# CONSTRUCCION DE UNA ANTENA MICROSTRIP EN ESPIRAL MULTIBANDA

# FABIAN RICARDO FLOREZ JAIMES

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS FACULTAD DE INGENIERIA ELECTRONICA BUCARAMANGA AÑO 2014

## CONSTRUCCION DE UNA ANTENA MICROSTRIP EN ESPIRAL MULTIBANDA

FABIAN RICARDO FLOREZ JAIMES

Trabajo de grado presentado como requisito parcial para optar por el título de Ingeniero Electrónico.

Director de tesis

Esp. FABIO ALONSO GUZMÁN SERNA Ingeniero Electrónico

UNIVERSIDAD PONTIFICIA BOLIVARIANA ESCUELA DE INGENIERÍAS FACULTAD DE INGENIERIA ELECTRONICA BUCARAMANGA SEPTIEMBRE 2014

Nota de aceptación

Firma del jurado

Firma del jurado

Bucaramanga, septiembre de 2014

# AGRADECIMIENTOS

A Dios por brindarme la fuerza y la sabiduría para cumplir todos mis sueños y mis metas. A mi familia por el apoyo constante que han tenido conmigo para cumplir todo lo que me propongo.

Al ingeníero Fabio Alonso Guzmán Serna porque siempre estuvo pendiente en la realización de este proyecto. A la Universidad Pontificia Bolivariana por formarnos como seres humanos llenos de valores y virtudes para afrontar cada obstáculo que nos presenta la vida.

Por ultimo a cada una de las personas, amigos que aportaron de alguna forma en mi vida para poder hoy estar donde estoy.

# TABLA DE CONTENIDO

| INTRODUCCION                                      | 13 |
|---------------------------------------------------|----|
| OBJETIVOS                                         | 14 |
| I. CONCEPTOS BASICOS ANTENAS                      | 15 |
| 1.1 Propiedades de las antenas                    | 15 |
| 1.2 Parametros de las antenas                     | 16 |
| 1.2.1 Diagrama de radiacion                       | 16 |
| 1.2.2 Ancho de banda                              | 17 |
| 1.2.3 Ganancia                                    | 18 |
| 1.2.4 Impedancia de entrada                       | 18 |
| II ANTENA MICROSTRIP                              | 20 |
| 2.1 Analisis y sintesis de las antenas microstrip | 21 |
| 2.2 Analisis de la antena microstrip              | 21 |
| 2.2.1 Modelo de cavidad                           | 22 |
| 2.2.2 Metodo de los momentos                      | 23 |
| 2.2.3 Modelo de linea de transmision              | 24 |
| 2.3 Sintesis de una antena microstrip en espiral  | 28 |
| 2.3.1 Simulador de antena Em Sonnet               | 28 |
| 2.3.2 Resultados de la simulacion                 | 29 |
| 2.3.2.1 coeficiente de reflexion directa S11      | 29 |
| 2.3.2.2 carta de smith                            | 30 |
| 2.3.2.3 VSRW                                      | 31 |
| 2.3.2.4 Densidad de corriente                     | 32 |
| 2.3.3 Tipos de alimentación                       | 33 |

| 2.3.3.1 Alimentacion por linea de microcita | 33 |
|---------------------------------------------|----|
| 2.3.3.2 Alimentacion coaxial                | 34 |
| III. METODOLOGIA                            | 35 |
| 3.1 Desarrollo del protecto                 | 35 |
| 3.2 Caracteristicas de la antena en espiral | 37 |
| 3.3 Construccion de las antenas             | 38 |
| 3.3.1 Antena número 1                       | 38 |
| 3.3.2 Antena número 2                       | 45 |
| 3.3.3 Antena numero 3                       | 50 |
| IV ANALISIS DE RESULTADOS                   | 57 |
| 4.1 Antena1                                 | 57 |
| 4.2 Antena2                                 | 65 |
| 4.3 Antena3                                 | 74 |
| 4.4 Antenas Diseñadas                       | 82 |
| 4.5 Analisis potencia mitad                 | 83 |
| OBSERVACIONES Y CONCLUCIONES                | 85 |
| BIBLIOGRAFÍA                                | 86 |

# LISTA DE FIGURAS

| Figura 1. Diagrama de radiación                                                                        | 16   |
|--------------------------------------------------------------------------------------------------------|------|
| Figura 2. Diagrama de impedancia de entrada                                                            | 19   |
| Figura 3. Antena microstrip en espiral cuadrada                                                        | 20   |
| Figura 4. Análisis y síntesis de una antena microstrip                                                 | 21   |
| Figura 5. Geometria del parche microstrip (modelo de cavidad)                                          | 22   |
| Figura 6. distribución de carga y la creación de la densidad de corriente en el<br>parche microstrip   | 23   |
| Figura 7. Geometría de la espiral circular                                                             | 24   |
| Figura 8. Antena cuadrada con linea de alimentacion                                                    | 25   |
| Figura 9. Fringing Effects de una antena de parche rectangula                                          | 25   |
| Figura 10. Circuito equivalente a un parche microstrip                                                 | 26   |
| Figura 11. Coeficiente de reflexión directa S11                                                        | 30   |
| Figura 12. Carta de Smith                                                                              | 31   |
| Figura 13. VSRW                                                                                        | 32   |
| Figura 14. Densidad de corriente                                                                       | 33   |
| Figura 15. Antena espiral cuadrada alimentada por linea de microcinta                                  | 34   |
| Figura 16. antena en espiral (Vista superior) antena en espiral (vista lateral)                        | . 35 |
| Figura 17. Sustrato RT/Duroid 5870                                                                     | 36   |
| Figura 18. Diagrama de flujo para el calculo de las caracteristicas de la atena<br>en espiral cuadrada | 38   |
| Figura 19. Diseño de la antena número 1 en el software EM sonnet                                       | 40   |
| Figura 20. Construcion antena numero 1                                                                 | 40   |
| Figura 21. Patrón de radiación en 2D Lab Volt antena número 1                                          | 41   |
| Figura 22. Patron de radiacion en el plano cartesiano Lab Volt antena<br>número 1                      | 42   |
| Figura 23. Patron de radiacion Em Sonnet antena numero 1                                               | 43   |

| Figura 24. Carta smith de la antena numero 1                                   | 43      |
|--------------------------------------------------------------------------------|---------|
| Figura 25. Densidad de corriente antena numero 1                               | 44      |
| Figura 26. Coeficiente de reflexión directa de la antena número 1              | 44      |
| Figura 27. Diseño de la antena número 2 en el software EM sonnet 2             | 46      |
| Figura 28. Construcción antena número 2                                        | 46      |
| Figura 29. Patrón de radiación en 2D Lab Volt antena número 2                  | 47      |
| Figura 30. Patrón de radiación en el plano cartesiano Lab Volt antena número 2 | 2<br>48 |
| Figura 31. Patron de radiacion Em Sonnet antena numero 2                       | 49      |
| Figura 32. Carta smith de la antena numero 2                                   | 49      |
| Figura 33. Densidad de corriente antena numero 2                               | 50      |
| Figura 34. Coeficiente de reflexión directa de la antena número 2              | 50      |
| Figura 35. Diseño de la antena número 3 en el software EM sonnet               | 52      |
| Figura 36. Construcción antena número 3                                        | 52      |
| Figura 37. Patrón de radiación en 2D Lab Volt antena número 3                  | 53      |
| Figura 38. Patrón de radiación en el plano cartesiano Lab Volt antena número   | 3<br>54 |
| Figura 39. Patron de radiacion Em Sonnet antena numero 3                       | 55      |
| Figura 40. Carta smith de la antena numero 3                                   | 55      |
| Figura 41. Densidad de corriente antena numero 3                               | 56      |
| Figura 42. Coeficiente de reflexión directa de la antena número                | 56      |
| Figura 43. Patrón de radiación y análisis de potencia mitad antena 1           | 88      |
| Figura 44. Patrón de radiación y análisis de potencia mitad antena 2           | 92      |
| Figura 45. Patrón de radiación y análisis de potencia mitad antena 3           | 97      |

# LISTA DE TABLAS

| Tabla 1. Caracteristicas de la antena numero 1 | 39 |
|------------------------------------------------|----|
| Tabla 2. Caracteristicas de la antena numero 2 | 45 |
| Tabla 3. Caracteristicas de la antena numero 3 | 51 |
| Tabla 4. Error antena 1                        | 57 |
| Tabla 5. Datos específicos Error antena 1      | 65 |
| Tabla 6. Error Antena 2                        | 66 |
| Tabla 7. Datos específicos Error antena 2      | 73 |
| Tabla 8. Error Antena 3                        | 74 |
| Tabla 9. Datos específicos Error antena 3      | 81 |
| Tabla 10. Análisis de las antenas construidas  | 82 |
| Tabla 11. Error potencia mitad antena 1        | 83 |
| Tabla 12. Resumen de errores antena uno        | 86 |
| Tabla 13. Error potencia mitad antena 2        | 87 |
| Tabla 14. Resumen de errores antena dos        | 90 |
| Tabla 15. Error potencia mitad antena 3        | 91 |
| Tabla 16. Resumen de errores antena uno        | 95 |

# GLOSARIO

**Ortogonales:** es sinónimo de perpendicular es decir que están separados 90 grados.

**Efecto de Fringing:** es el efecto que se da en los bordes de los parches gracias a su geometría finita

**Patrón de radiación:** propiedad de un parche para radiar él se cual se puede expresar gráficamente en coordenadas polares o cartesianas.

**Ancho de banda:** El ancho de banda puede ser considerado como la gama de frecuencias a cada lado de la frecuencia central.

**Ganancia:** se define como la relación entre la densidad de potencia radiada en una dirección y la densidad de potencia que radiaría una antena isotrópica.

**Impedancia:** La impedancia de entrada de la antena se define como la relación de la tensión y corriente en los terminales de entrada.

Admitancia: Magnitud que expresa la facilidad de paso de una corriente eléctrica en un circuito; es inversa de la impedancia y se mide en *siemens* 

**Microstrip:** Las antenas microstrip consisten, básicamente, en un conjunto formado por una superficie metálica radiante frente a otra que actúa como plano de tierra y separadas por un espacio dieléctrico de espesor muy pequeño.

**Directividad:** La Directividad de una antena se define como la relación entre la densidad de potencia radiada en una dirección, a una distancia, y la densidad de potencia que radiaría a la misma distancia una antena isotrópica

**Longitud de onda:** es la distancia que hay en entre dos crestas o de dos valles de una onda.

# **RESUMEN GENERAL DE TRABAJO DE GRADO**

- **TITULO:** CONSTRUCCION DE UNA ANTENA MICROSTRIP EN ESPIRAL MUTIBANDA
- AUTOR(ES): FABIAN RICARDO FLOREZ JAIMES
- **FACULTAD:** Ingeniería Electrónica

DIRECTOR(A): Esp. FABIO ALONSO GUZMAN SERNA

## RESUMEN

Este proyecto consiste en el diseño, construcción y posterior análisis de los resultados obtenidos de tres antenas microstrip en espiral multibandan. Los diseños se realizaron en el software llamado Em sonnet. Posteriormente se comparan los resultados obtenidos del patrón de radiación entre el kit de lab-volt junto al software LVADM-ANT y el patrón de radiación obtenido con el software de simulación de antenas Em sonnet.

PALABRAS CLAVE: microstrip, lab-volt, Em sonnet, patrón de radiación.

## **GENERAL SUMMARY OF WORK OF GRADE**

- TITLE: CONSTRUCTION OF A SPIRAL ANTENNA MICROSTRIP MULTIBAND
- AUTHOR(S): FABIAN RICARDO FLOREZ JAIMES
- **FACULTY:** Electronic Engineering
- **DIRECTOR:** Esp. FABIO ALONSO GUZMAN SERNA

# ABSTRACT

This project involves the design, construction and subsequent analysis of the results obtained from three multiband microstrip spiral antennas. The designs were made in the software called Em sonnet. Subsequently the results of the radiation pattern are compared with the lab-volt kit next to LVADM-ANT software and the radiation pattern obtained with the antenna simulation software Em Sonnet.

**KEY WORDS:** Microstrip, lab-volt, Em sonnet, radiation pattern

## INTRODUCCION

Las antenas en los últimos años han tomado una gran importancia en las comunicaciones mundiales donde la evolución de la tecnología de las comunicaciones inalámbricas es de forma apresurada, en el capítulo I de este libro se explica las características más importantes de las antenas como lo son las propiedades las cuales abordan el diagrama de radiación, el ancho de banda, la ganancia y la impedancia de entrada.

Los dispositivos inalámbricos cada vez son más pequeños y versátiles dando más importancia a ciertos tipos de antenas como lo son las antenas microstrip las cuales se adaptan prefecto a las necesidades gracias a sus ventajas como lo son, bajo peso, bajo costo, modelables, versátiles, delgadas, con posibilidad de operación en diferentes bandas. En el capítulo II de este libro se abordara más a profundidad las características de funcionamiento de las antenas microstrip como lo son los modelos de análisis, tipos de alimentación y los diferentes resultados que se pueden obtener de la simulación en el software Em sonnet, diseñado para el análisis de antenas microstrip. Algunos ejemplos de la aplicación de dichas antenas los podemos encontrar en los dispositivos tecnológicos que a diario utilizamos como los computadores portátiles, televisores con conexión inalámbrica, teléfonos móviles, tabletas, entre otros.

Sabiendo la importancia que actualmente tienen las antenas microstrip el capítulo III de este proyecto estará enfocado en el diseño y fabricación de antenas en espiral multibanda con tecnología microstrip. Teniendo en cuenta el análisis de sus parámetros más importantes de los capítulos anteriores

Por último en el capítulo IV se hace un análisis de los resultados obtenidos de los patrones de radiación simulados en EM-sonnet y los patrones de radiación de LVADM-ANT. Posteriormente se hace la comparación de los resultados obtenidos de los patrones de radiación del campo eléctrico y por último el análisis de los errores obtenidos.

# OBJETIVOS

## General.

Diseñar y construir una antena microstrip en espiral multibanda y analizar su patrón de radiación.

# Específicos.

- Escoger un método o modelo matemático con el cual se pueda diseñar y desarrollar la antena.
- Hacer la construcción de la antena teniendo en cuenta todas las variables y parámetros predispuestos en el diseño de la antena.
- Comprobar experimentalmente los parámetros de la antena diseñada y posterior comparación con los resultados obtenidos en la etapa de diseño

# I. CONCEPTOS BASICOS DE ANTENAS

## INTRODUCCION

Las antenas es uno de los dispositivos más importante en las comunicaciones inalámbricas ya que es la encargada de tomar las ondas electromagnéticas que están en el espacio libre y transformarlas en ondas electromagnéticas que viajan por medio de las líneas de transmisión y viceversa. Una definición más científica de una antena la define IEEE como "aquella parte de un sistema transmisor o receptor diseñada específicamente para radiar o recibir ondas electromagnéticas" [1].

# **1.2 PROPIEDADES DE LAS ANTENAS**

Las antenas son estructuras metálicas diseñadas para radiar y recibir energía electromagnética. Una antena es una estructura que representa la transición entre un dispositivo conductor (guía de onda o línea de transmisión) y el espacio libre [2].

Para conocer como una antena puede radiar, se debe considerar el principio de radiación: un cable conductor radia principalmente debido a la variación de la corriente con el tiempo o por una aceleración o desaceleración de las cargas eléctricas. Si no hay movimiento de las cargas en el cable, no ocurrirá la radiación, debido a que no hay un flujo de corriente. Cuando las cargas se están moviendo con velocidad uniforme a lo largo de un cable recto, no podría haber radiación, pero si es un cable curveado o doblado si podría radiar [3].

Debido a la variación de los campos eléctricos y magnéticos con el tiempo, se forman las ondas electromagnéticas, las cuales viajan entre los conductores. Cuando estas ondas se van aproximando al espacio abierto, se generan ondas espaciales en las terminales abiertas de las líneas eléctricas. Dentro de la línea de transmisión y la antena, las ondas electromagnéticas existen debido a las cargas, pero cuando entran al espacio libre, se forman lazos cerrados y se radian [3].

# **1.3 PARAMETROS DE LAS ANTENAS**

Una antena formará parte de un sistema más amplio, de radiocomunicaciones o radar, por ejemplo, interesará, por lo tanto, caracterizarla con una serie de parámetros que la describan y permitan evaluar el efecto sobre el sistema de una determinada antena, o bien especificar el comportamiento deseado de una antena para incluirla en ese sistema [4].

A efecto de definición de los parámetros, conviene diferenciarlos inicialmente según se relacionen con transmisión o recepción; posteriormente, como consecuencia del teorema de reciprocidad, estableceremos la equivalencia entre ambas situaciones [4].

