

delay effects but more importantly, provide a direct reference model for the analysis
of the wind turbine blade under study in the current work.

Paquette et al. [46] include different element formulations in their Finite-Element
Analysis (FEA) of wind turbine blades with both neutral and bend-twist coupled struc-
ture. The authors find good agreement between the simulations using shell elements,
with node-centered and node-offset formulations distancing from the findings in [40]
which report discrepancies. Experimental validation of the torsional response is not
fully demonstrated due to limitations in the experimental set up.

Fedorov et al. [47] predict bending and torsional response for a segment of a wind
turbine blade using three standard FEA solvers in five different element formulations
that include full shell and mixed shell/solid elements. The most significant discrep-
ancies with respect to experimental tests are found in the torsional response of the
blade, particularly those with node offset shell formulations which confirm the con-
cerns presented in [40] with respect to the structural modeling accuracy of node-offset
models.

The work of Lago et al. [48] addresses the aeroelastic analysis on a blade of the NREL

5MW reference wind turbine blade by means of a novel computational tool based on
a beam-element structural model and the blade element momentum theory for the
prediction of aerodynamic loads. The structural modeling in this work is based on
a dimensional reduction technique, known also as the generalized Timoshenko beam
theory, which accounts for preexisting deformations on the blade structure such as pre-
bending, swept curvature or structural twist. The aerodynamic BEM solver on the other
hand has been implemented with a correction for large blade deformations, under the
concern that considerable deviations from the blade rigid geometry might result in
incorrect representation of induced velocities and thrust force vectors on the sections
of a deformed blade. It must be pointed that this work is the only to address this
concern in the present review.

The structural analysis of bend-twist coupled blades has shown several topics that
are usually addressed with a wider array of models (in comparison to aerodynam-
ics for instance), mostly related to the inclusion of specific effects which tend to be
simplified or neglected in the analysis of conventional blades. Those effects include:

• The treatment of warping in models based on beam-element formulations.

• The accuracy of torsional response with respect to full 3-D formulations based
on shell-elements and solid elements.
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• The validity of the assumption of small displacements and the effect on the re-
quirements of the model (linear versus non-linear).

The modeling of aerodynamics on the other hand has been addressed with four dif-
ferent models: RANS formulations, vorticity-based formulations, Theodorsen’s theory
of unsteady aerodynamics and BEM theory. The only work that proposed a compari-
son between some of these models is that of Saverin et al. [24], in which reasonable
agreement between the different methods is evidenced, except for operating conditions
away from the design point.

The Review of Hansen et al. [49], mentions that besides the classical Glauert and
Prandlt assumptions, the use of 2-D airfoil coefficients in the BEM model adds some
uncertainty when neglecting rotational effects on the flow. Such effects can be miti-
gated by applying additional corrections on the input data. Besides, one of the critical
limitations for the BEM theory is the lack of available airfoil data at high angles of at-
tack which, coincide with the operating conditions at which notable differences were
reported by Saverin et al. [24]. In addition, since the original BEM formulation is for a
steady-state analysis, a considerable part of the modifications for transient problems
involves dynamic models for individual phenomena such as time dependence in rotor
inflow or dynamic stall.

The use of vortex-based methods and Theodorsen unsteady lift theory offers a better
description of time-dependent phenomena but their accuracy is conditioned to the
operating point, since these two models are also limited by the assumptions of attached
boundary layer flow.

The use of RANS models represents one of the most versatile options but the typ-
ically high computation time limits their pertinence for interaction problems with a
simplified set-up. This idea is supported by the fact that the Navier-Stokes solvers in
the reviewed works are coupled at most with structural analysis modules, but not with
complex wind models, i.e. aeroelastic models, or drive train dynamics.

2.3 main findings from the literature review

The earlier publications on bend-twist coupling applied to wind turbine blades show
substantial amounts of effort directed towards a theoretical quantification of the phe-
nomena. In one prominent case, this quantification is done in the form of the coupling
coefficient, α, included in the expression:

g = α
√
(EIGK) (2.1)

where E and G represent Young and shear modulus respectively, while I and K
represent the area moment of inertia and the polar moment of inertia respectively. This
expression represents the coupling terms in the stiffness matrix, for the stress-strain
relations as proposed by Lobitz and Veers [9] in their beam element formulation:

[
EI −g

−g GK

]  ∂θ

∂x
∂φ

∂x

 =

[
Mb

Mt

]
(2.2)

Here the vector of displacements involves the transverse angular displacement, θ

and the torsional angular displacement, φ. The vector of generalized forces consists
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of the bending moment Mb and the torsional moment Mt. For the stiffness matrix
in Equation (2.2) to remain positive definite, the coupling coefficient is bounded by
−1 < α < 1.

It must be said also that dynamic stability of bend-twist coupled blades has been a
topic of interest since the first applications for wind energy. Typical instabilities such
as divergence, or flutter have been discussed and associated to changes in structural
properties of coupled blades with respect to conventional designs. These phenomena
can have a significant impact on the wind turbine service life; in consequence, the
impact on economic performance is considerable and the topic has remained relevant
in time.

The work of Lobitz and Veers [9] established a theoretical foundation for the quan-
tification of bend-twist coupling in a FEM framework for beam elements. This has
remained valid until today and is used within numerical analysis in which, bend-twist
coupling can be included in a model without the strict need of defining any physical
properties of the laminate. Some works such as that of Fedorov and Berggreen [50]
make use of full 3-D models of the blade, including material and laminate lay-up spec-
ifications, for the sole purpose of determining mass and stiffness properties on discrete
sections along the structure; these are used in the assembly of a beam model in which
the numerical analysis is carried and the potential for aeroelastic coupling, represented
by the coefficient α can be evaluated. In other cases, an abstract approach is taken, as
the coupling can be simply prescribed by assigning desired and well-bounded values
of α into the beam model without the need of a full 3-D model of the blade. Initially
bend-twist coupling is conceived by deliberately altering the mechanical properties of
composite materials used in the manufacture of wind turbine blades. This determines
the first approach to bend-twist coupling based on material properties denominated
here as coupling of type I, and can be subdivided into three categories as shown pre-
viously in Figure (2.3).

Ply-angle unbalance and ply-thickness unbalance are ways of introducing anisotropy
by modifying the orientation or the thickness of individual plies with respect to the en-
tire lay-up whereas material unbalance consist of a mixed composition of the laminate
without unbalancing the angle or the thickness of the plies, for example by mixing
carbon and glass fibers at opposite angles in plies of equal thickness. Additionally,
combination of these types of unbalanced laminates can be implemented simultane-
ously.

Besides material coupling, other authors have proposed alternatives based on blade
geometry regardless of the mechanical properties of the material. Geometry-coupling
has been identified in two forms: a) swept blade geometry, denominated here coupling
of type II, in which the blade is curved towards the trailing edge and b) displacement
of the shear center, denominated as coupling of type III. The latter concept induces
torsion because the mere distance between the aerodynamic force center and the shear
center gives rise to a torsional moment.

A final category is contemplated in the work of Herath et al. [21], in which the
bend-twist coupling is achieved on the structural level by using stiffening elements
subjected to pure bending. This is a completely unique approach to bend-twist cou-
pling, explored numerically in the cited work; furthermore, the resulting structural
configuration is different from the conventional spar-cap and web designs that have
been implemented so far. Having considered the principal areas of interest for the
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application of bend-twist coupling and the main concepts for implementing this tech-
nology into wind turbine blades, a group of works has been collected and described in
Table 2.1 which contains information on the coupling mechanism, the application and
the approach for analysis. One of the most notable characteristics is that most works
consist of numerical simulation with only a few of them including experimentation;
this is expected however, since many of the cases are based on large machines. The
works listed in Table 2.1 have been determined as relevant to the present project by
judging the contributions to improving wind turbine energy capture by the implemen-
tation of bend-twist coupling.

It has been observed that the design paradigm of load alleviation can lead indirectly
to improved energy capture, with the work of Zahle et al. [22] being the most promi-
nent example. From the works in which twist towards feather is implemented with
bend-twist coupling, it is common to observe that the main aim is load alleviation
and it often comes with the consequence of power reductions in the below-rated range
with respect to baseline models.

This is another case in which an objective of improving power is indirectly pur-
sued as the bend-twist coupling for load alleviation in variable-pitch wind turbines
tends to diminish power capture at low wind speeds. Consequently, utility-scale ro-
tors with bend-twist coupling for load mitigation have been addressed with design
modifications to preserve the blade geometrical optimality at the below-rated wind
speed range.

One of the key characteristics of the work in Stäblein et al. [23], is precisely the mod-
ification to the blade twist distribution; however, this improvement is demonstrated
at full for a single wind speed value, selected as the reference pre-twist wind speed.
The work of Scott et al. [25] proposes a similar solution and is restricted to the specific
wind speed for which the blade is optimized. Additionally, for both cases the wind
turbine has a variable pitch control. Both Maheri et al. [15] and Atalay and Kayran [26]
propose similar design solutions to maximize power output; however, Maheri et al.
[15] contemplate what appears to be a stall regulated wind turbine.

This application for coupled blades has been implemented with large scale wind
turbines, which are often equipped with robust control systems for optimum power
capture in the below-rated range. From the previous appreciation two questions arise:
in first place it seems that the twist towards feather is aimed at reducing the angle
of attack causing a load reduction, even if the final angle of attack is inferior to the
optimum; this might indicate that the twist actuation can point to two different objec-
tives i.e. optimal power or reduced loads. In second place, is seems that, except for the
work of Maheri et al. [15], stall regulated wind turbines have received less attention
for analysis on how bend-twist coupling affects the rotor power capture in terms of
the power coefficient at the different regions of the operating range.

The approach of Barr and Jaworski [32] concerning the direction of pitch actuation
stands out from the majority of works in the sense that pitch towards stall is generally
associated to higher risks of stall flutter and also to higher loads in the blade. Still,
the declared goal of the authors is power maximization over reduction of loads. The
study of Maheri et al. [15] also opts for twist towards stall, at least when presenting the
maximum potential of the bend-twist concept introduced in their work. This approach
can lead to different obstacles the first of which is fatigue performance; in second place
is the difficulty for predicting the aerodynamic performance, as inducing the blades to
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stall leads to non-linear aerodynamics which are more complex to treat. In third place
comes the risk of inducing aerodynamic instabilities which no matter how remote,
always should be evaluated.

summary

A selected group of works is presented in Table 2.2 with general information on the
aims and results that are relevant to this project. The highlighted rows represent those
works which, in the author’s criteria, align more closely to the aims and objectives
of this proposal. Other works are included due to the relevance in the methodology
and approach to the analysis of blades with bend twist-coupling. The most notable
aspect in several of the cited works lies in the fact that the structural modeling is often
over-simplified with respect to other elements in the overall analysis. In some cases,
the structural response is not directly modeled but prescribed either by an artificial
function of the wind speed or by parametrizing a normalized deformation mode and
assuming it as the actual deformation behavior of the blade structure. Other works
with promising results neglect secondary structural components such as the blade
skins. Lastly, there is a clear focus towards wind turbines with relatively high rated
wind speeds, often above 10 m/s, while the present work is intended to address the
operation in low speed wind regimes.

Upon a review of state-of-the-art works in the implementation of bend-twist coupled
blade structures in wind turbines, the present work can be justified considering that:

• Wind turbines in the small to medium size range have not been widely stud-
ied from the perspective of bend-twist coupling applications when compared to
large wind turbines.

• The use of bend-twist coupling as a purely passive control strategy has been con-
sidered in applications that disregard the structural modeling of coupled blades
and instead prescribe the torsional deformation. The present work contemplates
the modeling of all modular components involved in FSI problems.

• The distance between the aerodynamic center and the shear center of a blade
section can induce bend-twist coupling behavior to some extent, depending on
the magnitude of aerodynamic loads and the bending and torsional stiffness. To
the best of the author’s knowledge this effect has not been computed directly,
except for the related work in Couturier et al. [52]; instead, it is accounted for
implicitly when the blade is simulated with an aeroelastic model. In this work,
this effect is expected to be quantified prior to the design of a bend-twist coupled
blade, this should result in an improved design without the need of an iterative
procedure. Furthermore, if existing aeroelastic codes for wind turbine analyses,
based on 1-D beam models neglect the torsional deformation of the blade, the
aerodynamic twist of conventional blades can be an unattended phenomenon
that impacts the performance of the turbine when deployed for operation.

• The application of bend-twist coupling in wind turbines operating at constant
angular speeds and fixed-pitch has not been explored with the same detail as
variable-pitch machines. This opens an opportunity for improvement to be ad-
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Source Aim Improvement in AEP Simplifications and differing aspects

regarding the present work

Maheri et al. [15] Increase of AEP and

Power regulation.

13% incr. AEP (5.3° Twist to Stall),

6% Incr. AEP (3° Twist to Feather,

with maximum power increased by

50% over the nominal value)

Assumed constant fiber angle, mechanical

properties, and shell thickness along the

span. The shape of the induced twist is not

modeled but rather assumed from an

external source. Chord distribution and

blade radius can vary.Apparently constant

speed, passive stall regulated WT

Nicholls-Lee and

Turnock [17]

Increase in AEP and

reduction of loads

2.65% incr. AEP (pitch+linear twist),

1.80% incr. AEP (linear twist)

Structural response is not simulated but

artificially prescribed as a function of flow

velocity. Variable pitch considered.

Capuzzi et al. [18] Twist optimization for

Power increase

- Adaptive behavior is targeted to a very

high rated wind speed ( 15 m/s).

Performance near cut in wind speed is

essentially unchanged.

Capuzzi et al. [19] Structural design of am

aeroelastically tailored

blade

1.8% (variable-pitch,w.r.t. AEP

optimized baseline), 2.8%

(fixed-pitch, w.r.t. AEP optimized

baseline)

The effect of the blade skins is neglected.

WT with pitch control considered.

Capuzzi et al. [20] Structural design of an

aeroelastically tailored

blade.

- -

Hayat and Ha [2] Evaluation of load

mitigation capabilities.

- -

Zahle et al. [22] Optimization for max

AEP

8.7% (via passive load alleviation

resulting in a 9% longer blade)

Primary target is load alleviation in the

above-rated range. WT with pitch control.

Stäblein [51] Reduction of power

losses

- -

Scott et al. [25] Analysis of power

performance, load

alleviation and pitch

actuation.

- -

Atalay and Kayran

[26]

Analysis of reduction of

damage equivalent loads.

- -

Barr and Jaworski

[32]

Optimization of tow

orientation for

maximized Power

output.

14% incr. in power (for a cut-in

optimized blade), 7% incr. in power

(for a rated wind speed optimized

blade)

Optimization based on both cut-in and

rated wind speeds. A high cut-in wind

speed is considered (4.4 m/s for a 5 MW

machine). WT with pitch control.

Madsen et al. [35] Load alleviation 40-45% increase in AEP (by increase

of rotor diameter)

Design by gradient-based optimization.

Pitch to feather due to class III bend-twist

coupling. The rotor considers standard

pitch controller.

Table 2.2: Key aspects of relevant works from the literature review.
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dressed here, since fixed-pitch, constant angular speed rotors tend to generate
power at sub-optimal CP in a considerable portion of the operation range.

• To the best of the authors knowledge, no work has explored the potential for
bend-twist coupling in pre-bended blades on which the flap-wise moment is
caused by inertial loads. The analysis of starting behavior is expected to be car-
ried out in this work by considering bend-twist coupling actuation by inertial
loads on pre-bended blades.

• The review exercise reveals a lack of explicit interest for machines operating at
low wind speeds; instead, the majority if not all the reviewed works contemplate
wind turbines with high rated wind speeds, commonly beyond 10 m/s. In the
present work, the analysis considers rated wind speeds below 10 m/s and a
focus on starting behavior at cut-in wind speeds.



3
T H E O R E T I C A L F R A M E W O R K

The present chapter includes the description of the mathematical models used in the
setting of the simulation frameworks for the analysis of aerodynamics, structural re-
sponse of a composite blade and the analysis of interaction between aerodynamic and
structural solutions in a set of FSI simulations. The aerodynamic models consists of
the computationally inexpensive BEM model and the more robust FVM. A set of basic
governing equations is presented for each model. The structural analysis is performed
with a robust FEM and the pertinent details about the governing equations and the tran-
sient formulations are included as well. The description of the FSI process is dedicated
to the mesh treatment for deforming domains and the treatment of data mapping
carried out at each coupling step.

20
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nomenclature

a Axial induction factor Ft Tangential force

A, AR Area, Rotor Area I Identity Matrix

area f
Surface of distributed

resistance
J f Mass flux through the j−th cell face

anb
Linearized coefficient for the

neighboring nodes
J′f Mass flux correction

a′ Tangential induction factor J∗f Guessed mass flux

aP
Linearized coefficient for the

central node
k Foundation stiffness

B Number of blades in the rotor [Ke] Element stiffness matrix

[B] Strain-displacement matrix [K] Structural stiffness matrix

c Local blade chord
[
K f

e

]
Element foundation stiffness matrix

[C] Structural damping matrix L Lift force

Cd Drag coefficient [Me] Element mass matrix

Cl Lift coefficient [M] Structural mass matrix

Cn Normal force coefficient n Unit vector normal to the actuator disk

Ct Tangential force coefficient [Nn]
Matrix of shape functions for normal

motion

CT Thrust coefficient [N] Matrix of shape functions

[D] Stress-strain matrix nb neighboring cell index

dA
Area of an anular blade

element
p Pressure field

d f Flux correction factor {p} Pressure vector

dM
Differential moment for an

annulus
pc0, pc1 Nodal pressure values around face f

dT
Differential thrust force for an

annulus
p′ Pressure correction

F Prandtl tip-loss factor p∗ Guessed pressure field

f Face index r Radial location

Fs Spatial discretization term R Rotor radius

{Fa} Acceleration force vector Rn+1 Residual vector at time instant n+1{
Fnd

e

} Nodal forces acting on the

element
S Source term{

Fth
e

}
Element thermal load vector t Time{

Fpr
e

}
Element pressure vector U Strain energy

Fa(t) External load vector U1 Strain energy

Fi(t) Internal load vector U2 Surface tension strain energy

FB Body forces {u} Nodal displacement field

fg Glauert correction factor {ü} Acceleration vector

Fn Normal force ui Velocity field in indicial notation
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V Volume Greek symbols

V External work

V1 External work α Local angle of atack

V2 Pressure force work αm, α f HHT-α scheme parameters

V3 Nodal force work αN , δN Newmark’s integration parameters

vol Element volume αp Pressure correction factor

V∞ Free-stream wind speed β Local twist angle

v Velocity field γ Amplitude decay factor

vn
Normal velocity component at a cell

face
δ Virtual operator

V′
Relative velocity at the rotor plane

in skewed flow
{ε} mechanical strain vector

V rel Relative velocity at a blade element
{

εth
}

Thremal strain vector

W Induced velocity at the actuator disk ρ Flow density

{wn}
Component of motion normal to the

wall
τ Viscous stress tensor

{w} Displacement vector {σ} Stress vector

W1
Flow velocity far downstream of the

actuator disk
φ Local flow angle

Wn
Normal component of the induced

velocity
ϕ Scalar quantity

Wt
Tangential component of the

induced velocity
ω Rotor angular speed

Wθ Rotational velocity component
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3.1 aerodynamic models

3.1.1 Blade element momentum theory

Under the description of Hansen [53], the BEM model uses a discretization in which
each blade is treated as a series of mutually independent elements, each one sweeping
an annular area around the center of the rotor. As the starting point of the model, the
Momentum theory considers a blade, or blade element as an actuator disk, depicted in
Figure 3.1. According to Newton’s law of linear momentum, the wind speed reduction
caused by the actuator disk is proportional to the axial fluid load experienced by the
actuator. The change in speed as the air flows through the actuator disk is represented
mathematically in terms of the axial induction factor, a, in the following way:

W = (1− a)V∞ (3.1)

Here V∞ represents free-stream wind speed, W represents the flow velocity at the
location of the actuator disk, and its relative difference with respect to the freestream
wind speed is given by a. Using Momentum theory, the annular area swept by a single
blade element is treated as an actuator surface; for each one of these actuator surfaces
there is an associated annular streamtube, an assumption that forbids the flow of air
between adjacent actuator surfaces and which by extension, prevents radial flow to
occur. Each annular surface experiences a differential thrust force defined in terms of
the change in wind speed as it passes through:

dT = 4πrρV2
∞a (1− a) dr (3.2)

likewise, the differential moment acting on the element is defined as:

dM = 4πr3ρV∞ω (1− a) a′dr (3.3)

The representation for torque given in Equation 3.3 is based on the axial induction
factor, a, and the tangential induction factor, a′. The inclusion of a′ allows to describe
the change in angular velocity due to the momentum transferred from the rotating
blade element into the airflow; in fact, tangential induction can be defined in terms of
flow speed in the same way it is done for axial induction, defining an angular velocity
component, Wθ , as:

Wθ = 2a′ωr (3.4)

W1WV∞

Figure 3.1: Stream tube across an actuator disk
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𝛼

𝛽 �

𝑉∞(1-a)

𝜔𝑟(1+𝑎′)

𝑉𝑟𝑒𝑙

Figure 3.2: Velocity triangle at a blade element.

Additional expressions for differential thrust and moment are provided from BEM

theory, based on airfoil lift and drag coefficients for the cross sectional shape of each
blade element. Since dT is normal to the rotor plane and dM is contained in it, a
corresponding projection for the airfoil force coefficients is established:

Cn = Cl cos (φ) + Cd sin (φ)

Ct = Cl sin (φ) + Cd cos (φ) (3.5)

This projection transforms lift and drag coefficients into normal and tangential force
coefficients, and is nothing more than a rotation of axes by an angle φ, which is in fact
the local flow angle for each blade element as illustrated in Figure 3.2. A dimensional
representation of normal and tangential forces per unit length is given by:

Fn =
1
2

ρV2
relcCn (3.6)

Ft =
1
2

ρV2
relcCt (3.7)

Now dT and dM can be defined in terms of normal and tangential forces:

dT =BFndr (3.8)

dM =rBFtdr (3.9)

Where dr represents the span-wise length of each blade element and B represents
the number of blades in the rotor. The remainder of the process in the BEM model
consists of an iterative solution for a, based on the definitions for dT in Equations 3.2
and 3.8 and, the definitions for dM in Equations 3.3 and 3.9. Usually a steady-state
computation is made with a fixed point iteration procedure, assuming a = 1 as an
initial guess. After convergence, the final values for dT and dM are integrated along
the blade radius to obtain total rotor thrust force and total rotor torque. The mechanical
power delivered by the rotor can be expressed in terms of torque and angular speed as
PR = Tω and this is equivalent to the standard definition in terms of the dimensionless
rotor power coefficient (CP) according to:
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PR =
1
2

ρV2
∞ ARCP (3.10)

So far, the presented form is a basic formulation of the BEM model, and the under-
lying simplifications restrict this methodology to idealized cases. The first restriction
requires that the blade tip loading is strictly two-dimensional, meaning that each blade
is equivalent to an infinitely long wing and in consequence, the aerodynamic loads are
higher than for a real blade, in which aerodynamic loads gradually reduce to zero at
the tip of the blade. The second restriction requires that the rotor loads are small so
that the momentum theory description of thrust force remains valid. This is necessary
because in reality, the boundary of the streamtube of air passing through the turbine
rotor becomes unstable when the rotor loads are too high; as a result, the flow down-
stream of the rotor becomes unsteady and the induction factor of momentum theory
stops giving a correct description.

Regarding the first issue with the original BEM model, a popular correction for the
blade tip loading is proposed in terms of the tip-loss factor, attributed to Prandtl and
presented here in a compact form:

F =
2
π

arccos
[

exp
(
−B (R− r)

2r sin φ

)]
(3.11)

This correction factor is then used to modify the expressions for dT and dM derived
from momentum theory:

dT = 4πrρV2
∞a (1− a) Fdr (3.12)

dM = 4πr3ρV∞ω (1− a) Fa′dr (3.13)

The second issue can be treated with an empirical correction for CT, specified as a
function of the axial induction factor, a:

CT =

4a (1− a) F for a ≤ 1/3

4a
[
1− 1

4 (5− 3a) a
]

F for a > 1/3
(3.14)

Note that the definition for CT is based on the differential thrust force:

CT =
dT

1
2 ρV2

∞dA
(3.15)

An extension of this formulation for a dynamic computation can be done by consid-
ering Bramwell’s relationship for a rotor in forward flight:

Wn = n ·W =
T

2ρA|V ′| (3.16)

Where n represents the unit vector of the thrust force in the reference frame of the ro-
tation axis and |V ′| = |V ∞ + n (n ·W) |. In this relation the component of the induced
velocity normal to the actuator disk is parallel to the thrust force. Expanding the ex-
pression for a representative area, the following is obtained for the normal induced
velocity:
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Wn =
−BL cos φ

4πρrF|V ∞ + fgn (n ·W) | (3.17)

For the tangential component a similar relationship exists, proving that under the
treatment of yaw misalignment given in Equation 3.16, only lift force affects the in-
duced velocity through the rotor plane:

Wt =
−BL sin φ

4πρrF|V ∞ + fgn (n ·W) | (3.18)

3.1.2 RANS model and the Finite-Volume method

The solution method used in the simulation of the fluid flow field is presented next.
Its presentation in the context of this work begins with a recount of the governing
equations for the flow of a viscous and transient fluid. In subsequent chapters the
work is restricted to an incompressible flow; however the model presented next is
given for a fluid of arbitrary density.

Governing equation of conservation of mass

The governing equation for conservation of mass of a three-dimensional flow in the
cartesian coordinate system can be derived by considering a small volume of fluid,
with an hexahedral shape of dimensions ∆x, ∆y, and ∆z and considering fluid flow
components u, v, and w in x, y and z directions respectively. Mass conservation re-
quires that the change in mass within the control volume equals the net mass flow rate
crossing the boundary of the control volume, known as the control surface. Using the
control volume shown in Figure 3.3, the mass flow rate can be expressed at the faces
of the control surface as a set of first-order taylor series expanded around the center
of the control volume where the flow field is known. Assuming that the mass flow out
of the volume is positive, the total flow mass balance contains six terms, one for each
face of the control surface:

[
ρu +

∂ (ρu)
∂x

∆x
2

]
∆y∆z +

[
ρv +

∂ (ρv)
∂y

∆y
2

]
∆x∆z−

[
ρu− ∂ (ρu)

∂x
∆x
2

]
∆y∆z

−
[

ρv− ∂(ρv)
∂y

∆y
2

]
∆x∆z +

[
ρw +

∂ (ρw)

∂z
∆z
2

]
∆x∆y−

[
ρw− ∂ (ρw)

∂z
∆z
2

]
∆x∆y

This, according to the principle of conservation of mass, must equal to the rate of
change of mass within the control volume:

−∂ρ

∂t
∆x∆y∆z

Both expressions are equated and divided by the total volume ∆x∆y∆z to obtain:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (3.19)
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Figure 3.3: Balance for mass flow rates across the control volume boundaries (adapted from
[3]).

Which represents the conservation of mass in its most generic form, for a control
volume of arbitrary size, and a fluid flow of density ρ.