# 1.3.1 DIAGRAMA DE RADIACION

El diagrama de radiación es una representación gráfica de las propiedades de la radiación de la antena, en función de las distintas direcciones del espacio, a una distancia fija. Normalmente se emplea un sistema de coordenadas esféricas. Con la antena situada en el origen y manteniendo constante la distancia se expresara el campo eléctrico en función de las variables angulares ( $\theta$ ,  $\Phi$ ). Como el campo es una magnitud vectorial, habrá que determinar en cada punto de la esfera de radio constante el valor de dos componentes ortogonales [4].

Como el campo magnético se deriva directamente del eléctrico, la representación podría realizarse a partir de cualquiera de los dos, siendo norma habitual que los diagramas se refieran al campo eléctrico [4].



## Figura 1. Diagrama de radiación

FUENTE: CARDAMA, Aznar Ángel; JOFRE, Roca Lluís; RUIZ, Juan Manuel; ROMEU, Robert Jordi; BATALLER, Miguel Ferrando, Antenas: 2da Edición, Editorial Alfaomega.

El diagrama de radiación se puede representar en forma tridimensional utilizando técnicas graficas diversas, como las curvas de nivel o el dibujo en perspectiva. En la figura anterior se muestra el diagrama tridimensional de una antena y los planos E y H. los niveles se expresan en decibelios respecto al máximo de radiación [4].

#### 1.3.2 ANCHO DE BANDA

El ancho de banda es la característica principal de la antena de banda ancha. El ancho de banda puede ser considerado como la gama de frecuencias a cada lado de la frecuencia central, en donde las características de la antena se encuentran dentro de un valor aceptable. El ancho de banda se puede describir en términos de porcentaje de la frecuencia central,  $f_c$ , de la banda [5].

$$BW = \frac{f_H - f_L}{f_C} \times 100 = 2\frac{f_H - f_L}{f_H + f_L} \times 100$$
(1.1)

Donde  $f_h$  es la frecuencia más alta de la banda y  $f_l$  es la frecuencia más baja de la banda. La frecuencia central puede se calcula a partir de [5]:

$$f_C = \frac{f_H + f_L}{2} \tag{1.2}$$

Para las antenas de banda ancha, el ancho de banda también se puede expresar como la relación de la frecuencia más alta a la frecuencia más baja, donde el rendimiento de la antena es aceptable. Se da a través de [5]:

$$BW = \frac{f_H}{f_L}$$

(1.3)

#### **1.3.3 GANANCIA**

La antena de ganancia G de la antena está estrechamente relacionado con la Directividad, pero tiene en cuenta la eficiencia  $e_{rad}$  radiación de la antena, así como sus propiedades direccionales, como se muestra [5].

$$G = e_{rad}D\tag{1.4}$$

La eficiencia de radiación ( $e_{rad}$ ) se determina por la relación de la potencia radiada,  $p_{rad}$  a la potencia de entrada en los terminales de la antena, el  $p_{in [5]}$ .

$$e_{rad} = \frac{P_{rad}}{P_{in}} = \frac{G}{D}$$
(1.5)

#### **1.3.4 IMPEDANCIA DE ENTRADA**

La impedancia de entrada de la antena se define como la relación de la tensión y corriente en los terminales de entrada a-b de la antena sin carga conectada, como se muestra en la figura 2 La impedancia de entrada de la antena se da en la ecuación 1.6 [5].

Figura 2. Diagrama de impedancia de entrada



FUENTE: C. A. Balanis, Anntena Theory : Analysis and Design. 3<sup>rd</sup> ed. New York: Jhon Wiley and Sons, Hoboken, NJ,2005.

$$Z_A = R_A + jX_A \tag{1.6}$$

Dónde:

 $Z_A$  Impedancia de la antena en los terminales a – b (ohm).

 $R_A$  Resistencia de la antena en los terminales a – b (ohm).

 $X_A$  Reactancia de la antena en los terminales a – b (ohm).

# **II. ANTENAS MICROSTRIP**

Conforme la tecnología avanza hacia la comunicación radioeléctrica se avanza también en la miniaturización de los componentes empleados en los dispositivos utilizados como lo son las antenas microstrip [8].

La microcinta puede desempeñar dos funciones las cuales son como línea de transmisión o como antena.

Las antenas microstrip consisten, básicamente, en un conjunto formado por una superficie metálica radiante frente a otra que actúa como plano de tierra y separadas por un espacio dieléctrico de espesor muy pequeño. La superficie del parche puede tener cualquier forma geométrica, que en este proyecto será de forma de espiral cuadrada, y si el dieléctrico separado (sustrato) es de naturaleza flexible la antena se puede adaptar a cualquier superficie un ejemplo se puede ver en la figura 3 [8].

La línea de microcinta es el medio de transmisión más común empleado en circuitos de radiofrecuencia y microondas. Esta es una línea de transmisión planar no homogénea, que se deriva de una línea de transmisión de alambres paralelos, la cual consiste de un plano de tierra y una línea conductora separados por un material dieléctrico. [2].



Figura 3. Antena microstrip en espiral cuadrada

El diseño y la construcción de circuitos de microcinta requiere mayor cuidado que los circuitos impresos de bajas frecuencias, ya que se consideran con mayor peso las dimensiones físicas de cada tramo de línea, sus impedancias y longitudes eléctricas, al igual que la constante dieléctrica efectiva  $\varepsilon_{eff}$  que rige todo el sistema. Las dimensiones físicas de la microcinta, están en función de la longitud de onda de la frecuencia de operación  $f_0$  y de la constante dieléctrica efectiva  $\varepsilon_{eff}$ . Las dimensiones tienden a reducirse para longitudes de onda más pequeñas y también para constantes dieléctricas más altas.

#### 2.1 ANALISIS Y SINTESIS DE LA ANTENA MICROSTRIP

Al cálculo de las características eléctricas de la antena microstrip, como  $\varepsilon_{eff,}$ impedancia  $z_m$  y longitud eléctrica  $\theta_m$ , se le conoce como análisis. Estas se calculan partiendo de las características del sustrato dieléctrico tales como su constante dieléctrica relativa  $\varepsilon_r$ , espesor *h*, grosor t, frecuencia de operación F, ancho W y largo L de la línea. Por lo tanto, al procedimiento para determinar las características físicas tales como el ancho W y el largo L se conocen como síntesis y se calculan partiendo de los valores de la constante dieléctrica  $\varepsilon_r$ , espesor *h*, grosor t, frecuencia de operación F, impedancia  $z_m$  y longitud eléctrica  $\theta_m$  de la microcinta [2].

Figura 4. Análisis y síntesis de una antena microstrip



FUENTE: BUENROSTRO ROCHA Sergio: Metodología para el diseño y construcción de una antena de microcinta en las banda WiMax a 3.5Ghz, Tijuana-México, 2007, Trabajo de grado (Maestro en ciencias), Instituto Politécnico Nacional.

#### 2.2 ANALISIS DE UNA ANTENA MICROSTRIP

Existen varios métodos de análisis para antenas microstrip, pero los más conocidos son el modelo de cavidad que está clasificado en los empíricos, el método de los momentos que está en los métodos de onda completa y el modelo de línea de transmisión se ubica en los métodos empíricos. El modelo de línea de transmisión es el menos preciso, y con él es más difícil modelar el acoplamiento. El método de los momentos (MoM) es un método numérico de onda completa que discretiza las ecuaciones integrales de los campos electromagnéticos, las técnicas de onda completa generalmente proporcionan la solución más precisa para las características de impedancia y de radiación pero una de las desventajas son que las técnicas de onda completa son numéricamente intensivos, por lo que requieren una cuidadosa programación para reducir costo de computación [10]. Sin embargo, el modelo de cavidad es más preciso, a costa de una mayor complejidad, aunque el acoplamiento sigue siendo difícil de modelar. A continuación se tratarán ambos modelos para analizar la configuración básica de una antena microstrip, el parche rectangular [11].

#### 2.2.1 MODELO DE CAVIDAD

Una antena microstrip se puede ver como una cavidad llena de dieléctrico delimitada por dos conductores (arriba y abajo, parche y plano de masa), y por paredes magnéticas (para simular un circuito abierto), que son las caras restantes [11]. Este es un modelo aproximado, que, en principio, da lugar a una impedancia de entrada reactiva (de cero o infinito valor de la resonancia), y no irradia a cualquier potencia. Sin embargo, suponiendo que los campos reales son aproximados a los generados por un modelo de este tipo, la admitancia de entrada, el patrón calculado, y las frecuencias resonantes se comparan bien con las mediciones. Este es un enfoque aceptado, y es similar a los métodos de perturbación que han tenido mucho éxito en el análisis de guías de ondas, cavidades, y radiadores [3].



Figura 5. Geometria del parche microstrip (modelo de cavidad)

FUENTE: CONSTANTINE A. Balanis, Antenna Theory, Analysis And Design, segunda Edition, John Wiley and Sons.

Una interpretación física en la formación de los campos dentro de la cavidad y la radiación a través de sus paredes laterales, cuando se activa el parche microstrip, una distribución de carga se establece en la parte superior e inferior superficies del parche, así como en la superficie de la placa de masa. Como se muestra en la figura 6 la distribución de carga es controlada por dos mecanismos: un atractivo y un mecanismo de repulsión. El mecanismo atractivo es entre las correspondientes cargas opuestas en el lado inferior del parche y el plano de tierra, que tiende a mantener la concentración de cargas en la parte inferior del parche. El mecanismo de repulsión entre cargas iguales sobre la superficie inferior del parche, que tiende a empujar a algunas cargas de la parte inferior del parche, alrededor de sus bordes, que su superficie superior [3].

# Figura 6. distribución de carga y la creación de la densidad de corriente en el parche microstrip



FUENTE: CONSTANTINE A. Balanis, Antenna Theory, Analysis And Design, segunda Edition, John Wiley and Sons

# 2.2.2 MÉTODO DE LOS MOMENTOS

El método de los momentos (MoM) es un método numérico de onda completa que discretiza las ecuaciones integrales de los campos electromagnéticos. Desde las ecuaciones integrales satisfacen la condición de radiación de forma automática, (MoM) es especialmente adecuado para resolver problemas abiertos, como los problemas de dispersión y radiación. La historia del desarrollo de (MoM) en electromagnetismo muestra que (MoM) no sólo surgió a partir de solución de problemas abiertos, si no también se convierte en la búsqueda sofisticada de mejores soluciones para este tipo de problemas de dispersión no sólo es conciso, pero también captar lo esencial de este método. Como era de esperar, un montón de contenido se ha desarrollado a través de la investigación sobre (MoM) en los últimos 40 años. Incluso si sólo el problema de dispersión es considerada, no es posible enumerar todas las cuestiones pertinentes en un capítulo. Sin embargo, lo esencial en (MoM) para la solución de los problemas por lo general se encuentran en los siguientes cuatro aspectos [12]:

- 1) Elección de la base y funciones de prueba.
- 2) Manejo de singularidades.

3) La identificación de la relación entre las formas de discretizados integrante ecuaciones y sus representaciones numéricas.

(4) La aceleración de la solución de las ecuaciones matriciales descritizadas en (MoM).

#### Figura 7. Geometría de la espiral circular



FUENTE: KHAMAS, Salam; COOK, Gregory. Moment-Method Analysis of Printed Wire Spirals Using Curved Piecewise Sinusoidal Subdomain Basis and Testing Functions. IEEE transactions on antennas and propagation. Junio, 1997. Vol. 45. N° 6. p. 1016-1022.

# 2.2.3 MODELO DE LINEA DE TRANSMISION

El modelo de línea de transmisión es el más sencillo para analizar las antenas Microstrip, aunque es el menos preciso [11]. El modelo de línea de transmisión se representara en la siguiente figura 8. Que consiste en una antena cuadrada con dos slots separados por una línea de transmisión baja impedancia y de longitud  $L_L$ .



#### Figura 8. Antena cuadrada con linea de alimentacion

FUENTE: AVILA ABELLAN José: GNSS Array: Diseño de una antena con polarización circular Barcelona-España, 2009, Trabajo de grado (Ingeniería de telecomunicaciones), universidad de Barcelona.

Ya que se considera que los slots están separados por una línea de transmisión de longitud  $L_L$ , se debe tener en cuenta el efecto de Fringe presente en la línea. Este efecto consiste en el desbordamiento y curvatura de las líneas de campo en los extremos de la línea, por lo que la línea aparenta tener una longitud efectiva (*Leff*) mayor a la longitud física [11].

#### Figura 9. Fringing Effects de una antena de parche rectangular



FUENTE: CONSTANTINE A. Balanis, Antenna Theory, Analysis And Design, segunda Edition, John Wiley and Sons

Este efecto es reducido para antenas microstrip, porque L >> h, pero se debe tener en cuenta. Para poder calcular la longitud efectiva, se debe introducir otro parámetro, la constante dieléctrica relativa efectiva del sustrato dieléctrico ( $\epsilon$ *reff*). En una línea microstrip, entre línea y plano de masa se encuentra el dieléctrico (constante dieléctrica  $\epsilon$ *r*), y encima de la línea se encuentra aire (constante dieléctrica igual a 1). Al propagarse la onda en la línea, la mayoría de las líneas de campo se encontrarán confinadas en el dieléctrico, mientras que una minoría saldrán desde la parte superior de la línea, por lo que también viajarán a través del aire, y la propagación será diferente [11].

En análisis más profundo del el modelo de líneas de transmisión se debe tener en cuenta que las ranuras son consideradas como admitancias "Y" complejas compuestas de una conductancia "G" y una susceptancia "B" en paralelo [3] como se muestra a continuación en la figura 10.



Figura 10. Circuito equivalente a un parche microstrip

FUENTE: C. A. Balanis, Anntena Theory : Analysis and Design. 3<sup>rd</sup> ed. New York: Jhon Wiley and Sons, Hoboken, NJ,2005.

La admitancia Y estaria dada por [16] :

Donde por una ranura de anchura finita W [16] :

$$G_{1} = \frac{a}{120\lambda_{0}} \left[ 1 - \frac{1}{24} (k_{0}h)^{2} \right]; \qquad \frac{h}{\lambda_{0}} < \frac{1}{10}$$
(2.2)  
$$B_{1} = \frac{a}{120\lambda_{0}} \left[ 1 - 0.636\ln(k_{0}h) \right]; \qquad \frac{h}{\lambda_{0}} < \frac{1}{10}$$
(2.3)

La admitancia total de entrada de la antena microstrip y la impedancia de entrada estan dadas por [16]:

$$Y_{in} = Y_1 + \tilde{Y}_2 = 2G_1$$

$$Z_{in} = \frac{1}{Y_{in}} = R_{in} = \frac{1}{2G_1}$$
(2.4)
(2.5)

El calculo del ancho de la linea microstrip se conoce como  $W_0$  y se puede calcular mediante la siguiente ecuacion [9]:

$$Z_{c} = \frac{60}{\sqrt{\epsilon_{reff}}} \ln \left[ \frac{8h}{W_{0}} + \frac{W_{0}}{4h} \right]; \qquad \frac{W_{0}}{h} > 1$$
(2.6)

$$Z_{C} = \frac{120\pi}{\sqrt{\epsilon_{reff}} \left[\frac{Wo}{h} + 1.393 + 0.667 \ln\left(\frac{Wo}{h} + 1.444\right)\right]} \frac{Wo}{h} > 1$$
(2.7)

El modelo utilizado en este proyecto es el de wheeler, el cual es el metodo mas antiguo y mas utilizado para este calculo. Las ecuaciones para el calculo de la linea por este metodo estan dadas por las siguiente ecuaciones [17]:

$$Wl = \frac{4h}{\frac{e^A}{2} - e^{-A}} \qquad ; \qquad \frac{W}{h} \le 2$$
(2.8)

$$Wl = h \left[ \frac{\varepsilon r - 1}{\pi * \varepsilon r} \left( \log(B - 1) + 0.39 - \frac{0.61}{\varepsilon r} \right) + \frac{2}{\pi} (B - 1 - \log(2B - 1)) \right] \quad ; \quad \frac{W}{h} \ge 2$$

$$A = \sqrt{(2\varepsilon r) + 1} * \frac{\pi Zm}{\eta} + \frac{\varepsilon r - 1}{\varepsilon r + 1} * \frac{0.23 + 0.11}{\varepsilon r}$$
(2.10)

$$B = \frac{\pi * \eta}{2 * Zm * \sqrt{\varepsilon r}}$$
(2.11)

#### 2.3 SINTESIS DE UNA ANTENA MICROSTRIP EN ESPIRAL CUADRADA

#### 2.3.1 SIMULADOR DE ANTENAS Em Sonnet

Em es un simulador de Sonnet (utiliza el método de los momentos) para todo tipo de estructuras planas como microcinta, líneas de cinta o circuitos cooplanares (acopladores, las líneas que coincidan, filtros, lagunas, trozos, antenas de parche...). La estructura debe ser dividida en una enorme colección de "células" pequeñas. Las propiedades de cada celda son entonces analizadas y calculadas por el software y por fin la suma de todas las propiedades de la celda se encuentra en integración. Por lo tanto Sonnet utiliza una "caja" rectangular que consta de cuatro paredes (*materiales = sin pérdidas = con infinita conductividad*), pero la parte inferior y el material de la parte superior pueden ser definidos por el usuario. Son necesarios una gran cantidad de ajustes.