Ecuation of conservation of linear momentum

Viewed as a statement of Newton’s second law for a fluid particle, the equation of
conservation of linear momentum relates the sum of all external forces acting on the
fluid particle to the time rate of change of its linear momentum. With this in mind, the
total acceleration of a fluid particle can be expressed as the substantial derivative of the
velocity field, which is defined as the sum of the local acceleration and the convective
acceleration:

dV
dt

=
∂V
∂t

+ u
∂V
∂x

+ v
∂V
∂y

+ w
∂V
∂z

=
∂V
∂t

+ (V �∇)V (3.20)

The equation above is a vector equation which represents in compact form the total
acceleration for each one of the three scalar components of the velocity field. When
paying attention to the forces acting on a fluid particle, it is common to classify them
into: a) body forces, which act directly on the mass of the fluid, and b) surface forces,
wich act directly on the surface of the fluid particle. The body forces in x can be
expressed in terms of a body force per unit mass fx, as fxρ∆x∆y∆z. The surface forces
are calculated at the different faces of the control surface in terms of the components
of the stress tensor τij which, using the known values at the center of a referene control
volume, can be expressed at the faces of the control surface with a first-order Taylor
series expansion:



acronyms 28

ρ fx∆x +
[
τxx +

∂
∂x (τxx)

∆x
2

]
∆y∆z−

[
τxx − ∂

∂x (τxx)
∆x
2

]
∆y∆z

[
τyx +

∂
∂y

(
τyx
) ∆y

2

]
∆x∆z−

[
τyx − ∂

∂y

(
τyx
) ∆y

2

]
∆x∆z

[
τzx +

∂
∂z (τzx)

∆z
2

]
∆x∆y−

[
τzx − ∂

∂z (τzx)
∆z
2

]
∆x∆y

= ρ fx∆x∆y∆z + ∂
∂x (τxx)∆x∆y∆z + ∂

∂y

(
τyx
)

∆x∆y∆z + ∂
∂z (τzx)∆x∆y∆z (3.21)

Following the definition of the conservation of linear momentum, the x-component
of the total particle acceleration described in Equation 3.20 times the mass must be
equal to the x-component of the total forces acting over the fluid particle which is
represented by the control volume. When written, this equation takes the form:

max = ρ∆x∆y∆z
du
dt

= ρ∆x∆y∆z
[

∂u
∂t

+ (V · ∇) u
]
= Fx (3.22)

Now, a more explicit form of the equation can be obtained by substituting Equation
3.21 into the tem Fx and dividing the resulting expression by the volume of the control
volume itself :

ρ

[
∂u
∂t

+ (V · ∇) u
]
= ρ fx +

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
(3.23)

The conservation equations for y and z linear momentum are obtained following the
same procedure for the total acceleration and the totale external forces acting in those
directions. The resulting equations are:

ρ

[
∂v
∂t

+ (V · ∇) v
]
= ρ fy +

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
(3.24)

ρ

[
∂w
∂t

+ (V · ∇)w
]
= ρ fz +

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
(3.25)

The relationship between the motion of the fluid and the stresses acting on it can be
established in terms of the strain rates. With this purpose Bertin and Cummings [3]
summarize very well the necessary assumptions for establishing a suitable definition
for stress components. In first place, the fluid is assumed to be Newtonian which
means that transverse velocity gradients are related to shear stresses by means of
the viscosity coefficient µ, according to the relationship τ = µ (∂u/∂y). A so called
second viscosity coefficient appears in the description of normal stress components,
this is necesary in flows of variable density and is defined according to the Stoke’s
hypothesis as λ = −2/3µ. In second place, the stress-strain relationships are assumed
to be invariant with respect to the coordinate system. Finally, in third place if all
the velocity gradients vanish, then the stress components reduce to the hydrostatic
pressure, p. Following the previous considerations, the components of the stress tensor
are defined as:
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τxx = −p− 2
3

µ∇ · V + 2µ
∂u
∂x

τyy = −p− 2
3

µ∇ · V + 2µ
∂v
∂y

τzz = −p− 2
3

µ∇ · V + 2µ
∂w
∂z

τxy = τyx = µ

(
∂u
∂y

+
∂v
∂x

)

τxz = τzx = µ

(
∂u
∂z

+
∂w
∂x

)

τyz = τzy = µ

(
∂v
∂z

+
∂w
∂y

)
(3.26)

After substituting the definitions for the stress components into Equations 3.23 to
3.25, the final version of the coservation of linear momentum in the x, y and z direc-
tions is given by:

ρ
∂u
∂t

+ ρ (V · ∇) u = ρ fx−
∂p
∂x

+
∂

∂x

(
2µ

∂u
∂x
− 2

3
µ∇ · V

)
+

∂

∂y

[
µ

(
∂u
∂y

+
∂v
∂x

)]
+

∂

∂z

[
µ

(
∂u
∂z

+
∂w
∂x

)]
(3.27)

ρ
∂v
∂t

+ ρ (V · ∇) v = ρ fy +
∂

∂x

[
µ

(
∂u
∂y

+
∂v
∂x

)]
− ∂p

∂y
+

∂

∂y

(
2µ

∂v
∂y
− 2

3
µ∇ · V

)
+

∂

∂z

[
µ

(
∂v
∂z

+
∂w
∂y

)]
(3.28)

ρ
∂w
∂t

+ ρ (V · ∇)w = ρ fz +
∂

∂x

[
µ

(
∂u
∂z

+
∂w
∂x

)]
+

∂

∂y

[
µ

(
∂v
∂z

+
∂w
∂y

)]
− ∂p

∂z

(
2µ

∂w
∂z
−−2

3
µ∇ · V

)
(3.29)

An additional step required for the closure of the governing equations along with
the turbulence model consists in defining the individual components of velocity in
terms of an average component and a turbulent component; for instance, the instanta-
neous x-component of the velocity is defined as u = ū + u′. Subsequently, the Navier-
Stokes equations are averaged such that whole system is given in terms of the average
components ū, v̄, and w̄ and the momentum equations gain an additional term called
the Reynolds turbulent stress components, represented in indical notation as ρu′iu

′
j

for a two dimensional flow, where u′k repesents the turbulent components of velocity.
These are the so-called RANS equations, the derivation is ommitted for the sake of
brevity. Finally, it can be said that the turbulent Reynolds stresses are the link between
the governing equations for the flow and the equations for the turbulent model, to be
introduced later.
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Governing equations for a moving mesh

One of the most important aspects of FSI in terms of accuracy and stability is the
treatment given to the conservation equations in the contex of a moving mesh for the
fluid flow domain. The formulation of the equations for the conservation of mass and
linear momentum in a moving mesh is known as the Arbitrary Lagrangian-Eulerian
(ALE) formulation. As mentioned by van Zuijlen [54], van Zuijlen et al. [55], the use of
this format introduces the Geometric Conservation Law (GCL) into the flow equations,
this is crucial because a moving mesh implies not only translation of the cells and its
nodes, but also that the motion can stretch or compress the cells, thus changing the
local volume. The theory presented next has been adopted from published literature
[54, 55]; the relevance of this step on the stability of the coupled solution has been
stressed by other authors working on coupled analyses of wind turbine blades such as
Lee et al. [45] and Bazilevs et al. [56, 57, 58].

The standard formulation for the Navier-Stokes equations in three dimensions are
represented by Equation 3.19 and by Equations 3.23 to 3.25 in terms of the stress
tensor τij. To suscintly illustrate the ALE formulation, the Navier-Stokes equations are
presented in compact form as:

∂W
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= J (3.30)

where the unknowns are represented by W , all the non-linear functions of Ware
included in E, F and Gand the source terms are included in J:

W =


ρ

ρu

ρv

ρw

 E =


ρu

ρu2 + p− τxx

ρuv− τxy

ρuw− τxz



F =


ρv

ρuv− τxy

ρv2 + p− τyy

ρvw− τyz

 G =


ρw

ρuw− τxz

ρvw− τyz

ρw2 + p− τzz



J =


0

ρ fx

ρ fy

ρ fz



(3.31)

Next the differential form in Equation 3.30 is integrated over a fixed control volume:

∂

∂t

∫
Vfix

WdV +
∫

Sfix

[E(W), F(W)] · ndS =
∫

Vint

JdV (3.32)

This results in the standard Navier-Stokes equations, which unfortunately are no
longer valid when the control volume of interest is moving and deforming. The reason
is that the time derivative in the first term of Equation 3.32 cannot be pushed out of
the volume integral for a moving volume since in such a case, the volume is a function
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of time. This reveals a conflict with the very definition of the total derivative, in which
the transient term is defined specifically for a fixed point in space. For this reason the
equation must be integrated over a moving control volume instead:∫

Vmov

∂W
∂t

dV +
∫

Smov

[E, F] · ndS =
∫

Vmov

JdV (3.33)

At this point, the conservation equations present no visible change other than the
volume of integration. In order to incorporate the GCL the change of W in time for a
moving volume must be defined. This can be done by assigning the symbol ẋfor the
general mesh velocity and results in:∫

Vmov

∂W
∂t

dV =
∂

∂t

∫
Vmov

WdV −
∫

Smov

W ẋ · ndS (3.34)

which is a statement indicating that the integral time variation of W over the control
volume at a given instant equals the time variation of the integral of W over the moving
volume minus the apparent flux of W crossing the boundaries of the control volume
as a result of the mesh motion which derives in a motion of the boundary itself. When
Equation 3.34 is inserted into Equation 3.33, the ALE formulation of the Navier-Stokes
equations is obtained:

∂

∂t

∫
Vmov

WdV +
∫

Smov

([E, F] · n−Wẋ · n)dS =
∫

Vmov

JdV (3.35)

From the second term, it is possible to observe that the role of the ALE formulation
in FSI is to account for the apparent fluxes that arise from the motion of the faces of
the control volume.

Discretization

The governing equations of the fluid model to be solved via the FVM describe the mo-
tion of incompressible, viscous fluid flow. The set of equations derived in the previous
section, known also as the Navier-Stokes equations, describe the conservation of mass
and momentum and are presentedagain for a transient case in integral form:∫

∂ρ

∂t
dV +

∫
ρv · dA = 0 (3.36)

∫
∂ρv
∂t

dV +
∫

ρv (v · dA) = −
∫

pI · dA +
∫

τ · dA +
∫

FBdV (3.37)

Following the formulation of Ansysr Fluent [59], the momentum equation (eq. 3.37)
is integrated over a single control volume which results in:

∂ρv
∂t

V +
N f aces

∑
f

ρv f
(
v f · nA f

)
= −

N f aces

∑
f

p f nA f · I +
N f aces

∑
f

τ f A f + FBV (3.38)

Addressing the steady-state portion only and adopting index notation for the com-
ponents of velocity (ui), the final linearized form of the momentum conservation equa-
tion for a node p centered at the volume centroid, is written as:
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aPui = ∑
nb

anbui,nb + ∑ p f nA f · ei + S (3.39)

where aP and anb and the subscript nb represents the values at the neighboring
center nodes of the node P .

The steady-state discretized form of the continuity equation is:

N f aces

∑
f

J f A f = 0 (3.40)

where the mass flux through the j-th face is computed as J f = ρvn.

Pressure-velocity coupling

From the list of available algorithms in Ansysr Fluent [59], one can observe either of
two general approaches: coupled or segregated. A common segregated algorithm for
treating pressure-velocity coupling is the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) and consists of a predictor-corrector procedure, in which a pressure
field is obtained while mass conservation is simultaneously enforced. In other sources
such as Ferziger and Perić [60] this kind of correction is known as a projection method,
and consists of a velocity estimation which is later modified to satisfy continuity by
applying a pressure correction.

The SIMPLE algorithm starts from a guessed pressure field p∗ used to compute a
guess of the cell-face mass flux involved in the discretized continuity equation:

J∗f = Ĵ∗f + d f (p∗c0 − p∗c1) (3.41)

This prediction step results in a face flux J∗f which does not necessarily satisfies the
continuity equation. To find a flux J f that fulfills mass conservation, J∗f is corrected by
an amount J′f :

J f = J∗f + J′f (3.42)

The correction is stated in terms of a pressure correction, p′, according to:

J′f = d f
(

p′c0 − p′c1
)

(3.43)

So far, this correction depends on d f which is a function of ap, an average of the
linearized coefficients ap for the discrete momentum equation. This results from an
approach in which cell face velocities are weighted with the ap coefficients from the
momentum equation instead of using linear interpolation; this procedure, similar to
the one in [61] is done to prevent checkerboarding or unphysical oscilations of the
pressure solution. The final form of the corrected flux J f written in terms of p′ is used
in the discretized equation for mass conservation. The result of using mass fluxes
computed in terms of a pressure gradient to evaluate the continuity equation is a
Poisson-type equation for the pressure correction at each cell whose discrete form can
be written as:

aP p′ = ∑
nb

anb p′nb + b (3.44)
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The net flow rate into the cell is represented by the source term:

b =
N f aces

∑
f

J∗f A f (3.45)

The solution of Equation 3.44 is followed by the correction of pressure and face mass
flux which in fact satisfies the mass conservation equation:

p = p∗ + αp p′ (3.46)

J f = J∗f + d f
(

p′c0 − p′c1
)

(3.47)

For an accelerated convergence, a variation of the previous procedure known as
Semi-Implicit Method for Pressure Linked Equations-Consistent (SIMPLEC) algorithm
can be used; in this case the correction equation for the face fluxes (Equation 3.43) has
a new definition for d f , which is now a function of aP −∑nb anb. The overall procedure
for correcting the pressure field can be observed in Figure 3.4 which is valid for the
SIMPLE, SIMPLEC and PISO coupling schemes.

Turbulence model

Considering that for the cases under analysis in this work, the Reynolds number on
the wind turbine blades can exceed the value of 500,000, it can be safely assumed
that the flow past the blade surfaces eventually becomes turbulent. For this reason
a suitable model is requierd to be coupled with the solution of the Navier-Stokes
equations that have been previously introduced. From the wide spectrum of avail-
able models for turbulence modelling, the present work is built around the group of
so-called two-equation models, and more specifically the k-ω turbulence model. All
of the two-equation models as well as the one-equation Spalart-Allmaras turbulence
model is based on the Bousinessq hypothesis which defines the Reynolds stresses in
therms of the mean velocity gradients. The main advantage of this approach is the
low computational cost as the resulting model involves a transport equation for the
turbulent kinetic energy k, and one transport equation for the specific dissipation rate
ω.

The Baseline k-ω turbulence model is proposed by Menter [62, 63] and is well known
to predict turbulent flows with adverse pressure gradients as is the case of the flow
past a wind turbine blade. As mentioned above, the model consists of a transport
equation for k:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk −Yk − Sk + Gk (3.48)

and a transport equation for ω:

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω − Sω + Gω (3.49)

Where the production of turbulence kinetic energy is given by
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Figure 3.4: Flow diagram for a general predictor-corrector procedure in pressure-velocity cou-
pling.
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Gk = µtS2 (3.50)

where µt is the turbulent viscosity and S is the modulus of the mean rate-of-strain
tensor defined as S ≡

√
2SijSij.

The generation of ω is defined as

Gω =
αα∗

νt
Gk (3.51)

The effective diffusivity for k and ω is given by Γk and Γω respectively and are
defined by:

Γk = µ +
µt

σk
(3.52)

Γω = µ +
µt

σω
(3.53)

where the turbulent Prandtl numbers for k and ω are represented by σk and σωand.
The coefficient α∗ is the low-Reynolds number correction.

The dissipation of k and ω due to turbulence is represented by Yk and Yγ respectively,
defined as:

Yk = ρβ∗kω (3.54)

Yω = ρβ fβω2 (3.55)

The cross diffusion term is represented by Dω and defined by:

Dω = 2 (1− F1) ρ
1

ωσω,2

∂k
∂xj

∂ω

∂xj
(3.56)

Sk and Sω represent source terms, whereas Gb and Gωb represent the terms associ-
ated to the effects of buoyancy.

The Shear-Stress Transport (SST) k-ω turbulence model is built upon the baseline
model considering a different definition for the turbulent viscosity that accounts better
for the transport of the turbulent shear stress using a limiter as follows:

µt =
ρk
ω

1

max
[

1
α∗ ,

SF2
α1ω

] (3.57)

F2 is given by:

F2 = tanh
(
Φ2

2
)

(3.58)

Φ2 = max

[
2

√
k

0.09ωy
,

500µ

ρy2ω

]
(3.59)

The model constants are:

α∗∞ = 1 , α∞ = 0.52 , β∗∞ = 0.09 , βi = 0.072 , Rβ = 8
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Rk = 6 , Rω = 2.95 , ζ∗ = 1.5 , Mt0 = 0.25 , Rβ = 8

σk,1 = 1.176 , σω,1 = 2.0 , σk,2 = 1.0 , σω,2 = 1.168

a1 = 0.31 , βi,1 = 0.075 , βi,2 = 0.0828

A crucial aspect in the modeling of turbulence lies in the fact that an inaccurate
discretization scheme may result in non-physical dispersion, thus hindering the effort
in describing the natural diffusion of turbulence throughout the fluid flow. The spatial
discretization schemes used for this case are defined according to this criterion, and are
consequently chosen to be second order accurate. When it comes to discretization in
time the solution stability restrictions become a relevant criterion which is addressed
next. As for the accuracy of the turbulence model in terms of the discretization error,
the work of Menter [62] is used as a reference in the first place, to justify the selection
of the SST version of the k-ω model over the original formulation, highly sensitive to
free-stream conditions and over the baseline (BSL) version which does not account for
the proportionality relationship between the turbulent kinetic energy and the transport
of turbulent shear-stress. In second place, it is used to justify the selection of second
order accurate discretization in space for the turbulence model transport equations,
which in this work is the same as for the Navier-Stokes equations and the selection of
first order time discretization. According to Menter [62], the sensitivity of the k-ω SST
turbulence model to the discretization is not as heavily affected by the discretization
schemes as is is by the discretization of the fluid flow equations.

Time advancement scheme

The time advancement of the solution in Ansysr is done with an implicit discretiza-
tion which for the governing equation (3.37) consists in approximating the terms for
convection, diffusion and sources, with the field at the future time instant n + 1:

∫
∂ρv
∂t

dV +
∫

ρvn+1
(

vn+1 · dA
)
= −

∫
pn+1I · dA +

∫
τn+1 ·dA +

∫
Fn+1

B dV

(3.60)
Here the transient term is discretized with a second-order scheme which results in a

truncation error O
(
∆t2). The discretization in time introduces the first source of error,

and the second one is introduced by the segregated solution of the different equations,
the so called splitting error. The way the splitting error is treated depends on the
selected scheme for advancing the solution in time. The implementation in Ansysr

Fluent follows an implicit scheme in which the solution is advanced from one time to
the next using an iterative solution, referred to as “outer iterations”. This procedure
can treat the non-linearities and the coupling of equations, eliminating the splitting
error from the scheme.

The discretization of the transient term in the transport equation can be done using a
first or second order method. The first order method approximates the time derivative
according to the implicit backward Euler method, in which the scalar at the new time
level is expressed as:
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ϕn+1 = ϕn + ∆tFs

(
ϕn+1

)
(3.61)

As observed, ϕn+1, is solved in terms of the solution at the old time step, and the
terms involved in the spatial discretization evaluated at the new time level. Despite the
first order truncation error in time, this method is simple and what is more important,
is unconditionally stable for any time step size, which means a large step size can be
adopted when needed. The second available method in Ansysr Fluent, is formulated
for variable time step sizes, but for a constant value can be written as:

3ϕn+1 − 4ϕn + ϕn−1

2∆t
= Fs

(
ϕn+1

)
(3.62)

This method is built on a quadratic backward approximation in time and fully im-
plicit since the spatial discretization term, Fs, is again evaluated at the new time step.
As pointed by Ferziger and Perić [60, page 150], it is second order accurate and uncon-
ditionally stable; however, if very large time steps are used, the method may result in
oscillatory solutions. Considering the computational demand for the simulation cases
of this work, the use of large time steps can be expected, at least when compared
to similar works. Given the implications of this constraint over solution stability, the
second order scheme is disregarded from this work, while adopting the first order
scheme in all simulations.

Solution of linear systems

For the linear solution of the scalar equations, Ansysr relies on a point implicit Gauss-
Seidel solver; given the size of the problem for the current research and for any case
of interest in practical applications, the use of direct solvers is ruled out. To improve
solution convergence and reduce the computational cost, a point implicit Gauss-Seidel
solution is used along with an Algebraic Multi-Grid (AMG) method. The latter aspect
of this approach is more than justified when considering for example the observations
of Ferziger and Perić [60], who state that if the solution error is a smooth function
of the spatial discretization, then for a 3-D problem, the iterative solution for a mesh
twice as coarse costs 1/8 of the effort needed for the original mesh.

3.2 structural model

The FEM model derivation follows the procedure for determining the system matrices
as explained in the Ansysr Mechanical APDL Theory Reference [64]. The model is
built upon the principle of virtual work, in which the strain energy, U, and external
work, V, are related through the virtual operator δ:

δU = δV (3.63)

In this equation the strain energy is stated in terms of strain energy and surface
tensions as: U = U1 + U2, and the external work is stated in terms of external work,
pressure force work and nodal forces as: V = V1 +V2 +V3. The definition of the virtual
strain energy is given as:
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δU1 =
∫

vol
{δε}{σ}d(vol)T (3.64)

where {ε} represents the strain vector, {σ} represents the stress vector and vol rep-
resents the volume of the element. If a linear material and a linear geometry are as-
sumed, the strain-stress relationship can be described by {σ} = [D]

{
εel}, then the

virtual strain energy is rewritten:

δU1 =
∫

vol
({δε}T[D]{ε} − {δε}T[D]{εth})d(vol)T (3.65)

Note that the strain is defined as the sum of the mechanical {ε} and thermal
{

εth}
components, and the work of the thermal stresses is negative to account for com-
pressive strains from a positive change in temperature. Additionally, the relationship
between the strain {ε} and the nodal displacement {u} is given through the strain-
displacement matrix [B]:

{ε} = [B]{u} (3.66)

The final definition for virtual strain energy in the global Cartesian reference frame
is given by

δU1 = {δu}T
∫

vol
[B]T[D][B]d(vol){u} − {δu}T

∫
vol
[B]T[D]{εth}d(vol) (3.67)

The contribution of surface tractions to the strain energy is represented by:

δU2 =
∫

area f

{δwn}T{σ}d(area f ) (3.68)

where {wn} is the component of motion normal to the wall, {σ} is the surface stress
and area f is the surface of the distributed resistance. The normal motion at each point
and the nodal displacements are related through the matrix of shape functions for
normal motion with respect to the surface:

{wn} = [Nn]{u} (3.69)

An expression for stresses can be built as {σ} = k {wn}; with k representing the
foundation stiffness, with dimensions of force per unit length per unit area. With this,
the final expression for δU2 becomes:

δU2 = {δu}Tk
∫

area f

[Nn]
T[Nn]d(area f ){u} (3.70)

The external virtual work is expressed by:

δV1 = −
∫

vol
{δw}T {Fa}

vol
d(vol) (3.71)

where {w} is the displacement vector and {Fa} is the acceleration force vector. From
Newton’s second law, the displacement vector is related to the acceleration force vec-
tor:
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{Fa}
vol

= ρ
∂2

∂t2 {w} (3.72)

The relationship between nodal displacements and the displacement field within
each element is given by {w} = [N] {u}, where the matrix of shape functions is repre-
sented by [N]. With this, δV1 can be rewritten as:

δV1 = −{δu}Tρ
∫

vol
[N]T[N]d(vol)

δ2

δt2 {u} (3.73)

The virtual work associated to a pressure-force vector can be written in terms of the
pressure vector {P} and the area where the force is applied,

{
areap

}
:

δV2 =
∫

areap

{δwn}T{P}d{areap} (3.74)

or, considering the relationship between element internal displacements and node
displacements, the pressure virtual work is rewritten as:

δV2 = {δu}T
∫

areap

[Nn]
T{P}d{areap} (3.75)

Finally, the virtual work associated to the nodal forces acting on the element,
{

Fnd
e
}

can be written as:

δV3 = {δu}T{Fnd
e } (3.76)

Then, equating the sum of all contributions of internal work to the sum of all con-
tributions of external work according to the principle of virtual work, the following is
obtained:

{δu}T
∫

vol
[B]T[D][B]d(vol){u} − {δu}T

∫
vol
[B]T[D]{εth}d(vol) + {δu}Tk

∫
area f

[Nn]
T[Nn]d(area f ){u}

= −{δu}Tρ
∫

vol
[N]T[N]d(vol)

δ2

δt2 {u}+ {δu}T
∫

areap

[Nn]
T{P}d{areap}+ {δu}T{Fnd

e }

(3.77)

Considering that the factor {δu}Tis common to all terms, the principle of virtual
work can only be satisfied, as stated above, if the following relationship is fulfilled:

([Ke] + [K f
e ]){u} − {Fth

e } = [Me]{ü}+ {Fpr
e }+ {Fnd

e } (3.78)

Time advancement scheme

Following the guidelines for the time integration methods available in the Ansysr

APDL theory reference [64], the current model is ilustrated first by considering the
semi-discrete form of the equation of motion:

[M]{ü(t)}+ [C]{u̇(t)}+ {Fi(t)} = {Fa(t)} (3.79)
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Here the internal load vector is represented implicitly, and depending on its na-
ture, the second-order differential equation can be used to describe a linear system, in
which the internal loads are linear with respect to the internal nodal displacements
through the constant structural stiffness matrix [K]. In contrast, for the representation
of a non-linear system through Equation 3.79, the internal loading vector is no longer
linear with respect to nodal displacements, as the structural stiffness matrix becomes
a function of displacements.

Assuming the second case, the solution of the non-linear set of algebraic equations
represented by Equation 3.79 should involve not only the time integration, but a
Newton-Rhapson iterative approach. From the methods incorporated in the APDL
structural solver for non-linear structures, there are two common ones: Newmark’s
scheme (Newmark [65]) and the HHT-α scheme (Hilber et al. [66]).

For the Newmark method, Equation 3.79 can be written for a time instant tn+1 as:

[M]{ün+1}+ [C]{u̇n+1}+ {Fi
n+1({un+1})} = {Fa

n+1} (3.80)

As part of the method, the updates for nodal velocities and displacements are given
by equations:

{u̇n+1} = {u̇n}+ [(1− δN) {ün}+ δN {ün+1}]∆t (3.81)

{un+1} = {un}+ {u̇n}∆t +
[(

1
2
− αN

)
{ün}+ αN {ün+1}

]
∆t2 (3.82)

The relevance of the integration parameters αN and δN lies in their role over the
method’s stability, for the parameter δN controls the numerical algorithm dissipation
and, when fulfilling the following conditions:

δN ≥
1
2

αN ≥
1
4

(
1
2
+ δN

)2

(3.83)

the entire family of Newmark’s methods may be unconditionally stable as stated in
[64]. Additionally, by using the amplitude decay factor γ ≥ 0, unconditional stability
can be obtained for the Newmark’s method if the following conditions are met:

δN ≥
1
2
+ γ

αN ≥
1
4
(1 + γ)2

γ ≥0 (3.84)

Now Equation3.80 can be re-written in terms of the residual vector {Rn+1({un+1})}
as:

{Rn+1({un+1})} = {Fa
n+1} − {Fi

n+1({un+1})} − [M]{ün+1} − [C]{u̇n+1} (3.85)
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From the residual, a linearized time integration operator can be obtained using the
Newton-Rhapson method:

{Rn+1({uk
n+1})}+

∂{Rn+1({uk
n+1})}

∂{ui
n+1}

{∆uk
n+1} = {0} (3.86)

Equation 3.85 is then written as:

[(a0[M] + a1[C]) + [KT
n+1({uk

n+1})]]{∆uk
n+1} = {Rn+1({uk

n+1})} (3.87)

The coefficients for mass and damping matrices are defined as a0 = 1/αN∆t2 and
a1 = δN/αN∆t. The term [KT

n+1({uk
n+1})] repesents the tangent stiffness matrix at the

future time instant tn+1.
In addition to Newmark’s scheme, Ansysr Ansys Parametric Design Language

(APDL) offers the generalized HHT-α method, which starts by considering the semi-
discrete form of the motion equation as:

[M]{ün+1−αm}+ [C]{u̇n+1−α f }+ {F
i
n+1({un+1−α f })} = {F

a(tn+1−α f )} (3.88)

The definition for the external and internal load vectors in terms of the time operator
is given by:

{Fi
n+1({un+1−α f })} = (1− α f ){Fi

n+1({un+1})}+ α f {Fi
n({un})}

{Fa(tn+1−α f )} = (1− α f ){Fa
n+1}+ α f {Fa

n}

Once more, a residual vector is defined in terms of Equation 3.88 according to:

{Rn+1({un+1}) = {Fa(tn+1−α f
)} − {Fi

n+1({un+1−α f
})} − [M]{ün+1−αm} − [C]{u̇n+1−α f

}
(3.89)

The corresponding time integrator operator is also obtained from the Newton-Rhapson
method as defined in Equation 3.86; the residual and internal load vectors however, are
defined as:

Rn+1({uk
n+1}) = {Fa(tn+1−α f )} − {F

i
n+1({uk

n+1−α f
})} − [M]{ün+1−αm} − [C]{u̇n+1−α f }

{Fi
n+1({uk

n+1−α f
})} = (1− α f ){Fi

n+1({uk
n+1})}+ α f {Fi

n({un})}

Finally, from the Newton-Rhapson time advancement operator, the following is ob-
tained:

[(a0[M] + a1[C] + (1− α f )[KT
n+1({uk

n+1})]]{∆uk
n+1} = {Rn+1({uk

n+1})} (3.90)

with coefficients a0 = (1− αm)/αN∆t2 and a1 =
(
1− α f

)
δN/αN∆t.
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As stated in [64], the HHT-α method is unconditionally stable and second order
accurate if the scheme parameters fulfill the conditions

δN ≥
1
2
− αm + α f

αN ≥
1
2

δN

αm ≤α f ≤
1
2

(3.91)

In these conditions αm ≤ 0 and 0 ≤ α f ≤ 1
2 . Again, by introducing the amplitude

decay factor, numerical damping can be controlled by establishing the following rela-
tionship between the parameters:

αN ≥
1
4
(1 + γ)2

δN ≥
1
2
+ γ

α f =
1− γ

2

αm =
1− 3γ

2
(3.92)

3.2.1 Composite shell model

The FEM model in APDL can be set to describe different problems in terms of the
structural element type. The structure of the NREL Phase VI wind turbine blade are
layered composites with a thick dimension which is small compared with the overall
in-plane dimensions; in fact, this is common for many composite structures which
tend to be two-dimensional objects similar to a plate. As defined by Liu and Quek [67],
a shell structure is also charecterized by a predominantly two-dimesional geometry,
just as a plate, but is special in the sense that it can experience loads in-plane and
normal to the plane and can in consequence experience bending, twisting and in-plane
deformations.

The condition described above corresponds to the general load state acting on the
skin of a wind turbine blade and can be described in APDL using the four-node
SHELL181 element. According to the documentation [68], the default version of the
element has six degrees of freedom corresponding to three translations in x, y and
z and three rotations about the x, y and z axes. The formulation of this element is
based on the assumption of small changes in curvature for a given time increment and
is based on the First-Order Shear-deformation theory, also known in literature as the
Reissner-Mindlin shell theory [69, 70].

First-order shear-deformation theory

The first-order shear-deformation theory lies is built upon the assumption that the
transverse normal lines to the neutral plane do not remain perpendicular after the
shell has been deformed; therefore, transverse shear strain is accounted for at the
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same time that the deformation w is assumed constant along the thickness direction
(z).