La distribución de campo en un cuadro de tal forma es bien conocido y por lo tanto la simulación y el cálculo da una alta precisión (al utilizar células muy pequeñas). Pero la simulación con células pequeñas implica tiempos de cómputo largo y también archivos de datos grandes y este es el único problema grave para el usuario Sonnet Lite con restricción de memoria de 32 MB, así para el simulador Sonnet Lite se puede esperar una precisión de la simulación entre el 1% y el 5%. Pero teniendo cuidado:

En este caso, cuando se simulan estructuras que irradian como una antena de parche en la frecuencia de resonancia calculada es siempre un poco más alta que el valor de la frecuencia medida en el prototipo fabricado.

#### 2.3.2 RESULTADOS DE LA SIMULACION

#### 2.3.2.1 COEFICIENTE DE REFLEXION DIRECTA [S11]

Los parámetros de dispersión son los coeficientes de reflexión y transmisión entre la onda incidente y la reflejada. Estos parámetros describen completamente el comportamiento de un dispositivo bajo condiciones lineales en determinado rango de frecuencia. Cada parámetro es caracterizado por magnitud, ganancias o pérdidas en decibeles y fase. A pesar de ser aplicables a cualquier frecuencia, los parámetros S son usados principalmente para redes que operan en radiofrecuencia (RF) y frecuencias de microondas. En general, para redes prácticas, los parámetros S cambian con la frecuencia a la que se miden, razón por la cual se debe especificar la frecuencia para cualquier medición de parámetros S, junto con la impedancia característica o la impedancia del sistema [23].

S11 Coeficiente de reflexión a la entrada o coeficiente de reflexión directa se puede calcular utilizando las ecuaciones 2.13 y 2.14.

$$S_{11} = \frac{V_1}{V_1^+} \Big|_{V_2^+ = 0} \qquad S_{11} = \frac{Z + Z_0 - Z_0}{Z + Z_0 + Z_0} = \frac{Z}{Z + 2Z_0} = \frac{V_{\text{Reflejada}}}{V_{\text{Incidente}}} = \rho \angle \Phi$$

$$S_{11} = \frac{Reflejada}{Incidente} = \frac{b_1}{a_1} \Big|_{a_2} = 0 \qquad (2.14)$$

S11 Coeficiente de Reflexión Directa o de Entrada, con el Puerto de salida, terminado con una carga similar a ZL = Z0, y haciendo a2 = 0 equivalente a Ei2= 0 de (1) graficando como se muestra en la figura 11 [23].



#### Figura 11.coeficiente de reflexión directa [S11]

 

 FUENTE: KRAUS, Guntthard. Design of Patch Antennas. [En línea]. 2011. [citado 11 de Julio de 2014].
 Disponible
 en
 internet:
 <u>http://www.gunthard-</u>

 kraus.de/Tutorial Sonnet/pdf English/Tutorial Sonnet e.pdf.
 Sonnet/pdf
 Sonnet/pdf
 Sonnet/pdf

#### 2.3.2.2 CARTA DE SMITH

El análisis de las líneas de transmisión puede simplificarse utilizando algunos de los diferentes métodos gráficos, de los que el más importante es la *Carta de Smith* mostrada en la figura 12 y que es la más utilizada. La carta o diagrama de Smith Se basa en dos conjuntos de círculos ortogonales, uno de ellos representa la relación R/Z0, en que R es la componente resistiva de la impedancia característica. El segundo conjunto de círculos, representa la relación X/Z0, en que X es la componente reactiva de la impedancia de la línea. Estas coordenadas se obtienen mediante una transformación correspondiente a una relación de onda estacionaria dada, o lo que es lo mismo a la magnitud del coeficiente de reflexión en la carga, para una línea de transmisión sin pérdidas [21].

Figura 12. Carta de Smith



 FUENTE: KRAUS, Guntthard. Design of Patch Antennas. [En línea]. 2011. [citado 11 de Julio de 2014].

 Disponible
 en
 internet:
 <u>http://www.gunthard-kraus.de/Tutorial Sonnet/pdf English/Tutorial Sonnet e.pdf</u>.

Exactamente en el punto de la frecuencia de resonancia no encuentra ningún componente inductiva o capacitiva, cuando en relación con la impedancia de entrada es sólo una resistencia. Así que con la magnitud de S11 = 1.05 reemplazando el valor en la ecuación se puede obtener el valor de la impedancia [21].

$$Rrad = \frac{1+\Gamma}{1-\Gamma} \bullet 50 \tag{2.15}$$

#### 2.3.2.3 VSRW

VSWR representa Relación de onda, y también se conoce como relación de onda estacionaria (SWR). VSWR es una función del coeficiente de reflexión, que describe la potencia reflejada desde la antena. Si el coeficiente de reflexión se da por S11 o coeficiente de reflexión o la pérdida de retorno, entonces el VSWR se define por la expresión 13 [22]:

$$VSWR = \frac{1+|\Gamma|}{1-|\Gamma|}$$
(2.16)

8

12

10





La VSWR es siempre un número real y positivo para las antenas. Cuanto menor sea VSWR, la antena está mejor adaptada a la línea de transmisión y más potencia se suministra a la antena. La VSWR mínimo es de 1,0. En este caso, ninguna energía se refleja desde la antena, que es ideal [22].

6 Frequency (GHz)

#### 2.3.2.4 DENSIDAD DE CORRIENTE

2

250

200

50

0

ionnet Software Inc. FUENTE: [Autor]

0

M g 150 n i t u 100 d e

El visor de la densidad de corriente le permite ver la distribución de densidad de corriente en su circuito. Al seleccionar la opción Densidad actual Em Sonnet calcula los datos de densidad de corriente para todos los niveles de metales en su circuito. Cuando se tiene metal grueso en un circuito que termina en el interior de una capa dieléctrica, a continuación, el visor de la densidad de corriente crea "subniveles" de metales con el fin de visualizar todos los datos de densidad de corriente como se observa en la figura 14 [19].

#### Figura 14. Densidad de corriente



# 2.3.3 TIPOS DE ALIMENTACION

En la actualidad existen diferentes formas de alimentar a un elemento radiador. Estos métodos se puede clasificar e dos categorías: los de contacto y los que no hacen contacto. Dentro de los métodos de contacto, la transferencia de potencial en el parche, se realiza por medio de una línea de microcinta o coaxial. Esta primera es la utilizada en la construcción de la antena en espiral de la cual se hablará en el siguiente capítulo. En el método de los que no hacen contacto, la transferencia de potencia se realiza mediante un acoplamiento electromagnético entre la línea microcinta y el parche (ranura).los más populares en esta categoría son el acoplamiento por apertura y el acoplamiento por proximidad [2].

# 2.3.3.1 ALIMENTACION POR LINEA DE MICROCINTA

Esta técnica de alimentación consiste en una cinta conductora conecta directamente al borde del parche radiador como se muestra en la figura 15. La línea es más angosta comparada con el parche y se tiene la ventaja de que la línea puede grabarse sobre el mismo substrato (estructura planar). La impedancia presentada en el extremo del parche debe acoplarse a una impedancia característica de 50  $\Omega$  porque esta es la impedancia característica de la línea de alimentación por medio de un transformador de impedancias. La alimentación puede estar centrada descentrada a lo largo del ancho W y dependiendo de la ubicación del punto de alimentación, se determina el modo electromagnético. La introducción de la alimentación porvoca un desplazamiento en la frecuencia de resonancia pero el patrón de radiación permanece inalterado [2].



Figura 15. Antena espiral cuadrada alimentada por linea de microcinta

FUENTE: MADABY, Yasser; ELKAMCHOUCHI, Hassan. Analysis of high gain multiband rounded corners dashed rectangular spiral microstrip patch antenna. IEEE transactions on antennas and propagation. 2005. p. 313-316.

## 2.3.3.2 ALIMENTACION COAXIAL

La alimentacion coaxial presentada en la figura 16, se tiene a la alimentacion perpendicular al plano de tierra, mientras que el conductor central del conector, atraviesa la tierra y el substrato sin tocarlos hasta el parche o la red de alimentacion, en donde se hace la soldadura. Su principal ventaja es que puede colocarse en cualquier punto dentro de un parche para acoplarse aun mas, aunque existen algunos puntos optimos. Este metodo es facil de realizar y tiene pocas radiaciones espurias, sin embargo, su mayor desventaja es que provee un ancho de banda estrecho y es dificil de modelar. Para dielectricos gruesos, la longitud de la linea central hace que la impedancia de entrada se vuelva mas inductiva y esto lleva problemas de acoplamiento[2].

#### Figura 16. antena en espiral (Vista superior) antena en espiral (vista lateral).



FUENTE: PAN, Helen; Bernhard, Jennifer; NAIR, Vijay. Reconfigurable Single-Armed Square Spiral Microstrip Antenna Design. IEEE transactions on antennas and propagation.2006. p. 180-183.

#### III. METODOLOGIA

#### 3.1 DESARROLLO DEL PROYECTO

Este proyecto se desarrolló con el fin de conocer mas a fondo las antenas microstrip, caracteristicas, modelos de diseño, formas de alimentacion, materiales utilizados en la construccion. Todo lo anterior enfocado en el diseño de forma en espiral cuadrada.

Se realizó el diseño y construcción de tres antenas en espiral utilizando un único sustrato RT/Duroid 5870 del cual se presentan sus carateristicas en la figura 17.Se tuvo como punto de referencia los articulos IEEE de diseño de antenas: [13], [14], [15]. Para diseñar las dimensiones de la antenas y para las medidas de la linea de alimentacion se utilizo el modelo de WHEELER. Teniendo en cuenta que estás antena va a trabajar en un rango de 4Ghz a 10GHz.

Por ultimó se realiza la comparación de patrones de radiación a 10GHz obtenidos por el sofware de simulación de antenas EM sonnet y los resultados experimentales obtenidos con las antenas ya construidas y medidos con los dispositivos LVADM\_ANT en conjunto con el kit de lab-Volt proporcionados por la Universiadad Pontificia Bolivariana.

|                                                                                                                        |                                                           |                                                  |                 |                    |             |                         | RT/duroid 5                                        | 870/5880 Laminates                  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----------------|--------------------|-------------|-------------------------|----------------------------------------------------|-------------------------------------|--|
| PROPERTY                                                                                                               | TYPICAL VALUE PI                                          |                                                  | DIRECTION       | UNITS[3]           | CONDITION   | TEST METHOD             |                                                    |                                     |  |
|                                                                                                                        | RT/duro                                                   | id 5870                                          | RT/duroid 5880  |                    |             |                         |                                                    |                                     |  |
| <sup>[1]</sup> Dielectric Constant, ε <sub>r</sub><br>Process                                                          | 2.3<br>2.33 ± 0.0                                         | 2.33 2.20<br>2.33 ± 0.02 spec. 2.20 ± 0.02 spec. |                 | Z<br>Z             | N/A         | C24/23/50<br>C24/23/50  | 1 MHz IPC-TM-650 2.5.5.3<br>10 GHz IPC-TM 2.5.5.5  |                                     |  |
| <sup>μ</sup> Dielectric Constant, ε <sub>r</sub><br>Design                                                             | <sup>I</sup> Dielectric Constant, $\epsilon_{\rm f}$ 2.33 |                                                  | 2.20            |                    | z           | N/A                     | 8 GHz - 40 GHz                                     | Differential Phase Length<br>Method |  |
| Dissipation Factor, tan $\delta$                                                                                       | issipation Factor, tan δ 0.0005 0.00<br>0.0012 0.00       |                                                  | 004<br>009      | Z<br>Z             | N/A         | C24/23/50<br>C24/23/50  | 1 MHz IPC-TM-650, 2.5.5.3<br>10 GHz IPC-TM-2.5.5.5 |                                     |  |
| Thermal Coefficient of $\boldsymbol{\epsilon}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ermal Coefficient of ε <sub>r</sub> -115                  |                                                  | -125            |                    | Z           | ppm/°C                  | -50 - 150°C                                        | IPC-TM-650, 2.5.5.5                 |  |
| Volume Resistivity 2 X 10 <sup>7</sup>                                                                                 |                                                           | 2 X 10 <sup>7</sup>                              |                 | Z                  | Mohm cm     | C96/35/90               | ASTM D257                                          |                                     |  |
| Surface Resistivity 2 X 107                                                                                            |                                                           | 3 X 10 <sup>7</sup>                              |                 | Z                  | Mohm        | C/96/35/90              | ASTM D257                                          |                                     |  |
|                                                                                                                        | Test at<br>23°C                                           | Test at<br>100°C                                 | Test at<br>23°C | Test at<br>100°C   | N/A         |                         |                                                    | ASTM D638                           |  |
| Tensile Modulus                                                                                                        | 1300 (189)                                                | 490 (71)                                         | 1070 (156)      | 450 (65)           | X           | 1                       |                                                    |                                     |  |
|                                                                                                                        | 1280 (185)                                                | 430 (63)                                         | 860 (125)       | 380 (55)           | Y           | MPa (kpsi)              | A                                                  |                                     |  |
|                                                                                                                        | 50 (7.3)                                                  | 34 (4.8)                                         | 29 (4.2)        | 20 (2.9)           | X           | 1                       |                                                    |                                     |  |
| ultimate stress                                                                                                        | 42 (6.1)                                                  | 34 (4.8)                                         | 27 (3.9)        | 18 (2.6)           | Y           | 1                       |                                                    |                                     |  |
| will be also also be                                                                                                   | 9.8                                                       | 8.7                                              | 6.0             | 7.2                | x           |                         |                                                    |                                     |  |
| uttimate strain                                                                                                        | 9.8                                                       | 8.6                                              | 4.9             | 5.8                | Y           | 76                      |                                                    |                                     |  |
|                                                                                                                        | 1210 (176)                                                | 680 (99)                                         | 710 (103)       | 500 (73)           | X           |                         | i)<br>A                                            |                                     |  |
| Compressive Modulus                                                                                                    | 1360 (198)                                                | 860 (125)                                        | 710 (103)       | 500 (73)           | Y           | MPa (kpsi)<br>A         |                                                    | ASTM D695                           |  |
|                                                                                                                        | 803 (120)                                                 | 520 (76)                                         | 940 (136)       | 670 (97)           | Z           |                         |                                                    |                                     |  |
|                                                                                                                        | 30 (4.4)                                                  | 23 (3.4)                                         | 27 (3.9)        | 22 (3.2)           | X           |                         |                                                    |                                     |  |
| ultimate stress                                                                                                        | 37 (5.3)                                                  | 25 (3.7)                                         | 29 (5.3)        | 21 (3.1)           | Y           |                         |                                                    |                                     |  |
|                                                                                                                        | 54 (7.8)                                                  | 37 (5.3)                                         | 52 (7.5)        | 43 (6.3)           | Z           |                         |                                                    |                                     |  |
|                                                                                                                        | 4.0                                                       | 4.3                                              | 8.5             | 8.4                | X           | %                       |                                                    |                                     |  |
| ultimate strain                                                                                                        | 3.3                                                       | 3.3                                              | 7.7             | 7.8                | Y           |                         |                                                    |                                     |  |
|                                                                                                                        | 8.7                                                       | 8.5                                              | 12.5            | 17.6               | Z           |                         |                                                    |                                     |  |
| Specific Heat                                                                                                          | ific Heat 0.96 (0.23) 0.96 (0.23)                         |                                                  | N/A             | J/g/K<br>(cal/g/C) | N/A         | Calculated              |                                                    |                                     |  |
| Moisture Absorption 0.02                                                                                               |                                                           | 0.02                                             |                 | N/A                | %           | .062" (1.6mm)<br>D48/50 | ASTM D570                                          |                                     |  |
| Thermal<br>Conductivity                                                                                                | 0.:                                                       | 22                                               | 0.20            |                    | z           | W/m/K                   | 80°C                                               | ASTM C518                           |  |
| Coefficient of<br>Thermal Expansion                                                                                    | 22                                                        | 2<br>8<br>73                                     | 31<br>48<br>237 |                    | X<br>Y<br>Z | ppm/°C                  | 0-100°C                                            | IPC-TM-650, 2.4.41                  |  |
| Td                                                                                                                     | 50                                                        | 00                                               | 500             |                    | N/A         | °C TGA                  | N/A                                                | ASTM D3850                          |  |
| Density                                                                                                                | 2                                                         | .2                                               | 2.2             |                    | N/A         | gm/cm <sup>3</sup>      | N/A                                                | ASTM D792                           |  |
| Copper Peel                                                                                                            | 27.2                                                      | 27.2 (4.8) 31.2 (5.5)                            |                 | (5.5)              | N/A         | pli (N/mm)              | 1 oz (35µm) EDC foil<br>after solder float         | IPC-TM-650 2.4.8                    |  |
| Flammability                                                                                                           | V                                                         | -0                                               | V               | -0                 | N/A         | N/A                     | N/A                                                | UL94                                |  |
| Lead-Free Process<br>Compatible                                                                                        | Lead-Free Process Yes Yes                                 |                                                  | N/A             | N/A                | N/A         | N/A                     |                                                    |                                     |  |

Figura 17. Sustrato RT/Duroid 5870

FUENTE: ROGERS Corporation. RT/Duroid 5880. [En linea]. [Citado el 6 de julio de 2014]. Disponible en internet <u>http://www.rogerscorp.com/documents/606/acm/RT-duroid-5870-5880-Data-Sheet.pdf</u>.
## 3.2 CARACTERISTICAS DE LA ANTENA EN ESPIRAL

## Antena Espiral Cuadrada

Dimensiones : se tomó como punto de referencia los articulos cientificos IEEE [14], [15], [17] para el diseño de antenas en espiral cuadrada. Las cuales se modificaron para poder obtener las frecuencias de trabajo nesesarias, dichas modificaciones se basaron en la experiencias adquiridas en diseños anteriores, ya que este tipo de diseño de antena no cuenta con expresiones analíticas.

Impedancia de entrada: se obtiene por medio del análisis de los resultados obtenidos del sofware EM sonnet, el cual arroja como resultado la carta de Smith, de esta se obtiene el coeficiente de reflexion el cual es replazado en la ecuación 2.15, se obtiene la impedancia de entrada.

Línea de alimentacion: se utilizan las ecuaciones 2.8 y 2.9 del metodo de Wheeler para obtener una impedancia de Zc= $50\Omega$  ya que va conectada al puerto de alimentanción, el cual cuenta con la misma impedancia y poder realizar un buen acople, el largo de la linea microstrip es determinada por el diseñador ya que esta no va a afectar el patron de radiacion de la antena.

# Figura 18. Diagrama de flujo para el calculo de las caracteristicas de la atena en espiral cuadrada



## **3.3 CONSTRUCCION DE LAS ANTENAS**

Teniendo en cuenta el diagrama de las características de construcción mostradas en la figura 18. Se procede a calcular los parámetros y características importantes de la antena en espiral cuadrada y proceder con la construcción de dichas antenas.

**3.3.1 Antena número 1.** La antena número 1 es una antena en espiral cuadrada para su construcción se utilizando el sustrato RT/Duroid 5870 mostrado en la figura 17 y las caracteristicas de la antena se muestran en la tabla 1. Los resultados del diseño en el sofware EM sonnet se pueden ver en la figura 19 y los resultados de la construcción se observa en la figura 20.

| características                                  | valor    |
|--------------------------------------------------|----------|
| Constante dieléctrica efectiva (ɛ <sub>r</sub> ) | 2.3      |
| Grosor del sustrato (h)                          | 3.175 mm |
| Ancho efectivo de la antena (a <sub>e</sub> )    | 52 mm    |
| Largo efectivo de la antena (l <sub>e</sub> )    | 50 mm    |
| Impedancia de alimentación (Z <sub>c</sub> )     | 50 Ω     |
| Ancho de la línea (W)                            | 2 mm     |
| Ancho del espacio (S)                            | 2 mm     |
| Numero de vueltas                                | 3        |
| Frecuencia de trabajo (fr)                       | 4 GHz    |
| Frecuencia de trabajo (fr)                       | 7 GHz    |
| Frecuencia de trabajo (fr)                       | 10 GHz   |
| Ancho línea de alimentación                      | 9 mm     |
| Largo línea de alimentación                      | 0.75 mm  |

# Tabla 1. Caracteristicas de la antena numero 1

FUENTE: [Autor]





Figura 20. Construcción antena numero 1.



FUENTE:[Autor]

Para realizar las pruebas a la antena ya construida se utilizó el "Sistema didáctico y de medición en antenas" lab-volt, modelo 8092 [24].

Los resultados obtenidos se pueden observar en las figura 21 y 22 el cual muestra el patrón de radiación del campo eléctrico en coordenas polares y cartesianas.



Figura 21. Patrón de radiación en 2D Lab Volt antena número 1



Figura 22. Patrón de radiación en el plano cartesiano Lab Volt antena número

Para realizar las pruebas en el diseño de la antena se útilizo el sofware de "simulación de antenas" Em sonnet [19].

Los resultados obtenidos por este sofware fueron el patron de radiación, este se puede ver en la figura 23. El simulador tambien arrojo como resultado parametros importantes como la Carta de Smith, Densidad de corriente y coeficiente de reflexion los cuales se pueden observar en las figuras 24, figura 25 y figura 26 respectivamente.



Figura 23. Patrón de radiación Em Sonnet antena numero 1

Figura 24. Carta smith de la antena numero 1



### Figura 25. Densidad de corriente antena numero 1



En la figura 25. Se observa la distribunción de corriente en todo el espiral, también se muestra una transmisión de corriente óptima entre la linea de alimentación y la antena en espiral.





En la figura 26 se puede observar que tiene un buen acople de impedancias entre la linea de alimentacion y la antena, ya que su coeficiente de reflexion es de -19 dB para 4GHz, -15dB y -18dB para 10GHz.

**3.3.2 Antena número 2.** La antena número 2 es una antena en espiral cuadrada para su construcción se utilizando el sustrato RT/Duroid 5870 mostrado en la figura 17 y las caracteristicas de la antena se muestran en la tabla 2. los resultados del diseño en el sofware EM sonnet se pueden ver en la figura 27 y los resultados de la construcción se puede observar en la figura 28.

| Características                                  | Valor    |
|--------------------------------------------------|----------|
| Constante dieléctrica efectiva (ε <sub>r</sub> ) | 2.3      |
| Grosor del sustrato (h)                          | 3.175 mm |
| Ancho efectivo de la antena (a <sub>e</sub> )    | 45 mm    |
| Largo efectivo de la antena (l <sub>e</sub> )    | 42 mm    |
| Impedancia de alimentación (Z <sub>c</sub> )     | 50 Ω     |
| Ancho de la línea (W)                            | 3 mm     |
| Ancho del espacio (S)                            | 3 mm     |
| Numero de vueltas                                | 1        |
| Frecuencia de trabajo (fr)                       | 5 GHz    |
| Frecuencia de trabajo (fr)                       | 10.15GHz |
| Frecuencia de trabajo (fr)                       | 10 GHz   |
| Ancho línea de alimentación                      | 9 mm     |
| Largo línea de alimentación                      | 0.75 mm  |

# Tabla 2. Caracteristicas de la antena numero 2

FUENTE: [Autor]

Figura 27. Diseño de la antena número 2 en el software EM sonnet



Figura 28. Construcción antena numero 2.



FUENTE: [Autor]

Para realizar las pruebas a la antena ya construida se utilizó el "Sistema didáctico y de medición en antenas" lab-volt, modelo 8092 [24].

Los resultados obtenidos se pueden observar en las figura 29 y 30 el cual muestra el patrón de radiación del campo eléctrico en coordenas polares y cartesianas.



Figura 29. Patrón de radiación en 2D Lab Volt antena número 2

# Figura 30. Patrón de radiación en el plano cartesiano Lab Volt antena número 2



Para realizar las pruebas en el diseño de la antena se empleo el sofware de "simulación de antenas" Em sonnet [19].

Los resultados obtenidos por este sofware fueron el patron de radiacion el cual se puede ver en la figura 31, el cual se analiza en el siguiente capítulo de este proyecto. El simulador tambien arrojo como resultado parametros importantes como la carta de smith, Densidad de corriente y coeficiente de reflexión los cuales se pueden observar en las figuras 32, figura 33 y figura 34 respectivamente.



Figura 31. Patron de radiacion Em Sonnet antena numero 2

FUENTE:[Autor]





FUENTE:[Autor]

Figura 33. Densidad de corriente antena numero 2



En la figura 3 se observa la distribunción de corriente en todo el espiral también se nota la buena transmision de corriente entre la línea de alimentación y la antena en espiral.

Figura 34. Coeficiente de reflexión directa de la antena numero 2



En la figura 34 se observa que hay un buen acople de impedancias entre la línea de alimentación, ya que su coeficiente de reflexión es de -8 dB para 5 GHz y - 15dB para 10GHz.

**3.3.3 Antena número 3.** La antena número 3 es una antena en espiral cuadrada. Para su construcción se utilizando el sustrato RT/Duroid 5870 mostrado en la figura 17 y las caracteristicas de la antena se muestran en la tabla3. Los resultados del diseño en el sofware EM sonnet se pueden ver en la figura 35 y los resultados de la construccion se puede observar en la figura 36.

| características                                  | Valor    |
|--------------------------------------------------|----------|
| Constante dieléctrica efectiva (ε <sub>r</sub> ) | 2.3      |
| Grosor del sustrato (h)                          | 3.175 mm |
| Ancho efectivo de la antena (a <sub>e</sub> )    | 32 mm    |
| Largo efectivo de la antena (l <sub>e</sub> )    | 31 mm    |
| Impedancia de alimentación (Z <sub>c</sub> )     | 50 Ω     |
| Ancho de la línea (W)                            | 0.75 mm  |
| Ancho del espacio (S)                            | 0.75 mm  |
| Numero de vueltas                                | 3.5      |
| Frecuencia de trabajo (fr)                       | 7 GHz    |
| Frecuencia de trabajo (fr)                       | 10 GHz   |
| Frecuencia de trabajo (fr)                       | 5GHz     |
| Ancho línea de alimentación                      | 9 mm     |
| Largo línea de alimentación                      | 0.75 mm  |

# Tabla 3. Caracteristicas de la antena numero 3

FUENTE: [Autor]

# Figura 35. Diseño de la antena número 3 en el software EM sonnet



Figura 36. Construción antena número 3.



FUENTE: [Auto].

Para realizar las pruebas a la antena ya construida se utilizó el "Sistema didáctico y de medición en antenas" lab-volt, modelo 8092 [24].

Los resultados obtenidos se pueden observar en las figura 37 y 38 el cual muestra el patrón de radiación del campo eléctrico en coordenas polares y cartesianas.



Figura 37. Patrón de radiación en 2D Lab Volt antena número 3

# Figura 38. Patrón de radiación en el plano cartesiano Lab Volt antena número 3



Para realizar las pruebas en el diseño de la antena se útilizo el sofware de "simulación de antenas" Em sonnet [19].

Los resultados obtenidos por este sofware fueron el patrón de radiación el cual se puede ver en la figura 39. El simulador también arrojo como resultado parametros importantes como la Carta de Smith, Densidad de corriente y coeficiente de reflexión los cuales se puden observar en las figuras 40, figura 41 y figura 42 respectivamente.

Figura 39. Patrón de radiación Em Sonnet antena número 3

Figura 40. Carta smith de la antena número 3



Figura 41. Densidad de corriente antena numero 3



En la figura 41. Se puede observar la distribunción de corriente en todo el espiral también se puede ver la buena transmisión de corriente entre la línea de alimentación y la antena en todas sus vueltas.



Figura 42. Coeficiente de reflexión directa de la antena número 3

En la figura 42. se puede observar un buen acople de impedancias entre la línea de alimentación y la antena, ya que su coeficiente de reflexión es de -29 dB para 7 GHz y -24dB para 10GHz.

## IV. ANALISIS DE RESULTADOS

El análisis de resultados consiste en la comparación del patrón de radiación grado a grado desde 0 a 180 grados, ya que el simulador de antenas Em Bonnet supone un plano de tierra infinito y por lo tanto no muestra el patrón de radiación desde los 181 a 359 grados como se puede observar en las figuras 23, 31, 39.

La comparación se realiza entre los resultados obtenidos teóricamente con el simulador de antenas Em Sonnet y los obtenidos prácticamente con el software LVDAM-ANT utilizando las antenas ya construidas mencionadas anteriormente, cada antena con características de diseño diferentes como se observa en las tablas 1, 2, 3 y posteriormente se analizaran los resultado.

### 4.1 ANTENA 1.

La antena número uno es una antena en forma en espiral cuadrada construida sobre el sustrato de referencia RT/Duroid 5870 producido por la empresa americana ROGERS Corporation. Esta antena en espiral cuenta con 3 vueltas la cual tiene 3 frecuencias de funcionamiento a saber 4, 7 y 10 GHz como se observa en la tabla 1. Para esta antena se analizó en la frecuencia de 10Ghz la cual es la frecuencia de funcionamiento de los equipos Lab-volt y los resultados se pueden ver a continuación en la tabla 4.

|        | Normalizado Em | Normalizado |            |
|--------|----------------|-------------|------------|
|        | Sonnet         | Lab-Volt    | Error%     |
| Grados |                |             |            |
|        | 0.27059        | 0.504421977 | 86.4175685 |
| 0      |                |             |            |
|        | 0.27689        | 0.504421977 | 82.1741866 |
| 1      |                |             |            |
|        | 0.28334        | 0.486849805 | 71.8255881 |
| 2      |                |             |            |
|        | 0.28994        | 0.484340739 | 67.0489842 |
| 3      |                |             |            |
|        | 0.29172        | 0.496889706 | 70.3337297 |
| 4      |                |             |            |
| _      | 0.29266        | 0.501911331 | 71.4982655 |
| 5      |                |             |            |
| •      | 0.32771        | 0.519490967 | 58.5226176 |
| 6      |                |             |            |
| -      | 0.36322        | 0.54964844  | 51.3285623 |
| /      |                |             |            |
|        | 0.39888        | 0.574800318 | 44.1029365 |
| 8      |                |             |            |

### Tabla 4. Error antena 1

| 9  | 0.43444 | 0.564736685 | 29.993215  |
|----|---------|-------------|------------|
| 10 | 0.46964 | 0.562222213 | 19.7134663 |
| 11 | 0.50429 | 0.574800318 | 13.9810793 |
| 12 | 0.53823 | 0.599969261 | 11.4699684 |
| 13 | 0.57133 | 0.627678134 | 9.8634265  |
| 14 | 0.60347 | 0.640280094 | 6.10037161 |
| 15 | 0.63458 | 0.662974768 | 4.47506043 |
| 16 | 0.66460 | 0.670543566 | 0.89438002 |
| 17 | 0.69349 | 0.693258176 | 0.0336434  |
| 18 | 0.72122 | 0.698307972 | 3.17720218 |
| 19 | 0.74777 | 0.710935171 | 4.92607315 |
| 20 | 0.77312 | 0.769079083 | 0.52259124 |
| 21 | 0.79725 | 0.789325258 | 0.99443717 |
| 22 | 0.82016 | 0.771610271 | 5.919477   |
| 23 | 0.84182 | 0.81718051  | 2.92717826 |
| 24 | 0.86222 | 0.845056993 | 1.99106004 |
| 25 | 0.88135 | 0.86027044  | 2.39127723 |
| 26 | 0.89916 | 0.862807676 | 4.04324431 |
| 27 | 0.91565 | 0.875489617 | 4.3859296  |
| 28 | 0.93077 | 0.903408141 | 2.94018862 |
| 29 | 0.94451 | 0.931345885 | 1.39338374 |
| 30 | 0.95681 | 0.966929922 | 1.05764979 |
| 31 | 0.96765 | 0.974558694 | 0.71397798 |
| 32 | 0.97699 | 0.969473629 | 0.7692479  |
| 33 | 0.98479 | 0.974558694 | 1.03913061 |

| 34 | 0.99102 | 0.989821767 | 0.12133266 |
|----|---------|-------------|------------|
| 35 | 0.99565 | 0.987276955 | 0.84136996 |
| 36 | 0.99865 | 0.997700064 | 0.09550428 |
| 37 | 1.00000 | 1           | 0          |
| 38 | 0.99968 | 0.997468065 | 0.22083666 |
| 39 | 0.99767 | 0.992366283 | 0.53169737 |
| 40 | 0.99398 | 0.974558694 | 1.95422404 |
| 41 | 0.98862 | 0.949135025 | 3.99399284 |
| 42 | 0.98160 | 0.933886291 | 4.8607236  |
| 43 | 0.97295 | 0.921185302 | 5.32011429 |
| 44 | 0.96270 | 0.8983302   | 6.6867755  |
| 45 | 0.95092 | 0.872953278 | 8.19920336 |
| 46 | 0.93766 | 0.862807676 | 7.98314492 |
| 47 | 0.92300 | 0.865344425 | 6.24703748 |
| 48 | 0.90704 | 0.850127373 | 6.27431763 |
| 49 | 0.88986 | 0.842521515 | 5.32014503 |
| 50 | 0.87160 | 0.845056993 | 3.04499591 |
| 51 | 0.85237 | 0.842521515 | 1.15490298 |
| 52 | 0.83231 | 0.837452146 | 0.61817688 |
| 53 | 0.81157 | 0.839987842 | 3.5015098  |
| 54 | 0.79031 | 0.845056993 | 6.92666732 |
| 55 | 0.76871 | 0.852664143 | 10.9221342 |
| 56 | 0.74692 | 0.809582291 | 8.39004385 |
| 57 | 0.72512 | 0.784263494 | 8.15569739 |
| 58 | 0.70351 | 0.779201895 | 10.758698  |