The displacement field (u, v, w) is defined according to:

u (x, y, z, t) = u0 (x, y, z, t) + zφx (x, y, z, t)

v (x, y, z, t) = v0 (x, y, z, t) + zφy (x, y, z, t)

w (x, y, z, t) = w0 (x, y, z, t) (3.93)

where the mid-plane displacements are represented by (u0, v0, w0). The rotations of
the transverse normals arount the -x and -y axes are represented by (φy, φx) respec-
tively and can be defined as:

∂u
∂z

= φx ,
∂v
∂z

= φy (3.94)

When the characteristic in-plane dimension to thickness ratio is around 50 or greater
the rotations φx and φy approach the slopes of the actual transverse deflections:

φx = −∂w0

∂x
, φy = −∂w0

∂y
(3.95)

The non-linear strains are given in terms of the displacement field according to:

εxx =
∂u0

∂x
+

1
2

(
∂w0

∂x

)2

+ z
∂φx

∂x

γxy =

(
∂u0

∂y
+

∂v0

∂x
+

∂w0

∂x
∂w0

∂y

)
+ z

(
∂φx

∂y
+

∂φy

∂x

)
εyy =

∂v0

∂y
+

1
2

(
∂w0

∂y

)2

+ z
∂φy

∂y

γxz =
∂w0

∂x
+ φx , γyz =

∂w0

∂y
+ φy , εzz = 0 (3.96)

The strains shown above are derived from the general Green-Lagrange non-linear
strain tensor for an anisotropic elastic solid, assuming small rotations and sufficiently
small displacement gradients such that their squares are negligible. According to Equa-
tion 3.96 the strains εxx, εyy and γxy are linear with respect to the z-direction whereas
the transverse shear strains γxz and γyz remain constant. This is an assumption with
respect to the real stress field which shows a quadratic variation in the thickness di-
mension. Arranged in matrix form, the strains can be written as:
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

εxx

εyy

γyz

γxz

γxy


=



ε
(0)
xx

ε
(0)
yy

γ
(0)
yz

γ
(0)
xz

γ
(0)
xy


+ z



ε
(1)
xx

ε
(1)
yy

γ
(1)
yz

γ
(1)
xz

γ
(1)
xy


=



∂u0
∂x + 1

2

(
∂w0
∂x

)2

∂v0
∂y + 1

2

(
∂w0
∂y

)2

∂w0
∂y + φy

∂w0
∂x + φx

∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y


+ z



∂φx
∂x
∂φy
∂y

0

0
∂φx
∂y + ∂φy

∂x


(3.97)

where the upperscript (0) is used to denote the membrane strains and the upper-
script (1) is used to denote the bending strains also known as curvatures.

Governing equations of motion

Following the description of Reddy [71] for the first-order shear-deformation theory,
the governing equations are obtained from the principle of virtual displacements in its
dynamic formulation:

0 =
∫ T

0
(δU + δV − δK) dt (3.98)

The definitions of the virtual strain energy, δU, the virtual work done by external
forces, δV, and the virtual kinetic energy, δK, are given by:

δU =
∫

Ω0

{∫ h
2

− h
2

[
σxx

(
δε

(0)
xx + zδε

(1)
xx

)
+
(

δε
(0)
yy + zδε

(1)
yy

)
+ σxy

(
δγ

(0)
xy + zδγ

(1)
xy

)
+σxzδ

(0)
xz + σyzδγ

(0)
yz

]
dz
}

dxdy (3.99)

δV = −
∫

Ω0

[(qb + qt) δw0] dxdy−
∫

Γσ

∫ h
2

− h
2

[σ̂nn (δun + zδφn) + σ̂ns (δus + zδφs)

+σ̂nzδw0] dzds (3.100)

δK =
∫

Ω0

∫ h
2

− h
2

ρ0
[
(u̇0 + zφ̇x) (δu̇0 + zδφ̇x) +

(
v̇0 + zφ̇y

) (
δv̇0 + zδφ̇y

)
+ ẇ0δẇ0

]
dzdxdy

(3.101)
The term qb in the definition of δV represents a distributed transverse force applied

at the bottom surface of the layered shell corresponding to z = h/2; similarly, the term
qt represents the distributed transverse force acting over the top surface of the laminate
corresponding to z = −h/2. The definition of δV contains also the stresses σ̂nn, σ̂ns, and
σ̂nz, representing stress components on a portion Γσ of the domain boundary Γ, δu0n

and δu0s represent virtual displacements along the normal and tangential directions
of the boundary Γ. The density of the plate materials is given by ρ0.
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After substitution of the definitions into the statement of the principle of virtual
displacements and

0 =
∫ T

0

{∫
Ω0

[
Nxxδε

(0)
xx + Mxxδε

(1)
xx + Nyyδε

(0)
yy + Myyδε

(1)
yy + Nxyδγ

(0)
xy + Mxyδγ

(1)
xy

+ Qxδγ
(0)
xz + Qyδγ

(0)
yz − qδw0 − I0 (u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

−I1
(
φ̇xδu̇0 + φ̇yδv̇0 + δφ̇xu̇0 + δφ̇yv̇0

)
− I2

(
φ̇xδφ̇x + φ̇yδφ̇y

)]
dxdy

−
∫

Γσ

(
N̂nnδun + N̂nsδus + M̂nnδφn + M̂nsδφs + Q̃nδw0

)
ds
}

dt (3.102)

This ecuation introduces the in-plane force resultants per unit length Nxx, Nyy, Nxy,
the moment resultants per unit length Mxx, Myy, Mxy, the transverse distributed force
q = qt + qb and the mass moments of inertia I0, I1, I2 which along with the in-plane
forces and moments are defined from the integration of the stresses across the thick-
ness direction. Additionally the transverse force resultants are defined as:{

Qx

Qy

}
=
∫ h

2

− h
2

{
σxz

σyz

}
dz (3.103)

The current definition for the shear transverse strains show a constant behavior with
respect to the thicknes direction, this implies that stransverse shear stresses are also
constant along the thickness. A discrepancy is then evident between the first-order
shear-deformation theory and the real variation of transferse shear stresses which is at
least quadratic. For this reason a shear correction factor K is used to solve the difference
by multiplying the shear stresses at the computation of the resulting transverse shear
forces: {

Qx

Qy

}
= K

∫ h
2

− h
2

{
σxz

σyz

}
dz (3.104)

Citing the description made by Reddy [71] K is dependent on the properties of the
laminae and the lamination sequence. It is usually computed equating the strain en-
ergy due to transverse shear stresses with the strain energy associated to the transverse
stresses predicted with the three-dimensional elasticity theory.

Taking now Equation 3.102 and substituting the virtual strains in terms of the resul-
tant forces and moments, an equivalent expression is obtained in terms of resulting
forces, moments and mass moments of inertia:
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0 =
∫ T

0

∫
Ω0

[− (Nxx,x + Nxy,y − I0ü0 − I1φ̈y
)

δu0

−
(

Nxy,x + Nyy,y − I0v̈0 − I1φ̈y
)

δv0

− (Mxx,x + Mxy,y −Qx − I2φ̈x − I1ü0
)

δφx

−
(

Mxy,x + Myy,y −Qy − I2φ̈y − I1v̈0
)

δφy

− (Qx,x + Qy,y +N (w0) + q− I0ẅ0
)

δw0
]

dxdy

+
∫ T

0

∫
Γ

[(
Nnn − N̂nn

)
δun +

(
Nns − N̂ns

)
δus +

(
Qn − Q̂n

)
δw0

+
(

Mnn − M̂nn

)
δφn +

(
Mns − M̂ns

)
δφs

]
dsdt (3.105)

where

N (w0) =
∂

∂x

(
Nxx

∂w0

∂x
+ Nxy

∂w0

∂y

)
+

∂

∂y

(
Nxy

∂w0

∂x
+ Nyy

∂w0

∂y

)
(3.106)

P (w0) =

(
Nxx

∂w0

∂x
+ Nxy

∂w0

∂y

)
nx +

(
Nxy

∂w0

∂x
+ Nyy

∂w0

∂y

)
ny (3.107)

The transverse normal rotations φx and φy are expressed in terms of the rotations of
normal and tangential lines φn, φs at a point in the shell boundary:

φx = nxφn − nyφs , φy = nyδφn + nxδφs (3.108)

Finally when the coefficients of δu0, δv0, δw0, δφx and δφy from the latter statement
of the virtual displacement principle are set to zero for the boundary portion Ω0 the
Euler-Lagrange equations are obtained:

δu0 :
∂Nxx

∂x
+

∂Nxy

∂y
= I0

∂2u0

∂t2 + I1
∂2φx

∂t2

δv0 :
∂Nxy

∂x
+

∂Nyy

∂y
= I0

∂2v0

∂t2 + I1
∂2φy

∂t2

δw0 :
∂Qx

∂x
+

∂Qy

∂y
+N (w0) + q = I0

∂2w0

∂t2

δφx :
∂Mxx

∂x
+

∂Mxy

∂y
−Qx = I2

∂2φx

∂t2 + I1
∂2u0

∂t2

δφy :
∂Mxy

∂x
+

∂Myy

∂y
−Qy = I2

∂2φy

∂t2 + I1
∂2v0

∂t2 (3.109)

For the natural boundary conditions the coefficients of δun, δus, δw0, δφn and δφs

are zet to zero over the boundary Γ:

Nnn − N̂nn = 0 , Nns − N̂ns = 0 , Qn − Q̂n = 0

Mnn − N̂nn = 0 , Mns − M̂ns = 0 (3.110)
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where

Qn ≡ Qxnx + Qyny + P (w0) (3.111)

Primary variables of the first-order shear-theory are un, us, w0, φn, φs whereas the
secondary variables are Nnn, Nns, Qn, Mnn, Mns.The initial conditions of the problem
comprise both the values of displacements as well as the first derivatives over the
boundary Ω0:

un = u0
n, us = u0

s , w0 = w0
0, φn = φ0

n, φs = φ0
s

u̇n = u̇0
n, u̇s = u̇0

s , ẇ0 = ẇ0
0, φ̇n = φ̇0

n, φ̇s = φ̇0
s (3.112)

Laminate constitutive equations

The constitutive ecuations for a laminate are defined here assuming that each lamina
is orthotropic and follows Hooke’s law. These equations relate the force and moment
resultants to the strains on the laminate. Since each k-th lamina may have different
mechanical properties, the stresses are variable despite the strains being continuous;
for this reason the constitutive equations involve lamina-wise integration. The force
resultants are described by:


Nxx

Nyy

Nxy

 =
N

∑
k=1

∫ zk+1

zk


σxx

σyy

σyz

 dz =
N

∑
k=1

∫ zk+1

zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

ε
(0)
xx + zε

(1)
xx

ε
(0)
yy + zε

(1)
yy

γ
(0)
yz + zγ

(1)
yz

 dz


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66




ε
(0)
xx

ε
(0)
yy

γ
(0)
yz

+

 B11 B12 B16

B12 B22 B26

B16 B26 B66




ε
(1)
xx

ε
(1)
yy

γ
(1)
yz


(3.113)


Mxx

Myy

Mxy

 =
N

∑
k=1

∫ zk+1

zk


σxx

σyy

σyz

 zdz =
N

∑
k=1

∫ zk+1

zk

 Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

ε
(0)
xx + zε

(1)
xx

ε
(0)
yy + zε

(1)
yy

γ
(0)
yz + zγ

(1)
yz

 zdz


Mxx

Myy

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66




ε
(0)
xx

ε
(0)
yy

γ
(0)
yz

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66




ε
(1)
xx

ε
(1)
yy

γ
(1)
yz


(3.114)
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In the relations above Q(k) are the lamina stiffnesses, A represents extensional stiff-
nesses, D represents the bending stiffnesses, and B the bending-extension coupling
stiffnesses. These are related by:

(
Aij, Bij, Dij

)
=

N

∑
k=1

∫ zk+1

zk

Q(k)
ij (1, z, z2)dz (3.115)

In addition to this constitutive relations which are valid for any laminated plate, the
first-order shear-deformation theory considers the additional relationship for trans-
verse stresses: {

σyz

σxz

}(k)

=

[
Q̄44 Q̄45

Q̄45 Q̄55

](k){
γ
(0)
yz

γ
(0)
xz

}
(3.116)

and the relation between the lamina stiffnesses and the laminae angle orientation:

Q̄44 = Q44 cos2 θ + Q55 sin2 θ

Q̄45 = (Q55 −Q44) cos θ sin θ

Q̄55 = Q44 sin2 θ + Q55 cos2 θ (3.117)

The relationships for the resultant transverse shear forces are given by:

{
Qx

Qy

}
=K

N

∑
k=1

∫ zk+1

zk

{
σyz

σxz

}
dz

{
Qx

Qy

}
=K

[
A44 A45

A45 A55

]{
γ
(0)
yz

γ
(0)
xz

}
(3.118)

The respective extensional stiffnesses are computed as:

(A44, A45, A55) =
∫ h

2

− h
2

(Q̄44, Q̄45, Q̄55) dz (3.119)

=
N

∑
k=1

∫ zk+1

zk

(
Q̄(k)

44, Q̄(k)
45, Q̄(k)

55

)
dz (3.120)

=
N

∑
k=1

(
Q̄(k)

44, Q̄(k)
45, Q̄(k)

55

)
(zk+1 − zk) (3.121)

Disregarding thermal and piezoelectric effects on load state of the laminate, the
relations for force and moment resultants as well as for are given by:



acronyms 49


Nxx

Nyy

Nxy

 =

 A11 A12 A16

A12 A22 A26

A16 A26 A66




∂u0
∂x + 1

2

(
∂w0
∂x

)2

∂v0
∂x + 1

2

(
∂w0
∂y

)2

∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y

+

 B11 B12 B16

B12 B22 B26

B16 B26 B66




∂φx
∂x
∂φy
∂y

∂φx
∂x +

∂φy
∂y


(3.122)


Mxx

Myy

Mxy

 =

 B11 B12 B16

B12 B22 B26

B16 B26 B66




∂u0
∂x + 1

2

(
∂w0
∂x

)2

∂v0
∂x + 1

2

(
∂w0
∂y

)2

∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y

+

 D11 D12 D16

D12 D22 D26

D16 D26 D66




∂φx
∂x
∂φy
∂y

∂φx
∂x +

∂φy
∂y


(3.123){

Qx

Qy

}
= K

[
A44 A45

A45 A55

]{
∂w0
∂y + φy

∂w0
∂x + φx

}
(3.124)

If the force and moment resultants in Equation 3.109 are expressed in terms of the
displacements u0, v0 , w0, φx and φy the equations of motion for a layered shell of
homogeneous laminae are written as:

A11

(
∂2u0

∂x2 +
∂w0

∂x
∂2w0

∂x2

)
+ A12

(
∂2v0

∂y∂x
+

∂w0

∂y
∂2w0

∂y∂x

)
+

A16

(
∂2u0

∂y∂x
+

∂2v0

∂x2 +
∂2w0

∂x2
∂w0

∂y
+

∂w0

∂x
∂2w0

∂y∂x

)
+

B11
∂2φx

∂x2 + B12
∂2φy

∂y∂x
+ B16

(
∂2φx

∂x∂y
+

∂2φy

∂x2

)
+

A16

(
∂2u0

∂x∂y
+

∂w0

∂x
∂2w0

∂x∂y

)
+ A26

(
∂2v0

∂y2 +
∂w0

∂y
∂2w0

∂y2

)
+

A66

(
∂2u0

∂y2 +
∂2v0

∂x∂y
+

∂2w0

∂x∂y
∂w0

∂y
+

∂w0

∂x
∂2w0

∂y2

)
+

B16
∂2φx

∂x∂y
+ B26

∂2φy

∂y2 + B66

(
∂2φx

∂y2 +
∂2φy

∂y∂x

)
−

=I0
∂2u0

∂t2 + I1
∂2φx

∂t2 (3.125)
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A16

(
∂2u0
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∂w0

∂x
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+
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∂x∂y
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∂2w0

∂y2
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+

∂2w0

∂x∂y
∂w0

∂y
+

∂w0

∂x
∂2w0

∂y2

)
+

B12
∂2φx

∂x∂y
+ B22

∂2φy

∂y2 + B26

(
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∂y2 +
∂2φy

∂x∂y

)
−

=I0
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∂t2 (3.126)

KA55

(
∂2w0

∂x2 +
∂φx

∂x

)
+ KA45

(
∂2w0

∂y∂x
+

∂φy

∂y

)
+

KA45

(
∂2w0

∂x∂y
+

∂φx

∂y

)
+ KA44

(
∂2w0

∂y2 +
∂φy

∂y

)
+

N (w) + q = I0
∂2w0

∂t2 (3.127)
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∂y∂x

)
+

D11
∂2φx
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∂t2 (3.128)



acronyms 51

B16
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+
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+
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+
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3.3 fluid-structure interaction model

Before describing the settings of the coupled framework in Ansysr , a description
of the basic coupling aspects is provided here, including the data interpolation be-
tween solvers and the treatment of mesh deformation for the flow solution. The first
of the elements to be addressed, the data transfer, is a necessary step derived from the
partitioned approach to FSI, in which the solution of the participating models is per-
formed from separate programs and usually have non-matching discretizations at the
common interface. Secondly, the mesh deformation problem is discussed in its main
characteristics in Subsection 3.3.3.

3.3.1 Data transfer between non-matching meshes

For the case of a wind turbine blade the participant solutions are the fluid flow solution
on one side and the structural solution on the other. The wet surface of the blade is
the interface between the meshes of each numerical domain. Since the discretizations
of the two models are non-matching at the interface, a transformation procedure is
required. The basic characteristics are discused in this section, but before it is worth
mentioning the data to be transferred from one domain to the other. The work of van
Zuijlen [54] makes an appropriate description of the overall concept of an FSI problem,
describing it as a three-field problem, because the solution involves three instances of
mathematical modeling as shown in Table 3.1.
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Field problem Solution method Boundary condition at
the interface

Boundary condition
provided by

Fluid Flow Solution FVM No-slip and
no-through condition
for velocity (Dirichlet)

N/A, Fixed by
definition

(u, v, w = 0 m/s at the
blade surface)

Structural Solution FEM Pressure or Force per
unit area (von

Neumann)

Fluid Flow Solution

Mesh deformation FVM Mesh velocity at the
boundary (Dirichlet)

Structural Solution

Table 3.1: Boundary condition specification at the coupling interface.

The interface is the contact region between the flow and structure domains, and the
difference in discretization for each model can be exemplified by recalling that a turbu-
lent flow solution usually requires much finer meshes compared to structural solutions.
The characteristics of a desirable interpolation are explored in depth by de Boer et al.
[72], whose work points out the importance of conservative coupling schemes, which
ensure that the energy is conserved through the interface. In FSI the quantities to be
transferred or interpolated from one domain to the other are pressure, p, and displace-
ment, u, meaning that for a typical coupled problem, two data transfer procedures
are required. de Boer et al. [72] mention that if both transfers are carried out under
a conservative scheme, and using the same transformation matrix for both cases, the
transfer of pressure to the structure side is likely to show fictitious oscillations. The use
of different transformation matrices helps to avoid unphysical oscillations for pressure,
which constitutes a consistent coupling. From a general perspective this summarizes
the approaches to data transfer for coupled physics problems: conservative coupling
and consistent coupling [72, 73]. The mathematical derivations proposed by de Boer
et al. [72] are presented next as the basis for the coupling to be executed within a
commercial software package.

The first step of a numerical coupling can be established by the coupling conditions:

u f = us on Γ (3.130)

psns = p f n f on Γ (3.131)

where the kinematic condition states the equivalence between the displacement
fields of the flow u f and the solid u f at the interface Γ and the dynamic condition states
the equivalence between the pressure field on the structure surface ps and the pressure
field of the flow p f at the interface Γ. In the dynamic condition n f and nsrepresent the
normal vectors pointing outwards of the flow and structure sides of the interface re-
spectively.

As pointed in [72], the coupling conditions are a general statement and regardless
of the particular interpolation method used, the data transfer procedure always results
in a set of matrix equations for the discrete coupling conditions:
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U f = Hs f Us (3.132)

Ps = H f sP f (3.133)

where Hs f is the transformation matrix from flow to structure and H f s is the trans-
formation matrix from the structure to the flow. Additionally the continuous displace-
ment and pressure fields are defined:

u (x) =
nu

∑
i=1

Ni (x)U i (3.134)

p (x) n (x) =
np

∑
j=1

Dj (x)Pj (3.135)

where nu and np represent the number of unknowns for the displacement and pres-
sure respectively across the interface, N (x) is a function depending on the spatial
discretization for diaplacements and in a similar way, D (x) is a function depending
on the discretization used for the pressure.

At this point it is worth mentioning that if the transformation represented by Equa-
tions 3.132 and 3.133 is consistent, constant values must be interpolated exactly and in
consequence the row-sums of the matrix H must be equal to one. For the conservative
approach the energy must be conserved across the boundary as was mentioned ear-
lier; in this sense, de Boer et al. [72] state the conservation of virtual work concerning
coupling for small time-steps in order to establish the conservation of energy:∫

Γ f

u f · p f n f ds =
∫

Γs

us · psnsds (3.136)

When the left hand side is expanded using Equations 3.134 and 3.135:

∫
Γ f

u f · p f n f ds =
∫

Γ f

[
nu

f

∑
j=1

N j
f (x)U f j

]  np
f

∑
i=1

Di
f (x)P f i

 ds

=
np

f

∑
i=1

[
nu

f

∑
j=1

∫
Γ f

Di
f N j

f dsU f j

]
P f i =

[
M f f U f

]T P f (3.137)

A similar development can be done for the right hand side of Equation 3.136 result-
ing in: ∫

Γs

us · psnsds = [MssUs]
T Ps (3.138)

with the matrices M f f and Mss defined as:

Mij
f f =

∫
Γ f

Di
f N j

f ds, Mij
ss =

∫
Γs

Di
sN j

sds (3.139)
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When Equations 3.137 and 3.138 are substituted into the statement of conservation
of energy (Equation 3.136) it follows that pressure transferred while ensuring a global
conseration of energy over the interface:

Ps = H f sPf (3.140)

with the matrix H f s defined as:

H f s =
[

M f f Hs f M−1
ss

]T
(3.141)

For the transformation to be consistent, that is, ensuring that constant values are in-
terpolated exactly, the row-sums of Hs f as well as the row sums of H f s =

[
M f f Hs f Mss

]Tmust
be one. As mentioned earlier this does not happen to be the case for a general trans-
formation, instead it depends on the specific interpolation method being used.

Coupling with the Weighted Residual Method

This method, presented in earlier works from several authors [74, 75, 72] is built upon
the weak form of the conservation for displacements and pressures over the interface.
For the sake of generality, the two sides of the interface are represented by A and B
and, the coupling conditions introduced earlier are written in compact form as:

wB (x) = wA (x) on Γ (3.142)

With the displacement and pressure fields included in the definition w = {u, pn}.
With the goal of finding a transformation that satisfies the coupling conditions approx-
imately, both sides of Equations 3.142 by a set of weight functions represented by φk ,
subsequently both sides are integrated over the interface:∫

Γ
φkwB (x) dx =

∫
Γ

φkwA (x) dx (3.143)

Just as introduced in the general transformation at the beginning of the section, the
continuous form of the transformed fields are represented in terms of the discrete
values WA and WB defined at the interface of meshes A and B respectively:

wB (x) =
nB

∑
i=1

Ni
B (x)W Bi , wA (x) =

nA

∑
j=1

N j
A (x)W Aj (3.144)

here NA and NB represent the basis functions for the meshes A and B respectively,
whereas nA and nB represent the number of unknowns at the interface. These two
definitions are substituted into the integral equation of the coupling conditions:

∫
Γ

φk

nB

∑
i=1

Ni
B (x)W Bi dx =

∫
Γ

φk

nA

∑
j=1

N j
A (x)W Aj dx (3.145)

Using a Galerkin method, the weight functions φk can be defined using the basis
functions of the flow or the basis functions of the structure. In general terms the inte-
gration can be stated as:
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nB

∑
i=1

[∫
Γ

Nk
α Ni

Bdx
]

W Bi =
nA

∑
j=1

[∫
Γ

Nk
α N j

Adx
]

W Aj (3.146)

where α represents the choice of basis functions, which are side A or side B. From
this relationship the following matrices are defined:

Cki
αB =

∫
Γ

Nk
α Ni

Bdx, Ckj
αA =

∫
Γ

Nk
α N j

Adx (3.147)

from which the transformation can be expressed in a more compact form:

CαBW B = CαAW A (3.148)

where CαB is a nα × nB matriz and CαA is a nα × nA matrix.
The transformation that has been outlined so far corresponds to a transformation

from side A to side B; this implies that wA is known beforehand and that the solution
for this transformation yields the values on mesh B, that is wB . Under this sircum-
stances, the system can only be solved if the weight functions are assigned the basis
functions of side B: α = B, which results in:

W B = C−1
BB CBAW A (3.149)

from which the transformation martix H, mentioned at the beginning of the section,
results to be defined as:

HAB = C−1
BB CBA (3.150)

In summary, this represents the transformation from side A of the interface to side
B, using a weighted resudiual interpolation complemented with the Galerkin method.
Now, the transformation can be treated depending on the desired approach with re-
spect to the given requirements of conservativness or consistency. When a consistent
approach is pursued, it is known that the transformation outlined in Equation 3.149

must interpolate constant values exactly, this can be mathematically represented by
the transformation:

CBBβB = CBAβA (3.151)

where βA and βB are vectors of length nA or nB with a constant value of β. Now,
if the Galerkin method is used again, the transformation matrices above can be devel-
oped accordingly:

nB

∑
i=1

[∫
Γ

Nk
BNi

Bdx
]

β =
nA

∑
j=1

[∫
Γ

Nk
BN j

Adx
]

β for k = 1, ..., nB (3.152)

Considering that
nα

∑
k=1

Nk
α = 1 and

∫
Γα

Nk
αdx = 1, the left-hand side of Equation 3.152

can be modified:

nB

∑
i=1

[∫
Γ

Nk
BNi

Bdx
]

β = β
∫

Γ
Nk

B

[
nB

∑
i=1

Ni
B

]
dx = β

∫
Γ

Nk
Bdx = β (3.153)
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Similarly, the right-hand side is modified to:

nA

∑
j=1

[∫
Γ

Nk
BN j

Adx
]

β = β
∫

Γ
Nk

B

[
nA

∑
j=1

N j
A

]
dx = β

∫
Γ

Nk
Bdx = β (3.154)

Since both members of Equation 3.152 result in the exact value of the constant field,
β, the transformation is consistent.

If instead of a consistent transformation, the coupling requires the conservation
of energy across the boundary, a conservative approach should be pursued. For the
weighted residual method, the conservative transformation of pressure has an impact
on the overall consistency, which is explored next. As a starting point, the transforma-
tion matrix resulting from the weighted residual method is:

Hs f = C−1
f f C f s (3.155)

from which the coupling condition for pressure is written as:

Ps =
[

M f f C−1
f f C f s M−1

ss

]T
P f (3.156)

Using the same discretization for the pressure and displacements on the flow side,
then N f = D f and nu

f = np
f it turns out that M f f = C f f , in consequence the pressure

transformation becomes:

Ps = [C f s M−1
ss ]TP f or MssPs = Cs f P f (3.157)

Recalling the definition of consistency, an exact interpolation of constant pressure
can only be achieved when Mssβs = Cs f β f with βs and β f representing a vector of
length ns or n f . For this case, it can be shown that:∫

Γs

Nk
s dx =

∫
Γ f

Nk
s dx (3.158)

In conslusion, the only way pressure is transformed both consistently and conserva-
tively, is when the meshes are matching, that is Γ f = Γs.

3.3.2 Overview of the System Coupling workflow

The main framework for the FSI wind turbine blade analysis is defined within the
commercial package of Ansysr, and more specifically with the use of the System Cou-
pling module, which is in charge of controlling the interaction between Ansysr Fluent
and Ansysr Mechanical’s APDL. Chimakurthi et al. [4] present the characteristics of
the System Coupling framework within the broader context of multi-physics simu-
lations, addressing different aspects such as the adoption of a partitioned approach,
the amount of excecutable files and processes as well as the existing approaches to
mapping, data transfer convergence and instabilities.

Regarding the nature of the framework itself, System Coupling follows a “Parti-
tioned” approach in which the participant solutions for the fluid, structural and other
models take place as separate processes and are governed by different programs. This
creates a need for the transfer of data between the solvers, in addition to the need to
solve secondary issues that arise from this procedure. In any case, a partitioned ap-
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proach is flexible and is a logical choice for setting up a cooperative simulation with
already existing and validated individual physics solvers.

In the alternative case all solution participants exist as a single solution procedure
in what is known as a “Monolithic” approach to multi-physics simulations. Because
of its nature, in a monolithic solution all physics models are solved simultaneously
with their governing equations assembled into a single matrix system. As pointed by
Chimakurthi et al. [4], this may result in ill-conditioned systems for cases with large
disparities between system stiffnesses for each model. This is despite of the obvious
advantage of having all solution information directly accessible by all participants,
thus requiring no data transfers.

The architecture of System Coupling from a computational point of view, consists
of several executable programs and several processes. This means that multiple exe-
cutable files are used for each participant solution and for each one of those, at least
one process is created. The counterpart to this system consists of a single excecutable
file to govern all participant solutions as a single process. For a framework in which
the participant solutions are existing commercial programs, the most flexible option is
to use multiple excecutable files, this way the need to intervene the programming of
participant solvers is minimal.

Coupling management

System coupling manages the interaction between the participant solvers within the
coupled solution scheme. The data transfer between “source” and “target” participants
may occur in either one or two directions, this defines the one-way coupled analysis
and the two-way coupled analysis. In a two-way FSI analysis both the fluid and struc-
tural solvers act as source and target participants along the evolution of the coupled
problem. System coupling manages all communications between processes using a
low-level TCP/IP based architecture, whereas all the high-level communication pro-
cesses are handled with application programming interfaces (API’s) for the tasks of
process synchronization, data transfers and managing convergence.

System Coupling ensures that all processes associated to each participant advance
synchronously through the coupled solution process, for this a 5-step sequence with
corresponding verification points at which all processes must be completed before the
next step is excecuted as shown in Figure 3.5. These steps are: initial synchronization,
analysis initialization, solution, check convergence and shut down. The solution stage,
at which the participant solvers advance in time are also synchronized between the
start and beginning of the coupling step. Within whis time lapse the solvers advance
iteratively with the possibility of splitting the time advancement into sub-iterations or
sub-steps.

Data mapping

Essential to the process of data transfer between the participant physics solvers, the
process of data mapping consists of two separate stages as implemented in the System
Coupling: the first one is associating the source and target meshes and the second is to
generate data for the target location. These two steps are together known as mapping
and are followed by a series of supplemental tasks such as the reconstruction of data
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Figure 3.5: Synchronized execution scheme for System Coupling and participant processes
(Adapted from [4]).
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at mesh locations, the use of ramping or under-relaxation factors, the application of
unit conversion and the implementation of a quasi-Newton stabilization.

Since Ansysr is a general purpose software, it can be tailored to treat a wide ar-
ray of problems and such flexibility is reflected in the different ways mapping algo-
rithms are defined. The first distinction is done with respect to the type of variable
being transferred, in this sense profile-preserving mapping and conservative mapping
are defined. According to System Coupling’s documentation [6], a profile-preserving
mapping aims to minimize the difference of the data profile after the transfer and is
used for treating intensive scalar quantities such as temperature, heat transfer coeffi-
cient and convection reference temperature and intensive vector quantities, specifically
incremental displacement. It must be noted that the transferred profile is as accurate
as the least-resolved topology between the source and target meshes. Conservative
mapping minimizes the difference between the sum of the transferred data at local
and global levels; it is used for extensive quantities of scalar nature such as mass flow
rate and heat transfer rate and of vector nature, specifically force quantities. For a
typical FSI problem the variables being transferred are force and displacement. Since
force is transferred per unit area, a conservative mapping is used, this ensures that the
force per unit area acting on an interface surface is kept the same. For displacements
the intention is to maintain the distribution across the mapping regions therefore a
profile-preserving mapping algorithm is selected.

Association of source and target locations

Before the mapping procedure is carried out, System Coupling must identify the mesh
locations that are going to serve as the source and the target for the data transfer.
This is done with a Binary Space Partitioning (BSP) search algorithm and precedes
the generation of mapping weights. These are subsequently used in the generation of
transferred data for target locations and are defined with the use of a specific method
depending on the topology of the source-target location pair. Depending on the in-
volved mesh topologies, a specific association method is used:

• Projection association, used for surface-to-surface mapping

• Coincident association, used for volume-to-volume mapping

• Extrusion association, used for volume-to-planar surface and for planar surface-
to-volume mapping

The interface between the fluid flow and the structure in a typical wind turbine blade
analysis is a surface that corresponds exactly to the bade outer skin; thus a 2D-to-2D
method is used for the generation of mapping weights, denominated as a “projection”.

Generation of target data

The generation of mapping weights is necessary for interpolating data between source
and target locations, according to the official documentation [6], the method for gen-
erating mapping weights is specific to the type of mapping: shape functions used for
profile-preserving surface-tosurface mapping and an Intersect-Scatter-Gather method
for conservative surface-to-surface mapping. A graphical representation for the gener-
ation of mapping weights and the input and output of data between source and target
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S1 S2 S3

w1=0 w2=2/3 w3=1/3

2/3 1/3

Target mesh

Source mesh

Figure 3.6: Generation of mapping weights with shape functions (Adapted from [5]).

Source mesh

Target mesh

2 2 3 4 4

3 4 4 421/3 3 3/4

Figure 3.7: Example of input and output for shape function mapping (Adapted from [6]).

meshes can be observed in Figures 3.6 and 3.7. The specific shape functions used by
System Coupling depend on the order of the source mesh being mapped, linear shape
functions for linear elements and quadratic shape functions for quadratic elements.
The 2-way interaction problem analized here considers a profile-preserving mapping
for incremental displacement, for which the source mesh corresponds to the structural
model of Ansysr Mechanical APDL. In consecuence the assumed shape functions are
those specified for a SHELL181 element according to APDL’s documentation [64]:

u =
1
4
[uI (1− s) (1− t) + uJ (1 + s) (1− t) + uK (1 + s) (1 + t) + uL (1− s) (1 + t)]

(3.159)

The shape function in Ecuation 3.159 describes the variation of x-translation (u)
within an element with corner nodes denoted by I, J, K and L and with dimensionless
in-plane internal coordinates s and t. This ecuation is the same for all three translation
and rotation degrees of freedom.

For conservative mapping between like-topologies such as the present case, System
Coupling uses the Intersect-Scatter-Gather algorithm to generate interpolation weights.
As shown in Figure 3.8 the Intersect-Scatter-Gather mapping is based on an intersec-
tion of source and target elements and the value of each weight is determined by
the size of the source-target element intersection relative to the size of the intersected
source element. A typical input and output for Intersect-Scatter-Gather conservative
mapping between like topologies is shown in Figure 3.9.

Supplemental processing algorithms

These algorithms are used for preprocessing and postprocessing data around the
mapping procedure itself. The available algorithms are: data reconstruction, ramping,
under-relaxation and quasi-Newton stabilization.

The Data reconstruction algorithm is used in the preinterpolation and postinterpo-
lation stages of the data transfer process; here data is created at mesh locations from
already known data, for example, generating data at mesh nodes from known data
at face centroids. Data reconstruction is necessary when the source participant pro-
vides data at locations other than those required by the mapping process or when the
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Figure 3.8: Example of input and output data for Intersect-Scatter-Gather mapping (adapted
from [6]).
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Figure 3.9: Example of input and output data for Intersect-Scatter-Gather mapping (adapted
from [6]).

mapping process provides data at locations other than those required by the target
participant. Conservative algorithms are always used, as data reconstruction is only
required for extensive variables such as force or heat rate.

System coupling implements ramping algorithms to improve convergence, this is
achieved by “slowing down” the application of source data on the target locations.
According to system coupling documentation, the ramping is applied for transfer data
locations where the condition i ≤ Nmin is true, as determined by:

φRamped = φReference +
i

Nmin
(φRaw − φReference) (3.160)

where φRamped is the ramped target-side value, φReference is the reference target-side
value, φRaw is the raw target-side value obtained from interpolation , i is the coupling
iteration number whithin the coupling step and Nmin is the minimum number of
coupling iterations per coupling step.

Similarly, the use of under-relaxation aims to improve convergence of the overall
analysis by limiting substantial changes of target-side data between successive cou-
pling iterations. For each nodal location, the under-relaxation is applied according to
the equation:

φRelaxed = φReference + ω (φRaw − φReference) (3.161)

where φRelaxed is the relaxed target-side value, φReference is the reference target-side
value, φRaw is the raw target-side value obtained from interpolation or from mapping
directly and ω is the under relaxation factor.

Finally, the application of the quasi-Newton stabilization and acceleration method
is yet another option for improving the convergence of the coupling procedure, aimed
specifically at certain issues of two-way interaction problems. For FSI cases in particular,
strongly coupled physics may experience instabilities as a small change in deformation
may cause a large change in fluid forces or vice versa. Such issues may occur when
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the solid body is slender or when the solid density is comparable or smaller than the
fluid density. This method of stabilization can require problem specific tunning and
works by applying an approximate Newton iteration to the data at the coupling inter-
face. Subsequently, the inverse Jacobian-vector products associated with the residual
of interface data are approximated using a least-squares model.

The implementation of the full coupling framework includes Quasi-Newton stabi-
lization for the data transfers of pressure and incremental displacement only at the
initial simulations. All the results obtained with the robust simulation framework om-
mit the implementation of stabilizing algorithms after observing that in all cases the
coupling converges satisfactorily at the third iteration.

3.3.3 Mesh update procedure

During a coupled simulation in the Ansysr environment, the mesh is updated for
each coupling step with different options for modeling the deformation and perform-
ing remeshing as needed according to the simulation type and characteristics. There
are two available procedures for updating the mesh during each coupling iteration,
the first is known as smoothing and consists in deforming the mesh by modeling the
displacement of the inner nodes subject to the displacement of one or several moving
boundaries. The second available procedure is a remeshing of either a fraction or the
entire fluid domain after the motion of the boundary is applied.

Diffusion-based smoothing

The mesh smoothing procedure can be treated with different models, the first of them
is based on a diffusion model based on the governing equation

∇ · (γ∇−→u ) = 0 (3.162)

where −→u represents the mesh displacement velocity and γ represents the diffu-
sion coefficient. This model requires a numerical solution, which might imply higher
computational cost but providing better mesh quality with respect to other methods
which do not model the deformation with a differential equation solution. When the
flow mesh contains polyhedral cells, as happens to be the present case, the mesh
smoothing is solved at the cell centroids using a finite-volume discretization and the
displacement is then interpolated to the nodes. The smooting takes a Dirichlet type
boundary condition, which consists in the velocity specified at the FSI interface, corre-
sponding to the wet surface of the blade. Since the output of the structural solution
through System Coupling is an incremental displacement, the Dirichlet boundary con-
dition is computed with the initial and final positions for each time step, and a similar
inverse procedure is used to update the position of the mesh nodes:

−→x new = −→x old +
−→u ∆t (3.163)

The definition of γ can be based on the distance to the moving boundary or based
on cell volume. In the first approach, the diffusion coefficient is defined according to:

γ =
1
dα

(3.164)
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where α is the diffusion parameter and d is the normalized distance to the moving
boundary wall.

At this point it is useful to note that for a diffusion based smoothing, the node
displacement is uniform across the mesh if γ is constant; if on the contrary diffusiv-
ity is variable in space as described by Equation 3.164, the nodes in a region with
high γ should tend to move with little relative displacement, which is equivalent to a
more rigid deformation. The distance based approach to a diffusion model for smooth-
ing offers a convenient method for restricting the mesh deformation near the moving
boundary, therefore it is relevant to the present work because the fluid mesh in the
near wall regions is of special consideration due to the requirements for the modeling
of turbulence and for mesh quality. The alternate definition of diffusivity is based on
a normalized cell volume according to:

γ =
1

Vα
(3.165)

In this case, the diffusivity is larger for larger volumes, which means that the model
preserves the shape of the smaller cells in the mesh and transmits the motion to the
larger volumes instead.

Spring-based smoothing

This option for mesh smoothing assumes that the edges connecting adjacent node
pairs behave in the same way as a spring element. In this sense, the fictitious force
caused by the displacement of boundary nodes acts on the springs connected to those
nodes and can be described by Hooke’s law:

−→
F i =

ni

∑
j

kij(∆
−→x j − ∆−→x i) (3.166)

here ∆−→x i, ∆−→x jrepresent the displacements of node i and its neighbor node j, ni rep-
resents the number of neighbor nodes to node i and kij represents the spring constant
stiffness for the element connecting nodes i and j.

The stiffness of the spring elements is defined in terms of an input parameter k f ac
known as the spring constant factor:

kij =
k f ac√
|−→x i −−→x j|

(3.167)

The spring constant factor is restricted to 0 ≤ k f ac ≤ 1 ; a value of 0 means that
the springs have little damping and thus the boundary nodes transmit more of their
displacement to interior nodes whereas a value of 1 imposes the default damping
introduced by the model. As stated in [59], the model assumes that the undeformed
mesh corresponds to the equilibrium state, from which the following iterative relation
is proposed:

∆−→x m+1
i =

∑ni
j kij∆

−→x m
j

∑ni
j kij

(3.168)
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In this equation m represents the iteration number and it can be solved for ∆xi from
the known displacements at the boundaries at each position update. The resulting
value is used for updating the mesh deformation from step n to step n + 1 as given by:

−→x n+1
i = −→x n

i + ∆−→x converged
i (3.169)

The specified solution method in Ansysr Fluent is a Jacobi Sweep, performed for
∆xi until convergence is obtained for all interior nodes in the mesh. In terms of us-
ability, it is worth recalling that the method is built on the concept of springs joining
node pairs; while this is a good idea for triangular or tetrahedral cells depending on
the problem, the AnsysrFluent user’s guide [76] indicates that use of such model
in non-tetrahedral cells is suitable only if the problem has boundaries that move in
one direction predominantly and if the motion is normal to said boundaries. When
such conditions are not met for non-tetrahedral cells, the method may result in highly
skewed meshes after deformation. Therefore, the model presents the option of affect-
ing mesh zones with tetrahedral cells only. This would be a very convenient strategy
for boundary layer meshes with tetrahedral or triangular cells in the zones away from
the wall boundaries, but the expected deflection on either a fan blade or a wind turbine
blade, makes strictly necessary that the boundary layer mesh also deforms to conform
to the characteristic curved deflection of this type of slender bodies.

Linearly elastic solid-based model

This model is the third available option for the present work and assumes that the
fluid mesh deforms as a solid with linear elastic behavior according to the governing
equations:

∇ · σ(−→y ) = 0 (3.170)

σ(−→y ) = λ(trε(−→y ))I + 2µε(−→y ) (3.171)

ε(−→y ) =
1
2
(∇−→y + (∇−→y )T) (3.172)

where the stress and strain tensors are represented by σ and ε and the mesh defor-
mation is represented by −→y . The shear modulus, µ, and the Lamé’s first factor are
related through the Poisson’s modulus which is the input of the model, and is re-
stricted by −1.0 ≥ ν ≥ 0.5. The solution procedure for the linear elastic solid method
involves the boundary deformation as the boundary conditions of a FEM discretization,
later processed with a conjugate gradient method with additional options for improv-
ing stability. When the motion of the boundary involves rotation or the geometry has
sharp edges, the method may result in bad quality cells, making the diffusion based
method a better choice.



4
M AT H E M AT I C A L M O D E L I N G

The present chapter contains a description of the mathematical modeling for special
flow effects that complement the baseline models introduced in section 3. These as-
pects are taken into consideration to cover issues that are neglected or simplified in
the baseline models, for example: stall delay effects, the modeling of dynamic stall or
the FEM modeling of anisotropic composite materials.

65
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nomenclature

a axial induction factor W Induced velocity

ad, b, d Du-Selig’s model parameters Wint Intermediate induced velocity

B Number of blades Wqs Quasi-steady induced velocity

c Chord length w1, w2
Weights for the weighted average

correction

Cl,α
Lift vs. α curve slope in the linear

range

Cl,p
Potential flow approximation for

lift
Greek symbols

Cn Normal force coefficient

Cd Drag coefficient of a section α Angle of attack

CD Drag coefficient of a body ε1 strain in the axial direction

Cl Lift coefficient of a section κ
Model constant for dynamic inflow

model

CL Lift coefficient of a body Λ Modified tip-speed ratio

CT Thrust coefficient νx Poisson modulus in the axial direction

Es Shear modulus σ
Local solidity defined as:

σ = cB/(2πr)

Ex
Elastic modulus in the axial

direction
τ Dynamic stall model constant

Ey
Elastic modulus in the transverse

direction
τ1, τ2 Time-scales for dynamic inflow model

F Prandtl’s tip loss factor Ω Rotor angular speed

f Separation parameter

fg Glauert correction factor Subscripts and Superscripts

fl , fd Lift and drag correction functions

fs
Dynamic stall parameter for flow

separation
0 Conditions for zero-lift

fx
Dimensionless location of the

separation point
2D

Aerodynamic coefficients in 2D

conditions

h
Model constant for dynamic

inflow model
3D

Aerodynamic coefficients in 3D

conditions

k Dynamic inflow constant DS Du-Selig’s correction of lift and drag

pz Axial force exp Experimental measurements

R Rotor outer radius f s Conditions for fully separated flow

r Local radius LN Lindenburg’s correction of lift and drag

t Time mod moderate Du-Selig correction

T Thrust force cor Final weighted average correction

TLSS Low-speed shaft torque non-rot
Aerodynamic coefficients with

non-rotating flow

Vrel Relative wind speed num Numerically predicted values

V∞ Free-stream wind speed rot
Aerodynamic coefficients with rotating

flow

Veff
Effective velocity at a blade

section
st Static lift curve conditions
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4.1 dynamic inflow model

The contents of the present section as well as the next section (4.2) are devoted to
describe the most critical phenomena in the modelling of wind turbine performance
with the BEM model. The current work contemplates the implementation of a computa-
tionally low cost framework based on the accurate yet fast BEM computations of rotor
aerodynamic loads. However, the standard BEM model can hardly compete against a
full finite-volume solution of the Navier-Stokes equations unless stall delay and dy-
namic stall phanomena are included in the model.

As the loads acting over the rotor blades change, so does the inflow or induced
velocity at the rotor plane. These changes in loads may be caused by an unsteady wind
input, an actuation of the blade pitch angle or a change in wind direction. A correct
description of this time-dependent change is crucial in the formulation of a dynamic
BEM method. One common model for dynamic inflow is proposed by Schepers and
Snel [77] and Snel and Schepers [78] and, presented in Hansen’s formulation of the
dynamic BEM model [53]. This dynamic approach, originally formulated by Øye [79]
from the Technical University of Denmark, describes the dynamic behavior of induced
velocity in terms of a quasi-steady induced velocity, Wqs, computed from the standard
steady-state BEM model and an intermediate induced velocity, Wint:

Wint + τ1
dWint

dt
= Wqs + kτ1

dWqs

dt
(4.1)

W + τ2
dW
dt

= Wint (4.2)

The dynamic inflow model allows to compute a filtered induced velocity W, with
a time behavior that lags behind the change in rotor loads in accordance with the
differential Equations 4.1 and 4.2. The model constant is set to k = 0.6 while the time
constants are defined according to:

τ1 =
1.1

1− 1.3a
R

V∞
(4.3)

τ2 =

[
0.39− 0.26

( r
R

)2
]

τ1 (4.4)

The dynamic inflow model proposed by Pitt and Peters [80] and included in the
works of Schepers and Snel [77] and Snel and Schepers [78] describes the variation of
induced velocity at the rotor plane with a differential equation formulated in terms of
the axial induction factor, a:

κȧ + 4Fa
(
1− fga

)
= hCT (4.5)

It is important to note that the factors for the Prandtl tip and root losses are included
in this differential equation for dynamic inflow; after all, the term in which they appear
is in fact the definition for the momentum theory representation of thrust coefficient,
CT, for an annulus. Since the explicit solution of Equation 4.5 requires CT to be known
at the previous time instant, the blade-element theory definition is used:
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CT =
dT

1
2 ρV2

∞dA
(4.6)

Under the formulation outlined in Chapter 3, the definition for the thrust of an
element is dT = Bpzdr whereas the area of an annulus swept by that element is dA =

2πrdr. The model constants are defined as:

κ =
16
(

R3
2 − R3

1

)
3πV∞

(
R2

2 − R2
1

) (4.7)

h =
σV2

V2
∞

(4.8)

where R1, R2 are the bounding radii for each blade element.

4.2 stall effects on 3-d wind turbine blade flows

The operation of a wind turbine blade at certain conditions may result in high angles of
attack along the blade span, either partially or fully. Along with a high angle of attack
condition comes the well known phenomenon of flow separation, wich is detrimental
for blade lift and drag coefficients and in consequence, for the mechanical torque
output. The rotating motion of a wind turbine blade imposes a challenge on the way
stall is understood and predicted, because this phenomenon occurs differently over a
rotating wing. The current section explores the mechanisms that affect the behavior
of stall for rotating blades and includes them on the current BEM implementation to
provide a better prediction of wind turbine torque and blade root moment.

4.2.1 Lindenburg’s centrifugal pumping correction model

This correction model proposed by Lindenburg [81] is based on the centrifugal pump-
ing mechanism, responsible for the apparent delay of stall over the suction surface of
a rotating blade; this phenomenon starts as the tendency of air to flow outwards over
the suction side of the blade in the radial direction. This affects pressure gradients and
therefore the flow separation behavior over the suction surface. Lindenburg’s model
is based on the flow separation occurring from the trailing edge, for which the sepa-
rated mass of air is acted upon by the centrifugal loading due to the blade rotation.
The length of the separated flow region which is the same as the distance between the
trailing edge and the separation point in the chordwise direction is expressed by the
separation parameter, f :

f =

2

√
Cn

α− α0

(
∂Cn,0

∂α

)−1

− 1

2

(4.9)

which is obtained from the Kirchhoff-Helmholtz model for the normal force coeffi-
cient, Cn, over a flat plate. In the expression above Cn,0 and α0 denote the normal force
coefficient and the angle of attack, both at zero-lift conditions respectively. Because
the separation parameter is based on the normal force coefficient, the final correction
modifies the values of both lift and drag; this is an interesting approach with respect
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to other works which only correct lift, considering that stall affects both coefficients
and that both coefficients have a direct effect on the blade torque and loads. Having
defined f from the original airfoil coefficients, the set of modified angles of attack, αrot,
is given by

αrot = αnon−rot +
0.3rad

2π
1.5(1− f )

c
r

(
Ωr
Veff

)2

(4.10)

Where the empirical factor 0.3 rad corresponds to Lindenburg’s fitting to the mea-
surements of the NREL Phase VI rotor. The expressions for corrected lift and drag
coefficients are given by:

Cl,rot = Cl,non-rot + 1.5 [cos (αrot) + 0.3 cos (αrot − α0)] (1− f )
c
r

(
Ωr
Veff

)2

(4.11)

Cd,rot = Cd,non-rot + 1.5 sin (αrot) (1− f )
c
r

(
Ωr
Veff

)2

(4.12)

4.2.2 Du-Selig’s 3-D Stall delay correction model

The correction model presented by Du and Selig [82] is built on the analysis of the
integral boundary layer equations for a rotating reference frame, from which an ex-
pression for the length of the separation point is obtained as a function of the local
speed ratio. Like Lindenburg’s model, this one is also applied to drag coefficients in
addition to lift coefficients, which is one of the reasons why both models can be re-
garded as more physically consistent among existing works, as some of them perform
corrections for lift data only. The model contemplates two functions for the lift and
drag corrections based on the modelling of the flow separation point, these functions,
named fl and fd are defined as follows:

fl =
1

2π

[
1.6(c/r)
0.1267

ad − (c/r)
d
Λ

R
r

b + (c/r)
d
Λ

R
r
− 1

]
(4.13)

fd =
1

2π

[
1.6(c/r)
0.1267

ad − (c/r)
d

2Λ
R
r

b + (c/r)
d

2Λ
R
r
− 1

]
(4.14)

The modified tip-speed ratio is defined as Λ = ΩR/
√

V2
∞ + (ΩR)2 while ad, b and

d are empirical factors which for the present work take the values of ad = 1, b = 1
and d = 1.5. This correction is similar in nature to that of Lindenburg, in the sense
that there is a dependence on the tip-speed ratio and the local blade element geometry
and position, as expressed by the factor c/r. The final correction for lift and drag
coefficients is given by:

Cl,3D = Cl,2D + fl
(
Cl,p − Cl,2D

)
(4.15)

Cd,3D = Cd,2D − fd (Cd,2D − Cd,0) (4.16)
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These correction equations depend on the potential-flow approximation for the lift
curve, given by Cl,p = 2π (α− α0) and the drag coefficient at an angle of attack of zero
degrees, Cd,0 = Cd,2D (0).

4.2.3 Discussion on existing models

Throughout the rest of this work, the prediction of wind turbine aerodynamics is
compared to the measurements of the UAE Phase VI , using published data from NREL

[1]. The experimental campaings of the NREL Phase VI work addresses different aspects
of wind turbine aerodynamics under unsteady conditions, some of which are directly
applicable to the numerical predictions presented in this work.

The results from Lindenburg [81] are compared with the Sequence H measurements
[83] of the UAE Phase VI (Up-wind turbine, zero-yaw misalignment and 3° blade pitch),
revealing that the correction of rotational effects on 2-D airfoil coefficients has an evi-
dent impact on the quasi-steady torque predictions. The authors show that uncorrected
2-D coefficients result in underpredicted torque values for stalled conditions (12 m/s
and above). The opposite is found when the 2-D data is corrected for rotational effects,
for which large overestimations are attributed to ignoring the dependence of stall de-
lay on local tip speed ratio and extending the decay of the correction to a high angle
(i.e., 50° instead of 45°).

In Lindenburg’s comparison of torque predictions with airfoil coefficients from dif-
ferent sources [81], the authors noticed that the calculations for wind speeds between
14 and 20 m/s show considerable discrepancies between sets of coefficients, most likely
related to the stall behavior for angles of attack around 20° which tend to occur for the
mentioned speed range.

The work of Syed Ahmed Kabir and Ng [84] explores existing formulations for
stall delay effects due to blade rotation, including the correction models of Snel et al.
[85], Du and Selig [82], Chaviaropoulos and Hansen [86] and Lindenburg [81]. The
comparison between power curve predictions and the experimental results of the NREL

Phase VI experiment corroborates the prevailing trend: power is underestimated when
2-D airfoil coefficients are used and, when corrections for stall delay are implemented,
a good match is found at low speeds whereas for medium and high wind speeds, the
torque is notably overestimated. This situation is attributed to an underprediction of
drag coefficients from correction models, especially at high wind speeds.

Breton et al. [87] implements different stall delay corrections on a lifting line vortex
model for a wind turbine and compared their results to the NREL Phase VI measure-
ments. Their power curve predictions shows good agreement at wind speeds of up to
10 m/s. For higher wind speeds the power is overpredicted by most correction models,
with a considerable amount of dispersion among them. The authors point out that the
overprediction of the blade tip loads is a key factor for the overestimation of loads
and thus power at high wind speeds. The explored models tend to produce large lift
coefficient values at the tip of the blades, while from experimental results, rotational
effects on stall delay are predominant on inboard and middle blade sections.

Hamlaoui et al. [88] present a novel model for stall delay corrections on 2-D airfoil
coefficients, formulated for the specific case of the test wind turbine of the NREL Phase
VI experiment; their work involves a correction on lift coefficient alone for subsequent
calculations in a BEM solution method, which results in outstanding torque predic-
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tions with respect to similar works that use alternative models for treating stall delay.
The predicted torque curve shows good agreement with the experimental data as no
extreme overpredictions are observed around wind speeds of 10 m/s or 25 m/s.

Zhong et al. [89] propose a tip-loss correction for the BEM model, based on the
premise that blade rotation also contributes to tip losses in the load distribution, a hy-
pothesis that is discussed also by Breton et al. [87] in their review of stall delay correc-
tion models. The authors compare their results for the loads of the 95% blade section
to the NREL Phase VI measurements, finding a satisfactory match for the loads at the
operating conditions of the linear portion of the Cl vs α curve. However, the results
for operation at stall and deep-stall regimes show clear discrepancies. The authors do
not present torque or power curve predictions, but a degraded performance of their
correction model is observed at flow regimes with stall; additionally, no comparison is
provided for the 30% blade section.

A remarkably well adjusted set of results are presented by Lanzafame and Messina
[90] who reproduce the power curve for the NREL Phase VI wind turbine by applying
an original stall delay correction on the aerodynamic coefficients of the NREL S809

airfoil. The correction of [90] increases lift coefficients for 20◦ < α < 45◦ in a smoothed
curve that blends with the values for the pre-stall regime. The authors present a good
prediction for the power curve, but these results are based on the assumption of a
constant Reynolds number of 500,000 along the blade span.

As discussed ealier in Chapter 2, Lee et al. [45] present an FSI analysis on the NREL

Phase IV wind turbine in which a BEM approach is used to predict the aerodynamic
loads on the rotor blades. In their work, the authors are fully aware of the disadvan-
tages of the BEM model and its assumptions, particularly those associated to the stall
delay phenomenon. For this reason, the authors predict the aerodynamic coefficients
at the sections of the blades from full 3-D CFD simulations of the rotor, thus ensuring
that these special effects are captured and transferred into the BEM modeling. The ac-
curacy in the torque predictions for seven values of wind speeds between 5 and 15

m/s show a remarkable match with experimental results.
The work of Tang et al. [91] consists in a BEM computation of the power curve

for the NREL Phase VI wind turbine, using a hybrid approach for the correction of
aerodynamic coefficients and resulting in close power predictions with respect to the
experimental data. The corrections in this work blend corrected 2-D coefficients from
wind tunnel measurements, with 3-D coefficients recovered from 3-D CFD simulations.

An alternative to obtain adequate power predictions using 2-D wind tunnel data is
presented by Tangler [92] in one of the earliest works with respect to the publication
of the UAE Phase VI measurements. In this approach, no formal correction for rotational
effects is applied over the original 2-D coefficients; instead, a set of Cl measurements
up to α = 20◦ is used and extended to higher angles with flat plate theory. In this
extrapolation two different data sets are produced assuming no sudden lift drop (from
α = 16◦) and assuming sudden lift drop (α = 20◦). The most attractive results are
obtained by averaging both data sets.

The approach of Tangler [92] offers good results and has two aspects that deserve
closer attention: in first place, by assuming two different kinds of behavior in the
construction of the final lift characteristics (i.e., soft versus sudden stall), there is no
certainty on the accuracy of the 2-D input data as such, and an inconsistency appears
with respect to different measurements available in literature. In second place the av-
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eraging technique relies on two extreme scenarios which modify the values of lift but
leave drag coefficients unchanged, this makes sense for the case of assuming no sud-
den loss of lift (extrapolation from α = 16◦) as one would expect a smooth transition
between attached and detached flow regimes but, when considering sudden loss of lift
(extrapolation from α = 20◦), the task of justifying unchanged drag values becomes a
difficult one.

4.2.4 Dynamic stall modelling

In Hansen’s version of the dynamic BEM model [53] the role of the dynamic stall
model is to provide a description of the evolution of flow separation over the blade
surface, as the local angle of attack changes with time and, to avoid the computation
of non-physical vibrations resulting from step changes in the local angle of attack.
Such instabilities are of numerical nature and are enough drive the results away from
the real behavior of the system. The dynamic stall model considers trailing edge sep-
aration through the parameter fs which describes the degree of separation over the
airfoil section surface and forms the basis for the definition of the lift coefficient in the
following way:

Cl = fsCl,p (α) + (1− fs)Cl, f s (α) (4.17)

In the expression above, Cl,p can be known by extrapolating the linear portion of the
static lift curve. The time dependency is modeled for the parameter fs according to:

d fs

dt
=

f st
s − fs

τ
(4.18)

The model constant for the time variation is defined as τ = 4c/Vrel, f st
s represents the

value of fs necessary to reproduce the static lift curve with the Equation 4.17; according
to Hansen [53] the differential equation represents the tendency of the dynamic value
to “chase” the static value at all times. The determination of both Cl, f s and f st

s is
outlined by Hansen et al. [93]. In their model, f st

s represents the amount of separated
flow for trailing edge stall and is determined from the expression for lift over flat plate
in a potential Kirchhoff flow:

Cst
l = Cl,α

(
1 +

√
f st
x (α)

2

)2

(α− α0) (4.19)

Here, Cst
l is the static lift coefficient and α0 the angle of attack for zero-lift. Because

the separation function is defined as the dimensionless location of the separation point,
fx = x/c, it can take values between fx = 0 for fully separated flow and fx = 1 for
fully attached flow. The slope of the lift curve in the linear portion, Cl,α is determined
from:

Cl,α = max
{

Cst
l (α) / (α− α0)

}
(4.20)

The angles of attack α± f s for which the flow is completely separated from the airfoil
surface can be determined from the relationship:
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∣∣∣∣∣Cst
l

(
α± f s

) ∣∣∣∣∣ =
∣∣∣∣∣Cl,α

(
α± f s − α0

)
4

∣∣∣∣∣ (4.21)

For all angles of attack greater than α+ f s or smaller than α− f s the value of the sepa-
ration function is manually set to f st = 0. If the lift for static conditions, which corre-
sponds to the input in a steady-state BEM calculation is then described in terms of fully
attached and fully separated lift coefficients, with the separation factor f st playing the
role of an interpolation factor:

Cst
l = Cl,α (α− α0) f st + C f s

l (α)
(
1− f st) (4.22)

then an expression for fully separated lift coefficient can be established:

C f s
l =

Cst
l − Cl,α (α− α0) f st

1− f st (4.23)

To avoid undefined operations in the computation of C f s
l when f st = 1, its value is

manually set to C f s
l = Cst

l /2, which is the correct result in the limit of f st → 1 when
Equation 4.19 is solved for f st and then substituted into Equation 4.23.