| 59 | 0.68226 | 0.769079083 | 12.7245167 |
|----|---------|-------------|------------|
| 60 | 0.66156 | 0.741260742 | 12.0472861 |
| 61 | 0.64158 | 0.710935171 | 10.8097377 |
| 62 | 0.62250 | 0.693258176 | 11.3662787 |
| 63 | 0.60449 | 0.673066538 | 11.3442663 |
| 64 | 0.58771 | 0.627678134 | 6.80125303 |
| 65 | 0.57230 | 0.610042371 | 6.59553116 |
| 66 | 0.55840 | 0.57731654  | 3.38850203 |
| 67 | 0.54612 | 0.552162617 | 1.10586102 |
| 68 | 0.53558 | 0.522003001 | 2.53567778 |
| 69 | 0.52686 | 0.511955249 | 2.82934146 |
| 70 | 0.52002 | 0.486849805 | 6.37943258 |
| 71 | 0.51512 | 0.469286434 | 8.89714315 |
| 72 | 0.51217 | 0.454238562 | 11.3102213 |
| 73 | 0.51117 | 0.441703662 | 13.5903757 |
| 74 | 0.51213 | 0.441703662 | 13.7509526 |
| 75 | 0.51498 | 0.446717535 | 13.2558687 |
| 76 | 0.51969 | 0.451731109 | 13.0764203 |
| 77 | 0.52616 | 0.464270405 | 11.7629071 |
| 78 | 0.53431 | 0.4793216   | 10.2917615 |
| 79 | 0.54402 | 0.494380122 | 9.12519206 |
| 80 | 0.55517 | 0.514467566 | 7.331531   |
| 81 | 0.56761 | 0.552162617 | 2.72179395 |
| 82 | 0.58120 | 0.572284522 | 1.53356987 |
| 83 | 0.59577 | 0.589899462 | 0.98500018 |

| 84  | 0.61116 | 0.617599591 | 1.05422925 |
|-----|---------|-------------|------------|
| 85  | 0.62719 | 0.637759593 | 1.68446734 |
| 86  | 0.64371 | 0.650364759 | 1.03361212 |
| 87  | 0.66054 | 0.668020823 | 1.13301809 |
| 88  | 0.67751 | 0.673066538 | 0.65515992 |
| 89  | 0.69446 | 0.675589669 | 2.71674505 |
| 90  | 0.71124 | 0.685685554 | 3.59258059 |
| 91  | 0.72771 | 0.688210034 | 5.42740411 |
| 92  | 0.74373 | 0.685685554 | 7.80442017 |
| 93  | 0.75919 | 0.685685554 | 9.68191016 |
| 94  | 0.77398 | 0.683160897 | 11.7341878 |
| 95  | 0.78801 | 0.680637699 | 13.6261701 |
| 96  | 0.80121 | 0.673066538 | 15.9939093 |
| 97  | 0.81351 | 0.670543566 | 17.5744693 |
| 98  | 0.82488 | 0.665498376 | 19.3215433 |
| 99  | 0.83527 | 0.673066538 | 19.4193387 |
| 100 | 0.84468 | 0.668020823 | 20.9141733 |
| 101 | 0.85310 | 0.652886968 | 23.4687484 |
| 102 | 0.86054 | 0.650364759 | 24.4237949 |
| 103 | 0.86703 | 0.665498376 | 23.2438671 |
| 104 | 0.87259 | 0.662974768 | 24.0225443 |
| 105 | 0.87728 | 0.662974768 | 24.4279814 |
| 106 | 0.88112 | 0.675589669 | 23.3261274 |
| 107 | 0.88418 | 0.683160897 | 22.735428  |
| 108 | 0.88652 | 0.675589669 | 23.7931283 |

| 109 | 0.88819 | 0.670543566 | 24.5045566 |
|-----|---------|-------------|------------|
| 110 | 0.88925 | 0.680637699 | 23.4597473 |
| 111 | 0.88977 | 0.675589669 | 24.0715889 |
| 112 | 0.88980 | 0.678114452 | 23.7903514 |
| 113 | 0.88940 | 0.683160897 | 23.1884109 |
| 114 | 0.88861 | 0.680637699 | 23.4046489 |
| 115 | 0.88750 | 0.670543566 | 24.4456894 |
| 116 | 0.88609 | 0.65793047  | 25.749217  |
| 117 | 0.88443 | 0.642801675 | 27.3204247 |
| 118 | 0.88255 | 0.632717724 | 28.3080022 |
| 119 | 0.88047 | 0.610042371 | 30.7140133 |
| 120 | 0.87821 | 0.599969261 | 31.682852  |
| 121 | 0.87579 | 0.587382495 | 32.9309704 |
| 122 | 0.87321 | 0.564736685 | 35.3260863 |
| 123 | 0.87047 | 0.552162617 | 36.5672117 |
| 124 | 0.86757 | 0.547134373 | 36.9350646 |
| 125 | 0.86451 | 0.542106981 | 37.2933077 |
| 126 | 0.86128 | 0.544620519 | 36.7658378 |
| 127 | 0.85785 | 0.554676798 | 35.3410725 |
| 128 | 0.85422 | 0.557192164 | 34.771817  |
| 129 | 0.85037 | 0.584865495 | 31.2219894 |
| 130 | 0.84627 | 0.592416301 | 29.9970015 |
| 131 | 0.84192 | 0.645322786 | 23.3508742 |
| 132 | 0.83728 | 0.668020823 | 20.2156792 |
| 133 | 0.83235 | 0.693258176 | 16.7107436 |

| 134 | 0.82710 | 0.726094254 | 12.2120895 |
|-----|---------|-------------|------------|
| 135 | 0.82152 | 0.76402048  | 6.99897224 |
| 136 | 0.81559 | 0.769079083 | 5.70256665 |
| 137 | 0.80930 | 0.771610271 | 4.65688497 |
| 138 | 0.80264 | 0.741260742 | 7.64683661 |
| 139 | 0.79560 | 0.718513612 | 9.68860785 |
| 140 | 0.78817 | 0.708410517 | 10.1193302 |
| 141 | 0.78035 | 0.683160897 | 12.4544112 |
| 142 | 0.77214 | 0.655408395 | 15.1174527 |
| 143 | 0.76353 | 0.645322786 | 15.481391  |
| 144 | 0.75452 | 0.627678134 | 16.8114662 |
| 145 | 0.74513 | 0.544620519 | 26.9092255 |
| 146 | 0.73534 | 0.519490967 | 29.3538663 |
| 147 | 0.72517 | 0.449225085 | 38.0522402 |
| 148 | 0.71461 | 0.376585852 | 47.3017032 |
| 149 | 0.70366 | 0.314053762 | 55.368755  |
| 150 | 0.69234 | 0.264052936 | 61.8606595 |
| 151 | 0.68063 | 0.234043185 | 65.61368   |
| 152 | 0.66854 | 0.2090143   | 68.7354993 |
| 153 | 0.65605 | 0.181441238 | 72.3435152 |
| 154 | 0.64317 | 0.173910178 | 72.9606601 |
| 155 | 0.62989 | 0.176421293 | 71.9917209 |
| 156 | 0.61619 | 0.166373058 | 72.9995086 |
| 157 | 0.60204 | 0.161344067 | 73.2006244 |
| 158 | 0.58745 | 0.153794215 | 73.819847  |

| 159 | 0.57237 | 0.156311885 | 72.6902553 |
|-----|---------|-------------|------------|
| 160 | 0.55678 | 0.176421293 | 68.313989  |
| 161 | 0.54066 | 0.191474525 | 64.5847524 |
| 162 | 0.52396 | 0.188967014 | 63.9350528 |
| 163 | 0.50667 | 0.22403455  | 55.7830065 |
| 164 | 0.48875 | 0.24905026  | 49.043204  |
| 165 | 0.47017 | 0.264052936 | 43.8385088 |
| 166 | 0.45091 | 0.276553399 | 38.6672909 |
| 167 | 0.43095 | 0.271553247 | 36.9877624 |
| 168 | 0.41030 | 0.256551761 | 37.4727888 |
| 169 | 0.38897 | 0.226536924 | 41.7602241 |
| 170 | 0.36699 | 0.183950512 | 49.8759974 |
| 171 | 0.34441 | 0.163858887 | 52.4235796 |
| 172 | 0.32132 | 0.14118937  | 56.0589088 |
| 173 | 0.29781 | 0.131082284 | 55.9841143 |
| 174 | 0.27402 | 0.120949478 | 55.8613958 |
| 175 | 0.25012 | 0.118411532 | 52.658918  |
| 176 | 0.22630 | 0.133611242 | 40.9592429 |
| 177 | 0.20277 | 0.15127564  | 25.396044  |
| 178 | 0.17976 | 0.183950512 | 2.33247947 |
| 179 | 0.15750 | 0.221531761 | 40.6553051 |
| 180 | 0.13624 | 0.24404842  | 79.1357049 |

Para resumir el análisis se especifican los datos como error mínimo, el error máximo, error promedio y la desviación estándar los cuales se presentaran a continuación en la tabla 5.

| Error Mínimo % | Error Máximo % | Error Promedio % | Desviación<br>Estándar |
|----------------|----------------|------------------|------------------------|
| 0              | 86,4175        | 22,9245          | 0.228                  |

#### Tabla 5. Datos específicos Error antena 1

Según los datos de la tabla 5 se puede observar un error mínimo del 0% y un error máximo de 90.84%, error promedio de 22,9245. Estos datos se obtienen de la comparación del patrón de radiación obtenido teóricamente por el simulador de antenas Em sonnet, Y el patrón de radiación obtenido prácticamente con la construcción de la antena en el sustrato RT/Duroid 5870 y probada en el medidor de antenas LVDAM-ANT con el equipo de Lab-volt

En el patrón de radiación de las figuras 21 y 23 se puede observar que son dos graficas no del todo simétricas, ya que el simulador Em Sonnet además de considerar el plano de tierra infinito no incluye factores de interferencia el cual no tiene presente ningún tipo de error, bajo estas condiciones el patrón de radiación del simulador se puede considerar como ideal. Y el patrón de radiación obtenido prácticamente con la antena construida con el sustrato RT/Duroid 5870 y probada en el medidor de antenas LVDAM-ANT en el equipo de Lab-volt incluye factores de error como el ruido generado por el cable de alimentación, marcos metálicos cerca del lugar de pruebas, teléfonos celulares que cusan interferencias entre otros.

A pesar de las diferencias en la geometría del patrón de radiación se obtiene un promedio de error muy bueno del 22,9245%. Además en la figura 21 se puede observar una magnitud de radiación de -10dB en 37 grados aproximadamente.

Otro dato especificó es la desviación estándar, la cual muestra que tan alejado están las muestras tomadas grado a grado del promedio del total de valor obtenidos. El cual tiene un valor del 0,228 el cual es aceptable ya que no están muy dispersas del valor de magnitud promedio.

#### 4.2 ANTENA 2.

La antena número dos es una antena en forma en espiral cuadrada construida sobre el sustrato de referencia RT/Duroid 5870 producido por la empresa americana ROGERS Corporation. Esta antena en espiral cuenta con 1 vueltas la cual tiene 2 frecuencias de funcionamiento a saber 5 y 10 GHz como se observa en la tabla 2. Para esta antena se analizó en la frecuencia de 10Ghz la cual es la frecuencia de funcionamiento de los equipos Lab-volt y los resultados se pueden ver a continuación en la tabla 6.

|        | Normalizado Em | Normalizado Lab- |                 |
|--------|----------------|------------------|-----------------|
|        | Sonnet         | volt             | Error %         |
| Grados |                | 0.040047007      | - 4 0 - 0 0 0 0 |
| 0      | 0.187845845    | 0.048317327      | 74.278203       |
| 1      | 0.175206468    | 0.045084671      | 74.2676905      |
| 2      | 0.163520898    | 0.04174831       | 74.4691287      |
| 3      | 0.152934154    | 0.045084671      | 70.5202079      |
| 4      | 0.143585606    | 0.048393151      | 66.2966558      |
| 5      | 0.135603764    | 0.048393151      | 64.3128262      |
| 6      | 0.129101864    | 0.051329366      | 60.2411892      |
| 7      | 0.124174633    | 0.044798338      | 63.9231163      |
| 8      | 0.12089624     | 0.058917716      | 51.2658825      |
| 9      | 0.119319464    | 0.058686053      | 50.8160272      |
| 10     | 0.119476069    | 0.06652102       | 44.3227244      |
| 11     | 0.121377831    | 0.076243864      | 37.1846873      |
| 12     | 0.125018437    | 0.089760012      | 28.2025804      |
| 13     | 0.13037555     | 0.101281914      | 22.3152547      |
| 14     | 0.137413292    | 0.110851073      | 19.3301673      |
| 15     | 0.146084462    | 0.120397342      | 17.5837451      |
| 16     | 0.156332832    | 0.128021497      | 18.109654       |
| 17     | 0.168095057    | 0.144548603      | 14.0078206      |
| 18     | 0.181302455    | 0.154979016      | 14.5190744      |
| 19     | 0.19588234     | 0.167118643      | 14.6841708      |
| 20     | 0.211759257    | 0.182008261      | 14.0494429      |
| 21     | 0.2288558      | 0.204243338      | 10.7545721      |
| 22     | 0.247093308    | 0.221221789      | 10.470344       |

## Tabla 6. Error Antena 2

| 23 | 0.266392286 | 0.239885446 | 9.95030297 |
|----|-------------|-------------|------------|
| 24 | 0.286672817 | 0.26241273  | 8.46263935 |
| 25 | 0.30785464  | 0.277381122 | 9.89867119 |
| 26 | 0.329857356 | 0.303017632 | 8.13676695 |
| 27 | 0.35260037  | 0.324930815 | 7.84728477 |
| 28 | 0.376003003 | 0.349317948 | 7.09703259 |
| 29 | 0.399984345 | 0.37735395  | 5.65782031 |
| 30 | 0.424463301 | 0.397622453 | 6.32347907 |
| 31 | 0.449358514 | 0.420584148 | 6.40343185 |
| 32 | 0.474588342 | 0.448302128 | 5.53874005 |
| 33 | 0.500070862 | 0.480344586 | 3.94469618 |
| 34 | 0.525723846 | 0.515610675 | 1.92366599 |
| 35 | 0.551464842 | 0.527415513 | 4.36099042 |
| 36 | 0.577211206 | 0.537422568 | 6.89325458 |
| 37 | 0.602880154 | 0.563698527 | 6.499074   |
| 38 | 0.628388965 | 0.588474841 | 6.35181817 |
| 39 | 0.653655058 | 0.624062074 | 4.52730895 |
| 40 | 0.678596193 | 0.647811868 | 4.53647186 |
| 41 | 0.703130647 | 0.65028824  | 7.51530429 |
| 42 | 0.727177455 | 0.669597618 | 7.91826493 |
| 43 | 0.750656651 | 0.692918091 | 7.69174035 |
| 44 | 0.773489527 | 0.726696218 | 6.0496371  |
| 45 | 0.795598911 | 0.762925094 | 4.1068202  |
| 46 | 0.816909576 | 0.770149256 | 5.72405095 |
| 47 | 0.837348289 | 0.779628488 | 6.89316518 |

| 48 | 0.85684448  | 0.794296959 | 7.29975179 |
|----|-------------|-------------|------------|
| 49 | 0.875330239 | 0.814718916 | 6.92439497 |
| 50 | 0.89274096  | 0.826720868 | 7.39521261 |
| 51 | 0.909015407 | 0.840246864 | 7.56516805 |
| 52 | 0.924096227 | 0.874651207 | 5.35063536 |
| 53 | 0.937930252 | 0.888392329 | 5.28162121 |
| 54 | 0.950468749 | 0.897210402 | 5.60337697 |
| 55 | 0.961667799 | 0.920459533 | 4.28508324 |
| 56 | 0.971488585 | 0.937905538 | 3.45686486 |
| 57 | 0.979897629 | 0.959239602 | 2.10818225 |
| 58 | 0.986867037 | 0.972821589 | 1.42323609 |
| 59 | 0.992374861 | 0.988350076 | 0.40557101 |
| 60 | 0.996405066 | 0.990291383 | 0.61357409 |
| 61 | 0.998947943 | 0.998058046 | 0.08908346 |
| 62 | 1           | 1           | 0          |
| 63 | 0.999564372 | 0.999539589 | 0.00247939 |
| 64 | 0.997650554 | 0.998058046 | 0.04084515 |
| 65 | 0.994274683 | 0.988350076 | 0.59587221 |
| 66 | 0.989459225 | 0.980585123 | 0.89686387 |
| 67 | 0.983233378 | 0.979864672 | 0.34261503 |
| 68 | 0.975632439 | 0.977877154 | 0.23007792 |
| 69 | 0.966698093 | 0.959752164 | 0.71852105 |
| 70 | 0.956477889 | 0.954812729 | 0.17409296 |
| 71 | 0.945025197 | 0.951665225 | 0.70262978 |
| 72 | 0.932398948 | 0.933410969 | 0.1085394  |