4.3 predictions of torque and blade root moment for the nrel phase

vi wind turbine

The current validation of blade load prediction has been performed using a classi-
cal BEM code, with the standard Glauert correction for highly loaded blades and the
Prandtl tip and root correction for losses at the ends of the blade. Although the com-
putations are made in a transient formulation of the BEM method, in which the time
change of induction is described by an empirical model, the following calculations
are representative of steady-state values for wind speed varying between 5 m/s and
25 m/s, constant angular velocity of 72 RPM and, with the assumption of fully rigid
blades set to a tip-pitch angle of 3° as configured for the Sequence H [83] from the
UAE Phase VI [1]. Here the steady wind velocity input and the steady setting of the
pitch angle ensure that the torque output behaves steadily; similarly, the presented ex-
perimental data is representative of steady state operation as each esperimental torque
is an average of 30 s continuous measurements with constant operation parameters,
with the error in yaw and pitch angles and in angular velocity being responsible for an
oscillation with is assumed to vary around average values in the long term. The pre-
diction and assessment of transient rotor loads is addressed in a subsecuent section,
using the corresponding experimental measurements for unsteady rotor operation.

Most data sets from the UAE Phase VI experiment are measured at a constant angular
velocity of 72 RPM, this means that the nominal tip-speed ratio takes typical values
below four when the wind speed increases beyond 10 m/s. Considering the geometry
of the velocity triangle at an average section of the blade (Figure 3.2), an increase in
free-stream wind speed equals an increase in angle of attack; therefore the rotor blades
are expected to operate under partial or full stall, or even deep stall for the higher wind
speeds where the tip speed ratio decreases below two. Considering this, accurate stall
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predictions become crucial as well as the inclusion of blade rotation effects on flow
separation.

The contents of the previous section present an overview of existing models for
stall delay correction, a measure of their accuracy and in some cases the key underly-
ing principles. The current implementation of the BEM method considers two models
for stall delay correction: Du and Selig [82] and Lindenburg [81]. This pair of works
are relevant because: a) in both formulations the independent variable c/r can be set
constant or variable along the blade span, b) unlike the models of Tangler [92] or Lan-
zafame and Messina [90], the lift and drag coefficients vary with the Reynolds number
and still provide acceptable results with respect to the experimental values and c) The
current formulation can be applied without the need for previous computations in
3-D RANS environments or experimentation other than the obtention of pure 2-D air-
foil coefficients. In terms of dissimilarities, the correction models of Lindenburg and
Du-Selig have a notorious difference in the way torque is predicted with respect to
wind speed; for instance, at high wind speeds, the model of Lindenburg does a good
prediction while the model of Du-Selig fails notoriously and at low wind speeds, the
model of Du-Selig has a better prediction than Lindenburg’s.

Figure 4.1a shows the torque predictions performed in this work with the model
of Lindenburg [81] with variable Reynolds (between 300,000 and 1 million) and with
constant Reynolds of 1 million. The difference between data sets is small and most
notorious around the peak torque (at 11 m/s). The model can replicate the general
shape of the experimental curve but overpredicts torque around 11 m/s while showing
considerable underpredictions at higher wind speeds.

The prediction of blade root bending moment in the flap-wise direction with the cur-
rent implementation of Lindenburg’s model presented in Figure 4.1b, shows a notable
overprediction for wind speeds of up to 16 m/s; for higher wind speeds the prediction
is close to the experimental results. The same set of calculations but performed with
the model of Du and Selig [82] is shown in Figures 4.1c and 4.1d. The rotor torque
is highly overpredicted for wind speeds above 8 m/s while the blade root flap-wise
bending moment is overpredicted with a smaller maximum error but for the entire
range of wind speeds.

Considering that the correction of Du and Selig [82] follows the general shape of the
results with non-corrected data, an alternative for better predicting the torque around
peak nominal values (around 11 m/s) is to use a new prediction based on a moderate
correction of the original 2-D coefficients. At this point the current work proposes an
improvement on this correction, obtained by blending the aerodynamic coefficients
corrected with the Du-Selig model, with the original 2-D coefficients, this approach
is named here as “Moderate Du-Selig”. The definition of the airfoil coefficients under
this proposed scheme is:

Cl,mod = w1Cl + (1− w1)Cl,DS (4.24)

Cd,mod = w1Cd + (1− w1)Cd,DS (4.25)

The resulting coefficients of this moderate correction, Cl,mod and Cd,mod, are obtained
with a weight factor of w1 = 0.8, which for the current work is being proposed arbi-
trarily as a proof of concept. The current implementation of this correction for the
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(a) Low speed shaft torque, predicted here with
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(c) Low speed shaft torque predicted here with
the model of Du and Selig [82].
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here with the model of Du and Selig [82].

Figure 4.1: Sensitivity of torque and moment predictions with rspect to variable and fixed-
Reynolds corrections of airfoil coefficients.

rotor load prediction is shown in Figure 4.2, which reflects an improved match for
wind speeds up to 18 m/s, 16 m/s and 19 m/s for the three considered cases of pitch
(i.e., 3◦, 0◦ and 6◦). The drawback of this blending is evident from the results, as both
torque and bending moment values are overpredicted for higher wind speeds. Noting
that such overprediction coincides with the underpredicted values of the model of
Lindenburg, a second sequential blending is proposed to adjust the final prediction
evenly over the entire range of wind speeds. This second improvement also operates
in the form of a blending, this time between the moderate correction discussed earlier
(Equations 4.24 and 4.25) and the correction with the model of Lindenburg:

Cl,cor = w2Cl,mod + (1− w2)Cl,LN (4.26)

Cd,cor = w2Cd,mod + (1− w2)Cd,LN (4.27)

In its general form, the blending of Lindenburg and moderate Du-Selig models as
presented in Equations 4.26 and 4.27 takes the form of a wighted average. By using a
weight of w2 = 0.5 for this second blending, an arithmetic average between moderate
Du-Selig and Lindenburg corrections is obtained. Again it must be mentioned that the
weights are selected arbitrarily to demonstrate the concept. At this point it is important
to mention that the selected models for assembling the weighted average are compat-
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pitch= 3◦.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

5 7 9 11 13 15 17 19 21 23 25

LS
S 

To
rq

u
e 

[k
N

 m
]

Wind speed [m/s]

Experiment (Seq. I - 0° pitch)

Weighted Correction

Moderate Du-Selig

2-D Coefficients

(c) Low-speed shaft torque, pitch= 0◦.
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(e) Low-speed shaft torque, pitch= 6◦.
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Figure 4.2: Steady-state prediction of integral rotor loads with the BEM solver.
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Case
LSS torque Blade root flap-wise moment

2-D data Corrected data 2-D data Corrected data

Sequence H [83] 29.5 % 7.2 % 13.9 % 11.1 %
Sequence I [94] 39.3 % 11.5 % 15.4 % 10.8 %
Sequence J [95] 22.1 % 7.3 % 12.7 % 13.6 %

Table 4.1: L-2 Relative error norm in percentage for the final “weighted Correction” results.

ible to each other in the sense that they are not built upon contradicting assumptions.
Both models are based on the quantification of the separation point over the upper
blade surface, meaning that the description of drag is based on trailing edge stall; fur-
thermore, in both cases a dependency on the blade geometry is maintained through
the parameter c/r. The model of Du-Selig is based on the boundary layer equations
considering 2-D flow for the convective terms while keeping the 3-D terms associated
to centrifugal and coriolis loads acting on a volume of fluid. The Du-Selig correction
is dependent on the blade geometry but also on the effects of rotation, considered
through a localized version of the tip-speed ratio parameter. The Lindenburg model is
also proposed on the proportionality of the separation length over the blade surface
to the effects of radial flow and coriolis acceleration; however only c/r is considered
as the main geometrical parameter of this correction. The only defined difference be-
tween both corrections is the fact that the Du-Selig model applies the correction over Cl
and Cd directly whereas the Lindenburg model applies the correction over the normal
force coefficient Cn .

All predictions for rotor torque show a good agreement with the measurements as
observed in the series “Weigthed Correction” in Figure 4.2, especially for blade pitch
angles of 3° and 6°. The L-2 relative error norm defined in Equation 4.28 is calculated
for all predictions and presented in Table 4.1.

‖Error‖2 =

√√√√√√∑n
i=1

(
Ti,num

LSS − Ti,exp
LSS

)2

∑n
i=1

(
Ti,exp

LSS

)2 (4.28)

The values of blade root flap-wise bending are overpredicted for wind speeds be-
tween 5 and 17 m/s for the worst case (pitch of 6°). The remaining two cases also
show similar overpredictions in bending moment but at lower wind speeds. The bend-
ing moment at higher wind speeds is underpredicted in all three cases but the values
are within the standard deviation of the measurements (pitch of 3° and 6°) or close to
the lower limit (pitch of 0°).

4.4 dynamic simulation with the blade element momentum model

The implementation of the dynamic formulation of the BEM model, including the mod-
els for stall delay and dynamic stall is compared with the experimental results of the
NREL Phase VI sequence Q [96] which considers dynamic inflow in different cases.
From these experiments, the present work considers four cases in which the wind tur-
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bine operates at a 0◦-yaw, with constant wind speed and rotational speed of 72 RPM
but, including step variations of blade pitch angle as follows:

• Sequence at 5 m/s, pitch variation between 10◦ and −6◦.

• Sequence at 8 m/s, pitch variation between 18◦ and 0◦.

• Sequence at 10 m/s, pitch variation between 24◦ and 6◦.

• Sequence at 15 m/s, pitch variation between 36◦ and 18◦.

To assess the performance of the implemented models, the low-speed shaft torque
is predicted and compared with the corresponding experimental values. The results
shown in Figure 4.3 compare the numerical torque values obtained in this work to
the experimental time histories for each one of the cases listed above. In general, the
predictions match well with the experimental values, showing an even better match
for cases with smaller wind speeds (V=5 m/s) and smaller pitch angles.

Another notorious discrepancy between experimental and numerical values is per-
haps the oscilatory behavior of the NREL measurements, presented under the label
“Experimental” for all plots in Figure 4.3. Numerical predictions of torque appear to
stabilize after the change in blade pitch for each sequence, some of them with small
amplitude oscillations but without the large amplitude oscilations present in the ex-
perimental values. This is because the simulations with the dynamic formulation of
the BEM model consider completely uniform flow without turbulence, the yaw angle
is exactly 0° and there is no motion of the rotor hub due to tower deflection in the
forward-after and side-side directions. The motion of the tower can be expected to
cause the large amplitude oscilation on rotor loads as it causes an oscillatory change
in local wind speed with a frequency proportional to both the rotor angular frequency
and the number of blades. The visible oscillatory output on the numerical results
happens because the input angular velocity is set as the real value measured in the
experimental campaigns, thus including an inherent error.

Paying attention to the results in Figure 4.3, the predictions with the model of Øye
described by Equations 4.1 and 4.2, and with the model of Pitt and Peters described
by equation 4.5, appear to have a noticeable discrepancy. This difference in torque pre-
diction appears to be well correlated to the pitch angle for at least the first three of the
four measurements presented in Figure 4.3. It must be considered that the pitch an-
gles for each sequence as listed at the beginning of this section follow a convention for
pitch actuation signs which establish that negative pitch angles denote pitch towards
feather, thus reducing the angle of attack, whereas positive pitch angles denote pitch
towards stall, thus increasing the angle of attack. Since high angles of attack result in
separated flow; it is harder to predict experimental behavior using the present models.
This is observed for example in Figure 4.3a in which torque predictions before t = 15 s
and after t = 30 s differ mutually due to the high pitch angle of 10°. On the contrary,
the predictions between t = 15 s and t = 30 s show a good match since the negative
pitch angle means a small angle of attack and thus, attached flow over the blade. This
tendency is observed again in Figures 4.3b and 4.3c as the torque prediction for the
smaller rotor loading (i.e. small pitch setting) is predicted with consistency by both
dynamic models. On the contrary, the results at the higher pitch setting show larger
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differences as the blade aerodynamic state is taken towards stall, a condition in which
the BEM model tends to fail. The results in Figure 4.3d are a special case because the dif-
ference between numerical predictions is more or less consistent throughout the time
history, regardless of the pitch angle setting. The reason for this behavior might be
related to the high wind speed of 15 m/s, since increasing wind speed while maintain-
ing the rotor angular velocity is another way of having large angles of attack, resulting
in stall or deep stall conditions due to the mere geometry of the velocity triangle.

At this point it is worth mentioning that the model of Øye is designed as a pair of
filters working in series precisely to include both the near wake influence and the far
wake influence on the dynamic response of the induced velocity at the rotor plane. The
model of Pitt and Peters has a simpler formulation in the sense that it contemplates
one single differential equation which does not involve constants to be fitted with
auxiliary models or experimental measurements. Besides the challenging conditions
for torque prediction at stabilized conditions, each model reveals a different evolution
profile just after the sudden change in blade pitch.

4.5 finite element modeling

4.5.1 Hollow beam structure with bend-twist coupling

This section contains the validation exercise for the FEM model to be used as the main
analysis tool in the structural component of the project. The general approach in this
case consists in using the analysis subject of Ong et al. [7] as a conceptual approxi-
mation for the structure of a wind turbine blade under the following considerations:
the structure is conformed by the external shells only, is assembled from thin com-
posite laminates, may exhibit bend-twist coupling behavior and, is subject to a steady
state load at the tip. All wind turbine blades in modern applications have a tapered
geometry, that is, a cross section varying in size with the radial location; however, the
constant cross-sectional geometry of the beam used in the reference case is still rele-
vant because of its “D” shape. Such shape is representative of the typical geometry of
the load carrying members in wind turbine blades, which for the NREL Phase VI blade
coincides with the blunt edge geometry that is found between the middle of the cross
section and the leading edge point.

The validation considers a 1.828 m long spar, with the cross section geometry shown
in Figure 4.4. The reference prototype is manufactured with an epoxy reinforced hy-
brid carbon/glass laminate; the mechanical properties for each type of ply are shown
in Table 4.2. Because the laminate is designed to induce bend-twist coupling on the
spar, the fiber orientation must be symmetrical with respect to the neutral plane of the
beam; therefore, fiber discontinuity is inevitable at the union lines of the upper and
lower surfaces. To obtain the required fiber orientation while achieving a balanced
laminate across the wall thickness direction, Ong et al. [7] propose an intricate ply
layup sequence using combinations of plies at 20° and 70°. The virtual model of the
beam has been assembled using the “Pre” module of Ansys Composite Pre-Post (ACP).
The ply angle orientation for the resulting structure is shown in Figure 4.5 while the
thickness distribution is shown in Figure 4.6.

Because the geometry is simple, a mesh with rectangular SHELL181 elements could
be easily implemented. According to the documentation for Ansysr APDL, the SHELL181
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Property Graphite/Epoxy Glass/Epoxy

Ex [GPa] 120.66 38.61

Ey [GPa] 8.96 8.27

Es [GPa] 5.52 4.55

νx 0.3 0.3

Table 4.2: Laminate mechanical properties for the validation case of a D-spar based on Ong
et al. [7].

element type consists in a four-node shell element, selected in the first place because
of the geometry of the beam, whose thickness is substantially smaller than any of
the other dimensions. Besides, this element type offers flexibility in the sense that it
works well within a range of thin to moderately thick structures. In second place, both
large-rotations and large-deflections can be handled using this element type. In third
place, the SHELL181 element can be used to describe layered materials, enabling the
solver to handle composite structures whithout which, the bend-twist coupling could
be hardly tailored for usefull applications. All elements are defined from the set up
using the general shell option, which enables six degrees of freedom: translations in
the x, y and z directions and rotations about the x, y and z axes.

The geometry of the blade is split into five longitudinal segments with the purpose
of using the resulting lines as locations for remote points where torsional rotations
can be retrieved for later comparison with the reference measurements. The resulting
domain topology is shown in Figure 4.7 along with the defined boundary conditions:
a fixed support on one end and a vertical force on the other. The force is applied on
lower half of the free end, and this is done with the deliberate purpose of avoiding
unrealistic gradients on the local deformation field. With the purpose of comparing re-
sults directly, the numerical data sampling is done over the upper spar surface. If the
load is applied on the upper surface as well, the appearance of localized deformation
gradients results in an unrealistic deformation field when compared with the measure-
ments, since the experimental load is applied over the spar using a finite-thickness
string, thus providing a smooth load distribution over the composite surface.

The results from steady loading on the free end of the D-spar are compared to the
reference data using the static deformation of the beam, longitudinal strain and tor-
sional deformation. Each variable is sampled along the upper or tensile surface of the
beam, over a straight line that splits the top rectangular face in half. The experimen-
tal cases include also a numerical computation with 1-D beam elements (Ong and
Tsai [97]), those are presented for vertical deflection in Figure 4.8a, along with their
reported experimental measurements and the numerical prediction developed in the
current work. Judging the quality of the results, it is observed that the general shape of
the vertical deflection is consistent with the expected shape and the reference data; no
discontinuities appear and the L-2 norm based on the relative error with respect to the
experiment from [97] is 5.6%, reflecting a satisfactory solution from the finite-element
shell model used in the present work.

When observing the plot for longitudinal strain (ε1) in Figure 4.8b, the results from
the present analysis again show a good match with the reference experimental data,
compared to either of the results that are reported for 1-D FEM analysis. The L-2 er-
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ror norm for the three sampling points where measured data is available is found
to be 0.76%, revealing a satisfactory prediction from the current numerical analysis.
Nevertheless, the values of strain at the free end of the beam appear distorted when
compared to the trends given by 1-D results. In this case, further inspection of the
strain contours over the tension surface of the beam revealed the presence of gradients
near the corners and the curved wall of the beam. During the replication of the analy-
sis, the clamping and load application could not be fully known, because of this, the
simplified boundary conditions described earlier are the best approximation possible;
additionally, the strains for the end locations are averaged values for the correspond-
ing lines over the tension surface. With the previous considerations, the present results
closely follow those of the reference case.

The final and most relevant comparison is that of the torsional deformation be-
cause it shows that the SHELL181 FEM model provides a fair prediction of bend-twist
coupling in a composite structure. Concerning the modelling of composite structures
with bend-twist coupling the present validation is not re-iterated any further with
additional cases, considering that the work of Ong and Tsai [97] is the only known
published work that allows for a complete reproduction of both the numerical model
and the experimental set-up. Two main findings can be derived from the plots in Fig-
ure 4.8c: in first place, the present results are bounded by the reported 1-D numerical
predictions from the reference case in a similar way as for the previous two variables
and, in second place, the present results confirm the monotonic increase in twist angle
with the longitudinal coordinate, contrary to the results from experiments. Regarding
the experimental results reported by Ong et al. [7] and Ong and Tsai [97], it must
be said that the twist angles in their work do not correspond to the same load but
rather to a linear regression for multiple measurements with different load magni-
tudes. The dispersion in the data results in the unexpected behavior reported by the
authors which measure the rotation at two locations only and take the respective aver-
ages, for this reason the “Experimental” series in Figure 4.8c should not be considered
a distribution in a strict sense. Besides, the method for measuring the rotations in the
experiment uses a set of linear displacement gauges on auxiliary bars attached to the
upper surface of the beam. This last variable shows the greatest relative error with
18.8%; nevertheless, the numerical prediction can be still considered valid since the
reported measurements are actually averages from a series of measurements, with an
inherent dispersion due to experimentation error.

4.5.2 Benchmarking for the structure model

Prior to the validation of the structural solution, an auxiliary exercise is done to ensure
that the structural model for the condenser fan blade has the same characteristics as
the real blade in terms of eigenfrequencies and also to ensure solution stability due
to the fact that this is the only instance of the present work in which a multi-block
solid mesh is used. With this purpose a model for the fan blade is assembled in the
Ansysr environment by creating a multi-block domain; an approach that follows the
suggestion of Peters et al. [98] in the sense that the domain blocks are strategically
delimited for obtaining a high quality structural mesh. Because the blade geometry
(Figure 4.9a) is split into different parts, appropriate contact definitions are required
between the blocks of the blade body. It is important to recall that the blade body is
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made of aluminum and the holding plates and bolt are made of steel. With this con-
text, the workflow for defining the contacts begins by verifying the geometry regions
at which the physical contact occurs and that they are correctly scoped by the program.
Subsequently the Augmented Lagrange formulation is assigned for all contact inter-
faces through the CONTA178 3-D node-to-node contact element [64]. The penetration
from a contact target into a contact source is determined by the equation:

Fn = knxp + λ (4.29)

where Fn represents the contact force, defined as normal to the source surface, xp

represents the amount of penetration from one surface to the other, kn represents the
contact stiffness and λ represents the Lagrange multiplier force term, responsible for
reducing the sensibility of the contact to the magnitude of kn. The premise of the
contact model is that a smaller penetration xp between adjacent bodies is the desired,
more physically accurate scenario. This can be achieved with a higher stiffness kn but
unfortunately at the cost of a numerically unstable solution. Following the guidelines
from the program documentation, the contact stiffness is defined by trial and error to a
value that ensures a sufficiently small penetration while avoiding an unstable solution.
The contact penetration tolerance is verified to be at 1× 10−6 m and the penetration
behavior is checked visually at different contact points to ensure it matches this or
greater values. The solution stability is ensured first by obtaining full solutions with no
fails and then by obtaining stabilization times of less than 1 s after the initial transients,
using a transient simulation with a point load in vacuum applied to the free end of
the blade. During this process, an amplitude decay factor of 0.03 is set manually to
ensuring that the transient oscilations at the beginning of the simulation settle into
a stabilized condition at which the blade tip displacement oscillates solely due to
the base excitation, the ausence of aerodynamic damping in a vacuum simulation.
The contact stiffness is then manually set to kn = 0.1 and the first verification of the
structural model with the mesh shown in Figure 4.9b, is made with a modal analysis
in vacuum with a fixed boundary condition at the base of the steel bolt.

Each one of the first four modes is depicted in Figure 4.10, where it can be seen that
the first eigenfrequency of 11.34 Hz, corresponding to the first flap-wise mode (Figure
4.10a), is verified against the frequency reported by Peters et al. [98] with a negligible
difference. This results serve as a verification over the contact definition in Ansysr

and the model as a whole, but also provide a mean of determining the required time
step for the transient analyses.

4.6 implementation of a fluid-structure interaction framework

This section presents an implementation of a FSI set-up based on the study performed
by Peters et al. [98] on an industrial fan blade, considering a vibrating boundary con-
dition at the base. Unlike the case of interest for this thesis, the reference work for this
section considers a blade made of isotropic materials and a relatively simple geometry
from an aerodynamic standpoint. However, its results are relevant because a two-way
FSI interface is established between a transient FEM model and a fully turbulent fluid
flow analysis with turbulence models of varying complexity. The structural analysis of
the FSI benchmark case is simple because the material is isotropic; hopefully, a more
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complete picture can be given when adding the validation case of the D-spar in which
a thin-walled composite structure is used. The work layout for the assembly of the
coupled simulation is based on the individual benchmarking of the fluid and solid
solutions and a subsequent solution of both systems as a fully coupled FSI framework.

4.6.1 Benchmarking for the fluid model

A validation of the fluid flow solution has been proposed by replicating the analysis
of Peters et al. [98]. The geometry of the fan blade and the domain were replicated
as shown in Figures 4.11a and 4.9a. As seen also in Figure 4.11b, the domain is de-
composed into 9 blocks to facilitate the application of mesh controls for hexahedral
elements in all blocks, with the exception of the central block, where the blade geom-
etry is enclosed. Within this central block, the domain is discretized with tetrahedral
elements; this is a requirement when using the inflation option in the mesh module of
Ansysr Fluent. The details of the tetrahedral and near wall mesh can be appreciated
in Figure 4.11c.

The transient solution of the fluid flow around the blade is performed every 2° for
0°< α <8°, which amounts to five different cases already studied by Peters [99] and
compared to experimental results from Riegels [100]. Because the domain topology
aims to replicate the geometry of a wind tunnel section, the velocity orientation at the
inlet could not be changed between cases and the blade geometry was manually ro-
tated and re-meshed for each one of the simulations instead. The boundary conditions
are specified as velocity-inlet/pressure-outlet sets, because they provide solution sta-
bility for incompressible flows; the magnitude of the inlet velocity is set to 20.45 m/s
which for the flow conditions reported in the reference work corresponds to a flow
regime of Re =157,000. The lateral faces in the domain are set to “symmetry” type
boundary conditions whereas the blade surface is defined as a no-slip wall boundary
condition.

Peters et al. [98] validate their own fluid model with steady state computations of the
lift and drag coefficients; the present work also reproduces the results for the same con-
ditions using steady state simulations with the SIMPLEC solver, using second-order up-
wind discretization schemes. Because a time-dependent solution is to be implemented
in the final FSI simulation framework, a single case with α = 6◦ is simulated using
the solver SIMPLEC in transient mode. A second order time discretization scheme is
used and, because the computations are initially done with the Pressure-Implicit with
Splitting of Operator (PISO) solver, the time step is defined to ensure the Courant-
Friedrichs-Lewy (CFL) condition for stable computations with dt = 3.5× 10−5s; this is
the resulting time step size for a free-stream flow speed of 20.45 m/s and minimum
mesh dimension of 8× 10−4 m. This single case for the transient simulation was per-
formed with an angle of attack of 6° to assess the convergence and accuracy of the
solution in a flow condition with substantial flow separation. The steady and transient
simulations are done with fully turbulent flow with the k−ω SST model. For the given
flow conditions the height of the wall-adjacent cells is set to 8× 10−4 m, resulting in
y+ ≥ 30 for the wall adyacent cells. With this conditions, the turbulence model is ex-
pected to activate the use of wall functions for modeling the boundary layer flow and
provide adequate results on a mesh of modest size. The use of two-equation turbu-
lence models is a common practice in applied CFD, this is the model employed in the
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works used as reference for the validation of the present CFD model set up and it is
no surprise since two-equation models offer a good balance between computational
cost and solution accuracy. A sufficiently accurate simulation of turbulence with the
available computation resources is the most important criterion for the present work,
the prediction of both turbulence and flow regime transition adds extra complexity, is
ruling out this last option due to the restriction of computational time. The feasible
models are thus restricted to the two-equation models also known as k− ε and k− ω.
Among these two models, the k−ω SST version is considered for the development of
the present work, because on top of the advantages in terms of computation cost, is is
a capable model when it comes to the prediction of flow in challenging scenarios such
as highly curved flow fields and adverse pressure gradients as discussed in Chapter
3. The boundary conditions for turbulence at the inlet and outlets of the domain are
set to a free-stream turbulent intensity of 5% and a free-stream turbulent viscosity ra-
tio of 10. At the walls the turbulent kinetic energy is set to zero whereas the specific
dissipation rate is imposed to a value of 18.16 × 103 s−1following the guidelines in
[63].

An important aspect of the solution process is the observed difficulty for the mass
residual to fall below the specified tolerance of 1× 10−6, for both steady and transient
solutions. In any case the monitored force coefficients and net mass flow rate reach
steady behavior before the solutions are reported. During the meshing procedure a
small amount of highly skewed cells is found, coinciding with an inappropriate or-
thogonal quality for those mesh regions. The solution process with a quality-sensitive
solver such as PISO quickly fails and for this reason, the selection of the SIMPLEC solver,
as recommended by the authors in the reference work, is fully justified, especially con-
sidering that the intricacy of the blade geometry details prevents an acceptable quality
to be attained for the 100% of cells unless a very large cell count can be permitted.

Reflecting a satisfactory solution, the steady state results for CL shown in Figure
4.12a match those of Peters et al. [98]. The presented plots include the results for the
full blade geometry with the label “Present”, the results for a version of the blade with-
out the bolt at the base, labelled as “Present (clean)”, the reference results provided by
Peters [99] and the reference results for a flat plate from Riegels [100], additionally, the
results for a transient solution at 6° are also included with the label “Transient”. This
transient solution case is computed from an initial condition in which the fluid flow
is initialized to the free-stream wind speed at all locations; the reported results corre-
spond to the stabilized solution past the initial transients in lift and drag coefficients.
The numerical predictions are satisfactory for all angles of attack, with the exception
of α = 6◦ and α = 8◦ which reveal a relatively small difference. The experimental
solution, presented by Peters et al. [98] from the data in Riegels [100] keeps for most
of the cases, the same proportion with respect to the present numerical results and, as
explained by Peters et al. [98], the discrepancy might be due to the fact that the exper-
imental study is performed on a 2-D wind tunnel set up whereas the numerical cases
reproduce a 3-D scenario where the blade tip is freely exposed to the incoming flow.
The transient solution for α = 6◦ matches the steady state calculations despite under-
predicting lift; however, the transient computation is acceptable considering that the
flow conditions at this angle of attack might involve a degree of separated flow near
the trailing edge, a permanent challenge in terms of accuracy for the implemented
turbulence model.
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From the sets of calculated coefficients, it can be observed that one of them is labeled
as “Present (clean)” and it can also be observed that the difference is unnoticeable as
far as the CL values concern (see Figure 4.12a). Instead, it is by observing Figure 4.12b
that a difference between both sets becomes evident: the simulation labeled “Present”
shows a mostly sustained overprediction of CDwith respect to the reference data. Be-
cause the root assembly of the fan blade is not expected to contribute to lift, being
constituted by an axisymmetric cylinder and two flat plates, a second set of simula-
tions with a “clean” blade geometry is proposed; confirming the initial premise, the
computed lift is not affected by this change while the computed drag gets closer to the
reference for both steady and transient cases. The evident difference between experi-
mental and numerical CD might signal that the presence of drag due to lift in the 3-D
case is responsible for the underestimation when compared to the experimental CD.

4.6.2 Benchmarking of the FSI environment

A validation of the FSI solution environment has been done following the model set-
up from [98, 99] and considering the experimental results published earlier by Basson
[101]. The validation work presented here adopts three reference cases where the blade
is fixed at a 9° angle while the inlet wind speed is set to 20.05 m/s, 15.033 m/s and
10.717 m/s respectively. An oscillation boundary condition is employed at the base
of the blade, exciting the first flap-wise mode of the blade with an amplitude of 2

mm. The experimental work of Basson [101] consists of 50 instantaneous measure-
ments of the blade tip displacement with the base excitation mechanism on; these
measurements are random in nature, thus, an average value for each simulation case
is computed and used as the reference for comparison with the experimental results.
The time history of the numerical blade tip displacement is shown in Figure 4.13 span-
ning approximately four oscillation cycles at constant amplitude and excluding the
initial transients for each data set, these are labeled “Numerical”. In addition to the
instantaneous tip displacement, the average is also presented under the label “Ave.
Numerical”, and compared directly to the average of the experimental data reported
by Basson [101] under the label “Ave. (Basson 2015)”. Before looking into the results, it
is worth mentioning that the experimental measurements reported in literature are not
obtained as a time history of the tip displacement; instead, the data is collected as a
series of 50 random measurements and, for this reason, the present analysis proposes
a comparison between the average values.

The first case, corresponding to the simulation with an inlet wind speed of 20.05

m/s, is presented in Figure 4.13a and shows that the average numerical tip displace-
ment closely matches the experimental data. The average experimental values are en-
closed within the amplitude of the oscillation whereas the numerical prediction av-
erage deviates from the experimental value by 5.6%. The remaining two cases are
also simulated at a 9° angle also and the same oscillation applied to the base of the
blade.As observed in Figures 4.13b and 4.13c, the average numerical tip displacement
is relatively close to the average experimental value, with relative error measurements
of 11.2% at 15.03 m/s and 13.2% at 10.72 m/s.

The validation exercise for the FSI interface has resulted in a satisfactory outcome
because the relative error for the analyzed cases is small. However, there is a clear
increase in the relative error when the inlet wind speed is reduced from 20 m/s to
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10 m/s. It is important to recall that the current simulations are performed on a mod-
estly sized fluid mesh, of about 1.5 million cells and the modeling of turbulence is
performed with the k−ω SST model with y+ ≥ 30 for all the wall adjacent nodes. Ad-
ditionally, from the computational analysis performed by Peters [99] and Peters et al.
[98] it is clear that the blade deformation is highly dependent on the excitation fre-
quency in the vicinity of the first flap-wise eigenfrequency. The presented simulations
assume an excitation frequency of 11.2 Hz as an approximation of the frequency for
peak motion transmissibility but, the simulation of the whole frequency range was
omitted due to computing time constraints.

There is a correlation between inlet wind speed and the error for the average tip
displacement indicating that a higher free-stream wind speed results in more accurate
predictions of the average tip displacement. There is at least two reasons that can be
thought of as responsible for this behavior, the first of them is the Reynolds number,
because the change in wind speed from 10 m/s to 20 m/s implies a change in the
Reynolds number by one order of magnitude, considering air at standard conditions
and a blade chord of 0.12 m. The smaller wind speed of 10 m/s results in Re =

8.2×104, a scenario wich might be less affected by turbulent boundary layer and more
affected by early separation due to the thin plate geometry of the blade and the small
Reynolds; if this is the case for the experiment, then the numerical prediction, based
on the assumption of fully turbulent flow might not be as appropriate as for the cases
with higher wind speeds, where the assumption of fully turbulent flow is closer to
the reality. The second and perhaps most likely reason for the observed correlation
between error and inlet wind speed is still related to the flow separation phenomena,
because the observed angle of attack at a given section of the fan blade is the result
of the combination of two perceived components of velocity: the inlet flow velocity
and the relative vertical velocity due to the oscillatory displacement. The geometrical
relationship between the inlet and vertical velocities dictates that the angle of attack
for a given blade section should be larger when the inlet wind speed is smaller, this
could be understood by imaginning that for a smaller horizontal velocity, the resultant
wind velocity should be more inclined with respect to the horizon line that coincides
with the blade chord direction; therefore, a larger angle of attack can be expected. The
current assumptions on the turbulence modelling added to the thin plate and sharp
leading edge geometry of the fan blade, can result in poor predictions for the portion
of flow that becomes dettached from the suction surface of the blade, which in this
case alternates between both sides as the blade vibrates due to the base excitation.
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(c) V∞ = 10 m/s.

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15

LS
S 

To
rq

u
e 

[k
N

 m
]

Time [s]

Experimental

Øye 3D

Pitt-Peters 3D

(d) V∞ = 15 m/s.

Figure 4.3: Torque predictions with the dynamic BEM model.
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152.4 mm

Figure 4.4: D-spar cross-sectional geometry.

Figure 4.5: Laminate orientation layout.

Figure 4.6: Laminate thickness contours.
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Figure 4.7: Domain topology and boundary conditions.
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Figure 4.8: D-spar analysis results.
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(a) Blade assembly and block partition. (b) Mesh layout.

Figure 4.9: Blade structural model geometry.

(a) First mode: first flap-wise bending. (b) Second mode: second flap-wise bending.

(c) Third mode: first edge-wise bending. (d) Fourth mode: first torsional.

Figure 4.10: Modal analysis results.



acronyms 92

(a) Overview of the simulation domain.

(b) View of the general mesh layout.

(c) View of the mesh around the blade and the near wall region.

Figure 4.11: Fluid simulation domain and mesh.
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Figure 4.12: Aerodynamic force validation for the reference case.
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(a) V∞ = 20 m/s.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Ti
p

 d
is

p
la

ce
m

en
t 

[m
m

]

Time [s]

Numerical Ave. (Basson 2015) Ave. Numerical

(b) V∞ = 15.03 m/s.
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(c) V∞ = 10.72 m/s.

Figure 4.13: Blade tip displacement prediction under base excitation conditions.
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R E F E R E N C E F E M O D E L F O R T H E N R E L P H A S E V I B L A D E

Constructing a numerical model for the NREL Phase VI turbine blade has become a
necessity for the execution of the present work for purposes of verification of the nu-
merical solution and for having a baseline case in the analyses of subsequent chapters.
The first step consists in the definition of a suitable blade geometry, representative of
the aerodynamic properties of the real blade: given in terms of the 2-D section coef-
ficients and also in terms of the finite-volume turbulence model configuration. Such
tasks have been included in Chapter 4. This chapter documents the second step for
constructing the numerical model: the definition of a structural representation of the
blade while ensuring, to the extent of possible, equivalent structural properties with
respect to the experimental blade by using an adequate specification of the blade ge-
ometry, adopting adequate mechanical properties for the constituent materials and
determining a logical layup sequence for the composite laminate.

nomenclature

θ Ply fiber angle

Ex
Elastic modulus in the primary

direction

Ey
Elastic modulus in the

secondary direction

Ez
Elastic modulus in the

out-of-plane direction

Gxy In-plane shear modulus

Gzx, Gyz Out-of-plane shear moduli

νxy In-plane Poisson ratio

νxz, νyz Out-of-plane Poisson ratios

95
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Load carrying
D-spar

Rear surface in 
aramid honeycomb

Figure 5.1: Structural concept of the NREL Phase VI experimental rotor blade.

5.1 the nrel phase vi blade

As described by the report of Hand et al. [1], the UAE Phase VI is performed on a two
bladed wind turbine. Different blade tip attachments are considered depending on the
measurement campaign. The results of interest to the present work correspond to a
blade with the standard tip and with a tip radius of 5.029 m. From a total rotor mass
of 577.3 kg, the set of two blades amounts to approximately 120.4 kg, or 60.2 kg each.
The center of gravity for each blade is located at 2.266 m, measured from the center of
rotation.

The load-carrying member of the blade structure is a D-spar, formed by a shear
web at 40% of the chord length and the remaining leading edge section. This part is
manufactured with unidirectional carbon with ±45° interwoven glass fibers. The rear
section of the experimental blade is formed by two aramid honeycomb panels, that
merge at the trailing edge. A drawing of a representative blade section is shown in
Figure 5.1.

Since the present work explores the potential for a blade with bend-twist coupling
with the same geometry as the NREL Phase VI blade, any change in performance
should be compared against the original blade as a reference; hence the interest on
defining a numerical model, analog to the experimental blade, including the original
structural properties.

The machine description from the experimental set up in [1] gives no further detail
on the composition of the blade structure (i.e. laminate lay-up and mechanical prop-
erties); therefore, by knowing the overall structural characteristics of the experimental
blade, the following section covers the definition of a model with sufficient detail and
equivalent structural properties.

5.2 definition of an equivalent structural model

An estimation of the structural properties at different stations along the blade of ref-
erence is published in the experiment description [1], including the distributions of
mass and stiffness as a function of the blade length. As mentioned before, there is
an interest in obtaining a laminate sequence with comparable structural properties, in
terms of flap-wise bending stiffness, axial stiffness and mass distribution. A composite
wind turbine blade can be designed in an infinity of material and laminate layup com-
binations; therefore, the present work does not pretend to match exactly the properties
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Figure 5.2: Structural concept of the proposed numerical model.

of the experimental subject; instead, an approximate structure is pursued as a mean to
establish a reference for assessing the effect of coupled laminate materials.

Because the bend-twist coupling phenomenon manifests itself when the blade un-
dergoes a flap-wise deformation due to aerodynamic loading, the first property of in-
terest is the flap-wise stiffness distribution. The second property of interest is the mass,
which should also resemble to the distribution in the experimental model, considering
the relevance of rotor inertia for starting behavior characteristics at least. Finally the
third relevant property is the distribution of axial stiffness, to ensure an adequate re-
sponse to inertial loads from a safety point of view, because even though the present
work is completely theoretical, it is still important to demonstrate the viability of a
coupled blade structure while also maintaining the structural integrity of the blade
and the turbine rotor as a whole.

A work with similar goals as the current task has been carried out by Chujutalli et al.
[8]. They propose a set of laminate mechanical properties and layup sequence to obtain
a 3-D equivalent numerical model of the NREL Phase VI blade. On a similar analysis,
centered also on the entire turbine assembly, Lee et al. [102] develop a finite element
model of the NREL Phase VI wind turbine and replicate the mass and axial stiffness
distributions for the entire blade. Their approach involves a simplified assumption in
which isotropic materials are considered, in a series of different cases, each one with a
different level of fidelity with respect to the experimental model.

It must be pointed that the blade structure proposed by the present work differs
from the structure of the experimental blade in the sense that only the outer skins are
conceived as the load carrying members, resulting in the simpler structure shown in
Figure 5.2.

This is justified by the emphasis of the present work on small wind turbines, for
which simplified blade structures are often the rule, and aiming also to validate the
feasibility of bend-twist coupling by modification of the composite laminates in the
skins of the blade and no other components (i.e. shear webs).

A set of nine material properties required for defining an orthotropic lamina are
listed in Table 5.1, these are representative of an unidirectional prep-reg carbon/epoxy
lamina to be used as the basic constituent element of the blade composite structure.
The present modeling of the blade structure uses shell elements, under the assumption
of negligible out-of-plane deformations. For such cases, only the in-plane material
constants are required but the present work adopts also the out-of-plane properties as
a required input for a subsequent analysis on the structural properties across several
blade stations.
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Property Magnitude

ρ [kg/m3] 1621

Ex [GPa] 74.035

Ey [GPa] 9.376

Ez [GPa] 9.376

Gxy [GPa] 4.863

Gyz [GPa] 3.500

Gxz [GPa] 4.863

νxy 0.35

νyz 0.34

νxz 0.35

Table 5.1: Material properties for a 0.35 mm Carbon/Epoxy lamina, adopted from [8].

Following the typical thickness distribution of the skin of a wind turbine blade, the
number of laminae must decrease towards the tip of the blade. Such decrease in blade
skin thickness must be gradual; therefore, following the work of Chujutalli et al. [8],
the definition of five segments along the blade span, in which a series of laminate drop-
offs are placed according to the desired thickness and mass distributions is adopted.
The upper limits for each one of the blade segments (S1 to S5) are given in Table
5.2 and are measured from the center of rotation. The laminate ply sequence is fairly
similar to that of Chujutalli et al. [8] in terms of the proportion of plies in each segment,
but the amount of plies and the orientation varies. For this work, the entire structure
is constituted of carbon/epoxy, orientations other than 0° are considered and a higher
number of plies per section is proposed. The laminates are separated into seven groups
(G1 to G7), each one with a different amount of plies and laminate sequence as shown
in Table 5.3. One of the critical aspects when defining the laminate sequences for each
ply group is to avoid coupling from a macromechanical standpoint. This is verified by
inspecting the terms in the stiffness matrices of resulting force and moment equations
where the bend-twist coupling terms, D16 and D26, must be zero. A computational
implementation of the Classical Lamination Theory (CLT), is used to verify the coupling
condition for the presented laminate sequences. For further detail the reader is referred
to the book of Jones [103].

The disposition of the laminate groups as described by Table 5.3 is depicted in
Figure 5.3. The drop-offs between adjacent laminate groups are specified in terms of
the relation between laminate groups and blade segments, resulting in the expected
reduction of blade mass towards the tip of the blade. An important characteristic of
this layout is that the drop-offs between adjacent plies are not being considered.

A verification of the structural properties for the present numerical model of the
NREL Phase VI blade, in which the load-carrying components are the aerodynamic sur-
faces alone, is performed using the software NuMAD [104]. The resulting mass, flap-
wise and axial stiffness distributions are obtained and compared to the experimental
properties of the real blade. The extraction of blade section properties is done with the
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Blade Segment rupper[m]

S1 1.257

S2 2.012

S3 3.018

S4 4.023

S5 5.029

Table 5.2: Blade longitudinal segments.

Ply group Ply count Laminate sequence

G1 8 [0◦/-45◦/0◦/45◦/-45◦/0◦/45◦/0◦]

G2 1 [0◦/0◦]

G3 1 [0◦/0◦]

G4 32 [±45◦/0◦/90◦/∓45◦/0◦/0◦/∓45◦/0◦/90◦/±45◦/0◦/0◦]s

G5 1 [0◦/0◦]

G6 1 [0◦/0◦]

G7 8 [0◦/-45◦/0◦/45◦/-45◦/0◦/45◦/0◦]

Table 5.3: Laminate layup sequences.
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Figure 5.3: Blade laminate groups and relative positions for one blade shell.

Blade Property Extraction (BPE) application; further information on this methodology
can be found in [105].

The mass distribution of the present blade corresponds purely to the mass of the
composite materials for each blade surface; this must be emphazised because the ex-
perimental model has a series of extra elements adding to the total blade mass. Having
no active role on the blade structure, this kind of elements are omitted from the present
numerical model. A resulting distribution for cumulative mass, shown in Figure 5.4a,
reveals a close match between the proposed blade model and the experimental one.
The total mass is around 60 kg, as described for the experimental blade in the official
documentation [1].

The distribution of flap-wise stiffness, seen in Figure 5.4b, shows a similar match
between the proposed and experimental blade models for most of the blade length
except for the root sections. The material of the proposed model may be thicker at
these location than in the real blade. This discrepancy is rather unavoidable, recalling
that the official experiment description provides little detail on the blade manufacture.
The flap-wise stiffness for mid and outer blade sections is close enough to the desired
values which is good, since the flap-wise deformations that will eventually exert a
coupled twist, occur because of the deflection of the outer sections.

When observing the resulting distribution for axial stiffness in Figure 5.4c, an over-
estimation of the experimental axial stiffness along the entire blade span can be easily
identified; however, this situation is not expected to compromise the validity of the
proposed model, since the torsional deformation response of a bend-twist coupled
structure is not as affected by an axial deformation as it is by a bending deformation
in the flap-wise direction. The discrepancy though, is not surprising, given the depar-
tures of the present model from the experimental and the numerical reference in [8],
for example, the proposed blade increases the chord-wise extention of the structural
elements, replacing the load carrying D-spar that spans only 40% of the chord length,
with a pair of load carrying aerodynamic surfaces, comprising the entire blade section
or 100% of the chord length. Additionally, the present design also extends the use of
carbon/epoxy to the whole structure, following the changes in the structural elements.
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(b) flap-wise stiffness distribution.
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(c) Axial stiffness distribution.
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(d) Torsional stiffness distribution.

Figure 5.4: Structural properties for the baseline blade.

In summary, the resulting blade is composed by a stiffer material, on a greater extent
of the blade section and therefore a higher axial stiffness is obtained.

5.3 wind turbine control with bend-twist coupling

Using the blade geometry from the NREL Phase VI rotor and an approximate structure
as a reference, this section introduces an aeroelastically tailored counterpart. Since the
matrix-reinforcement is kept the same as in Chapter 5, the mechanical properties for
a single lamina remain the same as well. The general layout of the chapter consists of
a description of the preliminary sensitivity analysis, the proposal for a laminate with
bend-twist coupling in replacement of the reference structure and the verification of
the structural properties for the new coupled blade.

5.3.1 Maximum torsion from bend-twist coupling

It is known from the findings of the literature review in Chapter 2 that bend-twist
coupling can be attained by different means, i.e. induced by the layup fiber orientation,
by using a swept blade planform geometry or by taking advantage of the aerodynamic
moment. The first of the mentioned options is explored here initially to define a fiber
orientation that maximizes the expected effect of the bend-twist coupling.
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Figure 5.5: Off-axis fiber orientation for the tailored blade

Ply group Ply count Laminate sequence

G1 8 [0◦/θ/0◦/θ/θ/0◦/θ/0◦]

G2 1 [0◦]

G3 1 [0◦]

G4 32 [±45◦/0◦/90◦/∓45◦/0◦/0◦/∓45◦/0◦/90◦/±45◦/0◦/0◦]s

G5 1 [0◦]

G6 1 [0◦]

G7 8 [0◦/θ/0◦/θ/θ/0◦/θ/0◦]

Table 5.4: Laminate layup sequence for the sensitivity analysis model.

According also to the findings of the literature review, a pitching actuation towards
the feather position throughout the blade length is the preferred scenario. When a
wind turbine blade rotates towards the feather position, the angle of attack along the
blade span is decreased, in consequence the aerodynamic behavior of the blade cross
sections leans towards a linear and more stable regime from the point of view of the
lift coefficient. In order to obtain the required nose-down rotation at each section, the
general arrangement of the off-axis fibers must be as shown in Figure 5.5, bearing in
mind that the laminates of the suction side must mirror those of the pressure side. This
requires that, for a coordinate system consistently oriented outwards for all blade sur-
faces, the off-axis fiber orientation of the suction side must have the same magnitude
but opposite sign as that of the pressure side.

Using a simplified version of the blade structure from chapter 5 in a series of 1-
way FSI simulations and taking the off-axis fiber orientation, θ, as a free parameter, a
sensitivity analysis of the blade tip rotation is assembled; in this analysis, the 45° fibers
where replaced by off-axis fibers in all laminates except for the group G4 (see Table 5.6).
The results are shown in Figure 5.6 and indicate clearly that the maximum tip rotation
occurs when the off-axis fibers are oriented at 20° with respect to the longitudinal
axis. This finding is subject to a set of basic assumptions that are held throughout the
subsequent analyses: the blade structure consists only of the suction and pressure side
skins, known as shells, the joint of both shells is assumed ideal despite representing
a discontinuity in the orientation of the off-axis plies, the blade is fixed at the root
and, rotations and displacements are retrieved at virtual locations at the center of each
section.
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Figure 5.6: Sensitivity analysis for the blade tip rotation.

Ply group Ply count Laminate sequence

G1 6 [θ/0◦/θ/θ/0◦/θ]

G2 1 [θ]

G3 1 [θ]

G4 32 [θ2/0◦/90◦/θ6/0◦/90◦/θ4]s

G5 1 [θ]

G6 1 [θ]

G7 6 [θ/0◦/θ/θ/0◦/θ]

Table 5.5: Laminate layup sequences for a blade with bend-twist coupling.

5.3.2 Blade model with bend-twist coupling

The second and final laminate sequence is described in Table 5.5 and has three im-
portant changes with respect to the sequence used for the sensitivity analysis: the ply
orientation for bend-twist coupling is extended to the laminates in group G4, the plies
at 0° in groups G2, G3, G5 and G6 are changed to off-axis plies, and two plies at 0° are
removed from laminate groups G1 and G7. The first of these changes aims to increase
the overall blade rotation by enabling the effect to take place throughout the entire
laminate thickness, whereas both the second and third changes, are done to increase
the proportion of off-axis plies in the whole laminate considering the findings of Hayat
and Ha [2] relating the effects of ply proportion and the amount of coupling that can
be achieved.

A similar procedure to the one in Chapter 5 is performed on the blade with bend-
twist coupling to determine the lengthwise distribution of relevant mechanical proper-
ties and to determine in a preliminary form, the rotational response of the final blade
structure. From the set of relevant properties, most of them remain close to the prop-
erties of the NREL Phase VI experimental blade or to the properties of the baseline
structural design presented in the previous chapter. The cumulative mass distribution
in Figure 5.7a shows a lighter blade by approximately 11.6 kg, mainly due to the re-
duction in 0° plies with respect to the reference blade. The flap-wise bending stiffness
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(a) Cumulative mass distribution.
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(b) flap-wise bending stiffness distribution.
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(c) Axial stiffness distribution.
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(d) Torsional stiffness distribution.

Figure 5.7: Structural properties for the blade with coupling.

(Figure 5.7b) is significantly closer to the reference properties in comparison to the
other results and this is precisely one of the key points from the present task, consid-
ering that the desired blade rotation is occurring from a bending displacement in the
flap-wise direction. The results for axial and torsional stiffness in Figures 5.7c and 5.7d
reveal a stiffer blade design with respect to the experimental blade but fairly close to
the mechanical properties of the baseline design.
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R E S U LT S

This chapter presents an overview of the simulation frameworks and results for the
fluid-structure interaction analyses, considering the blade designs presented in Section
5 and following the simulation plan outlined next.

6.1 simulation cases

This Section introduces the proposed simulation plan for assessing the wind turbine
blade with bend-twist coupling. A general description of the mathematical model for
the wind conditions along with the implementation in each one of the cases is included.
Each case is accompanied by a justification of its relevance and a description on the
software in which it is implemented.

6.1.1 Preliminary selection based on wind models

The cases of interest are listed in Table 6.1 and all of them, contemplate a transient
wind input, except for the last one, which proposes the calculation of steady torque
curves. The adopted cases from the International Electrotechnical Commission (IEC)
61400-2 Standard [106], known as “Design Load Cases” are considered along with the
pertinent wind models, covering different operational scenarios that are relevant to the
present research.

6.1.2 Steady operation

The steady operation cases correspond to the computation of rotor torque and power
curves for a defined set of operating wind speeds between Vin and Vout. Because there
is no need to assess the dynamic change in loads as the wind speed changes, this
simulation case is performed as a series of steady-state calculations. Assuming a per-
fectly aligned flow facilitates the implementation of finite-volume computations in the
Ansysr environment besides the implementation in the BEM environment. Since the
operating envelope for wind speed is defined based on the already established struc-
tural considerations, the primary aim behind the implementation of this case is not to
assess loading conditions, but rather to determine the torque and power production
as an indicator in itself and an input for the computation of the AEP.

105
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Description IEC
design
load
Case

Wind Model Reference In IEC
61400-2

Framework

Steady operation - - - BEM/Ansysr

Normal operation
1.3 EOG50 Extreme

operating gust
BEM

1.5
Extreme
Coherent

Gust (ECG)

Extreme
coherent gust

BEM

Extreme wind
loading

5.1 EWM Extreme wind
model

BEM/Ansysr

Table 6.1: Simulation cases.

6.1.3 Extreme wind model (EWM)

By assuming a Class III small wind turbine, the reference wind speed Vre f , equivalent
to 37.5 m/s is chosen for calculating the 50 and one year extreme wind speeds. The
respective magnitudes are Ve50 = 52.5m/s and Ve1 = 39.4 m/s. This work assumes
the magnitude of the extreme wind models in IEC 61400-2 “Small wind turbines”, but
disregards the influence of the vertical wind profile on the rotor loads by considering
a perfectly uniform magnitude across the turbine swept area.

The computations with an extreme wind loading model aim to assess the response
of rotor torque and blade root moment under an extreme wind speed for a recurrence
period of 50 and one years and under steady conditions. The magnitude of the ex-
treme wind speed is based on the reference wind speed, Vre f , defined according to the
corresponding wind turbine class. The corresponding wind speeds, Ve50 and Ve1, are
computed according to:

Ve50 = 1.4Vre f

(
z

zhub

)0.11

Ve1 = 0.75Ve50 (6.1)

6.2 robust simulation framework

The robust simulation framework is implemented in Ansysr System Coupling which
is an interface that couples the Ansysr Fluent and Ansysr Mechanical APDL solvers,
in the simulation of a two-way and non-linear problem. As usual, Ansysr Fluent
performs the solution of the fluid flow field properties, using the FVM whereas Ansysr

Mechanical APDL is assigned.
The fluid flow solver performs a pressure-based, transient solution of the RANS equa-

tions, considering the k−ω SST turbulence model. The domain and mesh for the fluid
flow solution participant is shown in Figure 6.1. Given the number of blades of the
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Mesh Cell count Torque [N m]

Coarse 4,929,538 359.52

Medium 7,602,176 339.37

Fine 8,729,681 338.71

Table 6.2: Aerodynamic torque results for three mesh refinement levels.

NREL Phase VI wind turbine, the fluid flow domain for the stand-alone CFD simula-
tions and for the system coupling simulations is based on a geometry with a period-
icity of 180° emulating a wind tunnel with a circular section and an equivalent area
to that of the NASA Ames 80 ft× 120 ft (24.4 m × 36.6 m) wind tunnel. The transient
solution is set on a moving, dynamic mesh domain with tetrahedral elements and an
inflation layer around the wind turbine blade. The rest of the domain is meshed with
hexahedral elements. The elements of the nacelle are ommited; instead, a free-slip wall
is defined in the inner surface coinciding with the blade root and for the outer domain
wall. A formal mesh independence analysis is not carried out due to time constraints;
instead, a set of three cases is considered for the calculation of aerodynamic torque.
The cases are run with an inlet wind speed of 7 m/s and an angular speed of 72 RPM
shown in Table 6.2. The relative difference in integral torque between the coarse and
Medium mesh is about 5.6% whereas the difference between the Medium and Fine
meshes reduces to 0.2% but the computational time increases from 7 to 30 days. As-
suming the 5.6% difference as acceptable, the 4.9 million mesh is used for the entire
analysis.

The structural response is obtained from a transient solution of the FEM derived
from the principle of virtual work amd using the formulation for a layered composite
shell element, outlined in Chapter 4. A general view of the structure domain and mesh
is shown in Figure 6.2, the observed discretization has 3242 elements and 3266 nodes
and is created by splitting the blade into 64 segments in the spanwise direction and 25

segments in the cordwise direction per side. The time dependent solution is based on
the HHT-α scheme, with a time step size that is governed by the system coupling pro-
cess. The numerical model of the blade structure is formed by shell elements, derived
from the fluid-flow domain geometry. Taking advantage of the topology for each blade
surface, a fully structured mesh is defined, using shell elements with orthotropic prop-
erties. The material properties are defined using the ACP Pre module in the workbench
environment.

An overview of the blade local reference frame is given by Figure 6.3, which shows
the turbine rotation axis (z), the freestream wind direction (−z) and the principal axes
for blade torsion (y) and blade flap-wise deformation (z) and edge-wise displacement
(x).

6.2.1 Stability considerations

The interaction between the blade structure and the aerodynamic loads due to the
surrounding fluid flow constitute an aeroelastic interaction scenario which, under the
right conditions, can result in several instabilities. In theory, three instabilities may
arise when considering the interaction problem associated to a wind turbine blade
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(a) Fluid flow domain geometry. (b) Sliding mesh sub-domain.

(c) General view of the fluid mesh. (d) Mesh detail for the airfoil surface and inflation
regions within the sliding sub-domain.

Figure 6.1: Fluid flow domain and mesh for the robust simulation framework.

(a) Blade CAD geometry. (b) Structural mesh.

Figure 6.2: Structural domain and mesh for the robust simulation framework.

and to a wing in more general terms, these are: a) stall-induced flutter, b) classical
flutter and c) divergence.

In general, flutter is a instability in which the flapping and torsion modes are cou-
pled together in an oscillation that grows with time causing a sudden failure on the
wing, it is caused by the interaction between the elastic oscillation of the blade and
the deep-stall lift forces acting on the blade section. The analysis of stall-induced flut-
ter is often challenging because it involves the non-linear aerodynamics of the stall
flow regime; nevertheless, this problem has not been reported for wind turbine blades
mentioned by Holierhoek [107] and Lobitz [14, 108].