| 73 | 0.918663249 | 0.91111207  | 0.82197469 |
|----|-------------|-------------|------------|
| 74 | 0.90388692  | 0.909529522 | 0.62425964 |
| 75 | 0.888143386 | 0.87845395  | 1.09097655 |
| 76 | 0.871509962 | 0.851543621 | 2.29100552 |
| 77 | 0.854067528 | 0.824652348 | 3.44412807 |
| 78 | 0.83590015  | 0.797781388 | 4.56020518 |
| 79 | 0.817094276 | 0.772997163 | 5.39682067 |
| 80 | 0.797738579 | 0.744104447 | 6.72327164 |
| 81 | 0.777923088 | 0.702984744 | 9.63313022 |
| 82 | 0.757738856 | 0.690514655 | 8.87168459 |
| 83 | 0.73727718  | 0.635845936 | 13.7575455 |
| 84 | 0.716629263 | 0.616200292 | 14.0140761 |
| 85 | 0.695885496 | 0.588718794 | 15.4000483 |
| 86 | 0.675134998 | 0.569544418 | 15.639921  |
| 87 | 0.654464965 | 0.551466201 | 15.7378576 |
| 88 | 0.63396019  | 0.527964717 | 16.7195788 |
| 89 | 0.613702605 | 0.506227694 | 17.5125396 |
| 90 | 0.593770709 | 0.494225216 | 16.764972  |
| 91 | 0.574239163 | 0.477100531 | 16.9160584 |
| 92 | 0.555178304 | 0.465210919 | 16.2051334 |
| 93 | 0.536653878 | 0.414746663 | 22.7161715 |
| 94 | 0.518726561 | 0.399504706 | 22.9835646 |
| 95 | 0.501451708 | 0.369048887 | 26.4039027 |
| 96 | 0.484879091 | 0.348130361 | 28.2026454 |
| 97 | 0.469052685 | 0.325328342 | 30.6414071 |

| 98  | 0.454010468 | 0.312034705 | 31.2714733 |
|-----|-------------|-------------|------------|
| 99  | 0.439784313 | 0.302892068 | 31.1271324 |
| 100 | 0.426399926 | 0.292975902 | 31.2908179 |
| 101 | 0.413876798 | 0.285972913 | 30.9038547 |
| 102 | 0.402228236 | 0.28272089  | 29.7113267 |
| 103 | 0.391461417 | 0.281270963 | 28.148484  |
| 104 | 0.38157754  | 0.278820627 | 26.9294972 |
| 105 | 0.372571924 | 0.276289831 | 25.842552  |
| 106 | 0.364434274 | 0.274995065 | 24.5419312 |
| 107 | 0.357148857 | 0.274370807 | 23.1774646 |
| 108 | 0.350694806 | 0.269416941 | 23.1762388 |
| 109 | 0.34504645  | 0.269023736 | 22.0326029 |
| 110 | 0.340173591 | 0.268774399 | 20.9890459 |
| 111 | 0.336041925 | 0.267162132 | 20.4973809 |
| 112 | 0.332613409 | 0.262369834 | 21.1186843 |
| 113 | 0.329846655 | 0.261178787 | 20.8181187 |
| 114 | 0.327697346 | 0.260810397 | 20.4111965 |
| 115 | 0.326118709 | 0.26350316  | 19.2002321 |
| 116 | 0.325061896 | 0.263141836 | 19.0486984 |
| 117 | 0.324476467 | 0.248101791 | 23.5378165 |
| 118 | 0.324310817 | 0.217984142 | 32.7854236 |
| 119 | 0.324512607 | 0.214969032 | 33.756339  |
| 120 | 0.325029204 | 0.217984142 | 32.9339828 |
| 121 | 0.32580809  | 0.220998792 | 32.1690287 |
| 122 | 0.326797281 | 0.214969032 | 34.2194552 |

| 123 | 0.327945702 | 0.199881178 | 39.0505268 |
|-----|-------------|-------------|------------|
| 124 | 0.329203561 | 0.19383933  | 41.1187019 |
| 125 | 0.330522694 | 0.19383933  | 41.3537002 |
| 126 | 0.331856917 | 0.181743087 | 45.2345039 |
| 127 | 0.333162279 | 0.163557664 | 50.9075082 |
| 128 | 0.334397363 | 0.162754086 | 51.329136  |
| 129 | 0.335523547 | 0.158039956 | 52.8975068 |
| 130 | 0.336505188 | 0.15243437  | 54.700737  |
| 131 | 0.337309835 | 0.149290406 | 55.7408676 |
| 132 | 0.337908381 | 0.14246786  | 57.8383173 |
| 133 | 0.33827518  | 0.139370193 | 58.7997581 |
| 134 | 0.338388164 | 0.133097501 | 60.6672116 |
| 135 | 0.338228932 | 0.130037586 | 61.5533817 |
| 136 | 0.337782748 | 0.134715603 | 60.117678  |
| 137 | 0.337038563 | 0.136166069 | 59.5992613 |
| 138 | 0.335989058 | 0.138741025 | 58.7066834 |
| 139 | 0.334630509 | 0.140503098 | 58.0124662 |
| 140 | 0.332962799 | 0.148256895 | 55.4734357 |
| 141 | 0.330989307 | 0.140503098 | 57.5505629 |
| 142 | 0.328716765 | 0.144382614 | 56.0768937 |
| 143 | 0.32615513  | 0.144382614 | 55.73192   |
| 144 | 0.32331742  | 0.124925156 | 61.3614521 |
| 145 | 0.320219543 | 0.128829375 | 59.7684221 |
| 146 | 0.316880047 | 0.111605578 | 64.7798658 |
| 147 | 0.313319918 | 0.111605578 | 64.3796735 |

| 148 | 0.309562285 | 0.109651582 | 64.5785075 |
|-----|-------------|-------------|------------|
| 149 | 0.30563219  | 0.111605578 | 63.4836967 |
| 150 | 0.301556208 | 0.111921855 | 62.8852426 |
| 151 | 0.29736214  | 0.109065125 | 63.3224578 |
| 152 | 0.293078671 | 0.110074292 | 62.4420667 |
| 153 | 0.288734922 | 0.113166244 | 60.8061807 |
| 154 | 0.284360032 | 0.114884014 | 59.5990994 |
| 155 | 0.27998273  | 0.11552764  | 58.7375837 |
| 156 | 0.275630761 | 0.117764638 | 57.2744939 |
| 157 | 0.271330399 | 0.120356098 | 55.642236  |
| 158 | 0.267105846 | 0.115923077 | 56.6003221 |
| 159 | 0.262978621 | 0.120425068 | 54.2072784 |
| 160 | 0.258966957 | 0.118499604 | 54.2414192 |
| 161 | 0.255085113 | 0.117764638 | 53.8331986 |
| 162 | 0.251342722 | 0.114687187 | 54.3701978 |
| 163 | 0.247744222 | 0.111605578 | 54.9512893 |
| 164 | 0.244288248 | 0.105428712 | 56.8424954 |
| 165 | 0.24096719  | 0.10233281  | 57.5324716 |
| 166 | 0.237766861 | 0.096124457 | 59.5719703 |
| 167 | 0.234666461 | 0.083629577 | 64.362365  |
| 168 | 0.231638681 | 0.080486659 | 65.2533599 |
| 169 | 0.22865031  | 0.074173009 | 67.5605034 |
| 170 | 0.225663149 | 0.067816582 | 69.9478702 |
| 171 | 0.222635407 | 0.067816582 | 69.5391747 |
| 172 | 0.219523584 | 0.067816582 | 69.1073819 |
| 173 | 0.216284767 | 0.064619843 | 70.1227951 |
|-----|-------------|-------------|------------|
| 174 | 0.212879325 | 0.058183106 | 72.6685032 |
| 175 | 0.209273811 | 0.058183106 | 72.1976174 |
| 176 | 0.205443883 | 0.054939778 | 73.2580122 |
| 177 | 0.201376943 | 0.054939778 | 72.7179402 |
| 178 | 0.197074423 | 0.054939778 | 72.1223195 |
| 179 | 0.192553148 | 0.058183106 | 69.7833527 |
| 180 | 0.187845845 | 0.054939778 | 70.7527319 |

Para resumir el análisis se especifican los datos como error mínimo, el error máximo, error promedio y la desviación estándar los cuales se presentaran a continuación en la tabla 7.

#### Tabla 7. Datos específicos Error antena 2

| Error Máximo % | Error Mínimo % | Error Promedio % | Desviación |
|----------------|----------------|------------------|------------|
|                |                |                  | Estándar   |
| 74,4691        | 0              | 30,9589          | 0.2511     |

Según los datos de la tabla 7 se puede observar un error mínimo de 0% y un error máximo, un error promedio de 30.9589%, el cual es un error de consideración ya que es una diferencia en la comparación del patrón de radiación obtenido teóricamente por el simulador de antenas Em sonnet.

En el patrón de radiación de las figuras 29 y 31 se observa que no son totalmente simétricos, aunque no es una buena aproximación se puede predecir el comportamiento del patrón, como se explicó en la antena anterior se cuentan con errores de simulador y errores de interferencia en el lugar de pruebas.

Esta antena presenta un error promedio mayor que la antena número uno ya que en la comparación del patrón de radiación se presenta diferencias en la parte baja del lóbulo principal, el error es aceptable. En la figura 29 se puede observar una magnitud de -9dB en 62 grados, mejor que la antena uno. Otro dato especificó es la desviación estándar, el cual nos muestra que tan alejado están las muestras tomadas grado a grado del promedio de estas. El cual tiene un valor del 0,228 el cual es aceptable ya que no están muy dispersas del valor de magnitud promedio.

#### 4.3 ANTENA 3.

La antena número dos es una antena en forma en espiral cuadrada construida sobre el sustrato de referencia RT/Duroid 5870 producido por la empresa americana ROGERS Corporation. Esta antena en espiral cuenta con 3.5 vueltas la cual tiene 3 frecuencias de funcionamiento a saber 5, 7 y 10 GHz como se observa en la tabla 3. Para esta antena se analizó en la frecuencia de 10Ghz la cual es la frecuencia de funcionamiento de los equipos Lab-volt y los resultados se pueden ver a continuación en la tabla 8.

|        | Normalización Em | Normalización |            |
|--------|------------------|---------------|------------|
| Grados | Sonnet           | Lab-volt      | Error %    |
| 0      | 0.203828049      | 0.134885293   | 33.8239786 |
| 1      | 0.190755078      | 0.128255382   | 32.7643678 |
| 2      | 0.177996403      | 0.139300476   | 21.7397244 |
| 3      | 0.165724553      | 0.145917574   | 11.9517471 |
| 4      | 0.154103722      | 0.154730383   | 0.40664899 |
| 5      | 0.143283743      | 0.161333888   | 12.5974832 |
| 6      | 0.133395072      | 0.174527794   | 30.8352634 |
| 7      | 0.124545227      | 0.176725248   | 41.8964443 |
| 8      | 0.116816679      | 0.196489614   | 68.2033895 |
| 9      | 0.110266263      | 0.199756353   | 81.1581775 |
| 10     | 0.10492586       | 0.203850415   | 94.2804331 |
| 11     | 0.100804084      | 0.20521051    | 103.573608 |
| 12     | 0.097888746      | 0.203210713   | 107.593539 |
| 13     | 0.096149718      | 0.207210901   | 115.508589 |

#### Tabla 8. Error Antena 3

| 14 | 0.095541995 | 0.205563782 | 115.155421 |
|----|-------------|-------------|------------|
| 15 | 0.096008677 | 0.208357242 | 117.019177 |
| 16 | 0.097483826 | 0.212787739 | 118.280044 |
| 17 | 0.099895004 | 0.213210506 | 113.434604 |
| 18 | 0.10316549  | 0.209210559 | 102.791222 |
| 19 | 0.107216155 | 0.223552844 | 108.50668  |
| 20 | 0.111966965 | 0.211849089 | 89.2067792 |
| 21 | 0.117338269 | 0.198684323 | 69.3261068 |
| 22 | 0.12325172  | 0.189903776 | 54.0779931 |
| 23 | 0.129631052 | 0.187708353 | 44.8019975 |
| 24 | 0.136402625 | 0.176725248 | 29.5614718 |
| 25 | 0.143495829 | 0.163534203 | 13.9644301 |
| 26 | 0.150843419 | 0.161333888 | 6.95454217 |
| 27 | 0.158381702 | 0.165733614 | 4.64189431 |
| 28 | 0.166050706 | 0.161333888 | 2.84058908 |
| 29 | 0.173794283 | 0.156932033 | 9.70241964 |
| 30 | 0.181560198 | 0.170131449 | 6.29474367 |
| 31 | 0.189300184 | 0.165733614 | 12.4493121 |
| 32 | 0.196969983 | 0.181119662 | 8.04707407 |
| 33 | 0.204529411 | 0.185512253 | 9.29800636 |
| 34 | 0.211942351 | 0.181119662 | 14.5429586 |
| 35 | 0.219176837 | 0.211849089 | 3.34330414 |
| 36 | 0.226205054 | 0.231587759 | 2.37956878 |
| 37 | 0.233003378 | 0.238165911 | 2.21564724 |
| 38 | 0.239552396 | 0.218429655 | 8.81758699 |

| 39 | 0.245836935 | 0.244743744 | 0.44468107 |
|----|-------------|-------------|------------|
| 40 | 0.251846069 | 0.255706401 | 1.53281402 |
| 41 | 0.257573121 | 0.266669656 | 3.53163201 |
| 42 | 0.263015651 | 0.268862108 | 2.22285517 |
| 43 | 0.268175446 | 0.268862108 | 0.25604959 |
| 44 | 0.27305847  | 0.292985144 | 7.2975852  |
| 45 | 0.277674788 | 0.301759256 | 8.67362426 |
| 46 | 0.28203853  | 0.299565365 | 6.21434054 |
| 47 | 0.286167722 | 0.317117055 | 10.8151029 |
| 48 | 0.290084228 | 0.314922434 | 8.56241206 |
| 49 | 0.293813533 | 0.330284809 | 12.4130691 |
| 50 | 0.297384605 | 0.330284809 | 11.0631835 |
| 51 | 0.300829639 | 0.35663306  | 18.5498413 |
| 52 | 0.304183868 | 0.354436631 | 16.5205221 |
| 53 | 0.307485232 | 0.363223217 | 18.1270444 |
| 54 | 0.310774148 | 0.363223217 | 16.8769083 |
| 55 | 0.314093106 | 0.376406921 | 19.8392814 |
| 56 | 0.317486382 | 0.363223217 | 14.40592   |
| 57 | 0.320999615 | 0.354436631 | 10.4165283 |
| 58 | 0.324679429 | 0.336870204 | 3.75471147 |
| 59 | 0.328573004 | 0.3610261   | 9.87698197 |
| 60 | 0.332727617 | 0.352240752 | 5.86459734 |
| 61 | 0.337190221 | 0.37420932  | 10.9786989 |
| 62 | 0.34200696  | 0.367617011 | 7.48816678 |
| 63 | 0.347222708 | 0.37860435  | 9.03790033 |

| 64 | 0.352880619 | 0.37420932  | 6.04416896 |
|----|-------------|-------------|------------|
| 65 | 0.359021588 | 0.37420932  | 4.23031157 |
| 66 | 0.365683885 | 0.400589535 | 9.5453073  |
| 67 | 0.372902698 | 0.409388463 | 9.78425877 |
| 68 | 0.380709618 | 0.411587901 | 8.11071784 |
| 69 | 0.38913241  | 0.404988415 | 4.07470678 |
| 70 | 0.398194449 | 0.42919297  | 7.78476992 |
| 71 | 0.407914545 | 0.440201583 | 7.91514758 |
| 72 | 0.41830656  | 0.444606287 | 6.2871899  |
| 73 | 0.429379189 | 0.457822993 | 6.62440213 |
| 74 | 0.441135753 | 0.475455198 | 7.77979222 |
| 75 | 0.453574058 | 0.499715246 | 10.1728015 |
| 76 | 0.466686236 | 0.515164111 | 10.3876805 |
| 77 | 0.480458741 | 0.52620334  | 9.52102533 |
| 78 | 0.494872361 | 0.539456711 | 9.00926239 |
| 79 | 0.509902264 | 0.568191327 | 11.4314187 |
| 80 | 0.525518076 | 0.590313343 | 12.3297885 |
| 81 | 0.541684145 | 0.581462351 | 7.34343188 |
| 82 | 0.558359684 | 0.596953634 | 6.9120229  |
| 83 | 0.575499066 | 0.645687829 | 12.1961558 |
| 84 | 0.593052093 | 0.647905401 | 9.24932365 |
| 85 | 0.610964449 | 0.676741173 | 10.7660478 |
| 86 | 0.629178067 | 0.687838689 | 9.32337358 |
| 87 | 0.647631457 | 0.714487442 | 10.3231529 |
| 88 | 0.666260427 | 0.725597203 | 8.90594329 |