The case of classical flutter is similar because it consists in a growing oscillation of
the coupled flapping and torsion modes but is not associated to stall conditions; in-
stead, as described by Holierhoek [107], it occurs at small angles of attack, high tip
velocities, a relatively small torsional rigidity and a center of gravity located behind
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the aerodynamic center. The analysis presented by Lobitz and Veers [9] explores aeroe-
lastic instabilities on a wind turbine blade with bend twist coupling which can deform
between -3° and 10° and concludes that for a small-sized wind turbine the angular
speed for flutter is about six times greater than the operational speed of 72 RPM. De-
spite noting that an extreme amount of bend twist coupling can reduce the threshold
rotational speed for flutter, it is pointed that smaller wind turbine blades tend to have
higher stiffnesses and in consequence, are unaffected by stability problems of this kind.
In fact Lobitz [108] and Holierhoek [107] converge in the notion that aeroelastic insta-
bilities are a concern for wind turbine blades of increasing size. Lobitz [108] illustrates
this point very well with the analysis of a 70 m diameter wind turbine for which the
flutter rotational speed is above twice the operational speed and reduces 12% after
including bend-twist coupling. From the analysis of a small wind turbine in Lobitz
and Veers [9] flutter occurs at six times the operational speed whereas for a mid-sized
wind turbine the flutter speed drops to twice the operational speed.

To explore the tendency of the present coupled blade to divergence, an idealized
section is considered as depicted in Figure 6.4. Here the lift force L and the aerody-
namic moment MAC are applied at the point AC, located approximately at 25% of the
chord length measured from the leading edge. The elastic axis is located at the point
EA, located behind AC at a distance of approximately 20% of the chord length c which
means that e = 0.2. the torsional spring stiffnes is given by Kθ = GJ/L. At an equilib-
rium condition, the angle of attack is α0 and after a torsional deformation it becomes
α = α0 + θ with respect to the line for zero lift.

Assuming a torsional stiffness GJ of 1× 105 Nm2 at a blade radius of 4 m and a blade
length of 3.5 m, the resulting torsional spring stiffness is 28571.4 Nm/rad. Considering
a representative blade chord of 0.45 m at r = 4 m the reference area is S = 1.58 m2. By
defining positive moments in the clock-wise direction, the sum of all moments acting
about EA can be written as:
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∑ MEA = [CLα (α0 + θ) e + CMAC ] cqS− Kθ

where CLα represents the Cl versus α curve slope, CMAC is the aerodynamic moment
coefficient around AC and q represents the dynamic pressure. The torsion angle theta
for equilibrium conditions can be known by solving for ∑ MEA = 0 from which the
following expression is obtained:

θ =
cqS
Kθ

[CLαα0e + CMAC ]

1− CLαecqS
Kθ

(6.2)

As can be observed, the torsion angle about EA can grow unbounded when the tor-
sional stiffness approaches Kθ = CLαecqS. A stable condition for the torsional deforma-
tion can be defined according to ∂M/∂θ ≤ 0 which means that for a small perturbation
in the angle of torsion, the system reacts with a restoring moment of opposite sign.
This condition results in:

1− CLαecqS
Kθ

≥ 0 (6.3)

or in terms of the dynamic pressure q:

q ≤ Kθ

CLαecS
(6.4)

Considering linear aerodynamics the lift curve slope is CLα = 2π. Finally, if a stan-
dard air density is assumed, the equation above indicates a flutter speed of 264 m/s.
The present blade is operated at 72 RPM, therefore the maximum relative wind speed
acting on the blade occurs at 25 m/s and has a magnitude of 39.2 m/s. This shows
that torsional divergence is unlikely for the given conditions.

Displacement mapping procedure.

As explained in Chapter 3, the coupling method relies on the mapping procedure for a
successful transfer of data between participant solutions; therefore the diagnostics for
both transfers are discussed in this part of the work. The co-simulation procedure has
a single interface that consists of the blade surface. This surface is identical for both
solvers and is used for the transference of displacement and force between solutions.
Displacement information is transferred from Mechanical APDL or Side 1 to Fluent
or Side 2 and for both solvers, this data is stored at nodal locations. The mapping
summary for the displacement transfer named as “Data Transfer” is shown in the
Listing 6.1:

Listing 6.1: Mapping diagnostics for displacement data transfer.

+-----------------------------------------------------------------------------+

| MAPPING SUMMARY |

+-----------------------------------------------------------------------------+

| | Source Target |
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Figure 6.5: Mapping diagnostics for the transfer of displacements for Source (left) and Target
(right) meshes.

+-----------------------------------------------------------------------------+

| interface-1 | |

| Data Transfer | |

| Mapped Area [%] | >99 100 |

| Mapped Elements [%] | >99 100 |

| Mapped Nodes [%] | >99 >99 |

| Data Transfer 2 | |

| Mapped Area [%] | 100 >99 |

| Mapped Elements [%] | 100 >99 |

| Mapped Nodes [%] | 100 >99 |

+-----------------------------------------------------------------------------+ �
The relevant diagnostics for the mapping is that in terms of area, more than 99%

of the source mesh is mapped whereas 100% of the target mesh area is successfully
mapped. When it comes to the nodes, more than 99% of the source mesh nodes, cor-
responding to Mechanical APDL’s mesh is successfully mapped to send data to the
target mesh. From the target mesh in Fluent more than 99% of the nodes are mapped
and receive data from the source mesh.

Figure 6.5 shows another perspective of the mapping diagnostics for displacement.
For instance, on mechanical, the Source side, more than 99% of the nodes map to
and send values to the target. Several nodes at the base of the blade are shown to be
unmapped because the same region of the blade is removed from the Fluent mesh
during the construction of the inner slip surface of the wind tunnel geometry. This
could be solved by intersecting the structural geometry with the inner slip surface.
On the target side, corresponding to Fluent, more than 99% of the nodes map to and
receive values from the source. Some nodes appear unmapped in the transition region
at the trailing edge, and this happens because the coarse mesh in the source cuts-off
the rounded corner, and the source geometry appears truncated with respect to the
much more refined mesh in the target side. The weighted average values shown in the
Listing 6.2, are mutually similar for the source and target sides of the “Data transfer”
mapping of incremental displacements between Mechanical APDL and Fluent.

Listing 6.2: Coupling results for the incremental displacement data transfer.

+=============================================================================+
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Figure 6.6: Contours for the transfer of displacement data.

| COUPLING STEP = 1539 SIMULATION TIME = 5.66500E+00 [s] |

+-----------------------------------------------------------------------------+

...

+-----------------------------------------------------------------------------+

| COUPLING ITERATION = 3 |

+-----------------------------------------------------------------------------+

...

| fluid | |

| Interface: interface-1 | |

| Data Transfer | Converged |

| RMS Change | 1.79E-03 1.99E-03 |

| Weighted Average x | -2.39E-05 -2.39E-05 |

| Weighted Average y | 1.65E-06 1.65E-06 |

| Weighted Average z | 4.44E-05 4.44E-05 |

+-----------------------------------------------------------------------------+ �
The displacement data transfer results in Figure 6.6, show that the transferred values

near the root sections of the blade are small and approach to zero at the very bottom.
Unmapped regions at both the source and target sides of the transfer are located at this
area; therefore the effect of the missing nodal information during the transfer process
is not relevant to the overall solution.

Force mapping procedure

Force data transfer takes place between Fluent at the Side 2 of the co-simulation and
Mechanical APDL at the Side 1. In this case nodal information is no longer the sole
concern as Fluent stores data at the Element locations instead of the nodes. In mechan-
ical however, force is still stored at nodal locations. The mapping diagnostic for the
transfer of force data under the name “Data Transfer 2” is included in the Listing 6.1,
which shows that 100% of the area is mapped on fluent and more than 99% of the area
is mapped on mechanical. The results indicate that 100% of the elements in the source
mesh are successfully mapped whereas more than 99% of the elements in the target
mesh are mapped. The successful mapping of node locations is similar, with 100% of
the nodes in Fluent mapping to the target mesh and sending data to it and, more than
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99% of the nodes in Mechanical being successfully mapped to the source mesh and
receiving information from it.

The results from these diagnostic are now shown as a visualization in Figure 6.7, in
which the left hand side shows some of the unmapped nodes in mechanical and the
right hand side shows the fluent nodes being 100 % mapped. The Figure is centered
around the root area because it is precisely at this location where unmapped nodes
appear for the Side 1 solver of the cooperative simulation, and from comparing both
geometries, the projected cylinder at the bottom of the Side 2 mesh is responsible for
the unsuccessfully mapped nodes in mechanical. Such cylindrical projection is a fea-
ture of the Fluent mesh that corresponds to the intersection between the blade root
and the slip wall surface in the fluid flow domain. This mismatch between geometries
is minor, and is expected to barely affect the overall solution since at least the displace-
ment of the neighboring nodes are limited by the applied fixed support boundary
condition in the Mechanical side of the coupling.

The overall summary of the force data transfer at the last coupling iteration per
time step is shown in the Listing 6.3 with the corresponding convergence indicators for the
transfer procedure.

Listing 6.3: Coupling results for the force data transfer.

+=============================================================================+

| COUPLING STEP = 1539 SIMULATION TIME = 5.66500E+00 [s] |

+-----------------------------------------------------------------------------+

| | Source Target |

. . .

+-----------------------------------------------------------------------------+

| COUPLING ITERATION = 3 |

+-----------------------------------------------------------------------------+

| Transient Structural | |

| Interface: interface-1 | |

| Data Transfer 2 | Converged |

| RMS Change | 3.93E-04 3.56E-04 |

| Sum x | 4.88E+01 4.88E+01 |

| Sum y | 3.01E+00 3.00E+00 |

| Sum z | 1.53E+02 1.53E+02 |

+-----------------------------------------------------------------------------+ �

Figure 6.7: Mapping diagnostic for the transfer of forces.
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Figure 6.8: Resulting contours for the transfer of forces.

It shows that the rms residual values and the x, y and z sums for source and target
sides of the force data transfer closely match one another. A visualization of the force
transfer can be observed in Figure 6.8 where the data is presented in the form of force
per unit area, to facilitate the comparison of the information between meshes with
elements of different sizes. In general the profiles of the force in Side 2 seem to be
preserved well on the contours for Side 1.

6.3 simplified simulation framework

This framework considers a simplified aerodynamic solution based on the blade el-
ement momentum model with added models for stall delay and dynamic stall phe-
nomena. The structural solution in this case is emulated from a 1-way steady state
interaction analysis and, is capable to reproduce bend-twist coupling. The torsional
deformation due to flap-wise bending is recorded as a function of blade radial position
and wind speed; then, the local torsional deformation along the blade is interpolated
inside the BEM model implementation.

Considering a wind speed range from 5 to 25 m/s an analysis with steady CFD and
1-Way FSI is carried out with the sole purpose of building a representation of the tor-
sional deformation response as a function of wind speed and blade radial location.
These results are used as an auxiliary computation to the main simplified framework
analysis to be introduced subsequently. The data is shown as a series of plots in Fig-
ure 6.9 and revealing a maximum tip rotation of 0.44° at the maximum wind speed of
25%. In fact, the rotations at all locations appear to increase in direct proportion to the
wind speed magnitude, indicating that drag forces associated to the high wind speed
regimes for fixed-speed and fixed-pitch wind turbines play an important role on the
overall bending deformation of the wind turbine blades. Similarly, this results show
a favorable scenario in which the control action of pitching the blade towards feather
can be executed at operation regimes in which stall onset and deep stall occur. The
situation at smaller wind speeds shows that blade rotations are consistently smaller
throughout the entire blade length. From a general perspective, the blade section rota-
tion is linear with respect to the wind speed in the range between 5 and 15 m/s but for
higher the wind speeds of 20 m/s and 25 m/s the respective rotations stop showing
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Figure 6.9: Blade section rotation from bend-twist coupling.

a clear proportionality with respect to wind speed, besides being notably higher in
magnitude.

A more insightful view of the blade aerodynamic state as predicted with the BEM

model is given by the results to the simulation case of steady operation from Table 6.1,
particularly by checking the blade longitudinal distribution for the angle of attack (α)
and the respective distributions of lift (Cl) and drag coefficients (Cd). This data is recov-
ered from stabilized transient calculations using the same approach as for the torque
curves of Chapter 4, this way, fully converged and stabilized aerodynamic coefficients
are organized at 7, 10, 13 and 20 m/s and, providing also the comparison between the
reference blade and the coupled blade. The results for the slowest wind speed, at 7

m/s are shown in Figure 6.10 and reveal that α, Cl and Cd have fairly smooth varia-
tions with blade length. Some of the noticeable features are the dip in Cl near the root
of the blade, and the higher Cd also in the blade root region. The concurrence of blunt
airfoil shapes due to the transition between the blade root and inboard sections and
high angles of attack are the most likely causes for this variations. As a direct represen-
tation of the effect of bend-twist coupling over the blade aerodynamics, the change in
angle of attack, ∆α, lift coefficient ∆Cl , and drag coefficient, ∆Cd, are presented along
with the distributions of the base variables. First of all, a decrease in α is evident and
also expected from the torsion towards feather that the coupling induces on the blade.
Due to the small wind speed and according to the displacement profiles from Figure
6.9, the change in α remains small along the blade for the 7 m/s case, this in turn,
results in Cl reductions of order 1× 10−3 and Cd reductions of order 1× 10−4.

According to Figure 6.12, the change in α at 10 m/s is negative everywhere and de-
creases along the blade radial position. Both of these outcomes are expected, although,
the decrease in α appears to have a small dip around the 4 m mark on the horizontal
axis; an interesting feature since the respective changes in Cl and Cd appear to have
peaks around the same blade sections where α has a dip. The general trend for the
change in Cl shows a decrease in magnitude for most of the blade length, except for
the blade stations between 3 m and 4.5 m, where the change in Cl is positive, meaning
an increase in lift. The respective change in Cd is similar because it is uniformly nega-
tive for most of the blade length but still shows a region between 3 m and 3.5 m, where
the drag decrease is one order of magnitude greater than for the rest of the blade lo-
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Figure 6.10: Aerodynamic coefficients at 7 m/s.

cations. As a possible explanation for the blade aerodynamics at 10 m/s it is worth
observing that at the same location where the change in α has a slight dip, the nominal
values for the angle of attack are between 10° and 20°; therefore, it is likely that the
bend-twist induced torsion is bringing the angle of attack at those locations out of the
deep stall regime and into the stall on-set regime, where considerable increments in
Cl tend to coincide with high Cd.

A look on the Cl vs α and Cd vs α curves in Figure 6.11 shows that the deep stall,
regime starts right before 20°; it is just at this point where the Cl curve shows a change
in slope, dividing the attached and fully separated flow regions. Lift coefficients appear
to decrease after the maximum for α values between 15° and 20°; a decrease in α below
20° should inevitably result in the observed increase in lift for the 10 m/s case. The Cd
values show a change of slope right before 20° as well, and appear to have a very steep
variation at this point; this might help in understanding why a small negative change
in angle of attack could derive in the sudden decreases in drag that are observed in
Figure 6.12.
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Seeing the changes in α for a wind speed of 13 m/s one can identify the expected
tendency by which the effect of bend-twist coupling is consistently stronger at greater
wind speeds. At least for the torsion mechanism that is being proposed in this work,
the flap-wise deflection is being driven by the axial force acting on the blade, and
such force increases as a direct consequence of the increase in angle of attack, which
now increases due to the change in the velocity triangle when free-stream wind speed
increases while angular speed is kept fixed. There is value to this simple approach,
because it is at the deep stall regimes, associated to small tip speed ratios, at which a
torsion towards feather could improve the blade performance by reducing the angle
of attack. In this scenario, the torsion by bend-twist coupling serves the purpose of
mitigating the deep stall on the blade. However, the question on how much torsion can
be attained remains open since the laminate sequence for the coupled blade has been
defined with an ingredient of uncertainty on the exact ply sequence of the reference
experimental blade, leaving room for optimization of the proposed design.

The changes in α for the 13 m/s case in Figure 6.13 show the same tendency to
the previous cases at 7 and 10 m/s: there is a reduction in angle of attack, growing
in magnitude with the blade radius and reaching a larger maximum with respect to
the 10 m/s case, which is consistent with the trends discussed above. In contrast, the
change in Cl shows an irregular profile because in two locations for r > 3.5 m the
change in lift is positive. The change for Cd for example, follows a smooth variation
and is smaller than −5× 10−3 for most of the blade.

The results shown in Figure 6.14 show that at 20 m/s, the effect of bend-twist cou-
pling is the strongest from all of the four cases explored in this section, the variation
in α along the blade span follows the expected profile, which is similar to the profile
in torsional displacement shown earlier in Figure 6.9. The distribution of α shows that
almost all blade sections are operating between 30° and 50° except for the root region
where α is naturally very high and for the last 0.5 m which are slightly below 30°.
When observing again the Cl vs. α curve in Figure 6.11 one can see that the variation
in Cl is smooth around 30° and beyond for the original 2-D coefficients and for the set
of coefficients treated with the Lindenburg stall delay correction model; therefore, the
observed increments in α which are smooth and continuous result in similarly smooth
and continuous reductions in lift for most of the blade stations. Between 4 and 4.5 m
there is a sudden drop in Cl that takes place at the same point at which the distribution
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Figure 6.11: Aerodynamic coefficients for the S809 airfoil at Re = 1× 106.
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Figure 6.12: Aerodynamic coefficients at 10 m/s.

in α crosses the 30° mark. Paying closer attention to the series for Cl treated with the
Lindenburg correction model in Figure 6.11, a small dip between 20° and 30° can be
observed; here, a small deviation in α below 30° may cause a larger drop in Cl , instead
of the relatively small decrease that prevails everywhere else along the blade length.

The slope of the Cd vs. α curve is fairly regular for α > 30◦, for this reason it is
no surprise that the changes in α along the blade, give as a result a smooth variation
profile for drag. For all the blade stations, except two a the root, there is a reduction
in Cd as a result of the induced torsion; the largest magnitude is observed at the tip of
the blade, where the reduction in α causes a drop in Cd by 8× 10−3. For comparison,
the reduction in Cl is smaller than 7× 10−3 for most of the blade length, except for the
blade stations at r > 4 m at which lift sees a reduction of order 1× 10−2. This means
that for roughly 80% of the blade span, the reduction in Cd is greater than the reduction
in Cl ; in the context of a wind turbine blade this is a favorable situation for increasing
mechanical torque, since the only force opposing to the generation of torque is being
reduced by a greater extent than the force driving it. In other words, the lift-to-drag
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Figure 6.13: Aerodynamic coefficients at 13 m/s.

ratio or L/D which is in a way, an indicator of the aerodynamic efficiency of the blade,
sees an overall gain.

6.4 steady torque curves

According to the simulation plan established in Section 6.1, the first of the simulation
cases to consider for the neutral and coupled blade structures is that of the torque
curve with a sequence of cases in steady state operation. Due to computation time
constraints, the numerical torque is predicted at four specific wind speed values: 7,
10, 13 and 20 m/s. These operation points, which are also analyzed by Sørensen et al.
[109], are of importance here because they span the entire operation range of the wind
turbine including flow regimes for attached flow (7 m/s), stall onset (10-13 m/s) and
fully detached flow (20 m/s). A simulation case is set up for each one of the wind
speeds and for each one of the blade models.
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Figure 6.14: Aerodynamic coefficients at 20 m/s.

All simulations are run from an initialization point in which the flow speed is set
to the inlet velocity magnitude; for this reason, the computational time needed for the
stabilization of the transient solution depends on the inlet flow speed, this parameter
determines the time it takes for initial transient vortices to be transported downstream
to the pressure outlet by the action of convection. The torque time history is shown in
Figure 6.15 for the cases involving the reference blade; revealing at least two important
facts: first, the stabilization time decreases as the inlet wind speed increases and sec-
ond, the stabilization of the integral torque comes accompanied by oscillations as the
wind speed increases towards stall onset and deep stall. The same kind of behavior is
observed for the simulations with the coupled blade, shown in Figure 6.16.

Initial transients are disregarded from the mentioned time history plots, but the
long term stabilization of torque is assumed as an indicator of convergence or more
precisely, stabilization of the transient solution. The net mass flow rate residuals for
the fluid flow solution are monitored in a similar way, and besides stabilizing much
more rapidly, i.e. before a flow time of 1 s, the values stabilize around 1× 10−4 kg/s.
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The data transfer process between structural and fluid flow solvers is governed by the
System Coupling GUI and a revision of the mapping diagnostics for the blade surface,
where information is being interpolated from one solution to the other, is made to
ensure that most of the node and element locations where information is being sourced
and transferred into is being identified and used by the data transfer processes. The
percentage of mapped nodes, elements and surface area is above 99% for the data
transfers of both pressure and displacement, which is expected due to the almost
identical geometries used in the structural and fluid flow solutions. The diagnostics on
the convergence of the coupling procedure itself are also observed during the general
solution, to ensure identical rms residual change in data transfers between source and
target locations at the end of each coupling step.

The postprocessing of CFD solutions for the co-simulation cases on the reference and
coupled blades included an estimation of the pressure coefficient at different blade-
wise locations from static pressure distributions around the perimeter of the blade
cross sections. The results are presented in Figure 6.17, and comprise three different
wind speeds and the two blade structures of the reference and coupled cases respec-
tively. The estimation of the static pressure coefficient (Cp) uses the local dynamic
pressure, and this is computed with an approximation of the relative wind speed as
a function of both the radius and the free-stream wind speed. Because of the induced
velocities in the axial and tangential directions, the tangential and free-stream wind
speed are actually different from ωr and V∞ respectively, however assuming negligible
induction for this exercise is a fair simplification, justified on the fact that Cp ≈ 1 for
the stagnation point of almost all cases.

Because of the increase in twist angle towards the blade root and the corresponding
increase in angle of attack, it is often at inner blade stations that the flow behavior is
less regular and starts showing indications of flow separation. This seems to be the
case of the Cp distributions at r = 1.17 m, which show the largest difference between
the suction and pressure side and the most steep pressure gradient for the suction
side, where Cp is mostly negative; in addition this blade station blends the shape of
the S809 airfoil with the circular cross section at the root, which makes it relatively
thicker with respect to the shape of the remaining sections.

At 7 m/s the differences in Cp distributions are hardly noticeable, except for the
innermost blade station of the coupled blade (Figure 6.17b) which reveals a more
benign pressure gradient at the suction side for x >0.4. Other than that, the pressure
peaks at the suction side remain placed at the same location for all the blade stations,
in both the reference and coupled blade scenarios. The location of the stagnation points
shows no change between coupled and reference blade cases but there is an increase
in the x coordinate with smaller radial position; this is expected due to the increase in
angle of attack for inner blade stations.

At 13 m/s there are more interesting features such as the greater spread in the stag-
nation points location; this is of course a result of the larger angles of attack, derived
from the increased freestream wind speed. The pressure gradients for the sections at
r = 1.17 m and r = 3.05 m reveal an important difference as the coupled blade shows
a more gradual increase in static pressure for x >0.4 in comparison with the reference
blade, in which a steep increase in pressure can be observed right after x =0.6. The
second interesting element is the broad shape of the pressure peaks at the suction side
for the blade stations at r = 1.17 m and r = 3.05 m; the plateau shape for r = 1.17 m
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Figure 6.15: Torque convergence history for the reference blade.
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Figure 6.16: Torque convergence history for the coupled blade.
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right after the initial peak may hint at separation phenomena close to the leading edge.
For r = 3.05 m there is a secondary peak instead of a plateau indicating perhaps the
continuation of an irregular flow pattern over the suction surface of the blade. It is
curious that the station at r = 1.92 m, placed in between the aforementioned locations,
shows little relation with the adjacent Cp distributions. This inconsistency might point
to a variation in the flow patterns in the radial direction. In fact, radial flow is one of
the characteristics of the fluid flow around a wind turbine blade that is neglected in
the BEM analysis, but becomes clear with the use of a 3-D FVM solution of the fluid
domain.

At 20 m/s the Cp distribution for the innermost blade section shows greater separa-
tion between suction and pressure side profiles, and the pressure gradient for the suc-
tion side appears to be slightly softer and to start further away from the leading edge
for the coupled blade in comparison with the reference blade. This situation occurs
between x =0.4 and x =0.6 and can be observed in Figure 6.17f; with the lower limit
marking the approximate position for the maximum thickness and thus, the threshold
from which flow separation due to adverse pressure gradients forms. The Cp distribu-
tions for the remaining blade sections remain relatively uniform along the blade and
between the reference and coupled blade cases. Interestingly, the pressure gradients at
the intermediate and external blade sections are moderate, with no abrupt variations
beyond x =0.4 regardless of the blade structural configuration. Considering the higher
freestream wind speed for this case and the resulting higher magnitudes in the distri-
bution of α, it is very likely that the blade is operating under separated flow conditions
to some degree along most of its span.

The postprocessing of static pressure distribution is followed by a similar treatment
of shear stress over the blade sections, with the goal of obtaining the necessary inputs
for estimating the normal and tangential force coefficients per unit length on each one
of the analyzed blade sections. At this point it is important to bear in mind that the
normal and tangential names refer to the components of aerodynamic force that are
normal and tangential to the chord line of each section, instead of the force compo-
nents for a blade element in a reference plane oriented with the blade rotation plane
and the rotation axis. The full set of data is presented in Figure 6.18 and is assembled
from three different sources: the experimental results, which are actually an estima-
tion from the measurements of the NREL Phase VI experiment, the computations with
the current simplified framework (BEM and static deflection profiles) and, the compu-
tations from the current robust simulation framework (2-way FSI). Three wind speed
magnitudes are considered and, for each plot, the direct comparison between refer-
ence and coupled blade structures is presented, for both the simplified and robust
simulation frameworks.

From a general perspective, the apparent accuracy of the present computations of-
fers mixed results, matching the experimental measurements in some cases better than
others. The results at 7 m/s illustrate this initial impression very well; on one hand,
the normal force coefficients appear to match relatively well to the experimental values
and, on the other, the tangential force coefficients are quite different from the experi-
ment for both prediction methods. At 13 m/s the results are more balanced, since the
match between numerical and experimental results improves for both the normal and
tangential force coefficients. At this intermediate wind speed, the experimental results
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(c) Reference blade at 13 m/s.
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Figure 6.17: Pressure coefficient distributions for the robust framework co-simulations.
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are characterized by a non-monotonic variation, this feature is replicated by the robust
simulation framework, although, in both cases the comparison of a continuous profile
is being represented in 5 locations only; in contrast, the more spatially resolved simpli-
fied framework reveals a gradual variation for both coefficients, which despite being
non-monotonic for the tangent force, remains smooth and continuous for the mid and
outboard blade sections.

At 20 m/s the results are notably positive even though each simulation framework
outperforms the other depending on the predicted coefficient. The normal force coeffi-
cient in Figure 6.18e is clearly better predicted by the simplified simulation framework,
matching the experimental data for most of the mid and outboard blade sections.
Despite underpredicting normal force coefficients, the robust simulation framework
outperforms the simplified one at the prediction of the tangential forces, despite the
visible differences between the reference and the coupled blade structure.

The difference between reference and coupled blades throughout the different sim-
ulation cases is less noticeable for the scenarios with a wind speed of 7 m/s which is
expected given the known dependency of the bend-twist coupling mechanism on the
wind speed magnitude. At 20 m/s the differences in normal and tangential coefficients
are evident but not substantially. Given the steady nature of the simulations performed
with the simplified simulation framework and the involved BEM treatment of the flow,
the respective results are more regular and consistent with the expected behavior of
the blade as a function of wind speed. The results of the robust simulation framework
differ in that there is not a consistent difference between the sets of results for the
reference and coupled blades. It is important to consider that these simulations are
unsteady and are very likely to involve detached flow conditions at wind speeds of 13

m/s and 20 m/s; for this reason, the resulting aerodynamic loads are oscillatory and
the presented coefficients give only a glimpse of the latest instant in the time history of
the solution. A long-term time average is not shown as the postprocesing of the aero-
dinamic coefficients would require the solution for the entire flow field to be stored
for a sufficiently large amount of time steps; computer storage constraints make this
impossible for the current work. Additionally, because normal and tangential forces
are linear combinations of lift and drag for a given angle of attack, the interpretation
of the effect of coupling on the behavior of aerodynamic forces is not as intuitive as it
is when the comparison focuses directly on lift and drag, as is the case for the results
of Cl and Cd discussed earlier in this chapter.

Seven locations along the blade length are used for sampling vertical displacement
along the z-axis and torsional rotation in the longitudinal or y-axis (See Figure 6.3).
The radial positions at which the structural solution is being sampled is derived from
the sections used to determine the laminate drop-offs according to Chapter 5. This way
of defining the sampling positions aims to simplify the handling of the blade mesh in
Ansysr, as the definition of the virtual nodes at which data is recovered requires the
use of partition boundaries of features in the blade geometry.

Figures 6.19a and 6.19b show flap-wise or out-of-plane displacement in the nega-
tive z direction. At a first glance, the results reveal the typical deformation profile for
a cantilever beam and indicate also that displacement magnitude increases in direct
proportion to wind speed. The latter statement is somewhat expected for a constant
angular speed machine. There is also a hint of non-linearity with respect to wind speed
when the displacements for outboard blade stations are inspected; for instance the re-
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Figure 6.18: Blade-wise distributions of normal and tangential force coefficients.
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sults at 10 m/s and 13 m/s seem to be mutually clustered and more separated from
the results at 7 m/s or 20 m/s. This behavior raises some questions but is not new at all
since it has been already reproduced in similar analysis, for instance the work of Lee
et al. [45]. From the work of Section 4.2 it is clear that aerodynamic instabilities associ-
ated to flow detachment from the blades is responsible for non-linear behavior of rotor
torque. Furthermore, the flow conditions responsible for stall between 10 m/s and 13

m/s, as in this range the torque curves reach their peak values before decreasing at
higher wind speeds; in consequence the non-linear aerodynamic loads experienced at
wind speeds around peak torque are the most likely cause of non-linear deflections at
the very same wind speeds.

When comparing the magnitude for maximum displacement, which happens at the
tip of the blade (r =5.029 m) and at 20 m/s, the coupled blade results show a larger
magnitude by approximately 6.6 mm. Despite aiming for flap-wise bending stiffness
as close as possible to the one from the experimental blade, the reference blade model
implementation is slightly stiffer between the inner and midboard blade sections, as
can be observed when comparing Figure 5.4b to Figure 5.7b.