| 89  | 0.68499808  | 0.743381245 | 8.52311373 |
|-----|-------------|-------------|------------|
| 90  | 0.703775879 | 0.756725903 | 7.52370533 |
| 91  | 0.722523784 | 0.763399023 | 5.65728628 |
| 92  | 0.741170715 | 0.792334561 | 6.90311227 |
| 93  | 0.759645454 | 0.819065437 | 7.82206794 |
| 94  | 0.777876625 | 0.839126816 | 7.8740239  |
| 95  | 0.795793558 | 0.799016228 | 0.40496313 |
| 96  | 0.813326586 | 0.821293905 | 0.9795965  |
| 97  | 0.830407582 | 0.832439347 | 0.24467081 |
| 98  | 0.846970104 | 0.890443976 | 5.13286969 |
| 99  | 0.86295034  | 0.908308964 | 5.25622644 |
| 100 | 0.878286732 | 0.930654754 | 5.96251997 |
| 101 | 0.89292094  | 0.90384217  | 1.2230903  |
| 102 | 0.906797729 | 0.906075944 | 0.07959722 |
| 103 | 0.919865189 | 0.910543294 | 1.01339802 |
| 104 | 0.932075299 | 0.9328882   | 0.08721411 |
| 105 | 0.943383639 | 0.926184695 | 1.8231124  |
| 106 | 0.953749972 | 0.937360395 | 1.71843532 |
| 107 | 0.963137956 | 0.93959479  | 2.44442298 |
| 108 | 0.971515091 | 0.93959479  | 3.28562068 |
| 109 | 0.9788535   | 0.953010532 | 2.64012626 |
| 110 | 0.985128948 | 0.964193723 | 2.12512532 |
| 111 | 0.990321539 | 0.966430439 | 2.41245896 |
| 112 | 0.994415081 | 0.966430439 | 2.8141812  |
| 113 | 0.99739761  | 0.957483283 | 4.00184707 |

| 114 | 0.9992608   | 0.982092739 | 1.71807618 |
|-----|-------------|-------------|------------|
| 115 | 1           | 1           | 0          |
| 116 | 0.999614472 | 0.993283909 | 0.63330046 |
| 117 | 0.99810639  | 0.991045286 | 0.70745006 |
| 118 | 0.995481712 | 0.977617349 | 1.79454458 |
| 119 | 0.991749363 | 0.991045286 | 0.07099342 |
| 120 | 0.986921213 | 0.975379672 | 1.16944915 |
| 121 | 0.981012235 | 0.975379672 | 0.57415835 |
| 122 | 0.974039791 | 0.984330631 | 1.05651122 |
| 123 | 0.966024342 | 0.930654754 | 3.66135582 |
| 124 | 0.956988513 | 0.975379672 | 1.92177419 |
| 125 | 0.946957151 | 0.926184695 | 2.19360044 |
| 126 | 0.935957776 | 0.919480662 | 1.76045485 |
| 127 | 0.924019678 | 0.894910492 | 3.15027765 |
| 128 | 0.911174275 | 0.899376633 | 1.29477337 |
| 129 | 0.897455049 | 0.841357557 | 6.25072993 |
| 130 | 0.88289716  | 0.872586722 | 1.1677961  |
| 131 | 0.867537697 | 0.801243649 | 7.64163311 |
| 132 | 0.851415486 | 0.823522748 | 3.27604307 |
| 133 | 0.834570743 | 0.752276681 | 9.86064544 |
| 134 | 0.817045652 | 0.839126816 | 2.70256187 |
| 135 | 0.798883698 | 0.834667686 | 4.47924871 |
| 136 | 0.780129946 | 0.812380705 | 4.13402401 |
| 137 | 0.760830908 | 0.852506306 | 12.0493788 |
| 138 | 0.741034502 | 0.848046371 | 14.4408753 |

| 139 | 0.720790127 | 0.870355344 | 20.7501756 |
|-----|-------------|-------------|------------|
| 140 | 0.700148317 | 0.879282845 | 25.5852259 |
| 141 | 0.67916123  | 0.883746283 | 30.1231937 |
| 142 | 0.657882129 | 0.879282845 | 33.6535538 |
| 143 | 0.636365528 | 0.879282845 | 38.1726077 |
| 144 | 0.614667312 | 0.881514783 | 43.4133174 |
| 145 | 0.592844478 | 0.879282845 | 48.3159374 |
| 146 | 0.570955221 | 0.859198678 | 50.4844242 |
| 147 | 0.549059003 | 0.861429222 | 56.8919219 |
| 148 | 0.527216349 | 0.854904494 | 62.1543975 |
| 149 | 0.505488796 | 0.850543637 | 68.26162   |
| 150 | 0.483939121 | 0.85027733  | 75.6992344 |
| 151 | 0.462631003 | 0.846181644 | 82.9063853 |
| 152 | 0.441629144 | 0.846181644 | 91.6045747 |
| 153 | 0.420999124 | 0.828742479 | 96.8513548 |
| 154 | 0.400807368 | 0.826562313 | 106.224331 |
| 155 | 0.381121009 | 0.81131144  | 112.875024 |
| 156 | 0.362007653 | 0.78220142  | 116.073172 |
| 157 | 0.343535374 | 0.758800485 | 120.879869 |
| 158 | 0.325772249 | 0.71043541  | 118.077326 |
| 159 | 0.308786164 | 0.698257485 | 126.129784 |
| 160 | 0.292644337 | 0.661018478 | 125.877761 |
| 161 | 0.277412772 | 0.548199456 | 97.6114696 |
| 162 | 0.263155596 | 0.535720913 | 103.575725 |
| 163 | 0.249934228 | 0.487287869 | 94.966441  |

| 164 | 0.237806375 | 0.492905427 | 107.271747 |
|-----|-------------|-------------|------------|
| 165 | 0.22682484  | 0.501334509 | 121.022754 |
| 166 | 0.21703616  | 0.410505141 | 89.1413581 |
| 167 | 0.208479049 | 0.413856328 | 98.5121911 |
| 168 | 0.201182739 | 0.395992171 | 96.8320805 |
| 169 | 0.195165212 | 0.395992171 | 102.901003 |
| 170 | 0.190431473 | 0.370344245 | 94.476385  |
| 171 | 0.186971967 | 0.364773769 | 95.095433  |
| 172 | 0.184761303 | 0.354751794 | 92.0054619 |
| 173 | 0.183757434 | 0.341398493 | 85.7875822 |
| 174 | 0.183901536 | 0.320277625 | 74.1571235 |
| 175 | 0.185118664 | 0.292375246 | 57.939367  |
| 176 | 0.187319369 | 0.291421507 | 55.5746788 |
| 177 | 0.190402264 | 0.273691053 | 43.7435919 |
| 178 | 0.194257456 | 0.241992887 | 24.573281  |
| 179 | 0.198770723 | 0.260406368 | 31.0084122 |
| 180 | 0.203828049 | 0.252662972 | 23.9588827 |

Para resumir el análisis se especifican los datos como error mínimo, el error máximo, error promedio y la desviación estándar los cuales se presentaran a continuación en la tabla 9.

# Tabla 9. Datos específicos Error antena 3

| Error Mínimo % | Error Máximo % | Error Promedio % | Desviación<br>Estándar |
|----------------|----------------|------------------|------------------------|
| 0              | 126,1297       | 31,4445          | 0,3933                 |

Según los datos de la tabla 9 se puede observar un error mínimo de 0% y un error máximo de 126,1297% el cual es un error de consideración ya que es una diferencia en la comparación del patrón de radiación obtenido teóricamente por el simulador de antenas Em sonnet. El simulador Em Sonnet además de considerar el plano de tierra infinito no incluye factores de interferencia el cual no tiene presente ningún tipo de error, bajo estas condiciones el patrón de radiación del simulador se puede considerar como ideal. Y el patrón de radiación obtenido prácticamente con la antena construida con el sustrato RT/Duroid 5870 y probada en el medidor de antenas LVDAM-ANT en el equipo de Lab-volt incluye factores de error como el ruido generado por el cable de alimentación, marcos metálicos cerca del lugar de pruebas, teléfonos celulares que cusan interferencias entre otros.

En el patrón de radiación de las figuras 37 y 39 se observa que no son simétricos, aunque no es una buena aproximación se puede predecir el comportamiento del patron.

A pesar de las diferencias en los patrones de radiación en algunos puntos se obtiene un promedio de error considerable, esta antena presenta un error promedio mayor que la antena número uno y que la antena dos. La comparación del patrón de radiación presenta algunas diferencias en la parte externas de lóbulo principal, es ahí donde se presenta la mayor diferencia y por ende el mayor error atendiendo a lo anterior el error sigue siendo aceptable. En la figura 37 se observa la magnitud máxima de radiación en -10dB en 115 grados aproximadamente.

#### 4.4 Análisis antenas diseñadas

Para resumir el análisis general de las antenas diseñadas y construidas anteriormente se especifican los datos de error mínimo, error máximo, error promedio y desviación obtenidos anteriormente en el análisis de cada una de las antenas en espiral cuadradas los cuales se presentan a continuación en la tabla 10.

| Antena | % Error | % Error  | % Error  | Desviación |
|--------|---------|----------|----------|------------|
|        | Mínimo  | Máximo   | Promedio | Estándar   |
| 1      | 0       | 86,4175  | 22,9245  | 0.228      |
| 2      | 0       | 74,4691  | 30,9589  | 0.2511     |
| 3      | 0       | 126,1297 | 31,4445  | 0,3933     |

|  | Tabla ' | 10 | Análisis | de | las | antenas | construidas |
|--|---------|----|----------|----|-----|---------|-------------|
|--|---------|----|----------|----|-----|---------|-------------|

En la tabla 10, se puede observar el error mínimo, el error máximo, error promedio y desviación estándar, que son los valor obtenidos de la comparación del patrón de radiación en el campo eléctrico de las tres antenas. Los errores máximos son de consideración. Estos errores máximos están presentes en las partes externas de los lóbulos principales de cada una de las antena en espiral sin importar la geometría que está tenga. Las antenas construidas presentan una simetría aceptable basada en el error promedio obtenido por cada una de las antenas ya que dicho error es relativamente bajo como se observa en la tabla 10. Las tres antenas presentan magnitudes máximas de radiación que están el rango de -9dB a 12dB el cual se consideran un buen rango de trabajo.

En la tabla 10 se observa que para las tres antenas en espiral utilizadas se obtienen valores de patrón de radiación cercanos a pesar de las diferentes geometrías de las antenas. El error promedio tiene un rango del 20% al 31% un rango cercano y la deviación estándar tiene un rango de 0,2 a 0,4 se considera un buen rango para la precisión de las medidas.

#### 4.5 Análisis potencia mitad

La potencia mitad se halla tomando el valor de la magnitud máxima de radiación descrita anteriormente en las tablas 4, 6, 8 para cada una de las antenas y se hace un barrido hacia la derecha hasta encontrar 0 grados y hacia la izquierda hasta encontrar 180. Se localizan la magnitud de patrón de radiación que es igual a -3dB los cuales equivalen a 0.5 en la tabla de magnitud, las cuales se pueden observar en las tablas 11, 12, 13.

| Magnitud | Error %    |
|----------|------------|
|          | 13.9810793 |
| 0.50429  |            |
|          | 11.4699684 |
| 0.53823  |            |
|          | 9.8634265  |
| 0.57133  |            |
|          | 6.10037161 |
| 0.60347  |            |
|          | 4.47506043 |
| 0.63458  |            |

### Tabla 11. Error potencia mitad antena 1

| 0.66460 | 0.89438002 |
|---------|------------|
| 0.69349 | 0.0336434  |
| 0.72122 | 3.17720218 |
| 0.74777 | 4.92607315 |
| 0.77312 | 0.52259124 |
| 0.79725 | 0.99443717 |
| 0.82016 | 5.919477   |
| 0.84182 | 2.92717826 |
| 0.86222 | 1.99106004 |
| 0.88135 | 2.39127723 |
| 0.89916 | 4.04324431 |
| 0.91565 | 4.3859296  |
| 0.93077 | 2.94018862 |
| 0.94451 | 1.39338374 |
| 0.95681 | 1.05764979 |
| 0.96765 | 0.71397798 |
| 0.97699 | 0.7692479  |
| 0.98479 | 1.03913061 |
| 0.99102 | 0.12133266 |
| 0.99565 | 0.84136996 |
| 0.99865 | 0.09550428 |
| 1 00000 | 0          |
| 0 99968 | 0.22083666 |
| 0.00000 |            |

| 0.99767 | 0.53169737 |
|---------|------------|
| 0.99398 | 1.95422404 |
| 0.98862 | 3.99399284 |
| 0.98160 | 4.8607236  |
| 0.97295 | 5.32011429 |
| 0.96270 | 6.6867755  |
| 0.95092 | 8.19920336 |
| 0.93766 | 7.98314492 |
| 0.92300 | 6.24703748 |
| 0.90704 | 6.27431763 |
| 0.88086 | 5.32014503 |
| 0.87160 | 3.04499591 |
| 0.07100 | 1.15490298 |
| 0.85237 | 0.61817688 |
| 0.83231 | 3.5015098  |
| 0.81157 | 6.92666732 |
| 0.79031 | 10.9221342 |
| 0.76871 | 8.39004385 |
| 0.74692 | 8.15569739 |
| 0.72512 | 10.758698  |
| 0.70351 | 12.7245167 |
| 0.68226 | 12.0472861 |
| 0.66156 | 10 8007377 |
| 0.64158 | 10.009/3/7 |

| 0.62250 | 11.3662787 |
|---------|------------|
| 0.60449 | 11.3442663 |
| 0.58771 | 6.80125303 |
| 0.57230 | 6.59553116 |
| 0.55840 | 3.38850203 |
| 0.54612 | 1.10586102 |
| 0.53558 | 2.53567778 |
| 0.52686 | 2.82934146 |

La potencia mitad para la antena número uno tiene un rango de 58 grados está entre los límites de 11 grados – 69 grados la cual muestra el rango efectivo de la antena como se pude observar en la figura 46.

| Tabla 12. | Resumen | de errores | antena u | uno |
|-----------|---------|------------|----------|-----|
|-----------|---------|------------|----------|-----|

| %Error promedio potencia | Desviación<br>Estándar | %Error promedio<br>potencia mitad | Desviación<br>Estándar potencia<br>mitad |
|--------------------------|------------------------|-----------------------------------|------------------------------------------|
| 22,9245                  | 0.228                  | 4.74036401                        | 0,039                                    |
|                          |                        |                                   |                                          |

En la tabla 12. Se observa la comparación entre los errores promedio de la potencia normal que es del 22,9245 %y la potencia mitad que es 4,7403 %de la antena uno. La cual tiene una gran mejoría ya que al tomar la potencia mitad se está tomando la parte con mayor magnitud de radiación del lóbulo principal el cual tiene una simetría muy buena ya que la comparación de los dos patrones de radiación da un error bajo.

También queda demostrado que la mayor agrupación de errores están en la parte externa del lóbulo principal. Ya que con la potencia mitad se están obviando estos datos y se observa la reducción de error promedio.

Otra característica a comparar es la deviación estándar la cual se puede observar que tiene una disminución entre la desviación estándar del error promedio y la desviación de error de promedio de la potencia mitad la cual es del 0.039. El cual indica que hay más proximidad de la muestras con el valor promedio.



Figura 43. Patrón de radiación y análisis de potencia mitad antena 1

FUENTE:[Autor]

En la figura 46 se puede observar la delimitación del rango de operación de la potencia mitad analizada anteriormente.

| Magnitud    | Error %    |
|-------------|------------|
|             | 1.92366599 |
| 0.515610675 |            |
|             | 4.36099042 |
| 0.527415513 |            |

### Tabla 13. Error potencia mitad antena 2

| 0.537422568 | 6.89325458 |
|-------------|------------|
| 0.563698527 | 6.499074   |
| 0.588474841 | 6.35181817 |
| 0.624062074 | 4.52730895 |
| 0.647811868 | 4.53647186 |
| 0.65028824  | 7.51530429 |
| 0.669597618 | 7.91826493 |
| 0.692918091 | 7.69174035 |
| 0.726696218 | 6.0496371  |
| 0.762925094 | 4.1068202  |
| 0.770149256 | 5.72405095 |
| 0.779628488 | 6.89316518 |
| 0.794296959 | 7.29975179 |
| 0.814718916 | 6.92439497 |
| 0.826720868 | 7.39521261 |
| 0.840246864 | 7.56516805 |
| 0.874651207 | 5.35063536 |
| 0.888392329 | 5.28162121 |
| 0.897210402 | 5.60337697 |
| 0.920459533 | 4.28508324 |
| 0.937905538 | 3.45686486 |
| 0.959239602 | 2.10818225 |
| 0.972821589 | 1.42323609 |

| 0.988350076 | 0.40557101 |
|-------------|------------|
| 0.990291383 | 0.61357409 |
| 0.998058046 | 0.08908346 |
| 1           | 0          |
| 0.999539589 | 0.00247939 |
| 0.998058046 | 0.04084515 |
| 0.988350076 | 0.59587221 |
| 0.980585123 | 0.89686387 |
| 0.979864672 | 0.34261503 |
| 0.977877154 | 0.23007792 |
| 0.959752164 | 0.71852105 |
| 0.954812729 | 0.17409296 |
| 0.951665225 | 0.70262978 |
| 0.933410969 | 0.1085394  |
| 0.91111207  | 0.82197469 |
| 0.909529522 | 0.62425964 |
| 0.87845395  | 1.09097655 |
| 0.851543621 | 2.29100552 |
| 0.824652348 | 3.44412807 |
| 0.797781388 | 4.56020518 |
| 0.772997163 | 5.39682067 |
| 0.744104447 | 6.72327164 |
| 0.702984744 | 9.63313022 |

| 0.690514655 | 8.87168459 |
|-------------|------------|
| 0.635845936 | 13.7575455 |
| 0.616200292 | 14.0140761 |
| 0.588718794 | 15.4000483 |
| 0.569544418 | 15.639921  |
| 0.551466201 | 15.7378576 |
| 0.527964717 | 16.7195788 |
| 0.506227694 | 17.5125396 |

La potencia mitad para la antena número dos tiene un rango de 55 grados está entre los límites de 34 grados a 89 grados la cual nos muestra que el rango efectivo de la antena como se pude observar en la figura 47.

| Tabla 14 | . Resumen | de errores | antena dos |
|----------|-----------|------------|------------|
|----------|-----------|------------|------------|

| %Error promedio<br>potencia | Desviación<br>Estándar | %Error promedio<br>potencia mitad | Desviación<br>Estándar potencia<br>mitad |
|-----------------------------|------------------------|-----------------------------------|------------------------------------------|
| 30,9589                     | 0.2511                 | 5.265087                          | 0.048274                                 |

En la tabla 14. Se observa la comparación entre los errores promedio de la potencia normal que es del 30,9589 %y la potencia mitad que es 5,2650 %de la antena dos. La cual tiene una gran mejoría ya que al tomar la potencia mitad se está tomando la parte con mayor magnitud de radiación del lóbulo principal el cual tiene una simetría muy buena ya que la comparación de los dos patrones de radiación da un error bajo.

También queda demostrado que la mayor agrupación de errores están en la parte externa del lóbulo principal. Ya que con la potencia mitad se están obviando estos datos y se observa la reducción de error promedio. Esta antena presenta un mayor

mejoría en comparación con la antena anterior ya que la reducción del error es muy grande ya que pasa del 30.95% a 5.265%.

Otra característica a comparar es la deviación estándar la cual se puede observar que tiene una disminución grande entre la desviación estándar del error promedio 0.2511 y la desviación de error de promedio de la potencia mitad la cual es del 0.0482. El cual indica que hay más proximidad de la muestras con el valor promedio.



Figura 44. Patrón de radiación y análisis de potencia mitad antena 2

Tabla 15. Error potencia mitad antena 3

| Magnitud    | Error %    |
|-------------|------------|
|             | 11.4314187 |
| 0.509902264 |            |
|             | 12.3297885 |
| 0.525518076 |            |
|             | 7.34343188 |
| 0.541684145 |            |
|             |            |

| 0.558359684 | 6.9120229  |
|-------------|------------|
| 0.575499066 | 12.1961558 |
| 0.593052093 | 9.24932365 |
| 0.610964449 | 10.7660478 |
| 0.629178067 | 9.32337358 |
| 0.647631457 | 10.3231529 |
| 0.666260427 | 8.90594329 |
| 0.68499808  | 8.52311373 |
| 0.703775879 | 7.52370533 |
| 0.722523784 | 5.65728628 |
| 0.741170715 | 6.90311227 |
| 0.759645454 | 7.82206794 |
| 0.777876625 | 7.8740239  |
| 0.795793558 | 0.40496313 |
| 0.813326586 | 0.9795965  |
| 0 830407582 | 0.24467081 |
| 0.846970104 | 5.13286969 |
| 0.86295034  | 5.25622644 |
| 0.878286732 | 5.96251997 |
| 0.89292094  | 1.2230903  |
| 0.906797729 | 0.07959722 |
| 0.919865189 | 1.01339802 |
| 0.932075299 | 0.08721411 |
|             |            |

| 0.943383639 | 1.8231124  |
|-------------|------------|
| 0.953749972 | 1.71843532 |
| 0.963137956 | 2.44442298 |
| 0.971515091 | 3.28562068 |
| 0.9788535   | 2.64012626 |
| 0.985128948 | 2.12512532 |
| 0.990321539 | 2.41245896 |
| 0.994415081 | 2.8141812  |
| 0.99739761  | 4.00184707 |
| 0.9992608   | 1.71807618 |
| 1           | 0          |
| 0.999614472 | 0.63330046 |
| 0.99810639  | 0.70745006 |
| 0.995481712 | 1.79454458 |
| 0.991749363 | 0.07099342 |
| 0.986921213 | 1.16944915 |
| 0.981012235 | 0.57415835 |
| 0.974039791 | 1.05651122 |
| 0.966024342 | 3.66135582 |
| 0.956988513 | 1.92177419 |
| 0.946957151 | 2.19360044 |
| 0.935957776 | 1.76045485 |
| 0.924019678 | 3.15027765 |
|             |            |

| 0.911174275 | 1.29477337 |
|-------------|------------|
| 0.897455049 | 6.25072993 |
| 0.88289716  | 1.1677961  |
| 0.867537697 | 7.64163311 |
| 0.851415486 | 3.27604307 |
| 0.834570743 | 9.86064544 |
| 0.817045652 | 2.70256187 |
| 0.798883698 | 4.47924871 |
| 0.780129946 | 4.13402401 |
| 0.760830908 | 12.0493788 |
| 0.741034502 | 14.4408753 |
| 0.720790127 | 20.7501756 |
| 0.700148317 | 25.5852259 |
| 0.67916123  | 30.1231937 |
| 0.657882129 | 33.6535538 |
| 0.636365528 | 38.1726077 |
| 0.614667312 | 43.4133174 |
| 0.592844478 | 48.3159374 |
| 0.570955221 | 50.4844242 |
| 0.549059003 | 56.8919219 |
| 0.527216340 | 62.1543975 |
| 0.505488796 | 68.26162   |

La potencia mitad para la antena número uno tiene un rango de 70 grados está entre los límites de 79 grados a 149 grados la cual nos muestra que el rango efectivo de la antena como se pude observar en la figura 46.

| %Error promedio<br>potencia | Desviación<br>Estándar | %Error promedio<br>potencia mitad | Desviación<br>Estándar potencia<br>mitad |
|-----------------------------|------------------------|-----------------------------------|------------------------------------------|
| 31,4445                     | 0,3933                 | 10.595063                         | 0,1571                                   |

#### Tabla 16. Resumen de errores antena tres

En la tabla 16. Se observa la comparación entre los errores promedio de la potencia normal que es del 31,4445 %y la potencia mitad que es 10,5950 %de la antena tres. La cual tiene una mejoría ya que al tomar la potencia mitad se está tomando la parte con mayor magnitud de radiación del lóbulo principal el cual tiene una simetría no tan perfecta ya que la comparación de los dos patrones de radiación da un error no tan bajo.

El cambio de los errores tiene una disminución en el error promedio ya que no se tiene en cuenta varios de los dato de la parte externa del lóbulo principal pero el error sigue siendo considerable ya que al ser el lóbulo principal más ancho toma más datos los cuales dan más cabida a valores erróneos y por tal motivo la reducción del error promedio no es tan grane como las anteriores antenas. También queda demostrado que la mayor agrupación de errores están en la parte externa del lóbulo principal. Ya que con la potencia mitad se están obviando estos datos y se observa la reducción de error promedio.

Otra característica a comparar es la deviación estándar la cual se puede observar que tiene una disminución entre la desviación estándar del error promedio0, 3933 y la desviación de error de promedio de la potencia mitad la cual es del 0.15. El cual indica que hay más proximidad de la muestras con el valor promedio.





FUENTE:[Autor]

Se puede observar que esta potencia mitad tiene un rango mayor en comparación de 70 grados ya que le patrón de radiación de la antena número tres tiene un área efectiva más grande, ya que el lóbulo principal también es amplio.

# **OBSERVACIONES Y CONCLUCIONES**

- Se analizo el patrón de radiación de tres antenas en espiral cuadrada multibanda con diferentes geometrías el cual dio como resultado un error menor al 40% de la comparación de los patrones de radiación.
- Se puede incrementar la banda de la antena, incrementando el número de vueltas del espiral, con el inconveniente que unas frecuencias presentan una disminución en la ganancia.
- Se pudo observar al analizar la potencia mitad una disminución en el error promedio del 30% al 5% en la antena número 2, teniendo en cuenta que el ángulo solido de potencia mitad es el valor efectivo.

### **BIBLIOGRAFIA**

- [1] IEEE Standard Definitions of Terms for Antennas, Std 145-1983, Revision of ANSI/IEEE Std 145-1973.
- [2] BUENROSTRO ROCHA Sergio: Metodología para el diseño y construcción de una antena de microcinta en las banda WiMax a 3.5Ghz, Tijuana-México, 2007, Trabajo de grado (Maestro en ciencias), Instituto Politécnico Nacional.
- [3] CONSTANTINE A. Balanis, Antenna Theory, Analysis And Design, segunda Edition, John Wiley and Sons.
- [4] CARDAMA, Aznar Ángel; JOFRE, Roca Lluís; RUIZ, Juan Manuel; ROMEU, Robert Jordi; BATALLER, Miguel Ferrando, Antenas: 2da Edición, Editorial Alfaomega
- [5] KALYANY, Vinayagamoorthy design and implementation of wideband baluns for archimedean spiral antennas, August 2011, thesis (master of engineering) the science and engineering faculty of queenland university of technology.
- [6] C. A. Balanis, Anntena Theory : Analysis and Design. 3<sup>rd</sup> ed. New York: Jhon Wiley and Sons, Hoboken, NJ,2005.
- [7] HERNANDEZ RUEDA, José Abel Antenas: principios básicos, análisis y diseño, universidad autónoma de baja california, 1998.
- [8] GARCIA Domínguez Armando, Cálculo de Antenas: Antenas de última generación para tecnología digital y métodos de medición, cuarta edición, editorial marcombo.
- [9] GOMEZ TIBADUIZA, José Alberto y MOLINA GOMEZ, José Oswaldo: construcción de una antena microstrip anillo circular; Trabajo de Grado [Ingeniero Electrónico].-- Universidad Pontificia Bolivariana Seccional Bucaramanga. -- Escuela de Ingenierías. -- Facultad de Ingeniería Electrónica, 2013. -- Director: Guzmán Serna, Fabio Alonso.
- [10] RAMESH GARG, Prakash Bhartia, INDER BAHL, Apisak Ittipiboon. Microstrip Antenna Desing Handbook. Artech House, 2001. 845p.

- [11] AVILA ABELLAN jose: GNSS Array: Diseño de una antena con polarización circular Barcelona-españa, 2009, Trabajo de grado (Ingeniería de telecomunicaciones), universidad de barcelona.
- [12] SHENG, xin-quing; SONG,wei; Essentials of computational electromagnetics, Editorial Wiley.
- [13] KHAMAS, Salam; COOK, Gregory. Moment-Method Analysis of Printed Wire Spirals Using Curved Piecewise Sinusoidal Subdomain Basis and Testing Functions. IEEE transactions on antennas and propagation. Junio, 1997. Vol. 45. N° 6. p. 1016-1022.
- [14] MADABY, Yasser; ELKAMCHOUCHI, Hassan. Analysis of high gain multiband rounded corners dashed rectangular spiral microstrip patch antenna. IEEE transactions on antennas and propagation. 2005. p. 313-316.
- [15]PAN, Helen; Bernhard, Jennifer; NAIR, Vijay. Reconfigurable Single-Armed Square Spiral Microstrip Antenna Design. IEEE transactions on antennas and propagation.2006. p. 180-183.
- [16] QUINTERO, Gustavo; SARMIENTO, Luis; análisis del patrón de radiación de una antena tipo parche de arreglo matricial de parches rectangulares, Bucaramanga, 2012, trabajo de grado (ingeniero electrónico), Universidad Pontificia Bolivariana, Escuela ingenierías, facultad de ingeniería electrónica.
- [17] WHEELER H.A. Transmission line properties of a strip on dielectric sheet on a plane. IEEE MTT.25 (8). Pp. 631-647. 1977.
- [18] ROGERS Corporation. RT/Duroid 5880. [en linea]. [Citado el 6 de julio de 2014]. Disponible en internet <u>http://www.rogerscorp.com/documents/606/acm/RT-duroid-5870-5880-Data-Sheet.pdf</u>.
- [19] Sonnet. SONNET USER'S GUIDE. Abril 2013.
- [20] KRAUS, Guntthard. Design of Patch Antennas. [en línea]. 2011. [citado 6 de Julio de 2014]. Disponible en internet: <u>http://www.gunthardkraus.de/Tutorial\_Sonnet/pdf\_English/Tutorial\_Sonnet\_e.pdf</u>.
- [21]PEREZ, Constantino. Líneas de transmisión. [en línea]. [Citado el 6 de julio de 2014]. Disponible en internet : <u>http://personales.unican.es/perezvr/pdf/CH9ST\_Web.pdf</u>

- [22]Log periodic antenna. [en línea]. [Citado el 6 de julio de 2014].
  Disponible en internet : <u>http://www.antenna-theory.com/definitions/vswr.php</u>
- [23] COLOMBO, Juan C.; Medición de Parámetros de Dispersión "S",2012; universidad tecnológica nacional facultad regional Tucumán (ingeniería electrónica.
- [24] Lab-volt <u>http://www.labvolt.com/</u> [citado el 6 de julio de 2012].

# TRABAJOS DE ANTENAS EN LA UNIVERSIDAD PONTIFICIA BOLIVARIANA

- [26] MARTÍNEZ CAMPOS, Sergio y JIMÉNEZ BERMÚDEZ, rosa. Análisis de la simulación del patrón de radiación de una antena tipo parche. Trabajo de grado [Ingeniero Electrónico]. Bucaramanga. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías y Administración. Facultad de Ingeniería Electrónica, 2012. Director: Guzmán Serna, Fabio Alonso.
- [27] ORTEGA LEÓN, Eduardo Rafael. Diseño y elaboración de una guía de prácticas de laboratorio basada el equipo de medición de espectro de radicación de LAB-VOLT. Trabajo de Grado [Ingeniero Electrónico]. Bucaramanga. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2012. Director: Guzmán Serna, Fabio Alonso.
- [28] GARCIA OTERO, Gabriel Enrique y LAMUS AVENDAÑO, Roxana. Elaboración de un software para la simulación del patrón de radiación una antena microcinta circular con la herramienta Maltlab. Trabajo de grado. [Ingeniero Electrónico]. Bucaramanga. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2012. Director: Guzmán Serna, Fabio Alonso.
- [29] QUINTERO RODRIGUEZ, Gustavo de José y SARMIENTO LOPEZ, Luis Carlos. Análisis del patrón de radiación de una antena tipo parche de arreglo matricial de parches rectangulares. Trabajo de Grado [Ingeniero Electrónico]. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2012. Director: Guzmán Serna, Fabio Alonso.
- [30] GOMEZ TIBADUIZA, José Alberto y MOLINA GOMEZ, José Oswaldo. Análisis del patrón de radiación de una antena microstrip anillo circular. Trabajo de Grado [Ingeniero Electrónico]. Bucaramanga. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2013. Director: Guzmán Serna, Fabio Alonso.

- [31] ACELA GARCÍA, Edgar Giovanni y RIVERA MORA, José Leonardo. Diseño y construcción de una antena triangular tipo parche. Trabajo de Grado [Ingeniero Electrónico]. Bucaramanga. Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2013. Director: Guzmán Serna, Fabio Alonso.
- [32] ALVAREZ PIZARRO, Yuli Andrea y MURILLO NIÑO, Adriana María. Arreglo lineal de parche rectangular para una antena Microstrip. Trabajo de Grado [Ingeniero Electrónico]. Bucaramanga Universidad Pontificia Bolivariana Seccional Bucaramanga. Escuela de Ingenierías. Facultad de Ingeniería Electrónica, 2012. Director: Guzmán Serna, Fabio Alonso.