The torsional displacement for the reference blade model, shown in Figure 6.19c,
reveals a relatively weak coupling between flap-wise bending and torsional displace-
ments since the magnitude of blade section rotations is of the order of 1× 10−2 de-
grees. The rotation angle has a non-monotonic variation while it appears to increase.
The maximum rotation, at least among the set of sampling locations, is observed at
the fifth probe location counted from the blade root (r = 3.013 m), this is happens
for all wind speeds. It is likely that the aerodynamic force applied at a distance from
the elastic axis of the blade is responsible, at least partially, for the observed rotation
in the reference blade. When defining the laminate groups for the reference blade, an
analysis with classical lamination theory shows that the bend-twist coupling terms in
the force and moment resultants for the considered laminates in rectangular plates are
exactly zero. Even though the laminates in the reference blade have no bend-twist cou-
pling, the blade geometry is more complicated than a rectangular flat plate, therefore
material based coupling cannot be ruled out of the reference blade model. Assuming
thin plate theory, an order 1× 10−2 change in angle of attack should result in an order
1× 10−3 change in lift coefficient, therefore aerodynamic forces should be insensitive
to the amount of coupling seen in the reference model.

When observing the results for the blade structure with bend-twist coupling in Fig-
ure 6.19d an evident contrast arises with respect to the reference blade. First, the bend-
twist coupling increases the order of magnitude in blade rotation to 1 × 10−1, this
happens for all wind speeds in the middle and outer blade sections. The displacement
profile for the coupled blade is similar to the profiles observed in Figure 6.9 which
were predicted with the 1-way FSI approximation. At r =1.257 m, where the third
sampling point is located, the rotational displacement profile shows a steep change in
slope, most likely due to the marked change in thickness as the core plies of the blade
root meet the transition area between the cylindrical and airfoil shapes.

The prediction of torque values from the FSI analysis of the reference and coupled
blades is presented in Figure 6.20 along with the experimental values at each corre-
sponding wind speed. The shape of the torque curves for the reference and coupled
blade are relatively close to each other, with the torque of the latter being slightly
higher than the torque of the former, and more notably at 13 and 20 m/s. This in-
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Figure 6.19: Structural responses for reference and coupled blade.

dicates that the pitch towards feather via bend-twist coupling has a positive effect
in increasing the amount of torque delivered by the rotor; with the increase being
stronger at higher wind speeds. From the data of the reference and coupled series of
Figure 6.20 it is also evident that the numerical calculations with the robust simulation
framework result in torque underpredictions with respect to the experimental data
published in the sequence S measurement campaign (NREL Phase VI experiment [1]).

The discrepancy between numerical results and experimental data is even more
notorious at 10 and 13 m/s, two wind speeds at which the prevailing separation and
stall effects heavily determine the aerodynamics around the blade. This is a critical
issue in the prediction of rotor loads for fixed pitch wind turbines which is not being
taken into consideration in the mathematical model of Ansysr Fluent. Flow separation
and its role on stall behavior cannot be predicted with the present k−ω SST turbulence
model, and this is one of the main limitations of the robust simulation framework.
Furthermore the CFD mesh has a resolution constraint from the computational resource
which limits the mesh size to less than 4 million cells while the mesh deformation
procedure puts an extra constraint on the wall adjacent element size and slenderness
due to element quality considerations; in consequence, a wall adjacent mesh resolution
with y+ ≈30 is the best possible result. An additional set of simulations on the fluid
flow solver for steady state flow and no blade deformation are carried out, this time
using a much more finely resolved mesh, allowing for y+ ≈ 2 in the near wall region.
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Figure 6.20: Low speed shaft torque at different wind speeds.

The results for this round of simulations are closer to the experimental results as Figure
6.20 shows, bus this is true for wind speeds of 10 and 13 m/s.

Besides providing an overview of torque predictions with respect to the experi-
mental data, the predictions in blade root bending moments are also included. The
objective of assessing the performance of the blade from a structural point of view,
contemplates the analysis of the flap-wise and edge-wise bending moments. The flap-
wise bending moment is perhaps the most critical for the structural integrity of the
blade root assembly; it is dominated by the bending action of the thrust force which
has contributions from both drag force and a component of lift force at every section
of the blade. The prediction of flap-wise bending moment from the robust simulation
framework is shown in Figure 6.21, revealing two main outcomes: the results are close
to the experimental measurements, at least within the error boundaries and the action
of bend-twist coupling is stronger at the higher wind speeds.

The edge-wise bending moment results are shown in Figure 6.22 along with experi-
mental data and their associated error. An underestimation of moment is observed for
all wind speeds except at 20 m/s; nevertheless, the standard deviation of experimental
edge-wise bending moment is relatively large, at least with respect to other measured
quantities such as shaft torque. Again, following the expected dependency of bend-
twist coupling strength and free-stream wind speed, the results for the coupled blade
begin deviating from the reference values for the cases at 10, 13 and 20 m/s.
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Figure 6.21: Flap-wise bending moment at the blade root.
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Figure 6.22: Edge-wise bending moment at the blade root.

A second part of the comparative analysis is performed using an implementation
of the BEM model including dynamic induction, stall delay and dynamic stall effects
as described in Chapter 4. The aerodynamic solution provided by the BEM model is
now interacting with a very simple approach to the blade deformation which consists
in an interpolation of the blade local torsion as a function of radial position and free-
stream wind speed, using as an input the results from the 1-way FSI analysis (see
Figure 6.9). Two sets of data are initially generated for the comparison of the reference
blade and the coupled blade, these are a set curves of thrust versus wind speed and,
a set of curves of power versus wind speed. Since the NREL Phase VI wind turbine is
a constant speed machine, the mechanical power is computed as the product between
torque and angular speed.

According to Figure 6.23 bend-twist coupling, as implemented for the present model,
seems to have a small effect on the rotor integral thrust force. The reduction in thrust
force, which is a desirable scenario from a load mitigation point of view, is barely
noticeable and mostly at higher wind speeds at which the bend-twist coupling effect
is already known to provide a stronger response in torsional displacement. Putting
load magnitudes aside for a moment, it is also evident that the implemented coupling
does not increase loads in the axial direction, therefore, the design of other components
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Figure 6.24: Power curve comparison

such as the tower and foundations would not be impacted from the use of a blade with
bend-twist coupling.

By observing the power curve predictions from Figure 6.24 one can immediately
see a different scenario, as the power for the bend-twist coupling blade is consistently
higher than the reference power for a broader range of the operating envelope. For
wind speeds beyond 10 m/s, the bend twist coupling is effective in increasing rotor
torque by inducing a local torsion into the feather position along the blade. When
pitching the blade into feather, the angle of attack tends to decrease and even though
lift can be decreased as well, the reduction in drag forces might be significant enough
as to result in an overall torque gain.

When it comes to power or torque increments due to bend-twist coupling, both the
robust and simplified simulation frameworks give consistent results with respect to
each other. The percentual increments that are shown side-to-side in Table 6.3 indicate
that both simulation strategies give similar predictions of the torque increment due to
the coupled blade structure. In more detail, the results at 7, 13 and 20 m/s are relatively
close to each other whereas the torque increment at 10 m/s shows the largest discrep-
ancy out of all four wind speed cases. Despite existing discrepancies, the simplified
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V [m/s]
Simplified framework torque [N-m] Robust framework torque [N-m]

Reference Coupled
Increment

(%)
Reference Coupled

Increment
(%)

7 1710.3 1713.5 0.2 702.4 705.6 0.5
10 2374.8 2409.8 1.5 1032.7 1036.0 0.3
13 1689.9 1810.1 7.1 846.7 906.0 7.0
20 1639.1 1719.9 4.9 1117.4. 1128.9 1.0

Table 6.3: Torque prediction comparison between the proposed simulation frameworks.
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Figure 6.25: AEP curve comparison.

simulation framework is surprisingly close to the results from the robust framework
at wind speeds that have been known for the adverse flow regimes, i.e. 13 m/s and 20

m/s; however, the fact that the simplified simulation framework imposes a torsional
displacement as a function of wind speed and blade position from linear interpolations
must not be overlooked; this is a significant assumption compared with the strongly
coupled 2-way FSI from the robust simulation framework.

Perhaps a more global perspective can be given by considering the effect of the
coupling through composite material configuration on the AEP of the rotor, at least
considering mechanical energy only. For this purpose the wind resource is represented
by a Rayleigh probability distribution and a set of average wind speeds ranging from
4 m/s to 11 m/s. The results in Figure 6.25 show that the maximum AEP for the
reference blade is happens at 11 m/s with 99.2 MWh whereas for the coupled blade
the maximum AEP at the same average wind speed is 102.2 MWh. The increment in
AEP due to bend-twist coupling is relatively small at wind speeds from 4 to 7 m/s,
but grows at higher wind speeds, reaching a 1.5% improvement at 7 m/s and a 3%
improvement at 11 m/s. At higher wind speeds the AEP curve appears to flatten, and
the power increments grow more slowly, reaching 3.5% at 14 m/s.

6.5 extreme wind loading

After the introduction of the extreme wind model in Section 6.1 and the adoption of the
reference wind speed for a Class III small wind turbine, two simulations are performed
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on the reference and coupled wind turbine blades, following the set up for the normal
operation torque curves and considering the following aspects: 1) the velocity inlet
boundary condition is set to the extreme wind magnitude with recurrence period of
one year, Ve1 = 39.4 m/s and 2) Assuming a parked condition, the angular velocity is
set to zero. Because of the much greater inlet wind speed, the solution in the robust
simulation framework tends to stabilize faster, well before 1 second of flow time.

The structural response of the blades in terms of flap-wise displacement and torsion
is shown in Figure 6.26, revealing familiar profiles to the ones observed for the normal
operation cases. Torsional displacement for instance, is characterized by a relatively
small order of magnitude (1× 10−2) and a non-monotonic increase along the radius
in the case of the reference blade. The torsional displacement of the blade with bend-
twist coupling has a defined tendency to increase with the radial position and reaches
a maximum of about 0.64° at the tip of the blade. The nature of the case from an
aerodynamic perspective is in essence the same of a flat plate normal to the flow, since
the blade is not rotating and much of its length is placed at an almost 90° orientation
with respect to the freestream wind; it is for this reason that drag force, instead of
lift, can be expected to be the dominant load driving the deformation of the blade.
It is also sound to expect that the aerodynamic moment acting on the blade along its
longitudinal axis (y-direction for reference in Figure 6.3) is partially responsible for the
torsional displacement adding to the coupling induced rotation; this is a very likely
scenario, as drag force exerts a normal pressure on the blade in the same direction as
the flap-wise deflection.

Further analysis on the main aerodynamic moments and forces acting on the blade
indicates that the effect of bend-twist coupling in the aerodynamics of the blade is
not detrimental to the load state of the blade. The magnitudes of the three bending
moments and the magnitudes of tangential and axial force acting on the static blade
are organized in Table 6.4 to highlight the relative change for the coupled blade with
respect to the reference structure.

Flap-wise
moment
[N-m]

Edge-wise
moment
[N-m]

Torsional
moment
[N-m]

Axial Force
[N]

Tangential
force [N]

Reference
Blade

-7214.36 1375.69 288.44 -2525.57 -545.92

Coupled
Blade

-7235.30 1429.58 286.52 -2530.76 -562.32
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Table 6.4: Load analysis at the blade root

One of the most important loads is the bending flap-wise moment because it plays
an important role on the cost of the blade to hub attachment. As result of the cou-
pling, this load is increased by 0.3% with respect to the baseline blade. The axial force,
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Figure 6.26: Flap-wise and torsional displacement for the EWM.

generated mainly by drag due to the blade static position, sees an equally small in-
crease of about 0.2% with respect to the corresponding value for the reference blade.
An observed 3.9% increase in edge-wise moment is consistent with the 3% increase
in tangential force and both outcomes are a consequence of the observed torsional
displacement from Figure 6.26b which decreases the angle of attack through a pitch
action towards feather, specially for the blade tip region. By reducing the angle of
attack along the blade length, some degree of lift force may contribute to the aerody-
namic force resultant since not only the inboard region of the blade but other sections
near the tip are likely to be in a deep stall flow condition as opposed to the normal flow
scenario; in consequence, an increase of about 16 N in tangential force is experienced.



C O N C L U S I O N S

An actuation mechanism for regulating rotor power has been proposed and analyzed
with numerical simulation by two different approaches: a simplified simulation frame-
work, with BEM modeling of rotor aerodynamics and a pseudo-coupling between the
aerodynamics and the steady analysis of blade deformation and, a robust simulation
framework for 2-Way FSI analyses considering 3D FVM modeling of the aerodynamics
and a 3-D modeling of the composite structure.

The simulation of fluid-structure interaction is performed at two levels of complexity,
but capable of considering transient phenomena from either approach. The robust
simulation framework offers the most general modeling of the involved phenomena:
non-linear aerodynamics, including the effects of turbulence and blade rotation and,
non-linear structural behavior, considering the anisotropic properties of a composite
material structure. The source of experimental measurements considers a fixed speed
rotor for all campaigns, therefore a constant angular speed is set for all the numerical
analysis in order to establish a direct comparison between predicted and real behavior.
This is a substantial simplification, that eliminates the need for additional simulation
of the generator internal dynamics into the coupled framework. The same can be said
of the simplified simulation framework which can still reproduce transient variations
in angular speed as well as free-stream wind speed and blade deformations.

An ideal distribution of bend-twist coupling has been proposed by a simple exercise
of determining the sensitivity of blade tip rotation to the orientation of off-axis fibers
for the blade with a coupled structure. The behavior of tip rotation revealed a well-
defined variation with a clear peak value for fibers placed at a 20° with respect to the
blade longitudinal axis. This information is used to propose a blade structure that suc-
cessfully undergoes a torsional deflection along its longitudinal axis in response to an
aerodynamic load. This excercise is performed at the same time that the flexural and
torsional stiffnesses of the original blade are maintained as close as possible to the lev-
els of the experimental blade; the resulting blade structures are the result of a trial and
error study on the proposed blade structures since the experimental blade structure is
not specified beyond a series of spanwise distributed mechanical properties. The main
analysis of the coupled blade structure, other than the 2-way FSI studies in the robust
simulation framework, are condensed into a series of steady-state, 1-way interaction
simulations that demonstrate the efficacy of the coupled composite structure, with 20°
fibers, for inducing a rotation of increasing magnitude as the freestream wind speed
is increased from the cut-in value to the cut-out value.

The robust analysis of the coupled blade structure is accompanied by a twin analy-
sis under the same operating conditions but, considering the reference blade structure.
This reference blade is made also of composite materials and, because of the natural
location of the elastic axis through the blade, there is a small amount of rotation with
magnitudes of the order of 1× 10−2. The results of both analyses are compared to find
out that the use of bend-twist coupling as a mechanism for passive blade torsion can
induce a positive change in the resulting annual energy production, with a 3% increase
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considering a Rayleigh distribution with an average wind speed of 11 m/s. This results
are obtained by a torsion towards the feather position, which decreases the angle of
attack and in consequence results in an increased L/D ratio whenever the associated
change in drag outweighs the change in lift. Because lift is reduced, a secondary con-
sequence of the proposed actuation mechanism is a reduction of the total thrust force
over the rotor blades for most of the wind speeds within the operation range, particu-
larly between 15 and 25 m/s at which the total thrust force sees a reduction of about
0.35%. Despite the fact that a more substantial reduction in thrust force would be a
highly desirable scenario, the modest change observed here is still favorable because it
suggest that the improvement in rotor torque and hence power comes at no cost from
the point of view of the thrust loading which eventually impacts the cost of the entire
turbine assembly.

The feasibility of a blade with bend-twist coupling is demonstrated from a struc-
tural point of view from the analysis of blade root loads under extreme wind con-
ditions with a 39.4 m/s wind speed in parked conditions. As a consequence of the
bend-twist coupling, the flapwise bending moment increases by 0.3% and the axial
force increases by 0.2%, both of these magnitudes are dominated by drag forces acting
on the blade due to its orientation at very high angles of attack, i.e. 80°-90°. Edgewise
bending moment and side forces are most likely caused by lift, these experience incre-
ments of 3.9% and 3% respectively, and have generally smaller magnitudes than their
axial counterparts, for instance a 1 to 5 ratio between flapwise and edgewise bending
moments. These results evidence a negligible increase in the critical blade loads when
bend-twist coupling is implemented as a part of the structure.

aerodynamic modeling

The modeling of the aerodynamic loads acting on the rotor blades is a very sensible
part within an FSI analysis and its application to a wind turbine rotor blade brings
additional challenges into the table. The high Reynolds number over the outer portion
of the blade means that turbulence is to be considered whereas the rotational motion
of the blades cause radial flow and the departure of sectional aerodynamic coefficients
from the theoretical 2D values. The first effort to tackle these issues is performed as an
implementation of a BEM model with a proposed correction for three-dimensional flow
effects which proves to accurately predict mechanical torque with an error no greater
than 11.5% and the flapwise bending moment with an error no greater than 13.6%.
This is a fundamental step to be able to predict aerodynamic loads with an acceptable
accuracy but in a short computational time, which is the main goal of the simplified
simulation framework.

The FVM analysis used for the robuts simulation framework includes a separate
validation step from the main studies on the wind turbine blade; this is done on an
industrial fan blade with a thin plate section geometry. The validation case for the CFD

analysis shows favorable results for the fluid flow stand alone solutions and for the
coupled problem but reveals discrepancies for the analysis of the NREL Phase VI wind
turbine blade. These discrepancies between predicted and experimental torque arise
at high wind speeds which is consistent with the difficulties encountered by other
authors addressing the analysis of wind turbine operation in stall conditions.
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The resolution of the near wall mesh and its role on the turbulence modeling of
the near wall flow properties is perhaps the crux of the fundamental issue on the
discrepancies between the CFD validation case and the analysis of the wind turbine
blade. The blade from the validation case is prone to operate under leading edge
separation conditions because of the thin plate geometry and the small leading edge
radius, therefore, the solution might be less sensitive to the y+ than in a case with
attached flow, which would justify the good results despite the coarse mesh used to
discretize the condenser fan blade. In contrast, the analysis of the wind turbine blade
involves the geometry of thick airfoil with a relatively large leading edge radius that
ensure partial operation with fully attached flow conditions. Because of the influence
of the near wall flow solution on the overall prediction of shear-stresses and therefore
of friction drag, the analysis of the wind turbine may be more sensitive to the wall
y+. The computational time restrictions place a direct constraint over the near wall
mesh resolution; because wall y+ is limited above a value of 30, there may be a poor
prediction of the flow conditions around the wind turbine blade at some operating
conditions.

approach to fluid-structure interaction

Judging the magnitude of blade tip transverse displacements with respect to the to-
tal length, the case can be assumed lineal from a structural point of view, which is
adequately described by the modeling in composite materials as demonstrated by the
validation case of a bend-twist coupled D-spar. The information transfer processes
from the robust simulation framework is carried out with no difficulties because of
the nearly identical geometries between fluid and solid meshes, additionally, the ele-
ment size on both sides of the mesh ensure that profile preserving and conservative
data transfers are carried out successfully depending on the interpolated variable. The
third aspect of the FSI analysis is the aerodynamic modeling, which as discussed earlier,
presents important challenges when applied to the analysis of a wind turbine.

The largest discrepancy from the results obtained with the robust simulation frame-
work are attributed to the aerodynamic modeling and its difficulty in predicting the
flow properties under separated flow. It is for the torque predictions where the robust
simulation framework presents the most significant discrepancies with respect to the
experimental data; however, despite of the error in the reference blade torque predic-
tion, the increment in torque due to bend-twist coupling appears to be consistent with
the results from the simplified simulation framework.

In fact the direct comparison of torque increment due to bend-twist coupling be-
tween the robust and simplified simulation frameworks, show that the correct pre-
diction of torque when the blade experiences a rotation due to flapwise bending is
consistent in terms of relative percentage for the different wind speeds at which the
analysis is performed.
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approach to bend-twist coupling

What could be regarded as the central analysis of this work, the estimation of change
in annual energy production due to bend-twist coupling, is performed with the sim-
plified simulation framework because it offers the possibility of computing full torque
and power curves for the entire wind speed operational envelope. Due to computa-
tional time constraints the robust simulation framework analyses are limited to four
wind speed cases. Despite this limitation, the improvement in torque due to bend-twist
coupling can reach up to 3% considering an average wind speed of 11 m/s, the anal-
ysis on the flapwise bending moment and total rotor thrust show that there is little
increment in these critical loads and, the one to one comparison of torque increase
for the robust and simplified frameworks are consistent with each other as discussed
earlier.

The way in which bend-twist coupling is incorporated into the present blade struc-
ture follows a relatively simple methodology dependent on material anisotropy to
induce structural coupling, the most important task in this procedure is perhaps the
definition of the angle orientation for the reinforcement fibers inside the composite
materials. Despite the fact that 20° fiber off-axis angles have been defined in a direct
and simplistic way from a sensitivity analysis, the results show that material based
bend-twist coupling effectively increases torque, especially for wind speeds above 13

m/s. This is contrary to the expectations to observe a more substantial increase at low
wind speeds and a consequence of the observed impact of drag forces on bending at
high and very high wind speeds. Nevertheless, the increase in rotor torque for wind
speeds below 10 m/s is evidenced from the robust simulation framework (1.5%) and
from the simplified simulation framework (0.3-0.5%).

The resulting increases in torque are substantial despite the simplicity of the wind
turbine blade, consisting of outer shells as the main and only load carrying members.
This consideration for the structural concept is proposed mainly to preserve the typical
architecture of small wind turbine blades, which usually have no internal components.
The main outcome is the demonstration of an attractive improvement in power output
that has little structural complexity provided that composite material manufacture is
considered as a part of the reference blade.



B I B L I O G R A P H Y

[1] MM Hand, DA Simms, LJ Fingersh, DW Jager, JR Cotrell, S Schreck, and SM Lar-
wood. Unsteady aerodynamics experiment phase vi: wind tunnel test configu-
rations and available data campaigns. Technical report, National Renewable
Energy Lab., Golden, CO.(US), 2001. (Cited on pages viii, 2, 70, 73, 96, 100,
and 129.)

[2] K Hayat and S K Ha. Load mitigation of wind turbine blade by aeroelastic
tailoring via unbalanced laminates composites. Composite Structures, 128:122–
133, 2015. doi: 10.1016/j.compstruct.2015.03.042. (Cited on pages viii, 7, 8, 16, 18,
and 103.)

[3] John N. Bertin and Russell M. Cummings. Aerodynamics for Engineers-6th ed.
Pearson, 2014. (Cited on pages viii, 27, and 28.)

[4] Satish Kumar Chimakurthi, Steve Reuss, Michael Tooley, and Stephen Scampoli.
ANSYS Workbench System Coupling: A state-of-the-art computational frame-
work for analyzing multiphysics problems. Engineering with Computers, 34:385–
411, 2018. (Cited on pages viii, 56, 57, and 58.)

[5] M F G Serra and M C van Schoor. Aeroelastic tailoring of a horizontal
axis wind turbine. Wind Engineering, 19(4):193–207, 1995. URL https:

//www.scopus.com/inward/record.uri?eid=2-s2.0-0029413765{&}partnerID=

40{&}md5=833950c2872201438c37c09e51d56f65. (Cited on pages viii and 60.)

[6] ANSYS, Inc. System coupling user’s guide, release 2021 r2, 2021. (Cited on
pages viii, 59, 60, and 61.)

[7] C H Ong, J Wang, and S W Tsai. Design, manufacture and testing of a bend-twist
d-spar. In 37th Aerospace Sciences Meeting and Exhibit, pages 43–52, 1999. (Cited
on pages xi, 4, 79, 80, and 81.)

[8] John H Chujutalli, Guilherme Pimenta da Silva, and Segen F Estefen. Determina-
tion of the geometric and material properties of the nrel phase vi wind turbine
blade. Marine Systems & Ocean Technology, 16(2):69–83, 2021. (Cited on pages xi,
97, 98, and 100.)

[9] Don Lobitz and Paul Veers. Aeroelastic behavior of twist-coupled HAWT blades.
In 1998 ASME Wind Energy Symposium, Reston, Virigina, jan 1998. American
Institute of Aeronautics and Astronautics. doi: 10.2514/6.1998-29. URL http:

//arc.aiaa.org/doi/10.2514/6.1998-29. (Cited on pages 4, 13, 14, and 109.)

[10] T D Ashwill, P S Veers, J Locke, I Contreras, D Griffin, and M D Zuteck. Concepts
for adaptive wind turbine blades. In Wind Energy Symposium, pages 56–69, 2002.
(Cited on page 4.)

140

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029413765{&}partnerID=40{&}md5=833950c2872201438c37c09e51d56f65
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029413765{&}partnerID=40{&}md5=833950c2872201438c37c09e51d56f65
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029413765{&}partnerID=40{&}md5=833950c2872201438c37c09e51d56f65
http://arc.aiaa.org/doi/10.2514/6.1998-29
http://arc.aiaa.org/doi/10.2514/6.1998-29


bibliography 141

[11] P S Veers, T D Ashwill, H J Sutherland, D L Laird, D W Lobitz, D A Griffin,
J F Mandell, W D Músial, K Jackson, M Zuteck, A Miravete, S W Tsai, and J L
Richmond. Trends in the design, manufacture and evaluation of wind turbine
blades. Wind Energy, 6(3):245–259, 2003. doi: 10.1002/we.90. (Cited on pages 4

and 11.)

[12] D A Griffin, D Berry, M D Zuteck, and T D Ashwill. Development of prototype
carbon-fiberglass wind turbine blades: Conventional and twist-coupled designs.
In 42nd AIAA Aerospace Sciences Meeting and Exhibit, pages 1–12, 2004. (Cited on
page 5.)

[13] T D Ashwill. Passive load control for large wind turbines. In 51st AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th
AIAA/ASME/AHS Adaptive Structures Conference 12th, 2010. (Cited on page 5.)

[14] Don W Lobitz. Ramifications of aeroelastic analysis approximations as blade
designs approach stability boundaries. In 42nd AIAA Aerospace Sciences Meeting
and Exhibit, pages 203–210, 2004. (Cited on pages 5 and 108.)

[15] A Maheri, S Noroozi, C Toomer, and J Vinney. A simple algorithm to modify
an ordinary wind turbine blade to an adaptive one. In European Wind Energy
Conference, volume 2, pages 1195–1202, 2006. (Cited on pages 5, 15, 16, and 18.)

[16] R Thresher and A Laxson. Advanced wind technology new challenges for a new
century. In European Wind Energy Conference & Exhibition 2006 , volume 3, pages
2543–2551, 2006. (Cited on page 6.)

[17] R F Nicholls-Lee and S R Turnock. Enhancing performance of a horizontal axis
tidal turbine using adaptive blades. In OCEANS 2007-Europe, 2007. doi: 10.1109/
oceanse.2007.4302437. (Cited on pages 6, 16, and 18.)

[18] M Capuzzi, A Pirrera, and P M Weaver. A novel adaptive blade concept for
large-scale wind turbines. Part I: Aeroelastic behaviour. Energy, 73:15–24, 2014.
doi: 10.1016/j.energy.2014.06.044. (Cited on pages 6 and 18.)

[19] M Capuzzi, A Pirrera, and P M Weaver. A novel adaptive blade concept for large-
scale wind turbines. Part II: Structural design and power performance. Energy,
73:25–32, 2014. doi: 10.1016/j.energy.2014.04.073. (Cited on pages 6 and 18.)

[20] M Capuzzi, A Pirrera, and P M Weaver. Structural design of a novel aeroelas-
tically tailored wind turbine blade. Thin-Walled Structures, 95:7–15, 2015. doi:
10.1016/j.tws.2015.06.006. (Cited on pages 7, 10, 16, and 18.)

[21] M T Herath, A K L Lee, and B G Prusty. Design of shape-adaptive wind turbine
blades using Differential Stiffness Bend-Twist coupling. Ocean Engineering, 95:
157–165, 2015. doi: 10.1016/j.oceaneng.2014.12.010. (Cited on pages 7 and 14.)

[22] F Zahle, C Tibaldi, C Pavese, M K McWilliam, J.P.A.A. Blasques, and M H
Hansen. Design of an Aeroelastically Tailored 10 MW Wind Turbine Rotor. In
Journal of Physics: Conference Series, volume 753, 2016. doi: 10.1088/1742-6596/
753/6/062008. (Cited on pages 7, 10, 15, 16, and 18.)



bibliography 142

[23] A R Stäblein, C Tibaldi, and M H Hansen. Using pretwist to reduce power loss
of bend-twist coupled blades. In 34th wind energy symposium, 2016. (Cited on
pages 7, 15, and 16.)

[24] J Saverin, J Peukert, D Marten, G Pechlivanoglou, C O Paschereit, and D Green-
blatt. Aeroelastic simulation of multi-MW wind turbines using a free vortex
model coupled to a geometrically exact beam model. In J. Phys. Conf. Ser, vol-
ume 753, 2016. doi: 10.1088/1742-6596/753/8/082015. (Cited on pages 8, 13,
and 16.)

[25] S Scott, M Capuzzi, D Langston, E Bossanyi, G McCann, P M Weaver, and A Pir-
rera. Effects of aeroelastic tailoring on performance characteristics of wind tur-
bine systems. Renewable Energy, 114:887–903, 2017. doi: 10.1016/j.renene.2017.06.
048. (Cited on pages 8, 9, 15, 16, and 18.)

[26] O Atalay and A Kayran. Load Reduction in Wind Turbines with Bend-Twist
Coupled Blades without Power Loss at Underrated Wind Speeds. In Journal of
Physics: Conference Series, volume 1037, 2018. doi: 10.1088/1742-6596/1037/4/
042015. (Cited on pages 9, 15, 16, and 18.)

[27] T Bagherpour, X M Li, D I Manolas, and V A Riziotis. Modeling of material
bend-twist coupling on wind turbine blades. Composite Structures, 193:237–246,
2018. doi: 10.1016/j.compstruct.2018.03.071. (Cited on page 9.)

[28] R Riva, M Spinelli, L Sartori, S Cacciola, and A Croce. Stability analysis of wind
turbines with bend-twist coupled blades. In Journal of Physics: Conference Series,
volume 1037, 2018. doi: 10.1088/1742-6596/1037/6/062014. (Cited on page 9.)
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